The peeling process of infinite Boltzmann planar maps


We show that there exists a simple generalization of Kazakov’s multicritical one-matrix model, which interpolates between the various multicritical points of the model. The associated multicritical potential takes the form of a power series with a heavy tail, leading to a cut of the potential and its derivative at the real axis, and reduces to a polynomial at Kazakov’s multicritical points. From the combinatorial point of view the generalized model allows polygons of arbitrary large degrees (or vertices of arbitrary large degree, when considering the dual graphs), and it is the weight assigned to these large order polygons which brings about the interpolation between the multicritical points in the one-matrix model.

The Electronic Journal of Combinatorics 23 (2016) #P1.28, pp.1.28


  1. Curien, Nicolas, and Jean-François Le Gall. “Scaling limits for the peeling process on random maps.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 53. No. 1. Institut Henri Poincaré, 2017.
  2. Bertoin, Jean, Nicolas Curien, and Igor Kortchemski. “Random planar maps and growth-fragmentations.” The Annals of Probability 46.1 (2018): 207-260.
  3. Bertoin, Jean, et al. “Martingales in self-similar growth-fragmentations and their connections with random planar maps.” Probability Theory and Related Fields (2017): 1-62.
  4. Budd, Timothy, and Nicolas Curien. “Geometry of infinite planar maps with high degrees.” Electronic Journal of Probability 22 (2017).
  5. Richier, Loïc. “Universal aspects of critical percolation on random half-planar maps.” Electronic Journal of Probability 20 (2015).
  6. Curien, Nicolas, and Jean-François Le Gall. “First-passage percolation and local modifications of distances in random triangulations.” arXiv preprint arXiv:1511.04264 (2015).
  7. Richier, Loïc. “Limits of the boundary of random planar maps.” Probability Theory and Related Fields (2017): 1-39.
  8. Bernardi, Olivier, Nicolas Curien, and Grégory Miermont. “A Boltzmann approach to percolation on random triangulations.” arXiv preprint arXiv:1705.04064 (2017).
  9. Ménard, Laurent. “Volumes in the Uniform Infinite Planar Triangulation: from skeletons to generating functions.” Combinatorics, Probability and Computing (2018): 1-28.
  10. Le Gall, Jean-François. “Brownian disks and the Brownian snake.” arXiv preprint arXiv:1704.08987 (2017).
  11. Stefánsson, Sigurdur Örn, and Benedikt Stufler. “Geometry of large Boltzmann outerplanar maps.” arXiv preprint arXiv:1710.04460 (2017).
  12. Curien, N. “Peeling random planar maps.” Cours Peccot, Collège de France, Paris (2016).
  13. Richier, Loïc. Géométrie et percolation sur des cartes à bord aléatoires. Diss. ENS Lyon, 2017.
  14. Curien, Nicolas, and Loïc Richier. “Duality of random planar maps via percolation.” arXiv preprint arXiv:1802.01576 (2018).
  15. Baur, Erich, and Loïc Richier. “Uniform infinite half-planar quadrangulations with skewness.” Electronic Journal of Probability 23 (2018).
  16. Curien, Nicolas, and Cyril Marzouk. “How fast planar maps get swallowed by a peeling process.” Electronic Communications in Probability 23 (2018).
  17. Budd, Timothy. “Winding of simple walks on the square lattice.” arXiv preprint arXiv:1709.04042 (2017).
  18. Budd, Timothy. “The peeling process on random planar maps coupled to an O (n) loop model (with an appendix by Linxiao Chen).” arXiv preprint arXiv:1809.02012 (2018).
  19. Budd, Timothy, Nicolas Curien, and Cyril Marzouk. “Infinite random planar maps related to Cauchy processes.” arXiv preprint arXiv:1704.05297 (2017).
  20. Curien, N. and Marzouk, C., “Markovian explorations of random planar maps are roundish”, arXiv preprint arXiv:1902.10624 (2019).
  21. Budzinski, Thomas, Nicolas Curien, and Bram Petri. “Universality for random surfaces in unconstrained genus.” arXiv preprint arXiv:1902.01308 (2019).
  22. Budzinski, Thomas, and Baptiste Louf. “Local limits of uniform triangulations in high genus.” arXiv preprint arXiv:1902.00492 (2019).
  23. Marzouk, Cyril. “Brownian limits of planar maps with a prescribed degree sequence.” arXiv preprint arXiv:1903.06138 (2019).
  24. Budd, Timothy, and Curien, Nicolas. “Simple peeling of planar maps with application to site percolation.” arXiv preprint arXiv:1909.10217 (2019).
  25. Curien, Nicolas, and Marzouk, Cyril. “Infinite stable Boltzmann planar maps are subdiffusive.” arXiv preprint arXiv:1910.09623 (2019).
  26. Carrance, A. (2019). “Random colored triangulations.” Doctoral dissertation, Université de Lyon.
  27. Thomas Budzinski, and Thomas Lehéricy. “Recurrence of the Uniform Infinite Half-Plane Map via duality of resistances.” arXiv preprint arXiv:1912.08790 (2019).
  28. Louf, Baptiste. Cartes de grand genre : de la hiérarchie KP aux limites probabilistes. Dissertation. Université de Paris
  29. Jason Miller, Scott Sheffield, Wendelin Werner, “Non-simple conformal loop ensembles on Liouville quantum gravity and the law of CLE percolation interfaces.” arXiv preprint arXiv:2006.14605 (2020).
  30. Albenque, Marie. “Maps: At the interface between Combinatorics and Probability.” Habilitation thesis, 2020.
  31. Ménard, Laurent. “Cartes et graphes aléatoires.” Habilitation thesis, 2020.
  32. Budzinski, Thomas, and Louf, Baptiste. “Local limits of bipartite maps with prescribed face degrees in high genus.” arXiv preprint arXiv:2012.05813 (2020).
  33. Stufler, Benedikt. “Quenched local convergence of Boltzmann planar maps.” arXiv preprint arXiv:2102.11632 (2021).
  34. William Da Silva, Juan Carlos Pardo. “Self-similar growth-fragmentation processes with types.” arXiv preprint arXiv:2112.11091 (2021).
  35. Aleksandra Korzhenkova. “The exploration process of critical Boltzmann planar maps decorated by a triangular O(n) loop model.” arXiv preprint arXiv:2112.11576 (2021).
  36. Ménard, Laurent. “Percolation probability and critical exponents for site percolation on the UIPT.” arXiv preprint arXiv:2201.11920 (2022).
  37. Albenque, Marie, and Laurent Ménard. “Geometric properties of spin clusters in random triangulations coupled with an Ising Model.” arXiv preprint arXiv:2201.11922 (2022).