Multi-point functions of weighted cubic maps


We study the geodesic two- and three-point functions of random weighted cubic maps, which are obtained by assigning random edge lengths to random cubic planar maps. Explicit expressions are obtained by taking limits of recently established bivariate multi-point functions of general planar maps. We give an alternative interpretation of the two-point function in terms of an Eden model exploration process on a random planar triangulation. Finally, the scaling limits of the multi-point functions are studied, showing in particular that the two- and three-point functions of the Brownian map are recovered as the number of faces is taken to infinity.

Ann. Inst. Henri Poincare Comb. Phys. Interact. 3 (2016), 1-44


  1. Curien, Nicolas, and Jean-François Le Gall. “Scaling limits for the peeling process on random maps.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 53. No. 1. Institut Henri Poincaré, 2017.
  2. Budd, Timothy. “The peeling process of infinite Boltzmann planar maps.” The Electronic Journal of Combinatorics 23.1 (2016): P1-28.
  3. Budd, Timothy, and Nicolas Curien. “Geometry of infinite planar maps with high degrees.” Electronic Journal of Probability 22 (2017).
  4. Curien, Nicolas, and Jean-François Le Gall. “First-passage percolation and local modifications of distances in random triangulations.” arXiv preprint arXiv:1511.04264 (2015).
  5. Stufler, Benedikt. “Scaling limits of random outerplanar maps with independent link-weights.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 53. No. 2. Institut Henri Poincaré, 2017.
  6. Curien, N. “Peeling random planar maps.” Cours Peccot, Collège de France, Paris (2016).
  7. Budd, Timothy, Nicolas Curien, and Cyril Marzouk. “Infinite random planar maps related to Cauchy processes.” arXiv preprint arXiv:1704.05297 (2017).
  8. Curien, Nicolas, and Laurent Ménard. “The skeleton of the UIPT, seen from infinity.” arXiv preprint arXiv:1803.05249 (2018).
  9. Carrance, A. (2019). “Random colored triangulations.” Doctoral dissertation, Université de Lyon.
  10. Bouttier, Jérémie, “Cartes planaires et partitions aléatoires”, Habilitation à diriger des recherches, Université Paris-Sud (2019).
  11. Ménard, Laurent. “Cartes et graphes aléatoires.” Habilitation thesis, 2020.
  12. Budd, Timothy. “Irreducible metric maps and Weil-Petersson volumes.” arXiv preprint arXiv:2012.11318 (2020).
  13. Stufler, Benedikt. “First-passage percolation on random simple triangulations.” arXiv preprint arXiv:2203.07297 (2022).