Geometry of infinite planar maps with high degrees

Abstract

We study the geometry of infinite random Boltzmann planar maps with vertices of high degree. These correspond to the duals of the Boltzmann maps associated to a critical weight sequence $(q_k)_{k\geq 0}$ for the faces with polynomial decay $k^{-a}$ with $a\in(3/ 2,5/ 2)$ which have been studied by Le Gall & Miermont as well as by Borot, Bouttier & Guitter. We show the existence of a phase transition for the geometry of these maps at $a=2$. In the dilute phase corresponding to $a\in(2,5/ 2)$ we prove that the volume of the ball of radius $r$ (for the graph distance) is of order $r^d$ with $d=(a−1/2)/(a−2)$, and we provide distributional scaling limits for the volume and perimeter process. In the dense phase corresponding to $a\in(3/ 2,2)$ the volume of the ball of radius $r$ is exponential in $r$. We also study the first-passage percolation (FPP) distance with exponential edge weights and show in particular that in the dense phase the FPP distance between the origin and infinity is finite. The latter implies in addition that the random lattices in the dense phase are transient. The proofs rely on the recent peeling process introduced in arXiv:1506.01590 and use ideas of arXiv:1412.5509 in the dilute phase.

Publication
Electron. J. Probab. 22 (2017), no. 35
Date

Citations

  1. Kortchemski, Igor, and Loïc Richier. “Condensation in critical Cauchy Bienaym\‘e-Galton-Watson trees.” The Annals of Applied Probability 29.3 (2019): 1837-1877.
  2. Bertoin, Jean, et al. “Martingales in self-similar growth-fragmentations and their connections with random planar maps.” Probability Theory and Related Fields (2017): 1-62.
  3. Ambjørn, Jan, Timothy Budd, and Yuri Makeenko. “Generalized multicritical one-matrix models.” Nuclear Physics B 913 (2016): 357-380.
  4. Chen, Linxiao, Nicolas Curien, and Pascal Maillard. “The perimeter cascade in critical Boltzmann quadrangulations decorated by an $ O (n) $ loop model.” arXiv preprint arXiv:1702.06916 (2017).
  5. Richier, Loïc. “Limits of the boundary of random planar maps.” Probability Theory and Related Fields (2017): 1-39.
  6. Stefánsson, Sigurdur Örn, and Benedikt Stufler. “Geometry of large Boltzmann outerplanar maps.” arXiv preprint arXiv:1710.04460 (2017).
  7. Curien, Nicolas, and Loïc Richier. “Duality of random planar maps via percolation.” arXiv preprint arXiv:1802.01576 (2018).
  8. Curien, Nicolas, and Cyril Marzouk. “How fast planar maps get swallowed by a peeling process.” Electronic Communications in Probability 23 (2018).
  9. Chen, Linxiao. Random Planar Maps coupled to Spin Systems. Diss. Université Paris-Saclay, 2018.
  10. Budd, Timothy. “The peeling process on random planar maps coupled to an O (n) loop model (with an appendix by Linxiao Chen).” arXiv preprint arXiv:1809.02012 (2018).
  11. Budzinski, Thomas. Cartes aléatoires hyperboliques. Diss. Université Paris-Saclay, 2018.
  12. Curien, N. and Marzouk, C., “Markovian explorations of random planar maps are roundish”, arXiv preprint arXiv:1902.10624 (2019).
  13. Ged, François Gaston. “Intrinsic area near the origin for self-similar growth-fragmentations and related random surfaces.” arXiv preprint arXiv:1908.03746 (2019).
  14. Curien, Nicolas, and Marzouk, Cyril. “Infinite stable Boltzmann planar maps are subdiffusive.” arXiv preprint arXiv:1910.09623 (2019).
  15. Bouttier, Jérémie, “Cartes planaires et partitions aléatoires”, Habilitation à diriger des recherches, Université Paris-Sud (2019).
  16. Louf, Baptiste. Cartes de grand genre : de la hiérarchie KP aux limites probabilistes. Dissertation. Université de Paris
  17. Budzinski, Thomas, and Louf, Baptiste. “Local limits of bipartite maps with prescribed face degrees in high genus.” arXiv preprint arXiv:2012.05813 (2020).
  18. Aleksandra Korzhenkova. “The exploration process of critical Boltzmann planar maps decorated by a triangular O(n) loop model.” arXiv preprint arXiv:2112.11576 (2021).
  19. Budd, Timothy. “Winding of simple walks on the square lattice.” Journal of Combinatorial Theory, Series A 172 (2020): 105191.
  20. Budd, Timothy, Nicolas Curien, and Cyril Marzouk. “Infinite random planar maps related to Cauchy processes.” Journal de l’École polytechnique-Mathématiques 5 (2018): 749-791.
  21. Kortchemski, Igor, and Loïc Richier. “The boundary of random planar maps via looptrees.” Annales de la Faculté des sciences de Toulouse: Mathématiques. Vol. 29. No. 2. 2020.