Martingales in self-similar growth-fragmentations and their connections with random planar maps

Abstract

The purpose of the present work is twofold. First, we develop the theory of general self-similar growth-fragmentation processes by focusing on martingales which appear naturally in this setting and by recasting classical results for branching random walks in this framework. In particular, we establish many-to-one formulas for growth-fragmentations and define the notion of intrinsic area of a growth-fragmentation. Second, we identify a distinguished family of growth-fragmentations closely related to stable Lévy processes, which are then shown to arise as the scaling limit of the perimeter process in Markovian explorations of certain random planar maps with large degrees (which are, roughly speaking, the dual maps of the stable maps of Le Gall and Miermont in Ann Probab 39:1–69, 2011). As a consequence of this result, we are able to identify the law of the intrinsic area of these distinguished growth-fragmentations. This generalizes a geometric connection between large Boltzmann triangulations and a certain growth-fragmentation process, which was established in Bertoin et al. (Ann Probab, accepted).

Publication
Probability Theory and Related Fields 172 (2018) 663-724
Date

Citations

  1. Miller, Jason, and Scott Sheffield. “An axiomatic characterization of the Brownian map.” arXiv preprint arXiv:1506.03806 (2015).
  2. Budd, Timothy, and Nicolas Curien. “Geometry of infinite planar maps with high degrees.” Electronic Journal of Probability 22 (2017).
  3. Rembart, Franz, and Matthias Winkel. “Recursive construction of continuum random trees.” The Annals of Probability 46.5 (2018): 2715-2748.
  4. Dadoun, Benjamin. “Asymptotics of self-similar growth-fragmentation processes.” Electronic Journal of Probability 22 (2017).
  5. Richier, Loïc. “Limits of the boundary of random planar maps.” Probability Theory and Related Fields (2017): 1-39.
  6. Shi, Quan. “Growth-fragmentation processes and bifurcators.” Electronic Journal of Probability 22 (2017).
  7. Curien, N. “Peeling random planar maps.” Cours Peccot, Collège de France, Paris (2016).
  8. Shi, Quan. “A growth-fragmentation model related to Ornstein-Uhlenbeck type processes.” arXiv preprint arXiv:1702.01091 (2017).
  9. Richier, Loïc. Géométrie et percolation sur des cartes à bord aléatoires. Diss. ENS Lyon, 2017.
  10. Patie, Pierre, Mladen Savov, and Yixuan Zhao. “Intertwining, Excursion Theory and Krein Theory of Strings for Non-self-adjoint Markov Semigroups.” arXiv preprint arXiv:1706.08995 (2017).
  11. Shi, Quan, and Alexander R. Watson. “Probability tilting of compensated fragmentations.” Electronic Journal of Probability 24 (2019).
  12. Zhao, Yi Xuan. Spectral Expansions and Excursion Theory for Non-Self-Adjoint Markov Semigroups with Applications in Mathematical Finance. Diss. Cornell University, 2017.
  13. Shi, Quan. “An introduction to growth-fragmentations An unfinished draft.” (2017).
  14. Ged, François Gaston. “Profile of a self-similar growth-fragmentation.” Electronic Journal of Probability 24 (2019).
  15. Escobedo, Miguel. “On the non existence of non negative solutions to a critical Growth-Fragmentation Equation.” arXiv preprint arXiv:1703.07602 (2017).
  16. Le Gall, Jean-François. “Brownian geometry.” preprint arXiv:1810.02664 (2018).
  17. Kyprianou, Andreas E., Victor Rivero, and Weerapat Satitkanitkul. “Stable L\‘evy processes in a cone.” arXiv preprint arXiv:1804.08393 (2018).
  18. Chen, Linxiao. Random Planar Maps coupled to Spin Systems. Diss. Université Paris-Saclay, 2018.
  19. Curien, Nicolas, and Loïc Richier. “Duality of random planar maps via percolation.” arXiv preprint arXiv:1802.01576 (2018).
  20. Budd, Timothy. “The peeling process on random planar maps coupled to an O (n) loop model (with an appendix by Linxiao Chen).” arXiv preprint arXiv:1809.02012 (2018).
  21. Bertoin, Jean, and Alexander Watson. “The strong Malthusian behavior of growth-fragmentation processes.” arXiv preprint arXiv:1901.07251 (2019).
  22. Ged, François Gaston. “Intrinsic area near the origin for self-similar growth-fragmentations and related random surfaces.” arXiv preprint arXiv:1908.03746 (2019).
  23. Iksanov, Alexander, and Bastien Mallein. “A result on power moments of Lévy-type perpetu-ities and its application to the Lp-convergence of Big-gins’ martingales in branching Lévy processes.” ALEA 16 (2019): 315-331.
  24. J. Bertoin, N. Curien, and I. Kortchemski. “On conditioning a self-similar growth-fragmentation by its intrinsic area.” arXiv preprint arXiv:1908.07830 (2019).
  25. N. Curien, and O. Hénard. “The phase transition for parking on Galton–Watson trees.” arXiv preprint arXiv:1912.06012 (2019).
  26. Jason Miller, Scott Sheffield, Wendelin Werner. “Simple Conformal Loop Ensembles on Liouville Quantum Gravity.” arXiv preprint arXiv:2002.05698 (2020).
  27. E. Aïdékon, W. Da Silva, “Growth-fragmentation process embedded in a planar Brownian excursion”, arXiv preprint arXiv:2005.06372 (2020).
  28. Jason Miller, Scott Sheffield, Wendelin Werner, “Non-simple conformal loop ensembles on Liouville quantum gravity and the law of CLE percolation interfaces.” arXiv preprint arXiv:2006.14605 (2020).
  29. Le Gall, Jean-François, and Armand Riera. “Growth-fragmentation processes in Brownian motion indexed by the Brownian tree.” Annals of Probability 48, no. 4 (2020): 1742-1784.
  30. Escobedo, Miguel. “On the non existence of non negative solutions to a critical Growth-Fragmentation Equation.” Annales de la Faculté des sciences de Toulouse: Mathématiques. Vol. 29. No. 1. 2020.
  31. Miller, Jason, and Wei Qian. “Geodesics in the Brownian map: Strong confluence and geometric structure.” arXiv preprint arXiv:2008.02242 (2020).
  32. W. Da Silva. “Self-similar signed growth-fragmentations.” arXiv preprint arXiv:2101.02582 (2021).
  33. Alexander R. Watson. “A growth-fragmentation connected to the ricocheted stable process.” arXiv preprint arXiv:2021.05658 (2021).
  34. Döring, L., & Trottner, L. “Stability of Overshoots of Markov Additive Processes.” arXiv preprint arXiv:2102.03238 (2021).
  35. Riera, Armand. “Isoperimetric inequalities in the Brownian plane.” arXiv preprint arXiv:2103.14573 (2021).
  36. Ang, M., & Sun, X. (2021). “Integrability of the conformal loop ensemble.” arXiv preprint arXiv:2107.01788.
  37. Contat, A., & Curien, N. (2021). “Parking on Cayley trees & Frozen Erdös-Rényi.” arXiv preprint arXiv:2107.02116.
  38. Juhan Aru, Nina Holden, Ellen Powell, Xin Sun. “Mating of trees for critical Liouville quantum gravity.” arXiv preprint arXiv:2109.00275 (2021).
  39. William Da Silva, Juan Carlos Pardo. “Self-similar growth-fragmentation processes with types.” arXiv preprint arXiv:2112.11091 (2021).
  40. Kavvadias, Konstantinos, and Jason Miller. “Bipolar oriented random planar maps with large faces and exotic SLE$_\kappa(\rho)$ processes.” arXiv preprint arXiv:2202.02289 (2022).
  41. Trottner, Lukas. “Implications of Markov stability theory for nonparametric statistics, Markov additive fluctuations and data-driven stochastic control.” Dissertation. University of Mannheim, Germany (2021).
  42. Riera, Armand. Brownian Geometry. Dissertation. Université Paris-Saclay, 2021.
  43. Sheffield, Scott. “What is a random surface?” arXiv preprint arXiv:2203.02470 (2022).