Roaming moduli space using dynamical triangulations

Abstract

In critical as well as in non-critical string theory the partition function reduces to an integral over moduli space after integration over matter fields. For non-critical string theory this moduli integrand is known for genus one surfaces. The formalism of dynamical triangulations provides us with a regularization of non-critical string theory. We show how to assign in a simple and geometrical way a moduli parameter to each triangulation. After integrating over possible matter fields we can thus construct the moduli integrand. We show numerically for $c=0$ and $c=-2$ non-critical strings that the moduli integrand converges to the known continuum expression when the number of triangles goes to infinity.

Publication
Nucl. Phys. B 858: 267-292, 2012
Date

Citations

  1. David, François, Rémi Rhodes, and Vincent Vargas. “Liouville quantum gravity on complex tori.” Journal of Mathematical physics 57.2 (2016): 022302.
  2. Ambjørn, Jan, and T. G. Budd. “Geodesic distances in Liouville quantum gravity.” Nuclear Physics B 889 (2014): 676-691.
  3. David, François, and Bertrand Eynard. “Planar maps, circle patterns and 2d gravity.” arXiv preprint arXiv:1307.3123 (2013).
  4. Guillarmou, Colin, Rémi Rhodes, and Vincent Vargas. “Polyakov’s formulation of $2 d $ bosonic string theory.” arXiv preprint arXiv:1607.08467 (2016).
  5. Ambjørn, Jan, and Timothy George Budd. “Semi-classical dynamical triangulations.” Physics Letters B 718.1 (2012): 200-204.
  6. Budd, Timothy George, and R. Loll. “Exploring torus universes in causal dynamical triangulations.” Physical Review D 88.2 (2013): 024015.
  7. Maltz, Jonathan. “Gauge invariant computable quantities in timelike Liouville theory.” Journal of High Energy Physics 2013.1 (2013): 151.
  8. Ambjørn, J., and Timothy Budd. “The toroidal Hausdorff dimension of 2d Euclidean quantum gravity.” Physics Letters B 724.4-5 (2013): 328-332.
  9. Guillarmou, Colin, Vincent Vargas, and Rémi Rhodes. Liouville Quantum Gravity on compact surfaces. No. arXiv: 1607.08467. 2016.
  10. Ambjørn, J., and T. Budd. “Geodesic distances in quantum Liouville gravity.” arXiv preprint hep-th/1405.3424 (2014).
  11. Budd, Timothy George. Non-perturbative quantum gravity: a conformal perspective. Diss. Utrecht University, 2012.
  12. Maltz, Jonathan David. Towards a String Theory Model of de Sitter Space and Early Universe Cosmology. Diss. Stanford University, 2013.
  13. Ambjorn, J., and T. Budd. “Two-Dimensional Quantum Geometry.” arXiv preprint arXiv:1310.8552 (2013).
  14. Maltz, Jonathan. “Towards String Theory models of DeSitter Space and early Universe Cosmology.” arXiv preprint arXiv:1309.2356 (2013).
  15. Charbonnier, Séverin, François David, and Bertrand Eynard. “Local properties of the random Delaunay triangulation model and topological 2D gravity.” arXiv preprint arXiv:1701.02580 (2017).
  16. Ambjørn, J., Drogosz, Z., Gizbert-Studnicki, J., Görlich, A. and Jurkiewicz, J. “Pseudo-Cartesian coordinates in a model of Causal Dynamical Triangulations.” Nuclear Physics B 943 (2019): 114626.
  17. J. Ambjorn, Z. Drogosz, A. Görlich, J. Jurkiewicz. “Properties of dynamical fractal geometries in the model of Causal Dynamical Triangulations.” arXiv preprint arXiv:2007.13311 (2020).