
where the log(�

2

=s) term is 
ompletely governed by the above-given RGE for �. This re-


e
ts that the observable e�e
tive 4-point 
oupling should not depend on the 
hoi
e of

referen
e s
ale �.

The referen
e s
ale � labels an entire equivalen
e 
lass of parametrizations of

the �

4

-theory and it should not matter whi
h element of the 
lass we 
hoose for

setting up the theory. These elements all lie on the same RGE traje
tory.

When expressed in terms of the physi
al 
oupling �

ph

, the e�e
tive 
oupling jM

��!��

(s; �)j

2

is independent of the 
uto� �, as expe
ted for a 
orre
t observable! The 
uto� dependen
e

has been absorbed into a rede�nition of the unobservable Lagrangian parameter (bare 
ou-

pling) � in terms of the observable physi
al parameter (e�e
tive 
oupling) �

ph

. In the

literature this physi
al observable is usually referred to as the renormalized 
oupling �

R

,

although this terminology is a bit strange bearing in mind that the original 
oupling was

not normalized to begin with. This is an example of the 
on
ept of renormalization.

10


Renormalization: express physi
ally measurable quantities in terms of physi
ally

measurable quantities and not in terms of bare Lagrangian parameters.

� For setting up a perturbative expansion, the bare Lagrangian parameters are in fa
t

not the right parameters. Instead the physi
ally measurable parameters should be

used (
f. the dis
ussion about m and m

ph

in § 2.9.2).

� The o

urren
e of in�nities in the loop integrals is linked to this. Our initial pertur-

bative expansion 
onsisted of taking � ! 1 while keeping � and m �nite. From

the renormalization group viewpoint, however, the set (�=�=1; � <1; m <1)

does not belong to the equivalen
e 
lass of the �

4

-theory!

� The 
onvergen
e of the perturbative series 
an be further improved by using phys-

i
al quantities at the \right s
ale", thereby avoiding large logarithmi
 fa
tors like

log(�

2

=s) in the example above. This 
hoi
e of s
ale has no 
onsequen
e for all-order


al
ulations, but it does if the series is trun
ated at a 
ertain perturbative order.

To 
omplete the story for the s
alar �

4

-theory we 
onsider the UV divergen
es that are

present in the s
alar self-energy. This time the mass parameter is essential and therefore

should not be negle
ted.

S
alar self-energy at O(�):

� i�(p

2

)

O(�)

====

p p

`

1

=

� i�

2

Z

d

4

`

1

(2�)

4

i

`

2

1

�m

2

+ i�


uto� �� m

�����������!

Wi
k rotation

� i�

32�

2

Z

�

2

0

d`

2

E

`

2

E

`

2

E

+m

2

� i�

=

� i�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

:
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After Dyson summation the full propagator be
omes

i

p

2

�m

2

� �(p

2

) + i�

�

iZ

p

2

�m

2

ph

+ regular terms :

Sin
e the 1-loop s
alar self-energy does not depend on p

2

, it is absorbed 
ompletely into

the physi
al mass:

m

2

ph

= m

2

+ �(m

2

ph

)

O(�)

==== m

2

+

�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

;

whereas the residue of the pole remains 1.

10d Note the strong �

2

dependen
e of the s
alar mass, whi
h implies that this

mass is very sensitive to high-s
ale quantum 
orre
tions. This is in fa
t a gen-

eral feature of s
alar parti
les, like the Higgs boson: intrinsi
ally the quantum


orre
tions to the mass of a s
alar parti
le are dominated by the highest mass

s
ale the s
alar parti
le 
ouples to!

S
alar self-energy at O(�

2

): the residue of the pole is a�e
ted at 2-loop level by the


ontribution

p p

`

2

`

1

=

(�i�)

2

6

Z

d

4

`

1

(2�)

4

Z

d

4

`

2

(2�)

4

i

`

2

1

�m

2

+ i�

i

`

2

2

�m

2

+ i�

i

(`

1

+ `

2

+ p)

2

�m

2

+ i�

= a+ bp

2

+ 
p

4

+ � � � :

To assess the UV behaviour of this diagram we perform naive power 
ounting, whi
h in-

volves treating all loop momenta as being of the same order of magnitude. For `

1;2

!1

we obtain an integral of the order

R

d

8

`

E

=`

6

E

`

E

� �

����! �

8�6

= �

2

.

� a = O(�

2

) is obtained by setting p = 0;

� b = O(log�) is obtained by taking

1

2

�

2

=�p

2

0

and then setting p = 0. In naive power


ounting this logarithmi
ally divergent term 
orresponds to integrals of order �

0

.

� 
 = O(1) is obtained by taking

1

4!

�

4

=�p

4

0

and then setting p = 0.

Adding all self-energy 
ontributions and fo
ussing on the diverging terms

i

p

2

�m

2

� �(p

2

) + i�

!

i

p

2

�m

2

� A� Bp

2

�

iZ

p

2

�m

2

ph

+ regular terms ;

Z =

1

1�B

= O(log �) ; m

2

ph

=

m

2

+A

1�B

� Zm

2

+ Æm

2

; Æm

2

=

A

1�B

= O(�

2

) :
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This leads to an O(�

2

) shift in the mass and an O(log�) 
ontribution to the wave-

fun
tion renormalization, whi
h 
an be absorbed in the �eld � itself.

So, UV divergent loop 
orre
tions in �

4

-theory are present in �(p

2

) andM

��!��

(s; �), with

�(m

2

ph

) = m

2

ph

�m

2

= (Z � 1)m

2

+ Æm

2

� m

2

Æ

Z

+ Æm

2

; �

0

(m

2

ph

) = 1� 1=Z

and M

��!��

(s = �

2

; �=2) = ��

ph

� �Z

2

�� Æ

�

:

The o

urren
e of the fa
tor Z

2

in the last expression originates from the multipli
ative

fa
tor (

p

Z )

4

that should be added a

ording to the Feynman rules.

2.10.1 Physi
al perturbation theory (a.k.a. renormalized perturbation theory)

10


The lowest-order �

4

-theory should have been written in terms of the exper-

imentally measurable physi
al parameters m

ph

and �

ph

, and perturbation

theory should have been de�ned with respe
t to this lowest-order theory.

This is done as follows: take the original Lagrangian and write

� = �

R

p

Z ; m

2

Z = m

2

ph

� Æm

2

; �Z

2

= �

ph

� Æ

�

and Z � 1 + Æ

Z

so that

L =

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

2

�

�

4!

�

4

=

1

2

(�

�

�

R

)(�

�

�

R

) �

1

2

m

2

ph

�

2

R

�

�

ph

4!

�

4

R

+

1

2

Æ

Z

(�

�

�

R

)(�

�

�

R

) +

1

2

Æm

2

�

2

R

+

Æ

�

4!

�

4

R

:

We get ba
k the original Lagrangian in terms of renormalized obje
ts (�rst line) and we

obtain extra intera
tions that are 
alled 
ounterterms (se
ond line), sin
e their purpose

is to 
an
el the divergen
es in the theory. The Feynman rules for the propagators and

verti
es in
luding 
ounterterms are now given by

p

=

i

p

2

�m

2

ph

+ i�

; = �i�

ph

;

�

p p

= i(p

2

Æ

Z

+ Æm

2

) ;

�

= iÆ

�

:

Renormalization 
onditions: as an expli
it example, the full propagator now reads

i=

�

p

2

�m

2

ph

��

R

(p

2

)

�

, with the renormalized self-energy given by

� i�

R

(p

2

) = +

�

+ + +

�

+

�

+ � � �
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The parameters Æ

Z

and Æm

2


an be �xed by imposing the renormalization 
onditions

�

R

(m

2

ph

) = 0 and �

0

R

(m

2

ph

) = 0 ) full propagator =

i

p

2

�m

2

ph

+regular terms :

The pole stru
ture of the full propagator then resembles that of a free parti
le, so in that

sense the physi
al 1-parti
le states have been re-normalized by this pro
edure. Adding

one more renormalization 
ondition based on M

��!��

in order to �x Æ

�

, we have three


onditions �xing three 
ounterterm parameters. This will in fa
t be suÆ
ient to make all

observables of the �

4

-theory �nite.

10e

The s
alar �

4

-theory is 
alled renormalizable: \the in�nities of the theory


an be absorbed into a �nite number of parameters".

2.10.2 What has happened?

The above pro
edure seems odd: we 
al
ulated something that turned out to be in�nite,

then subtra
ted in�nity from our original mass and 
oupling in an arbitrary way and ended

up with something �nite. Moreover, we have added divergent terms to our Lagrangian and

we have suddenly ended up with a s
ale-dependent 
oupling. Why would a pro
edure


onsisting of su
h ill-de�ned mathemati
al tri
ks be legitimate? To see what has really

happened, let us 
losely examine the starting point of our 
al
ulation.

In general, we start with a Lagrangian 
ontaining all possible terms that are 
ompatible

with basi
 assumptions su
h as relativity, 
ausality, lo
ality, et
. It still 
ontains a few

parameters su
h as m and � in the 
ase of �

4

-theory. It is tempting to 
all them \mass"

and \
oupling", as they turn out to be just that in the 
lassi
al (i.e. lowest-order) theory.

However, up to this point they are just free parameters. In order to make the theory

predi
tive, the parameters need to be �xed by a set of measurements: we should 
al
ulate

a set of 
ross se
tions at a given order in perturbation theory, measure their values and then

�t the parameters so that they reprodu
e the experimental data. After this pro
edure, the

theory is 
ompletely determined and be
omes predi
tive.

The bare parameters m and � are only useful in intermediate 
al
ulations and will be

repla
ed by physi
al (i.e. measured) quantities in the end anyway. So, we might as well

parametrize the theory in terms of the latter. The renormalizability hypothesis is that this

reparametrization of the theory is enough to turn the perturbation expansion into a well-

de�ned expansion. The divergen
e problem then has nothing to do with the perturbation

expansion itself: we have just 
hosen unsuitable parameters to perform it. Also, the

fa
t that our physi
al 
oupling is s
ale-dependent should not surprise us. The physi
al

reason for this \running" is the existen
e of quantum 
u
tuations, whi
h were not there

in the 
lassi
al theory. These 
u
tuations 
orrespond to intermediate parti
le states: at
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suÆ
iently high (i.e. relativisti
) energies, new parti
les 
an be 
reated and annihilated.

As the available energy in
reases, more and more energeti
 parti
les 
an be 
reated. This

e�e
tively 
hanges the 
ouplings.

Having traded the bare parameters m and � for renormalized parameters m

ph

and �

ph

,

let us take a 
loser look at the internal 
onsisten
y of the renormalization pro
edure. We

have introdu
ed the physi
al 
oupling at a referen
e s
ale �, but we 
ould equally well have


hosen an energy s
ale �

0

with 
orresponding e�e
tive 
oupling �

0

ph

. Physi
al pro
esses

should not depend on our 
hoi
e of referen
e s
ale, hen
e the 
ouplings should be related

in su
h a way that for any observable O we have O = O(m

ph

; �; �

ph

) = O(m

ph

; �

0

; �

0

ph

).

In other words, there should exist an equivalen
e 
lass of parametrizations of the theory

and it should not matter whi
h element of the 
lass we 
hoose. This observation 
lari�es

where the divergen
es 
ame from: our initial perturbation expansion 
onsisted of taking

� !1 while keeping m and � �nite. From the viewpoint of the renormalization group,

however, the set (� = � =1 ; m <1 ; � <1) does not belong to any equivalen
e 
lass

of the �

4

-theory.

2.10.3 Super�
ial degree of divergen
e and renormalizability

10e The statement at the end of §2.10.1 was a bit premature. In fa
t we still

have to prove that amplitudes with more than four external parti
les do not

introdu
e a new type of in�nity that 
annot be absorbed into the 2- and 4-point

terms in the Lagrangian.

A 6-point diagram like

will 
ontain singular building blo
ks like and that should be
ome �nite

on
e we perform the afore-mentioned renormalization pro
edure. The question that re-

mains is whether the overall 6-point diagram 
an give rise to a new type of in�nity. To assess

this we perform naive power 
ounting, i.e. we treat all loop momenta as being of the same

large order of magnitude O(�). The out
ome of this power 
ounting is 
alled the super�
ial

degree of divergen
e D of the diagram, with D = 0 denoting logarithmi
 divergen
e.

Consider a 1PI amputated diagram with N external lines, P propagators and V verti
es.

� In �

4

-theory four lines enter ea
h vertex, ea
h propagator 
ounts twi
e towards the

total number of lines entering verti
es and ea
h external line 
ounts on
e. This results

in the 
ondition

4V = N + 2P ) P = 2V �N=2 and N = even number :
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� The number of loop momenta is given by the number of propagators � the number

of four-momentum Æ-fun
tions + 1, sin
e one of the Æ-fun
tions 
orresponds to the

external momenta and will not �x an internal loop momentum (see page 53). This

results in

L = P � V + 1 = V �N=2 + 1

independent undetermined loop momenta. So, loop diagrams require V � N=2.

Power 
ounting: assume for argument's sake that the loop momenta are n-dimensional.

That means that in the 
ontext of naive power 
ounting ea
h loop momentum 
ontributes

�

n

and ea
h propagator �

�2

. The super�
ial degree of divergen
e of the diagram then reads

D = nL� 2P = n(V �N=2 + 1)� 2(2V �N=2) = n + V (n� 4) +N(1� n=2) ;

whereas the 
oupling � has mass dimension [�℄ = 4� n in n dimensions.

Super�
ially the diagram diverges like �

D

if D > 0 and like log(�) if D = 0,

provided it 
ontains a loop. The diagram does not diverge super�
ially if D < 0.

Let's now 
onsider a few values for the dimensionality n of spa
etime.

n = 4: D = 4 � N is independent of V and [�℄ = 0 ) the theory is renormalizable.

Divergen
es o

ur at all orders, but only a �nite number of amplitudes diverges

super�
ially (i.e. amplitudes with N = 2 or 4)! The theory keeps its predi
tive

power in spite of the in�nities that o

ur if we assume it to be valid at all energies.

n = 3: D = 3�N=2� V and [�℄ = 1 ) the theory is superrenormalizable. At most a

�nite number of diagrams diverges super�
ially (i.e. the diagrams with N = 2 and

V = 1 or V = 2), as the diagrams get less divergent if the loop order is in
reased!

n = 5: D = 5� 3N=2 + V and [�℄ = � 1 ) the theory is nonrenormalizable. Now all

amplitudes will diverge super�
ially at a suÆ
iently high loop order! An in�nite

amount of 
ounterterms would be required to remove all divergen
es, whi
h means

that all predi
tive power is lost if we assume the theory to be valid at all energies!

10e

If we express the super�
ial degree of divergen
e in terms of V and N, the


oeÆ
ient in front of V determines whether the theory is superrenormalizable

(negative 
oeÆ
ient), renormalizable (zero 
oeÆ
ient) or nonrenormalizable

(positive 
oeÆ
ient)!

In 
on
lusion: for n > 4 the s
alar �

4

-theory is nonrenormalizable and [�℄ < 0, for n = 4

it is renormalizable and [�℄ = 0, and for n < 4 it is superrenormalizable and [�℄ > 0.

These 
on
lusions agree ni
ely with the general dis
ussion on page 28 of these le
ture notes.
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3 The Dira
 �eld

During the next three and a half le
tures Chapter 3 of Peskin & S
hroeder will be 
overed.

We have seen various aspe
ts of s
alar theories, des
ribing spin-0 parti
les. However, most

parti
les in nature have spin 6= 0.

11a Question: how should we �nd Lorentz-invariant equations of motion for

�elds that do not transform as s
alars?

Consider to this end an n-
omponent multiplet �eld �

a

(x) with a = 1; � � � ; n, whi
h has

the following linear transformation 
hara
teristi
 under Lorentz transformations:

�

a

(x)

Lorentz transf.

����������! M

ab

(�)�

b

(�

�1

x)

with summation over the repeated index implied. A 
ompa
t way of writing this is

�(x)

Lorentz transf.

����������! M(�)�(�

�1

x) :

In the 
ase of s
alar �elds the transformation matrix M(�) was simply the identity matrix.

In order to �nd di�erent solutions, we make use of the fa
t that the Lorentz transformations

form a group: �

�

�

= g

�

�

is the unit element, �

�1

= �

T

is the inverse, and for �

1

and

�

2

being Lorentz transformations also �

3

= �

2

�

1

is a Lorentz transformation. The

transformation matri
es M(�) should re
e
t this group stru
ture:

M(g) = I

n

; M(�

�1

) = M

�1

(�) and M(�

2

�

1

) = M(�

2

)M(�

1

) ;

where I

n

is the n�n identity matrix. To phrase it di�erently, the transformation matri
es

M(�) should form an n-dimensional representation of the Lorentz group!

The 
ontinuous Lorentz group (rotations and boosts): transformations that lie

in�nitesimally 
lose to the identity transformation de�ne a ve
tor spa
e, 
alled the Lie

algebra of the group. The basis ve
tors for this ve
tor spa
e are 
alled the generators of

the Lie algebra. The Lorentz group has six generators J

��

= �J

��

, three for boosts and

three for rotations. These generators are antisymmetri
, as a result of �

�1

= �

T

, and they

satisfy the following set of fundamental 
ommutation relations:

�

J

��

; J

��

�

= i

�

g

��

J

��

� g

��

J

��

� g

��

J

��

+ g

��

J

��

�

:

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by

K

j

� J

0j

respe
tively J

j

�

1

2

�

jkl

J

kl

) J

jk

= �

jkl

J

l

(j ; k ; l = 1; � � � ; 3) ;

with summation over the repeated spatial indi
es implied. The latter generators, whi
h

span the Lie algebra of the rotation group, satisfy the fundamental 
ommutation relations

�

J

j

; J

k

�

= i�

jkl

J

l

:
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11a In fa
t it is proven in Ex. 15 that all �nite-dimensional representations

of the Lorentz group 
orrespond to pairs of integers or half integers (j

+

; j

�

),

where both j

+

and j

�


orrespond to a representation of the rotation group.

The sum j

+

+ j

�

should be interpreted as the spin of the representation, sin
e

it 
orresponds to the a
tual rotations 
ontained in the Lorentz group.

A �nite Lorentz transformation is then in general given by exp(�i!

��

J

��

=2), where the

antisymmetri
 tensor !

��

2

IR

represents the Lorentz transformation. For instan
e:

!

12

= �!

21

= Æ� ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 0 0 0

0 0 �Æ� 0

0 Æ� 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal rotation about the z-axis (see Ex. 14), and

!

01

= �!

10

= Æv ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 Æv 0 0

Æv 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal boost along the x-dire
tion (see Ex. 14).

The task at hand is now to �nd the matrix representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

� (J

��

)

�

�

= i(g

��

g

�

�

� g

�

�

g

��

) are the six generators that des
ribe Lorentz transfor-

mations of 
ontravariant four-ve
tors:

x

�

Lorentz transf.

����������! �

�

�

x

�

=

�

exp(�i!

��

J

��

=2)

�

�

�

x

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�

x

�

:

This implies that g

�

�

�

i

2

!

��

(J

��

)

�

�

= g

�

�

+!

�

�

represents the in�nitesimal form of

the Lorentz transformation matrix �

�

�

, as is indeed the 
ase.

� J

��

= i(x

�

�

�

� x

�

�

�

) are the six generators in 
oordinate spa
e, whi
h des
ribe the

in�nitesimal Lorentz transformations of s
alar �elds

�(x)

Lorentz transf.

����������! �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) ;

as derived on page 11.
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