3 The Dirac field

During the next three and a half lectures Chapter 3 of Peskin & Schroeder will be covered.
We have seen various aspects of scalar theories, describing spin-0 particles. However, most

particles in nature have spin # 0.

Question: how should we find Lorentz-invariant equations of motion for

fields that do not transform as scalars?

Consider to this end an n-component multiplet field ®,(z) with a = 1,---,n, which has
the following linear transformation characteristic under Lorentz transformations:
Lorentz transf.
By(r) ———— My(N)®y(A 1)
with summation over the repeated index implied. A compact way of writing this is
Lorentz transf.
d(r) ————— M(A)P(A'z) .
In the case of scalar fields the transformation matrix M (A) was simply the identity matrix.
In order to find different solutions, we make use of the fact that the Lorentz transformations
form a group: A*, = g* is the unit element, A=' = AT is the inverse, and for A; and
A, being Lorentz transformations also A3 = AsA; is a Lorentz transformation. The

transformation matrices M (A) should reflect this group structure:
M(g) = I, , M(AT) = M7'(A)  and  M(AAy) = M(A)M(Ay)

where I,, is the nxn identity matrix. To phrase it differently, the transformation matrices

M(A) should form an n-dimensional representation of the Lorentz group!

The continuous Lorentz group (rotations and boosts): transformations that lie
infinitesimally close to the identity transformation define a vector space, called the Lie
algebra of the group. The basis vectors for this vector space are called the generators of
the Lie algebra. The Lorentz group has six generators J** = —J"# three for boosts and
three for rotations. These generators are antisymmetric, as a result of A~! = AT and they

satisfy the following set of fundamental commutation relations:

[J’#V’ Jpa] — '(ngJ'uU o gusz/U o gVUJup 4 guUJVp) )

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by
. . , 1 . , .
K7 = J% respectively J/ = §€]kljkl = Jik = ¢k J! (7,k,1=1,---,3),

with summation over the repeated spatial indices implied. The latter generators, which

span the Lie algebra of the rotation group, satisfy the fundamental commutation relations
9T = Mt
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@ In fact it is proven in Ex. 15 that all finite-dimensional representations
of the Lorentz group correspond to pairs of integers or half integers (jy,j_),
where both j, and j_ correspond to a representation of the rotation group.
The sum j, + j_ should be interpreted as the spin of the representation, since

it corresponds to the actual rotations contained in the Lorentz group.

A finite Lorentz transformation is then in general given by exp(—iw,,J*’/2), where the

antisymmetric tensor w,, € IR represents the Lorentz transformation. For instance:

0 O 0 0
0 0 —d060 O

Wig = —Wey = 00 , rest=0 = w“y =
060 0 O
0 O 0 0

for an infinitesimal rotation about the z-axis (see Ex.14), and
0 6v 0 O
v 0 0 O
- - == 6 3 t = 0 = HI/ =

Wo1 w10 v res w 0 0 0 0
0 0 00

for an infinitesimal boost along the z-direction (see Ex.14).

The task at hand is now to find the matrixz representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

o (JM)% = i(g"*g"s — g"39"*) are the six generators that describe Lorentz transfor-

mations of contravariant four-vectors:

Lorentz transf. ) y @ ? y
r* —mm— Ao‘ﬁxﬁ = [exp(—iwu J*/2)] ﬁxﬁ ~ (9% — §wuu(J“ )ag]xﬂ-

This implies that g% — £ w,, (J*)% = g% + w% represents the infinitesimal form of

the Lorentz transformation matrix A%, as is indeed the case.
o JH = j(xFd¥ — x¥OM") are the six generators in coordinate space, which describe the
infinitesimal Lorentz transformations of scalar fields

o) IR (AT) ~ b(a) — g (270~ 2201 0(a)

as derived on page 11.
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Dirac’s trick: introduce four n X n matrices y* that are referred to as the

v-matrices of Dirac, which satisfy the Dirac algebra (Clifford algebra)

("} = M = 200

with I,, the nxn identity matrix. In Ex. 1/ it is proven that this implies that

2
4
J* of the Lorentz group. In fact this is true for any spacetime dimensionality.

the nxn matrices S* = [7",7”] form a representation of the gemerators

Four-dimensional solution to the Dirac algebra: since there are no solutions for
n = 2 or 3, the first solution can be found for n = 4. Written in 2 x 2 block form in terms

of the 2 x 2 identity matrix I, and the Pauli spin matrices

01 0 —1 1 0
ol = . and o = ,
10 i 0 0 -1

the solution reads

0 o h d o oo (j=1,2,3)
v o= an vo= . J=1,4,
I, 0 -0l 0

in the Weyl representation, which is also known as the chiral representation. In fact there

is an infinite number of such four-dimensional representations, since for any invertable 4 x4
matrix V also Vy#V ! is a solution. In the Weyl representation the generators of the

Lorentz group have a block-diagonal form. The generators for boosts are given by

0 —o’

. i , i . i d 0
50‘7 = [0 A0 = ZA%0 = 1 =1,2,3
4[7’7] 277 2 ; ('] ’ ’ ),

whereas the generators S*, S2 and S® for rotations follow from

ik 0 , 1500 .
<[0 ,Oa | [0 k}) = & ( 2(? l) = MS0 (j,k=1,2,3)
ol o o

1
521 (1=1,2,3).

gik 17k ihj,,yk] _

1500
= S = (2
0 %0’1

The generators for rotations look like twice replicated two-dimensional representations of

o | .

N[

the rotation group. We will come back to this point later on. As a result of the properties

=7, (=7 (=123 = () =",

[ ()] = 2054

NS
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This means that the generators of rotations are hermitian, since (S7¥)! = S7* indicating
that rotations preserve normalization. On the other hand, the generators of boosts are
non-hermitian, since (S%)! = — 5% indicating that boosts do not preserve normalization

owing to the Lorentz contraction of spatial volumes.

Dirac spinors and adjoint Dirac spinors: a four-component field ¢(z) that Lorentz
transforms according to this four-dimensional representation of the Lorentz group is called

a Dirac spinor:

Lorentz transf.
Y(r) —— A1/2¢(A_1x) with Ay = exp(—iwu, S*/2) .

The adjoint Dirac spinor 1)(z) is defined as

Y(z) = Y()y°

and therefore transforms as

_ Lorentz transf. _
Bla) —TE T BA ) A

since

(51)t =058 0

7°AJ{/2 Y0 = yPexp(iw[S*]1/2)~° exp(iw,, S*/2) = Af/lz'

Using the important y-matrix property
i i
2 2

= i(9"9% = 9% 97" = (J7)"

(v, 577 = - [, 7] = 5 (" =) = (g — g*)

the following infinitesimal Lorentz-transformation identity holds up to O(w):

(I4 + %wpaspa )'7“ (I4 - %waﬂsaﬂ ) ~ [guy - %wP”(Jpa)MV] 7

This reflects that for finite transformations
A A = Ay

which indicates that * transforms like a contravariant four-vector provided it is properly

contracted with Dirac spinors and adjoint Dirac spinors.

Consequently, Y(z), v*0,¢(z), vY*4*0,0,¢(x), - - are good building blocks

for constructing a Lorentz-invariant wave equation for Dirac spinors, whereas

V(@)Y(z), b(x)y*d,(x),- -+ are scalar building blocks for obtaining the cor-

responding Lagrangian.
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3.1 Towards the Dirac equation (§ 3.2 and 3.4 in the book)

@ Dirac-field bilinears (currents): the interesting objects in spinor

space are of the form YT, with T' a 4 x 4 matriz that consists of a sequence

of y-matrices. These objects are called bilinears or currents. They will be

needed to construct Lagrangians that include interactions with other fields, like
V(x)y*h(x)Au(x) for interactions with a vector field and (x)y*y" b (x)h,, ()
for interactions with a tensor field. A basis for T' that satisfies TT =+°T° is
given by the following combinations of y-matrices:

i

I4 ) ’Yﬂa ot = 9 [7H77u] ) 7ﬂ757 7’75 ’

where

- Z Vpo
v = i’y = — 0 e

in terms of the totally antisymmetric tensor
+1 if (uvpo) = even permutation of (0123)
P = ¢ —1 if (uvpo) = odd permutation of (0123)

0 else

Properties of v°: the properties of the matrix v will prove important for the description

of weak interactions. They read:
(,)/5)Jf - ’)/5 ) (75)2 = .[4 and {’}/5,’}/“’} = 0 (:U’:O’)?))
= 8] =0 = [ Ap =0.

This means that 7® is a “Lorentz scalar” if it is properly contracted with Dirac spinors
and adjoint Dirac spinors. Since v° commutes with the generators of Lorentz transforma-
tions in spinor space, eigenvectors of ¥5 corresponding to different eigenvalues transform

independently (i.e. without mixing).

According to Schur’s lemma this implies that the Dirac representation of the
@ Lorentz group is reducible, i.e. we should be able to write it in terms of two

independent lower-dimensional chiral representations.

In the Weyl representation of the y-matrices, the matrix 7* has the following form in terms

of 2 x 2 blocks:
75 _ —I, 0
0 I

93



As a result,

PRE

N | =
N | =

) 0 0
(Is+7°) = - and Py =
2

e (B0
T=) =1

are (chiral) projection operators on 2-dimensional vectors ¥ and ¥r:

(53 0 Y,
= P, = d P =
y (¢) S P (¢) wd Py (0)

which are eigenvectors of ¢® corresponding to the chirality eigenvalues +1 and —1.

In terms of these right-handed Weyl spinors g and left-handed Weyl spinors v, the in-

finitesimal Lorentz transformations of ¢ can be rewritten as (cf. Ex. 15 and the generators

that are given on page 91)

YL Lorentz transf. [ I —i§-&/2—5-&/2]¢L
_— o .
YR (I, —i0-5/2+B-7/2]Yr
The real infinitesimal parameters g and E coincide with the parameters da and 67 that
were used in Ex. 14. We see that the Weyl spinors transform independently, which indeed
implies that the four-dimensional Dirac representation of the Lorentz group is reducible
and can be split into two two-dimensional representations. For later use we mention the
following identity for the Pauli spin matrices:
. 9 ik Lorentz transf. 9 P = .
o°¢* = —do° = oY — o' [L+i0-5Y2—-[5-572]|yY]
= [L,—i6-G/2+ f-3/2])0%Y;

which indicates that o2} transforms like a right-handed Weyl spinor.

Chirality and currents: from the 4 x 4 matrix basis on the previous page all possible
_ _ F—nO0pA0
hermitian currents can be obtained as T, since (YT¢)T = T4y = JTy.

These currents and their associated continuous Lorentz transformations read:

) _ Lorentz transf. ) 4
scalar current : js(x) = Y(x)p(zr) —  js(A z),

) _ Lorentz transf. . 1
vector current : ji(z) = Y(2)Y*p(z) — A Gp(AT2)

. _ y Lorentz transf. . P
tensor current : ji’(z) = Y(x)o"P(z) ——————— A A7 (AT D),

. ) _ 5 Lorentz transf. . 1
azial vector current : j4(z) = Y(x)V*y’Y(z) —  A¥ (A 2),

) - 5 Lorentz transf. ) 4
pseudo scalar current : jp(z) = iY(x)y’Yp(r) —  jp(AT2),

making use of the fact that Al_/lﬂ“Al/z = A* " and A;/1275A1/2 = 15,
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Using the chiral projection operators Pr g, the Dirac spinors can be decomposed into

chiral components according to

Ppr(z) = Y = Yrr = W)Y’ = ¢ Py’ = ¢y’ Prip = ¥Pg/1
This results in the following chiral decompositions of the currents.

e The scalar current mixes left- and right-handed Weyl spinors, since

i = P(Pr+ Pr)y = $(Pp+ PL)Y = Yrpr + Yrir .
This will prove important for the description of massive spin-1/2 particles.

e The vector current treats left- and right-handed Weyl spinors on equal footing, since

1;’7“1& = lE’Y“(P?:z + Pi)w = lE(PL’Y“PR + Pry"Pr)Y = Z;R’Y“wR + l/_)L’Y“l/)L .

This will prove important for vector-like theories, describing for instance the electro-

magnetic and strong interactions.
e Similarly the tensor current mixes left- and right-handed Weyl spinors:
Yo' = Yo"y + Yro™ YL .
This is needed for describing Lorentz transformations, as we have seen already.

e The axial vector current treats left- and right-handed Weyl spinors in opposite ways:

YY"y = 9y (Pr+ PR = $(PLy"y" P+ Pry*y" Pr)y

Y Yr/L =% ¥R/

= YrY*Y"Ur + " Y VeV YR — YL y"Yr -

This will prove important for chiral theories, like the one that describes weak inter-

actions.
e Similarly the pseudo scalar current decomposes according to
WYY = iy YR + VR YL = iPrR — iYRYL -

This will prove important in describing interactions between spin-0 and spin-1/2

particles.

Handy combinations of such currents are given by the left /right-handed vector currents

Jrp(@) = Y(x)V*Pryr(x) = drr(z)y"r/r(z)
which will feature in the Standard Model of electroweak interactions.
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Dirac equation: let’s now try to construct a Lorentz-invariant wave
equation that has the Klein-Gordon equation built in. The simplest candidate

18 the Dirac equation

(79, — m)v(z) = 0.

This is a first order differential equation, whereas the Klein-Gordon equation was a second
order equation. This is possible because v* behaves like a vector without actually intro-

ducing a preferred direction, which is not possible in scalar theories!

Proof: first of all

0 = (90, + m)(iv*9, — m)Y(z) = — (v"9*8,0, + m*)¥(z)

{7} =2g""14

- _(%{7u,7y}auau+m2)¢($) —(@O+m*) (),

so the Klein-Gordon equation is indeed built in! Secondly, under continuous Lorentz trans-
formations a Dirac spinor transforms according to ¢(z) — ¥'(z) = Ayjp(A1z). If Y(z)

satisfies the Dirac equation then it follows that

V ("0, —m)y(z) = 0 = (i7"9y — m)Aippp(A2) = Ayp(iM178, — m) (A e)

T

= Ay [N 7 (A1), (8,9) (A ) — my(A )]

A1/2[w”ayzp — mw](A’lx) =0

= (iY"0, —m)yY'(z) = 0.

If the field v (z) satisfies the Dirac equation then so does the Lorentz transformed field

Y'(x), as required for having a Lorentz invariant wave equation.

In the Weyl representation the Dirac equation reads

0= ("9,—m)y = ( —ml ) Z'(1230+f7'§)><%) _ <_mj2 i"“‘%)(‘h)
7/(1230—0_" V) —mfg wR ié-ﬂau _mI2 lZ)R

using the compact notation
. . 0 o
o = (L,0d) and ot = (L,—7) = o= :

From this we conclude that

the two representations associated with 1y and ¥gr are mized by the mass
term in the Dirac equation! In the massless case the Dirac equation splits into

two independent wave equations for ¥ and Vg, the so-called Weyl equations

1640, ¢r(x) = 0 and ick0,Yr(x) = 0.
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The Dirac Lagrangian: the Lagrangian that corresponds to the Dirac equation reads

['Dirac(-T) = &(x)(w”@u - m)¢($) :
Proof: the Euler-Lagrange equations for the ¢ and 1/ fields are given by

or oL |
a“(a(f‘Tzﬁ)) ~ g~ ~WO-my =0,

oL oL o _ _ e
“(a(TQp)) ) = au(“p’yu) +my = PEgr+m) = 0,

which are indeed the Dirac equation and the corresponding adjoint equation
- —
0 = [0 —m)u(@)]"" = =i (0 (2))7" 1" —my!(@)y" = = (@) (i0uy" +m) .

@ Conserved currents: in preparation for the quantization of the free
Dirac theory and the derivation of its particle interpretation, we have a closer

look at the conserved currents for the solutions 1(x) of the Dirac equation.

1. The vector current ji;(x) is conserved.

Proof 1: aujxﬁ; = (0“1;)7“11) + %"0“1# imyp —imyp = 0 .
Proof 2: in Ex. 17 an alternative proof is given based on global U(1) invariance.

Dirac eqns.

2. The axial vector current j'(z) is conserved if m =0.

Dirac eqns.

Proof 1: 9,54 = (0,0)v*¥°¢ — Yy y*9, ) ———= 2imyy*y = 0 if m = 0.
Proof 2: in Ex. 17 an alternative proof is given based on global chiral invariance.

3. The energy-momentum tensor T is conserved.

Only the spacetime coordinates of v(z) and w(z) transform under translations,
i.e. the spinors themselves do not transform. Consequently, the energy-momentum
tensor T" derived on page 8 will be conserved. This gives rise to four conserved

charges, the field energy
H = /df’H - /df [W¢¢+zz7r,,-, —L:Dim] - /dpr'

and field momentum
P = —/d:z? [71',/,61,04—(6@5)7(1;] = —/dfﬂ'd,%w.
Here we used that in these Noether charges ¢ (x) should satisfy the Dirac equation,
a£Dirac ) . 0£Dirac
= i7" = il aswellas w5 = — =
0(00¥) I

From these conjugate momenta we can read off that out of the eight real

and that my =

degrees of freedom of the Dirac spinor (z) in fact four belong to the

conjugate momentum.
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4. Under continuous Lorentz transformations a Dirac spinor transforms as

Lorentz transf. _q , inf. 1 o0 1 oap p Ao
Y(r) —————— AipY(A72) = [1—4— §wp0'5 ]¢(37) _iwpa [x 0’ —z"0 ]¢(37),
where the first term is typical for Dirac spinors and the second term is the same
as for scalar fields. Bearing in mind that the Dirac Lagrangian is a Lorentz scalar,
we can generalize the derivation on page 11 to arrive at the following six conserved

Noether currents:

10(a) = SO [argp e 5] (a) + 5 — 2] L)
m

= THIgP — TFP 2% + of(z)y*SP () .

The last term in these conserved Noether currents is specific for Dirac
theories. After quantization of the Dirac theory this term will help us to
determine the spin of the particles described by the (free) Dirac field theory.

3.2 Solutions of the free Dirac equation (§ 3.3 in the book)

Since solutions of the (free) Dirac equation automatically satisfy the Klein-

@ Gordon equation, we can use the standard plane-wave (Fourier) decomposition

in order to decouple the degrees of freedom as much as possible.

The positive-energy case: according to this decomposition we introduce

Yp(z) = u(p)e P® with p?’=m? and p° >0 = p'= ( p24+m2,p) = (B, p).
The spinor u(p) then has to satisfy the Dirac equation in momentum space:
(Vpu —m)u(p) = (# —m)u(p) = 0,
using Feynman slash notation. The claim is now that u(p) can be written as
u(p) = ( il ) :
VPG §

with & an arbitrary normalized 2-dimensional vector.

Proof: using that

— — — N {O'j,o'k}:2(5j 12

it easily follows that

—m)u = —mly peo pot =
i = (P ) (T <

I2 p(]_ﬁ2:m-[27
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