where the log(u?/s) term is completely governed by the above-given RGE for . This re-

flects that the observable effective 4-point coupling should not depend on the choice of
reference scale p.

The reference scale p labels an entire equivalence class of parametrizations of

the ¢*-theory and it should not matter which element of the class we choose for

setting up the theory. These elements all lie on the same RGE trajectory.

When expressed in terms of the physical coupling A, the effective coupling |Mgs-44(s, 0)|?
is independent of the cutoff A, as expected for a correct observable! The cutoff dependence
has been absorbed into a redefinition of the unobservable Lagrangian parameter (bare cou-
pling) A in terms of the observable physical parameter (effective coupling) A,,. In the

literature this physical observable is usually referred to as the renormalized coupling Ag,

although this terminology is a bit strange bearing in mind that the original coupling was

not normalized to begin with. This is an example of the concept of renormalization.

Renormalization: express physically measurable quantities in terms of physically

measurable quantities and not in terms of bare Lagrangian parameters.

e For setting up a perturbative expansion, the bare Lagrangian parameters are in fact
not the right parameters. Instead the physically measurable parameters should be

used (cf. the discussion about m and myy, in §2.9.2).

e The occurrence of infinities in the loop integrals is linked to this. Our initial pertur-
bative expansion consisted of taking A — oo while keeping A and m finite. From
the renormalization group viewpoint, however, the set (u=A =00, <00, m < c0)

does not belong to the equivalence class of the ¢*-theory!

e The convergence of the perturbative series can be further improved by using phys-
ical quantities at the “right scale”, thereby avoiding large logarithmic factors like
log(1?/s) in the example above. This choice of scale has no consequence for all-order

calculations, but it does if the series is truncated at a certain perturbative order.

To complete the story for the scalar ¢*-theory we consider the UV divergences that are
present in the scalar self-energy. This time the mass parameter is essential and therefore
should not be neglected.

Scalar self-energy at O(A):

b
Q —ix [ d* '
—is(p?) 22 == / L
p P 2 (271‘)4 El—m2+ze
curof A>m, - —i) /Ad£2 b _ oA n o 10g(A_2) .
Wick rotation 3272 J, 7 £2 +m? — ie 32m? m?

83



After Dyson summation the full propagator becomes

? 17
= + regular terms .

p*—m?—S(p?) +ie — p*—my,

Since the 1-loop scalar self-energy does not depend on p? it is absorbed completely into

the physical mass:

2 _ 2 2\ © 2 A 2 2 ( A_2 )
My, = M° + B(my,) == m” + 392 [A m* log )|
whereas the residue of the pole remains 1.

@ Note the strong A? dependence of the scalar mass, which implies that this
mass is very sensitive to high-scale quantum corrections. This is in fact a gen-
eral feature of scalar particles, like the Higgs boson: intrinsically the quantum
corrections to the mass of a scalar particle are dominated by the highest mass

scale the scalar particle couples to!

Scalar self-energy at O(A?): the residue of the pole is affected at 2-loop level by the

contribution
b
_(=iN)? / d*e /014132 i i i
P Sg p 6 (2m)* ] (27)* 62 — m? + i€ 03 — m? +ie (b + by +p)2 — m? + i€
1

= a+bp’+cpt+--- .

To assess the UV behaviour of this diagram we perform naive power counting, which in-

volves treating all loop momenta as being of the same order of magnitude. For ¢; — oo

157]

we obtain an integral of the order [d*(p /(S AR A A,
e a = O(A?) is obtained by setting p = 0;

e b=0O(logA) is obtained by taking £0%/9p§ and then setting p = 0. In naive power

counting this logarithmically divergent term corresponds to integrals of order A°.

e ¢ = (1) is obtained by taking 5 0*/dps and then setting p = 0.

Adding all self-energy contributions and focussing on the diverging terms

1 1 1z
. — = + regular terms ,
p? —m? — X(p?) +ie p? —m?— A— Bp? p?—m2, 8

1 2L A
Z = —— = O(logA) mf,h = n;lb—+B =Zm’>+ém? |, m® = — = O(A?).
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This leads to an O(A?) shift in the mass and an O(logA) contribution to the wave-

function renormalization, which can be absorbed in the field ¢ itself.
So, UV divergent loop corrections in ¢*-theory are present in X(p?) and M4, 44(s,6), with
S(m2,) = m2,—m? = (Z-1)m?+6m> = m*6;+6m?> , T'(m2) =1-1/Z

and Mgy gp(s =% m/2) = —dpp = —Z°X =4y .

The occurrence of the factor Z? in the last expression originates from the multiplicative
factor (v/Z)* that should be added according to the Feynman rules.

2.10.1 Physical perturbation theory (a.k.a. renormalized perturbation theory)

The lowest-order ¢*-theory should have been written in terms of the exper-
imentally measurable physical parameters my, and App, and perturbation
theory should have been defined with respect to this lowest-order theory.

This is done as follows: take the original Lagrangian and write
¢ = ¢R\/§ , m’Z = mﬁh—5m2 . ANZ? = MApp—06x and Z =1+0y
so that

1 1 A 1 1 A
L= 5009 = gm’¢" — 56" = 5 0un)(@6a) — 5, — T,

+ 2 2(0,6,)(@0,) + 5 om, +
We get back the original Lagrangian in terms of renormalized objects (first line) and we
obtain extra interactions that are called counterterms (second line), since their purpose
is to cancel the divergences in the theory. The Feynman rules for the propagators and

vertices including counterterms are now given by

p 1 A\
—p—o = _ , = —1 ,
p? —m2, + e >< Ph
p p
> — i(p252+5m2) R >2< = 7,(5)\ .

Renormalization conditions: as an explicit example, the full propagator now reads

i/ [p*—m2, — Zr(p?)], with the renormalized self-energy given by

—iSR(p?) = LL+—®—+&+%+QL+A®~+W
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The parameters 6 and dm? can be fixed by imposing the renormalization conditions

Sr(m2,) =0 and Yi(m2,) =0 = full propagator = ﬁquegular terms .
ph

The pole structure of the full propagator then resembles that of a free particle, so in that
sense the physical 1-particle states have been re-normalized by this procedure. Adding
one more renormalization condition based on Mgy, 44 in order to fix ), we have three
conditions fixing three counterterm parameters. This will in fact be sufficient to make all
observables of the ¢*-theory finite.

The scalar ¢*-theory is called renormalizable: “the infinities of the theory

can be absorbed into a finite number of parameters”.

2.10.2 What has happened?

The above procedure seems odd: we calculated something that turned out to be infinite,
then subtracted infinity from our original mass and coupling in an arbitrary way and ended
up with something finite. Moreover, we have added divergent terms to our Lagrangian and
we have suddenly ended up with a scale-dependent coupling. Why would a procedure
consisting of such ill-defined mathematical tricks be legitimate? To see what has really

happened, let us closely examine the starting point of our calculation.

In general, we start with a Lagrangian containing all possible terms that are compatible
with basic assumptions such as relativity, causality, locality, etc. It still contains a few
parameters such as m and \ in the case of ¢*-theory. It is tempting to call them “mass”
and “coupling”, as they turn out to be just that in the classical (i.e. lowest-order) theory.
However, up to this point they are just free parameters. In order to make the theory
predictive, the parameters need to be fixed by a set of measurements: we should calculate
a set of cross sections at a given order in perturbation theory, measure their values and then
fit the parameters so that they reproduce the experimental data. After this procedure, the

theory is completely determined and becomes predictive.

The bare parameters m and A\ are only useful in intermediate calculations and will be
replaced by physical (i.e. measured) quantities in the end anyway. So, we might as well
parametrize the theory in terms of the latter. The renormalizability hypothesis is that this
reparametrization of the theory is enough to turn the perturbation expansion into a well-
defined expansion. The divergence problem then has nothing to do with the perturbation
expansion itself: we have just chosen unsuitable parameters to perform it. Also, the
fact that our physical coupling is scale-dependent should not surprise us. The physical
reason for this “running” is the existence of quantum fluctuations, which were not there

in the classical theory. These fluctuations correspond to intermediate particle states: at
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sufficiently high (i.e. relativistic) energies, new particles can be created and annihilated.
As the available energy increases, more and more energetic particles can be created. This

effectively changes the couplings.

Having traded the bare parameters m and A for renormalized parameters my, and Ay,
let us take a closer look at the internal consistency of the renormalization procedure. We
have introduced the physical coupling at a reference scale i, but we could equally well have
chosen an energy scale p' with corresponding effective coupling A ,. Physical processes
should not depend on our choice of reference scale, hence the couplings should be related
in such a way that for any observable O we have O = O(mpn, tt, Apn) = O(Mmpn, ', \yp) -
In other words, there should exist an equivalence class of parametrizations of the theory
and it should not matter which element of the class we choose. This observation clarifies
where the divergences came from: our initial perturbation expansion consisted of taking
A — oo while keeping m and A finite. From the viewpoint of the renormalization group,
however, the set (u=A =00, m < 00, A < 00) does not belong to any equivalence class
of the ¢*-theory.

2.10.3 Swuperficial degree of divergence and renormalizability

The statement at the end of §2.10.1 was a bit premature. In fact we still
have to prove that amplitudes with more than four external particles do not
introduce a new type of infinity that cannot be absorbed into the 2- and 4-point

terms in the Lagrangian.

A 6-point diagram like

will contain singular building blocks like 4@ and >O< that should become finite
once we perform the afore-mentioned renormalization procedure. The question that re-
mains is whether the overall 6-point diagram can give rise to a new type of infinity. To assess

this we perform naive power counting, i.e. we treat all loop momenta as being of the same

large order of magnitude O(A). The outcome of this power counting is called the superficial

degree of divergence D of the diagram, with D = 0 denoting logarithmic divergence.

Consider a 1PI amputated diagram with N external lines, P propagators and V vertices.

e In ¢*-theory four lines enter each vertex, each propagator counts twice towards the
total number of lines entering vertices and each external line counts once. This results

in the condition

4V = N+2P = P = 2V —N/2 and N = even number .
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e The number of loop momenta is given by the number of propagators — the number
of four-momentum J§-functions + 1, since one of the §-functions corresponds to the
external momenta and will not fix an internal loop momentum (see page 53). This
results in

L =P-V+1=V-N/2+1

independent undetermined loop momenta. So, loop diagrams require V > N/2.

Power counting: assume for argument’s sake that the loop momenta are n-dimensional.
That means that in the context of naive power counting each loop momentum contributes

A™ and each propagator A 2. The superficial degree of divergence of the diagram then reads
D =nL—-2P =n(V-N/2+1)—2(2V —-N/2) = n+V(n—4)+N(1—-n/2),

whereas the coupling A has mass dimension [A\] =4 —n in n dimensions.

Superficially the diagram diverges like AP if D > 0 and like log(A) if D =0,
provided it contains a loop. The diagram does not diverge superficially if D < 0.

Let’s now consider a few values for the dimensionality n of spacetime.

n =4: D =4— N is independent of V and [A] =0 = the theory is renormalizable.
Divergences occur at all orders, but only a finite number of amplitudes diverges
superficially (i.e. amplitudes with N =2 or 4)! The theory keeps its predictive
power in spite of the infinities that occur if we assume it to be valid at all energies.

n=3D=3-N/2—V and [A\] =1 = the theory is superrenormalizable. At most a
finite number of diagrams diverges superficially (i.e. the diagrams with N = 2 and
V=1 or V=2), as the diagrams get less divergent if the loop order is increased!

n=>5 D=5—-3N/2+V and [A\]| =—1 = the theory is nonrenormalizable. Now all
amplitudes will diverge superficially at a sufficiently high loop order! An infinite
amount of counterterms would be required to remove all divergences, which means

that all predictive power is lost if we assume the theory to be valid at all energies!

If we express the superficial degree of divergence in terms of V and N, the
coefficient in front of V determines whether the theory is superrenormalizable

(negative coefficient), renormalizable (zero coefficient) or nonrenormalizable

(positive coefficient)!

In conclusion: for n > 4 the scalar ¢*-theory is nonrenormalizable and [\] < 0, for n = 4
it is renormalizable and [A] = 0, and for n < 4 it is superrenormalizable and [A] > 0.

These conclusions agree nicely with the general discussion on page 28 of these lecture notes.
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3 The Dirac field

During the next three and a half lectures Chapter 3 of Peskin & Schroeder will be covered.
We have seen various aspects of scalar theories, describing spin-0 particles. However, most

particles in nature have spin # 0.

Question: how should we find Lorentz-invariant equations of motion for

fields that do mot transform as scalars?

Consider to this end an n-component multiplet field ®,(z) with a = 1,---,n, which has
the following linear transformation characteristic under Lorentz transformations:
Lorentz transf.
By(r) ———— My(N)®y(A )
with summation over the repeated index implied. A compact way of writing this is
Lorentz transf.
d(r) ———— M(A)P(A'z) .
In the case of scalar fields the transformation matrix M (A) was simply the identity matrix.
In order to find different solutions, we make use of the fact that the Lorentz transformations
form a group: A*, = g* is the unit element, A=' = AT is the inverse, and for A; and
A, being Lorentz transformations also A3 = AsA; is a Lorentz transformation. The

transformation matrices M (A) should reflect this group structure:
M(g) = I, , M(AT) = M7'(A)  and  M(AAy) = M(A)M(Ay)

where I,, is the nxn identity matrix. To phrase it differently, the transformation matrices

M(A) should form an n-dimensional representation of the Lorentz group!

The continuous Lorentz group (rotations and boosts): transformations that lie
infinitesimally close to the identity transformation define a vector space, called the Lie
algebra of the group. The basis vectors for this vector space are called the generators of
the Lie algebra. The Lorentz group has six generators J** = —J"# three for boosts and
three for rotations. These generators are antisymmetric, as a result of A~! = AT and they

satisfy the following set of fundamental commutation relations:

[J’#V’ Jpa] — '(ngJ'uU o gusz/U o gVUJup 4 guUJVp) )

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by
. . , 1 . , .
K7 = J% respectively J/ = §€]kljkl = Jik = ¢k J! (7,k,1=1,---,3),

with summation over the repeated spatial indices implied. The latter generators, which

span the Lie algebra of the rotation group, satisfy the fundamental commutation relations
9T = Mt
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@ In fact it is proven in Ex. 15 that all finite-dimensional representations
of the Lorentz group correspond to pairs of integers or half integers (jy,j_),
where both j, and j_ correspond to a representation of the rotation group.
The sum j, + j_ should be interpreted as the spin of the representation, since

it corresponds to the actual rotations contained in the Lorentz group.

A finite Lorentz transformation is then in general given by exp(—iw,,J*’/2), where the

antisymmetric tensor w,, € IR represents the Lorentz transformation. For instance:

0 O 0 0
0 0 —d060 O

Wig = —Wey = 00 , rest=0 = w“y =
060 0 O
0 O 0 0

for an infinitesimal rotation about the z-axis (see Ex.14), and
0 6v 0 O
v 0 0 O
- - == 6 3 t = 0 = HI/ =

Wo1 w10 v res w 0 0 0 0
0 0 00

for an infinitesimal boost along the z-direction (see Ex.14).

The task at hand is now to find the matrixz representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

o (J)% = i(g"*g"s — g"39"*) are the six generators that describe Lorentz transfor-

mations of contravariant four-vectors:

Lorentz transf. ) y @ ? y
r* —mm— Ao‘ﬁxﬂ = [exp(—iwu J*/2)] ﬁxﬁ ~ (9% — §wuu(J“ )ag]xﬂ-

This implies that g% — £ w,, (J*)% = g% + w% represents the infinitesimal form of

the Lorentz transformation matrix A%, as is indeed the case.
o JH = j(xFd¥ — x¥OM") are the six generators in coordinate space, which describe the
infinitesimal Lorentz transformations of scalar fields

o) IR (AT) ~ b(a) — g (270~ 2201 0(a)

as derived on page 11.
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