
3 The Dira
 �eld

During the next three and a half le
tures Chapter 3 of Peskin & S
hroeder will be 
overed.

We have seen various aspe
ts of s
alar theories, des
ribing spin-0 parti
les. However, most

parti
les in nature have spin 6= 0.

11a Question: how should we �nd Lorentz-invariant equations of motion for

�elds that do not transform as s
alars?

Consider to this end an n-
omponent multiplet �eld �

a

(x) with a = 1; � � � ; n, whi
h has

the following linear transformation 
hara
teristi
 under Lorentz transformations:

�

a

(x)

Lorentz transf.

����������! M

ab

(�)�

b

(�

�1

x)

with summation over the repeated index implied. A 
ompa
t way of writing this is

�(x)

Lorentz transf.

����������! M(�)�(�

�1

x) :

In the 
ase of s
alar �elds the transformation matrix M(�) was simply the identity matrix.

In order to �nd di�erent solutions, we make use of the fa
t that the Lorentz transformations

form a group: �

�

�

= g

�

�

is the unit element, �

�1

= �

T

is the inverse, and for �

1

and

�

2

being Lorentz transformations also �

3

= �

2

�

1

is a Lorentz transformation. The

transformation matri
es M(�) should re
e
t this group stru
ture:

M(g) = I

n

; M(�

�1

) = M

�1

(�) and M(�

2

�

1

) = M(�

2

)M(�

1

) ;

where I

n

is the n�n identity matrix. To phrase it di�erently, the transformation matri
es

M(�) should form an n-dimensional representation of the Lorentz group!

The 
ontinuous Lorentz group (rotations and boosts): transformations that lie

in�nitesimally 
lose to the identity transformation de�ne a ve
tor spa
e, 
alled the Lie

algebra of the group. The basis ve
tors for this ve
tor spa
e are 
alled the generators of

the Lie algebra. The Lorentz group has six generators J

��

= �J

��

, three for boosts and

three for rotations. These generators are antisymmetri
, as a result of �

�1

= �

T

, and they

satisfy the following set of fundamental 
ommutation relations:

�

J

��

; J

��

�

= i

�

g

��

J

��

� g

��

J

��

� g

��

J

��

+ g

��

J

��

�

:

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by

K

j

� J

0j

respe
tively J

j

�

1

2

�

jkl

J

kl

) J

jk

= �

jkl

J

l

(j ; k ; l = 1; � � � ; 3) ;

with summation over the repeated spatial indi
es implied. The latter generators, whi
h

span the Lie algebra of the rotation group, satisfy the fundamental 
ommutation relations

�

J

j

; J

k

�

= i�

jkl

J

l

:
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11a In fa
t it is proven in Ex. 15 that all �nite-dimensional representations

of the Lorentz group 
orrespond to pairs of integers or half integers (j

+

; j

�

),

where both j

+

and j

�


orrespond to a representation of the rotation group.

The sum j

+

+ j

�

should be interpreted as the spin of the representation, sin
e

it 
orresponds to the a
tual rotations 
ontained in the Lorentz group.

A �nite Lorentz transformation is then in general given by exp(�i!

��

J

��

=2), where the

antisymmetri
 tensor !

��

2

IR

represents the Lorentz transformation. For instan
e:

!

12

= �!

21

= Æ� ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 0 0 0

0 0 �Æ� 0

0 Æ� 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal rotation about the z-axis (see Ex. 14), and

!

01

= �!

10

= Æv ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 Æv 0 0

Æv 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal boost along the x-dire
tion (see Ex. 14).

The task at hand is now to �nd the matrix representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

� (J

��

)

�

�

= i(g

��

g

�

�

� g

�

�

g

��

) are the six generators that des
ribe Lorentz transfor-

mations of 
ontravariant four-ve
tors:

x

�

Lorentz transf.

����������! �

�

�

x

�

=

�

exp(�i!

��

J

��

=2)

�

�

�

x

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�

x

�

:

This implies that g

�

�

�

i

2

!

��

(J

��

)

�

�

= g

�

�

+!

�

�

represents the in�nitesimal form of

the Lorentz transformation matrix �

�

�

, as is indeed the 
ase.

� J

��

= i(x

�

�

�

� x

�

�

�

) are the six generators in 
oordinate spa
e, whi
h des
ribe the

in�nitesimal Lorentz transformations of s
alar �elds

�(x)

Lorentz transf.

����������! �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) ;

as derived on page 11.
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11b

Dira
's tri
k: introdu
e four n� n matri
es 


�

that are referred to as the


-matri
es of Dira
, whi
h satisfy the Dira
 algebra (Cli�ord algebra)

�




�

; 


�

	

� 


�




�

+ 


�




�

= 2g

��

I

n

;

with I

n

the n�n identity matrix. In Ex. 14 it is proven that this implies that

the n�n matri
es S

��

�

i

4

�




�

; 


�

�

form a representation of the generators

J

��

of the Lorentz group. In fa
t this is true for any spa
etime dimensionality.

Four-dimensional solution to the Dira
 algebra: sin
e there are no solutions for

n = 2 or 3, the �rst solution 
an be found for n = 4. Written in 2�2 blo
k form in terms

of the 2�2 identity matrix I

2

and the Pauli spin matri
es

�

1

=

 

0 1

1 0

!

; �

2

=

 

0 � i

i 0

!

and �

3

=

 

1 0

0 � 1

!

;

the solution reads




0

=

 

0 I

2

I

2

0

!

and 


j

=

 

0 �

j

� �

j

0

!

(j = 1; 2; 3)

in the Weyl representation, whi
h is also known as the 
hiral representation. In fa
t there

is an in�nite number of su
h four-dimensional representations, sin
e for any invertable 4�4

matrix V also V 


�

V

�1

is a solution. In the Weyl representation the generators of the

Lorentz group have a blo
k-diagonal form. The generators for boosts are given by

S

0j

=

i

4

�




0

; 


j

�

=

i

2




0




j

= �

i

2

 

�

j

0

0 � �

j

!

(j = 1; 2; 3) ;

whereas the generators S

1

, S

2

and S

3

for rotations follow from

S

jk

j 6=k

====

i

4

�




j

; 


k

�

= �

i

4

 

�

�

j

; �

k

�

0

0

�

�

j

; �

k

�

!

= �

jkl

 

1

2

�

l

0

0

1

2

�

l

!

� �

jkl

S

l

(j; k = 1; 2; 3)

) S

l

=

 

1

2

�

l

0

0

1

2

�

l

!

�

1

2

�

l

(l = 1; 2; 3) :

The generators for rotations look like twi
e repli
ated two-dimensional representations of

the rotation group. We will 
ome ba
k to this point later on. As a result of the properties

(


0

)

y

= 


0

; (


j

)

y

= � 


j

(j = 1; 2; 3) ) (


�

)

y

= 


0




�




0

;

the generators of the Lorentz group satisfy

(S

��

)

y

= �

i

4

�

(


�

)

y

; (


�

)

y

�

=

i

4

�

(


�

)

y

; (


�

)

y

�

= 


0

S

��




0

:
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This means that the generators of rotations are hermitian, sin
e (S

jk

)

y

= S

jk

, indi
ating

that rotations preserve normalization. On the other hand, the generators of boosts are

non-hermitian, sin
e (S

0j

)

y

= �S

0j

, indi
ating that boosts do not preserve normalization

owing to the Lorentz 
ontra
tion of spatial volumes.

Dira
 spinors and adjoint Dira
 spinors: a four-
omponent �eld  (x) that Lorentz

transforms a

ording to this four-dimensional representation of the Lorentz group is 
alled

a Dira
 spinor:

 (x)

Lorentz transf.

����������! �

1=2

 (�

�1

x) with �

1=2

= exp(�i!

��

S

��

=2) :

The adjoint Dira
 spinor

�

 (x) is de�ned as

�

 (x) �  

y

(x)


0

and therefore transforms as

�

 (x)

Lorentz transf.

����������!

�

 (�

�1

x)�

�1

1=2

;

sin
e




0

�

y

1=2




0

= 


0

exp

�

i!

��

[S

��

℄

y

=2

�




0

(S

��

)

y

= 


0

S

��




0

============ exp(i!

��

S

��

=2) = �

�1

1=2

:

Using the important 
-matrix property

�




�

; S

��

�

=

i

2

�




�

; 


�




�

�

=

i

2

(


�




�




�

� 


�




�




�

) = i(g

��




�

� g

��




�

)

= i(g

��

g

�

�

� g

�

�

g

��

)


�

= (J

��

)

�

�




�

;

the following in�nitesimal Lorentz-transformation identity holds up to O(!):

�

I

4

+

i

2

!

��

S

��

�




�

�

I

4

�

i

2

!

��

S

��

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�




�

:

This re
e
ts that for �nite transformations

�

�1

1=2




�

�

1=2

= �

�

�




�

;

whi
h indi
ates that 


�

transforms like a 
ontravariant four-ve
tor provided it is properly


ontra
ted with Dira
 spinors and adjoint Dira
 spinors.

11d Consequently,  (x), 


�

�

�

 (x), 


�




�

�

�

�

�

 (x); � � � are good building blo
ks

for 
onstru
ting a Lorentz-invariant wave equation for Dira
 spinors, whereas

�

 (x) (x),

�

 (x)


�

�

�

 (x); � � � are s
alar building blo
ks for obtaining the 
or-

responding Lagrangian.
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3.1 Towards the Dira
 equation (§ 3.2 and 3.4 in the book)

11d Dira
-�eld bilinears (
urrents): the interesting obje
ts in spinor

spa
e are of the form

�

 � , with � a 4� 4 matrix that 
onsists of a sequen
e

of 
-matri
es. These obje
ts are 
alled bilinears or 
urrents. They will be

needed to 
onstru
t Lagrangians that in
lude intera
tions with other �elds, like

�

 (x)


�

 (x)A

�

(x) for intera
tions with a ve
tor �eld and

�

 (x)


�




�

 (x)h

��

(x)

for intera
tions with a tensor �eld. A basis for � that satis�es �

y

= 


0

�


0

is

given by the following 
ombinations of 
-matri
es:

I

4

; 


�

; �

��

=

i

2

�




�

; 


�

�

; 


�




5

; i


5

;

where




5

� i


0




1




2




3

= �

i

4!

�

����




�




�




�




�

in terms of the totally antisymmetri
 tensor

�

����

=

8

>

>

>

<

>

>

>

:

+1 if (����) = even permutation of (0123)

� 1 if (����) = odd permutation of (0123)

0 else

:

Properties of 


5

: the properties of the matrix 


5

will prove important for the des
ription

of weak intera
tions. They read:

(


5

)

y

= 


5

; (


5

)

2

= I

4

and

�




5

; 


�

	

= 0 (� = 0; � � � ; 3)

)

�




5

; S

��

�

= 0 )

�




5

;�

1=2

�

= 0 :

This means that 


5

is a \Lorentz s
alar" if it is properly 
ontra
ted with Dira
 spinors

and adjoint Dira
 spinors. Sin
e 


5


ommutes with the generators of Lorentz transforma-

tions in spinor spa
e, eigenve
tors of 


5


orresponding to di�erent eigenvalues transform

independently (i.e. without mixing).

11


A

ording to S
hur's lemma this implies that the Dira
 representation of the

Lorentz group is redu
ible, i.e. we should be able to write it in terms of two

independent lower-dimensional 
hiral representations.

In the Weyl representation of the 
-matri
es, the matrix 


5

has the following form in terms

of 2�2 blo
ks:




5

=

 

� I

2

0

0 I

2

!

:
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As a result,

P

R

�

1

2

(I

4

+ 


5

) =

 

0 0

0 I

2

!

and P

L

�

1

2

(I

4

� 


5

) =

 

I

2

0

0 0

!

are (
hiral) proje
tion operators on 2-dimensional ve
tors  

R

and  

L

:

 �

 

 

L

 

R

!

! P

R

 =

 

0

 

R

!

and P

L

 =

 

 

L

0

!

;

whi
h are eigenve
tors of 


5


orresponding to the 
hirality eigenvalues +1 and �1.

In terms of these right-handed Weyl spinors  

R

and left-handed Weyl spinors  

L

the in-

�nitesimal Lorentz transformations of  
an be rewritten as (
f. Ex. 15 and the generators

that are given on page 91)

 

 

L

 

R

!

Lorentz transf.

����������!

 

[I

2

� i

~

� � ~�=2�

~

� � ~�=2℄ 

L

[I

2

� i

~

� � ~�=2 +

~

� � ~�=2℄ 

R

!

:

The real in�nitesimal parameters

~

� and

~

� 
oin
ide with the parameters Æ~� and Æ~v that

were used in Ex. 14. We see that the Weyl spinors transform independently, whi
h indeed

implies that the four-dimensional Dira
 representation of the Lorentz group is redu
ible

and 
an be split into two two-dimensional representations. For later use we mention the

following identity for the Pauli spin matri
es:

�

2

~�

�

= �~��

2

) �

2

 

�

L

Lorentz transf.

����������! �

2

[I

2

+ i

~

� � ~�

�

=2�

~

� � ~�

�

=2℄ 

�

L

= [I

2

� i

~

� � ~�=2 +

~

� � ~�=2℄�

2

 

�

L

;

whi
h indi
ates that �

2

 

�

L

transforms like a right-handed Weyl spinor.

Chirality and 
urrents: from the 4� 4 matrix basis on the previous page all possible

hermitian 
urrents 
an be obtained as

�

 � , sin
e (

�

 � )

y

=  

y

�

y




0

 

�

y

=


0

�


0

========

�

 � .

These 
urrents and their asso
iated 
ontinuous Lorentz transformations read:

s
alar 
urrent : j

S

(x) �

�

 (x) (x)

Lorentz transf.

����������! j

S

(�

�1

x) ;

ve
tor 
urrent : j

�

V

(x) �

�

 (x)


�

 (x)

Lorentz transf.

����������! �

�

�

j

�

V

(�

�1

x) ;

tensor 
urrent : j

��

T

(x) �

�

 (x)�

��

 (x)

Lorentz transf.

����������! �

�

�

�

�

�

j

��

T

(�

�1

x) ;

axial ve
tor 
urrent : j

�

A

(x) �

�

 (x)


�




5

 (x)

Lorentz transf.

����������! �

�

�

j

�

A

(�

�1

x) ;

pseudo s
alar 
urrent : j

P

(x) � i

�

 (x)


5

 (x)

Lorentz transf.

����������! j

P

(�

�1

x) ;

making use of the fa
t that �

�1

1=2




�

�

1=2

= �

�

�




�

and �

�1

1=2




5

�

1=2

= 


5

.

94



Using the 
hiral proje
tion operators P

L=R

, the Dira
 spinors 
an be de
omposed into


hiral 
omponents a

ording to

P

L=R

 (x) �  

L=R

)

�

 

L=R

� ( 

L=R

)

y




0

=  

y

P

L=R




0

=  

y




0

P

R=L

=

�

 P

R=L

:

This results in the following 
hiral de
ompositions of the 
urrents.

� The s
alar 
urrent mixes left- and right-handed Weyl spinors, sin
e

�

  =

�

 (P

R

+ P

L

) =

�

 (P

2

R

+ P

2

L

) =

�

 

L

 

R

+

�

 

R

 

L

:

This will prove important for the des
ription of massive spin-1/2 parti
les.

� The ve
tor 
urrent treats left- and right-handed Weyl spinors on equal footing, sin
e

�

 


�

 =

�

 


�

(P

2

R

+ P

2

L

) =

�

 (P

L




�

P

R

+ P

R




�

P

L

) =

�

 

R




�

 

R

+

�

 

L




�

 

L

:

This will prove important for ve
tor-like theories, des
ribing for instan
e the ele
tro-

magneti
 and strong intera
tions.

� Similarly the tensor 
urrent mixes left- and right-handed Weyl spinors:

�

 �

��

 =

�

 

L

�

��

 

R

+

�

 

R

�

��

 

L

:

This is needed for des
ribing Lorentz transformations, as we have seen already.

� The axial ve
tor 
urrent treats left- and right-handed Weyl spinors in opposite ways:

�

 


�




5

 =

�

 


�




5

(P

2

R

+ P

2

L

) =

�

 (P

L




�




5

P

R

+ P

R




�




5

P

L

) 

=

�

 

R




�




5

 

R

+

�

 

L




�




5

 

L




5

 

R=L

=� 

R=L

============

�

 

R




�

 

R

�

�

 

L




�

 

L

:

This will prove important for 
hiral theories, like the one that des
ribes weak inter-

a
tions.

� Similarly the pseudo s
alar 
urrent de
omposes a

ording to

i

�

 


5

 = i

�

 

L




5

 

R

+ i

�

 

R




5

 

L

= i

�

 

L

 

R

� i

�

 

R

 

L

:

This will prove important in des
ribing intera
tions between spin-0 and spin-1/2

parti
les.

Handy 
ombinations of su
h 
urrents are given by the left/right-handed ve
tor 
urrents

j

�

L=R

(x) �

�

 (x)


�

P

L=R

 (x) =

�

 

L=R

(x)


�

 

L=R

(x) ;

whi
h will feature in the Standard Model of ele
troweak intera
tions.
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11e Dira
 equation: let's now try to 
onstru
t a Lorentz-invariant wave

equation that has the Klein-Gordon equation built in. The simplest 
andidate

is the Dira
 equation

(i


�

�

�

�m) (x) = 0 :

This is a �rst order di�erential equation, whereas the Klein-Gordon equation was a se
ond

order equation. This is possible be
ause 


�

behaves like a ve
tor without a
tually intro-

du
ing a preferred dire
tion, whi
h is not possible in s
alar theories!

Proof: �rst of all

0 = (i


�

�

�

+m)(i


�

�

�

�m) (x) = � (


�




�

�

�

�

�

+m

2

) (x)

= �

�

1

2

�




�

; 


�

	

�

�

�

�

+m

2

�

 (x)

f


�

;


�

g=2g

��

I

4

============ � (� +m

2

) (x) ;

so the Klein-Gordon equation is indeed built in! Se
ondly, under 
ontinuous Lorentz trans-

formations a Dira
 spinor transforms a

ording to  (x) !  

0

(x) = �

1=2

 (�

�1

x). If  (x)

satis�es the Dira
 equation then it follows that

8

x

(i


�

�

�

�m) (x) = 0 ) (i


�

�

�

�m)�

1=2

 (�

�1

x) = �

1=2

(i�

�

�




�

�

�

�m) (�

�1

x)

= �

1=2

�

i�

�

�




�

(�

�1

)

�

�

(�

�

 )(�

�1

x)�m (�

�1

x)

�

= �

1=2

�

i


�

�

�

 �m 

�

(�

�1

x) = 0

) (i


�

�

�

�m) 

0

(x) = 0 :

If the �eld  (x) satis�es the Dira
 equation then so does the Lorentz transformed �eld

 

0

(x), as required for having a Lorentz invariant wave equation.

In the Weyl representation the Dira
 equation reads

0 = (i


�

�

�

�m) =

 

�mI

2

i(I

2

�

0

+~� �

~

5

)

i(I

2

�

0

�~� �

~

5

) �mI

2

! 

 

L

 

R

!

�

 

�mI

2

i�

�

�

�

i��

�

�

�

�mI

2

! 

 

L

 

R

!

using the 
ompa
t notation

�

�

� (I

2

; ~� ) and ��

�

� (I

2

;�~� ) ) 


�

=

 

0 �

�

��

�

0

!

:

From this we 
on
lude that

11e

the two representations asso
iated with  

L

and  

R

are mixed by the mass

term in the Dira
 equation! In the massless 
ase the Dira
 equation splits into

two independent wave equations for  

L

and  

R

, the so-
alled Weyl equations

i��

�

�

�

 

L

(x) = 0 and i�

�

�

�

 

R

(x) = 0 :
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The Dira
 Lagrangian: the Lagrangian that 
orresponds to the Dira
 equation reads

L

Dira


(x) =

�

 (x)(i


�

�

�

�m) (x) :

Proof: the Euler-Lagrange equations for the

�

 and  �elds are given by

�

�

�

�L

�(�

�

�

 )

�

�

�L

�

�

 

= � (i


�

�

�

�m) = 0 ;

�

�

�

�L

�(�

�

 )

�

�

�L

� 

= �

�

�

i

�

 


�

�

+m

�

 =

�

 (i

 

�

�




�

+m) = 0 ;

whi
h are indeed the Dira
 equation and the 
orresponding adjoint equation

0 =

�

(i


�

�

�

�m) (x)

�

y




0

= � i

�

�

�

 

y

(x)

�




� y




0

�m 

y

(x)


0

= �

�

 (x)(i

 

�

�




�

+m) :

11e Conserved 
urrents: in preparation for the quantization of the free

Dira
 theory and the derivation of its parti
le interpretation, we have a 
loser

look at the 
onserved 
urrents for the solutions  (x) of the Dira
 equation.

1. The ve
tor 
urrent j

�

V

(x) is 
onserved.

Proof 1: �

�

j

�

V

= (�

�

�

 )


�

 +

�

 


�

�

�

 

Dira
 eqns.

======== im

�

  � im

�

  = 0 .

Proof 2: in Ex. 17 an alternative proof is given based on global U(1) invarian
e.

2. The axial ve
tor 
urrent j

�

A

(x) is 
onserved if m=0.

Proof 1: �

�

j

�

A

= (�

�

�

 )


�




5

 �

�

 


5




�

�

�

 

Dira
 eqns.

======== 2im

�

 


5

 = 0 if m = 0.

Proof 2: in Ex. 17 an alternative proof is given based on global 
hiral invarian
e.

3. The energy-momentum tensor T

��

is 
onserved.

Only the spa
etime 
oordinates of

�

 (x) and  (x) transform under translations,

i.e. the spinors themselves do not transform. Consequently, the energy-momentum

tensor T

��

derived on page 8 will be 
onserved. This gives rise to four 
onserved


harges, the �eld energy

H =

Z

d~x H =

Z

d~x

h

�

 

_

 +

_

�

 �

�

 

� L

Dira


i

=

Z

d~x �

 

_

 

and �eld momentum

~

P = �

Z

d~x

h

�

 

~

5

 + (

~

5

�

 )�

�

 

i

= �

Z

d~x �

 

~

5

 :

Here we used that in these Noether 
harges  (x) should satisfy the Dira
 equation,

and that �

 

=

�L

Dira


�(�

0

 )

= i

�

 


0

= i 

y

as well as �

�

 

=

�L

Dira


�(�

0

�

 )

= 0 .

From these 
onjugate momenta we 
an read o� that out of the eight real

degrees of freedom of the Dira
 spinor  (x) in fa
t four belong to the


onjugate momentum.
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4. Under 
ontinuous Lorentz transformations a Dira
 spinor transforms as

 (x)

Lorentz transf.

����������! �

1=2

 (�

�1

x)

inf.

�

�

I

4

�

i

2

!

��

S

��

�

 (x)�

1

2

!

��

�

x

�

�

�

� x

�

�

�

�

 (x) ;

where the �rst term is typi
al for Dira
 spinors and the se
ond term is the same

as for s
alar �elds. Bearing in mind that the Dira
 Lagrangian is a Lorentz s
alar,

we 
an generalize the derivation on page 11 to arrive at the following six 
onserved

Noether 
urrents:

J

���

(x) =

�L

Dira


�(�

�

 )

�

x

�

�

�

� x

�

�

�

� iS

��

�

 (x) +

�

g

��

x

�

� g

��

x

�

�

L

Dira


(x)

= T

��

x

�

� T

��

x

�

+

�

 (x)


�

S

��

 (x) :

11e The last term in these 
onserved Noether 
urrents is spe
i�
 for Dira


theories. After quantization of the Dira
 theory this term will help us to

determine the spin of the parti
les des
ribed by the (free) Dira
 �eld theory.

3.2 Solutions of the free Dira
 equation (§ 3.3 in the book)

11f

Sin
e solutions of the (free) Dira
 equation automati
ally satisfy the Klein-

Gordon equation, we 
an use the standard plane-wave (Fourier) de
omposition

in order to de
ouple the degrees of freedom as mu
h as possible.

The positive-energy 
ase: a

ording to this de
omposition we introdu
e

 

p

(x) � u(p)e

�ip�x

with p

2

= m

2

and p

0

> 0 ) p

�

=

�

p

~p

2

+m

2

; ~p ) � (E

~p

; ~p ) :

The spinor u(p) then has to satisfy the Dira
 equation in momentum spa
e:

(


�

p

�

�m)u(p) � (p=�m)u(p) = 0 ;

using Feynman slash notation. The 
laim is now that u(p) 
an be written as

u(p) =

 

p

p � � �

p

p � �� �

!

;

with � an arbitrary normalized 2-dimensional ve
tor.

Proof: using that

p

(p � �)(p � ��) =

p

(p

0

I

2

� ~p � ~� )(p

0

I

2

+ ~p � ~� )

f�

j

;�

k

g=2Æ

jk

I

2

=========== I

2

q

p

2

0

� ~p

2

= mI

2

;

it easily follows that

(p=�m)u(p) =

 

�mI

2

p � �

p � �� �mI

2

! 

p

p � � �

p

p � �� �

!

= 0 :
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