
where the log(�

2

=s) term is ompletely governed by the above-given RGE for �. This re-

ets that the observable e�etive 4-point oupling should not depend on the hoie of

referene sale �.

The referene sale � labels an entire equivalene lass of parametrizations of

the �

4

-theory and it should not matter whih element of the lass we hoose for

setting up the theory. These elements all lie on the same RGE trajetory.

When expressed in terms of the physial oupling �

ph

, the e�etive oupling jM

��!��

(s; �)j

2

is independent of the uto� �, as expeted for a orret observable! The uto� dependene

has been absorbed into a rede�nition of the unobservable Lagrangian parameter (bare ou-

pling) � in terms of the observable physial parameter (e�etive oupling) �

ph

. In the

literature this physial observable is usually referred to as the renormalized oupling �

R

,

although this terminology is a bit strange bearing in mind that the original oupling was

not normalized to begin with. This is an example of the onept of renormalization.

10

Renormalization: express physially measurable quantities in terms of physially

measurable quantities and not in terms of bare Lagrangian parameters.

� For setting up a perturbative expansion, the bare Lagrangian parameters are in fat

not the right parameters. Instead the physially measurable parameters should be

used (f. the disussion about m and m

ph

in § 2.9.2).

� The ourrene of in�nities in the loop integrals is linked to this. Our initial pertur-

bative expansion onsisted of taking � ! 1 while keeping � and m �nite. From

the renormalization group viewpoint, however, the set (�=�=1; � <1; m <1)

does not belong to the equivalene lass of the �

4

-theory!

� The onvergene of the perturbative series an be further improved by using phys-

ial quantities at the \right sale", thereby avoiding large logarithmi fators like

log(�

2

=s) in the example above. This hoie of sale has no onsequene for all-order

alulations, but it does if the series is trunated at a ertain perturbative order.

To omplete the story for the salar �

4

-theory we onsider the UV divergenes that are

present in the salar self-energy. This time the mass parameter is essential and therefore

should not be negleted.

Salar self-energy at O(�):

� i�(p

2

)

O(�)

====

p p

`

1

=

� i�

2

Z

d

4

`

1

(2�)

4

i

`

2

1

�m

2

+ i�

uto� �� m

�����������!

Wik rotation

� i�

32�

2

Z

�

2

0

d`

2

E

`

2

E

`

2

E

+m

2

� i�

=

� i�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

:
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After Dyson summation the full propagator beomes

i

p

2

�m

2

� �(p

2

) + i�

�

iZ

p

2

�m

2

ph

+ regular terms :

Sine the 1-loop salar self-energy does not depend on p

2

, it is absorbed ompletely into

the physial mass:

m

2

ph

= m

2

+ �(m

2

ph

)

O(�)

==== m

2

+

�

32�

2

�

�

2

�m

2

log

�

�

2

m

2

�

�

;

whereas the residue of the pole remains 1.

10d Note the strong �

2

dependene of the salar mass, whih implies that this

mass is very sensitive to high-sale quantum orretions. This is in fat a gen-

eral feature of salar partiles, like the Higgs boson: intrinsially the quantum

orretions to the mass of a salar partile are dominated by the highest mass

sale the salar partile ouples to!

Salar self-energy at O(�

2

): the residue of the pole is a�eted at 2-loop level by the

ontribution

p p

`

2

`

1

=

(�i�)

2

6

Z

d

4

`

1

(2�)

4

Z

d

4

`

2

(2�)

4

i

`

2

1

�m

2

+ i�

i

`

2

2

�m

2

+ i�

i

(`

1

+ `

2

+ p)

2

�m

2

+ i�

= a+ bp

2

+ p

4

+ � � � :

To assess the UV behaviour of this diagram we perform naive power ounting, whih in-

volves treating all loop momenta as being of the same order of magnitude. For `

1;2

!1

we obtain an integral of the order

R

d

8

`

E

=`

6

E

`

E

� �

����! �

8�6

= �

2

.

� a = O(�

2

) is obtained by setting p = 0;

� b = O(log�) is obtained by taking

1

2

�

2

=�p

2

0

and then setting p = 0. In naive power

ounting this logarithmially divergent term orresponds to integrals of order �

0

.

�  = O(1) is obtained by taking

1

4!

�

4

=�p

4

0

and then setting p = 0.

Adding all self-energy ontributions and foussing on the diverging terms

i

p

2

�m

2

� �(p

2

) + i�

!

i

p

2

�m

2

� A� Bp

2

�

iZ

p

2

�m

2

ph

+ regular terms ;

Z =

1

1�B

= O(log �) ; m

2

ph

=

m

2

+A

1�B

� Zm

2

+ Æm

2

; Æm

2

=

A

1�B

= O(�

2

) :
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This leads to an O(�

2

) shift in the mass and an O(log�) ontribution to the wave-

funtion renormalization, whih an be absorbed in the �eld � itself.

So, UV divergent loop orretions in �

4

-theory are present in �(p

2

) andM

��!��

(s; �), with

�(m

2

ph

) = m

2

ph

�m

2

= (Z � 1)m

2

+ Æm

2

� m

2

Æ

Z

+ Æm

2

; �

0

(m

2

ph

) = 1� 1=Z

and M

��!��

(s = �

2

; �=2) = ��

ph

� �Z

2

�� Æ

�

:

The ourrene of the fator Z

2

in the last expression originates from the multipliative

fator (

p

Z )

4

that should be added aording to the Feynman rules.

2.10.1 Physial perturbation theory (a.k.a. renormalized perturbation theory)

10

The lowest-order �

4

-theory should have been written in terms of the exper-

imentally measurable physial parameters m

ph

and �

ph

, and perturbation

theory should have been de�ned with respet to this lowest-order theory.

This is done as follows: take the original Lagrangian and write

� = �

R

p

Z ; m

2

Z = m

2

ph

� Æm

2

; �Z

2

= �

ph

� Æ

�

and Z � 1 + Æ

Z

so that

L =

1

2

(�

�

�)(�

�

�) �

1

2

m

2

�

2

�

�

4!

�

4

=

1

2

(�

�

�

R

)(�

�

�

R

) �

1

2

m

2

ph

�

2

R

�

�

ph

4!

�

4

R

+

1

2

Æ

Z

(�

�

�

R

)(�

�

�

R

) +

1

2

Æm

2

�

2

R

+

Æ

�

4!

�

4

R

:

We get bak the original Lagrangian in terms of renormalized objets (�rst line) and we

obtain extra interations that are alled ounterterms (seond line), sine their purpose

is to anel the divergenes in the theory. The Feynman rules for the propagators and

verties inluding ounterterms are now given by

p

=

i

p

2

�m

2

ph

+ i�

; = �i�

ph

;

�

p p

= i(p

2

Æ

Z

+ Æm

2

) ;

�

= iÆ

�

:

Renormalization onditions: as an expliit example, the full propagator now reads

i=

�

p

2

�m

2

ph

��

R

(p

2

)

�

, with the renormalized self-energy given by

� i�

R

(p

2

) = +

�

+ + +

�

+

�

+ � � �
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The parameters Æ

Z

and Æm

2

an be �xed by imposing the renormalization onditions

�

R

(m

2

ph

) = 0 and �

0

R

(m

2

ph

) = 0 ) full propagator =

i

p

2

�m

2

ph

+regular terms :

The pole struture of the full propagator then resembles that of a free partile, so in that

sense the physial 1-partile states have been re-normalized by this proedure. Adding

one more renormalization ondition based on M

��!��

in order to �x Æ

�

, we have three

onditions �xing three ounterterm parameters. This will in fat be suÆient to make all

observables of the �

4

-theory �nite.

10e

The salar �

4

-theory is alled renormalizable: \the in�nities of the theory

an be absorbed into a �nite number of parameters".

2.10.2 What has happened?

The above proedure seems odd: we alulated something that turned out to be in�nite,

then subtrated in�nity from our original mass and oupling in an arbitrary way and ended

up with something �nite. Moreover, we have added divergent terms to our Lagrangian and

we have suddenly ended up with a sale-dependent oupling. Why would a proedure

onsisting of suh ill-de�ned mathematial triks be legitimate? To see what has really

happened, let us losely examine the starting point of our alulation.

In general, we start with a Lagrangian ontaining all possible terms that are ompatible

with basi assumptions suh as relativity, ausality, loality, et. It still ontains a few

parameters suh as m and � in the ase of �

4

-theory. It is tempting to all them \mass"

and \oupling", as they turn out to be just that in the lassial (i.e. lowest-order) theory.

However, up to this point they are just free parameters. In order to make the theory

preditive, the parameters need to be �xed by a set of measurements: we should alulate

a set of ross setions at a given order in perturbation theory, measure their values and then

�t the parameters so that they reprodue the experimental data. After this proedure, the

theory is ompletely determined and beomes preditive.

The bare parameters m and � are only useful in intermediate alulations and will be

replaed by physial (i.e. measured) quantities in the end anyway. So, we might as well

parametrize the theory in terms of the latter. The renormalizability hypothesis is that this

reparametrization of the theory is enough to turn the perturbation expansion into a well-

de�ned expansion. The divergene problem then has nothing to do with the perturbation

expansion itself: we have just hosen unsuitable parameters to perform it. Also, the

fat that our physial oupling is sale-dependent should not surprise us. The physial

reason for this \running" is the existene of quantum utuations, whih were not there

in the lassial theory. These utuations orrespond to intermediate partile states: at
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suÆiently high (i.e. relativisti) energies, new partiles an be reated and annihilated.

As the available energy inreases, more and more energeti partiles an be reated. This

e�etively hanges the ouplings.

Having traded the bare parameters m and � for renormalized parameters m

ph

and �

ph

,

let us take a loser look at the internal onsisteny of the renormalization proedure. We

have introdued the physial oupling at a referene sale �, but we ould equally well have

hosen an energy sale �

0

with orresponding e�etive oupling �

0

ph

. Physial proesses

should not depend on our hoie of referene sale, hene the ouplings should be related

in suh a way that for any observable O we have O = O(m

ph

; �; �

ph

) = O(m

ph

; �

0

; �

0

ph

).

In other words, there should exist an equivalene lass of parametrizations of the theory

and it should not matter whih element of the lass we hoose. This observation lari�es

where the divergenes ame from: our initial perturbation expansion onsisted of taking

� !1 while keeping m and � �nite. From the viewpoint of the renormalization group,

however, the set (� = � =1 ; m <1 ; � <1) does not belong to any equivalene lass

of the �

4

-theory.

2.10.3 Super�ial degree of divergene and renormalizability

10e The statement at the end of §2.10.1 was a bit premature. In fat we still

have to prove that amplitudes with more than four external partiles do not

introdue a new type of in�nity that annot be absorbed into the 2- and 4-point

terms in the Lagrangian.

A 6-point diagram like

will ontain singular building bloks like and that should beome �nite

one we perform the afore-mentioned renormalization proedure. The question that re-

mains is whether the overall 6-point diagram an give rise to a new type of in�nity. To assess

this we perform naive power ounting, i.e. we treat all loop momenta as being of the same

large order of magnitude O(�). The outome of this power ounting is alled the super�ial

degree of divergene D of the diagram, with D = 0 denoting logarithmi divergene.

Consider a 1PI amputated diagram with N external lines, P propagators and V verties.

� In �

4

-theory four lines enter eah vertex, eah propagator ounts twie towards the

total number of lines entering verties and eah external line ounts one. This results

in the ondition

4V = N + 2P ) P = 2V �N=2 and N = even number :
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� The number of loop momenta is given by the number of propagators � the number

of four-momentum Æ-funtions + 1, sine one of the Æ-funtions orresponds to the

external momenta and will not �x an internal loop momentum (see page 53). This

results in

L = P � V + 1 = V �N=2 + 1

independent undetermined loop momenta. So, loop diagrams require V � N=2.

Power ounting: assume for argument's sake that the loop momenta are n-dimensional.

That means that in the ontext of naive power ounting eah loop momentum ontributes

�

n

and eah propagator �

�2

. The super�ial degree of divergene of the diagram then reads

D = nL� 2P = n(V �N=2 + 1)� 2(2V �N=2) = n + V (n� 4) +N(1� n=2) ;

whereas the oupling � has mass dimension [�℄ = 4� n in n dimensions.

Super�ially the diagram diverges like �

D

if D > 0 and like log(�) if D = 0,

provided it ontains a loop. The diagram does not diverge super�ially if D < 0.

Let's now onsider a few values for the dimensionality n of spaetime.

n = 4: D = 4 � N is independent of V and [�℄ = 0 ) the theory is renormalizable.

Divergenes our at all orders, but only a �nite number of amplitudes diverges

super�ially (i.e. amplitudes with N = 2 or 4)! The theory keeps its preditive

power in spite of the in�nities that our if we assume it to be valid at all energies.

n = 3: D = 3�N=2� V and [�℄ = 1 ) the theory is superrenormalizable. At most a

�nite number of diagrams diverges super�ially (i.e. the diagrams with N = 2 and

V = 1 or V = 2), as the diagrams get less divergent if the loop order is inreased!

n = 5: D = 5� 3N=2 + V and [�℄ = � 1 ) the theory is nonrenormalizable. Now all

amplitudes will diverge super�ially at a suÆiently high loop order! An in�nite

amount of ounterterms would be required to remove all divergenes, whih means

that all preditive power is lost if we assume the theory to be valid at all energies!

10e

If we express the super�ial degree of divergene in terms of V and N, the

oeÆient in front of V determines whether the theory is superrenormalizable

(negative oeÆient), renormalizable (zero oeÆient) or nonrenormalizable

(positive oeÆient)!

In onlusion: for n > 4 the salar �

4

-theory is nonrenormalizable and [�℄ < 0, for n = 4

it is renormalizable and [�℄ = 0, and for n < 4 it is superrenormalizable and [�℄ > 0.

These onlusions agree niely with the general disussion on page 28 of these leture notes.
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3 The Dira �eld

During the next three and a half letures Chapter 3 of Peskin & Shroeder will be overed.

We have seen various aspets of salar theories, desribing spin-0 partiles. However, most

partiles in nature have spin 6= 0.

11a Question: how should we �nd Lorentz-invariant equations of motion for

�elds that do not transform as salars?

Consider to this end an n-omponent multiplet �eld �

a

(x) with a = 1; � � � ; n, whih has

the following linear transformation harateristi under Lorentz transformations:

�

a

(x)

Lorentz transf.

����������! M

ab

(�)�

b

(�

�1

x)

with summation over the repeated index implied. A ompat way of writing this is

�(x)

Lorentz transf.

����������! M(�)�(�

�1

x) :

In the ase of salar �elds the transformation matrix M(�) was simply the identity matrix.

In order to �nd di�erent solutions, we make use of the fat that the Lorentz transformations

form a group: �

�

�

= g

�

�

is the unit element, �

�1

= �

T

is the inverse, and for �

1

and

�

2

being Lorentz transformations also �

3

= �

2

�

1

is a Lorentz transformation. The

transformation matries M(�) should reet this group struture:

M(g) = I

n

; M(�

�1

) = M

�1

(�) and M(�

2

�

1

) = M(�

2

)M(�

1

) ;

where I

n

is the n�n identity matrix. To phrase it di�erently, the transformation matries

M(�) should form an n-dimensional representation of the Lorentz group!

The ontinuous Lorentz group (rotations and boosts): transformations that lie

in�nitesimally lose to the identity transformation de�ne a vetor spae, alled the Lie

algebra of the group. The basis vetors for this vetor spae are alled the generators of

the Lie algebra. The Lorentz group has six generators J

��

= �J

��

, three for boosts and

three for rotations. These generators are antisymmetri, as a result of �

�1

= �

T

, and they

satisfy the following set of fundamental ommutation relations:

�

J

��

; J

��

�

= i

�

g

��

J

��

� g

��

J

��

� g

��

J

��

+ g

��

J

��

�

:

The three generators belonging to the boosts and the three generators belonging to the

rotations are given by

K

j

� J

0j

respetively J

j

�

1

2

�

jkl

J

kl

) J

jk

= �

jkl

J

l

(j ; k ; l = 1; � � � ; 3) ;

with summation over the repeated spatial indies implied. The latter generators, whih

span the Lie algebra of the rotation group, satisfy the fundamental ommutation relations

�

J

j

; J

k

�

= i�

jkl

J

l

:
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11a In fat it is proven in Ex. 15 that all �nite-dimensional representations

of the Lorentz group orrespond to pairs of integers or half integers (j

+

; j

�

),

where both j

+

and j

�

orrespond to a representation of the rotation group.

The sum j

+

+ j

�

should be interpreted as the spin of the representation, sine

it orresponds to the atual rotations ontained in the Lorentz group.

A �nite Lorentz transformation is then in general given by exp(�i!

��

J

��

=2), where the

antisymmetri tensor !

��

2

IR

represents the Lorentz transformation. For instane:

!

12

= �!

21

= Æ� ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 0 0 0

0 0 �Æ� 0

0 Æ� 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal rotation about the z-axis (see Ex. 14), and

!

01

= �!

10

= Æv ; rest = 0 ) !

�

�

=

0

B

B

B

�

0 Æv 0 0

Æv 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

for an in�nitesimal boost along the x-diretion (see Ex. 14).

The task at hand is now to �nd the matrix representations of the generators of

the Lorentz group.

Examples: in Ex. 14 it is proven that

� (J

��

)

�

�

= i(g

��

g

�

�

� g

�

�

g

��

) are the six generators that desribe Lorentz transfor-

mations of ontravariant four-vetors:

x

�

Lorentz transf.

����������! �

�

�

x

�

=

�

exp(�i!

��

J

��

=2)

�

�

�

x

�

�

�

g

�

�

�

i

2

!

��

(J

��

)

�

�

�

x

�

:

This implies that g

�

�

�

i

2

!

��

(J

��

)

�

�

= g

�

�

+!

�

�

represents the in�nitesimal form of

the Lorentz transformation matrix �

�

�

, as is indeed the ase.

� J

��

= i(x

�

�

�

� x

�

�

�

) are the six generators in oordinate spae, whih desribe the

in�nitesimal Lorentz transformations of salar �elds

�(x)

Lorentz transf.

����������! �(�

�1

x) � �(x)�

1

2

!

��

[x

�

�

�

�x

�

�

�

℄�(x) ;

as derived on page 11.
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