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Abstract

These are notes for the mini-course at the ISM Discovery school on “Geometry and spectra of
random hyperbolic surfaces” in Montréal.

1 Introduction

2 Generating functions of Weil–Petersson volumes

2.1 Weil–Petersson volumes

For 𝑔, 𝑛 ≥ 0 and a sequence 𝐿 = (𝐿1, . . . , 𝐿𝑛) of non-negative real numbers, we consider the moduli
space M𝑔,𝑛 (𝐿) of genus-𝑔 hyperbolic surfaces with 𝑛 geodesic boundaries of lengths 𝐿1, . . . , 𝐿𝑛 . In the
case 𝐿𝑖 = 0, the 𝑖th boundary is a cusp.

In the previous courses we have seen that M𝑔,𝑛 (𝐿) comes equipped with the Weil–Petersson sym-
plectic structure 𝜔 , which gives rise to the Weil–Petersson volume form

𝜇WP =
𝜔3𝑔−3+𝑛

(3𝑔 − 3 + 𝑛)! . (1)

The total Weil-Petersson volume
𝑉𝑔,𝑛 (𝐿) =

∫
M𝑔,𝑛

𝜇WP (2)

of the moduli space is finite and given by a polynomial in boundary lengths [15].

2.2 Generating functions

The goal of this section is to learn something about the Weil-Petersson volumes for arbitrary 𝑛 and
fixed genus, which we will soon restrict to 𝑔 = 0. For this it is convenient to encode the volumes in a
single generating function, such that knowledge of this generating function allows us to retrieve any of
the volumes. Since the volumes depend on the boundary lengths, we need to incorporate a non-trivial
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weighting to achieve this. To this end we consider a (Borel) measure 𝑞 on [0,∞) and informally define
the genus-𝑔 partition function to be

𝐹WP
𝑔 (𝑞) =

∞∑︁
𝑛=0

1
𝑛!

∫
[0,∞)𝑛

𝑉𝑔,𝑛 (𝐿)d𝑞(𝐿1) · · · d𝑞(𝐿𝑛) . (3)

When we are interested in doing probability theory, it makes sense to take this definition literally:
suppose each of the (Lebesgue) integrals converges and the sum as well, then the right-hand side nor-
malized by 1/𝐹WP

𝑔 gives rise to a probability measure, that we call the genus-𝑔 Boltzmann hyperbolic
surface with weight 𝑞. Indeed, we would sample 𝑛 with probability proportional to the summand.
Subsequently sample 𝐿 ∈ [0,∞)𝑛 with density proportional to 𝑉𝑔,𝑛 (𝐿)d𝑞(𝐿1) · · · d𝑞(𝐿𝑛) and finally a
random hyperbolic surface fromM𝑔,𝑛 (𝐿) with density proportional to 𝜇WP.

As an example we could fix ℓ ≥ 0 and take the weight 𝑞 = 𝑥𝛿ℓ to be a multiple of the delta measure
at ℓ . If then 𝑥 > 0 is chosen small enough such that 𝐹 (WP)

𝑔 (𝑞) =
∑∞

𝑛=0
𝑥𝑛

𝑛!𝑉𝑔,𝑛 (ℓ, . . . , ℓ) < 0, then the
associated Boltzmann hyperbolic surface would be a random hyperbolic surface with a random number
of boundaries, each of length ℓ .

If we do not wish to worry about convergence issues (yet), it suffices to note that (3) depends only
on the even moments of 𝑞, since the polynomials𝑉𝑔,𝑛 (𝐿) are even. Hence, with some abuse of notation,
we may write

𝐹WP
𝑔 (𝑞) = 𝐹WP

𝑔 (𝑡0(𝑞), 𝑡1(𝑞), . . .), (4)

where the times 𝑡0(𝑞), 𝑡1(𝑞), . . . are the conveniently normalized even moments

𝑡𝑘 (𝑞) =
2

4𝑘 𝑘!

∫ ∞

0
𝐿2𝑘d𝑞(𝐿) . (5)

The same information about theWeil–Petersson volumes is thus contained in 𝐹WP
𝑔 (𝑡0, 𝑡1, . . .), which we

interpret as a formal power series in the variables 𝑡0, 𝑡1, . . ..
Importantly, we can retrieve theWeil–Petersson volumes from 𝐹WP

𝑔 by using the (formal) functional
derivative 𝛿

𝛿𝑞 (ℓ ) defined via
𝛿

𝛿𝑞(ℓ) 𝐹 (𝑞) =
𝜕

𝜕𝑥
𝐹 [𝑞 + 𝑥𝛿ℓ ]

���
𝑥=0

. (6)

For instance
𝛿

𝛿𝑞(ℓ) 𝐹
WP
𝑔 (𝑞) =

∞∑︁
𝑛=0

1
𝑛!

∫
[0,∞)𝑛

𝑉𝑔,𝑛+1(𝐿, ℓ)d𝑞(𝐿1) · · · d𝑞(𝐿𝑛) (7)

so 𝛿
𝛿𝑞 (ℓ ) serves to add a distinguished boundary of length ℓ , which does not receive a weight. In partic-

ular, the Weil-Petersson volume itself is retrieved via

𝑉𝑔,𝑛 (𝐿) =
𝛿𝐹WP

𝑔 (𝑞)
𝛿𝑞(𝐿1) · · · 𝛿𝑞(𝐿𝑛)

�����
𝑞=0

. (8)

Note also that 𝛿
𝛿𝑞 (ℓ ) is related to partial derivatives with respect to the times via

𝛿

𝛿𝑞(ℓ) ≡
∞∑︁
𝑘=0

2ℓ2𝑘

4𝑘𝑘!
𝜕

𝜕𝑡𝑘
,

𝛿

𝛿𝑞(0) ≡ 𝜕

𝜕𝑡0
. (9)
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2.3 An explicit evaluation of the genus-0 partition function

From here we specialize to genus 0, although much of this section holds for higher genus as well. Since
the work of Mirzakhani [16] it is known that the coefficients in the polynomials 𝑉𝑔,𝑛 (𝐿) are directly
related to certain intersection numbers on the compactified moduli spaceM𝑔,𝑛 of genus-𝑔 curves with 𝑛
marked points. Wewill not delve into this topic, except to mention that there are canonical cohomology
classes of 2-forms 𝜅1 and 𝜓1, . . . ,𝜓𝑛 on M𝑔,𝑛 , whose integrals provide these intersection numbers. In
particular,

𝐹WP
0 (𝑡0, 𝑡1, . . .) =

∞∑︁
𝑛=3

∑︁
𝑚,𝑑1,...,𝑑𝑛≥0

𝑚+𝑑1+···+𝑑𝑛=𝑛−3

𝜋2𝑚

𝑚! 𝑡𝑑1 · · · 𝑡𝑑𝑛
∫
M0,𝑛

𝜅𝑚1 𝜓
𝑑1
1 · · ·𝜓𝑑𝑛

𝑛 . (10)

A relation between 𝜅1 and the𝜓 -classes [19] implies the identification [11]

𝐹WP
0 (𝑡0, 𝑡1, . . .) = 𝐹0(𝑡0, 𝑡1, 𝑡2 + 𝛾2, 𝑡3 + 𝛾3, . . .), 𝛾𝑘 =

(−1)𝑘
(𝑘 − 1)!𝜋

2𝑘−21𝑘≥2, (11)

where 𝐹0 is the generating functions of pure𝜓 -class intersection numbers

𝐹0(𝑡0, 𝑡1, . . .) =
∞∑︁
𝑛=3

∑︁
𝑑1,...,𝑑𝑛≥0

𝑑1+···+𝑑𝑛=𝑛−3

𝑡𝑑1 · · · 𝑡𝑑𝑛
∫
M0,𝑛

𝜓
𝑑1
1 · · ·𝜓𝑑𝑛

𝑛

=
1
6𝑡

3
0 +

1
6𝑡

3
0𝑡1 +

1
24 (𝑡

4
0𝑡2 + 4𝑡3

0𝑡
2
1 ) + · · · .

The reason to introduce 𝐹0 here is the famous conjecture of Witten [19], proved by Kontsevich
[7] and others, showing that

∑
𝑔 𝐹𝑔 is a 𝜏-function of the KdV hierarchy and thus satisfies an infinite

hierarchy of partial differential equations. We focus on a single one, sometimes referred to as the string
equation,

𝜕𝐹0
𝜕𝑡0

=
𝑡2
0
2 +

∞∑︁
𝑖=0

𝑡𝑖+1
𝜕𝐹0
𝜕𝑡𝑖

, (12)

since it already uniquely determines 𝐹0(𝑡0, 𝑡1, . . .), see e.g. [6].

Proposition 1. Let 𝑢0(𝑡0, 𝑡1, . . .) be the formal power series solution to 𝑍 (𝑢0) = 0, where

𝑍 (𝑟 ) ≡ 𝑍 (𝑟 ; 𝑡0, 𝑡1, . . .) = 𝑟 −
∞∑︁
𝑘=0

𝑡𝑘
𝑟𝑘

𝑘! . (13)

Then we have

𝑢0 =
𝜕2𝐹0

𝜕𝑡2
0

and 𝐹0(𝑡0, 𝑡1, . . .) =
1
2

∫ 𝑢0

0
𝑍 (𝑟 )2d𝑟 . (14)

We have included the proof of this proposition in Appendix ??. Combining with the relation (11) we
thus obtain the following characterization of the partition function 𝐹WP

0 .

Theorem 2. Let 𝑅 ≡ 𝑅(𝑡0, 𝑡1, . . .) = 𝑢0(𝑡0, 𝑡1, 𝑡2 + 𝛾2, . . .) be the formal power series solution to

𝑍WP(𝑅) = 0, 𝑍WP(𝑟 ) = 𝑟 −
∞∑︁
𝑘=0

(𝑡𝑘 + 𝛾𝑘 )
𝑟𝑘

𝑘! . (15)

Then we have

𝑅 =
𝜕2𝐹WP

0
𝜕𝑡2

0
and 𝐹WP

0 =
1
2

∫ 𝑅

0
𝑍WP(𝑟 )2d𝑟 . (16)
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Substituting the definition of the times (5) and the shift (11), we obtain an equivalent expression of
𝑍WP(𝑟 ) in terms of the weights,

𝑍WP(𝑟 ) =
√
𝑟

√
2𝜋

𝐽1(2𝜋
√

2𝑟 ) −
∫ ∞

0
𝐼0(ℓ

√
2𝑟 )d𝑞(ℓ), (17)

where 𝐽1 and 𝐼0 are the modified Bessel functions with series expansions

𝐽1(2𝑥) =
∞∑︁
𝑘=1

(−1)𝑘+1 𝑥2𝑘−1

𝑘!(𝑘 − 1)! , 𝐼0(2𝑥) =
∞∑︁
𝑘=0

𝑥2𝑘

𝑘!2 . (18)

Question. Why does the generating function 𝑅 =
𝛿2𝐹WP

0
𝛿𝑞 (0)2 of Weil–Petersson volumes with two marked

cusps satisfy a closed equation like (15) or (17)? Can a geometric understanding provide an entrance to
studying the geometry of (random) hyperbolic surfaces with many boundaries?

Using that 𝑍WP(𝑅) = 0 and 𝜕𝑍WP (𝑟 )
𝜕𝑞 (ℓ ) = 𝐼0(ℓ

√
2𝑟 ), it is straightforward to determine further universal

formulas for generating functions with marked boundaries, e.g.

𝛿𝐹WP(𝑞)
𝛿𝑞(𝐿1)

=

∫ 𝑅

0
𝐼0(𝐿1

√
2𝑟 )𝑍WP(𝑟 )d𝑟,

𝛿2𝐹WP(𝑞)
𝛿𝑞(𝐿1)𝛿𝑞(𝐿2)

=

∫ 𝑅

0
𝐼0(𝐿1

√
2𝑟 )𝐼0(𝐿2

√
2𝑟 )d𝑟,

𝛿3𝐹WP(𝑞)
𝛿𝑞(𝐿1)𝛿𝑞(𝐿2)𝛿𝑞(𝐿3)

= 𝐼0(𝐿1
√

2𝑅)𝐼0(𝐿2
√

2𝑅)𝐼0(𝐿2
√

2𝑅) 𝛿𝑅

𝛿𝑞(0) .

3 Planar maps

There is a close analogy between Weil–Petersson volumes of genus-𝑔 hyperbolic surfaces and the enu-
meration of genus-𝑔 maps (also known as ribbon diagrams). A connection between intersection num-
bers and maps already featured prominently in Kontsevich’s proof [7] of Witten’s conjecture. Here
we will content ourselves with noting the similarity between the generating function 𝐹WP

0 (𝑞) of Weil-
Petersson volumes and the generating function of planarmaps. But first we need to get some definitions
out of the way.

3.1 Introducing maps

A genus-𝑔 map 𝔪 is a multigraph, i.e. a graph with multiple edges and loops allowed, that is properly
embedded in a genus-𝑔 surface. An embedding is proper if the edges do not intersect, except possibly at
their shared vertex, and if the complement of the graph in the surface is a collection of topological disks,
called the faces of 𝔪. When viewed modulo orientation-preserving homeomorphisms of the surface, a
genus-𝑔 map can be described purely combinatorially by its incidence relations. For instance we can
think of 𝔪 as a gluing of 𝑛 (regular) polygons into a surface of genus 𝑔 by specifying the pairwise
identifications of the sides of the polygons. The degree of a face or a vertex of𝔪 is the number of edges
incident to the face, where we count an edge double if it is incident on both sides to the same face or
vertex. The sets of vertices, edges and faces of 𝔪 are denoted by 𝑉 (𝔪), 𝐸 (𝔪), 𝐹 (𝔪).
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Figure 1: An example of a rooted planar map with all faces of degree 4 (also known as a
quadrangulation). Equivalently it can be understood as a gluing of identical squares into a
topological sphere. The colored corners are included to help see the relation between the
two representations.

3.2 Planar map generating function

For our purposes we will restrict to even maps, i.e. maps for which each face has even degree. We
denote the set of such maps with 𝑛 faces of degrees 2𝑑1, . . . , 2𝑑𝑛 by𝑀𝑔,𝑛 (𝑑), in analogy with the moduli
spaceM𝑔,𝑛 (𝐿) of hyperbolic surfaces with 𝑛 boundaries. Then for 𝑡, 𝑞1, 𝑞2, . . . ≥ 0 the partition function
of even genus-𝑔 maps is defined as

𝐹m
𝑔 (𝑡, 𝑞) =

∞∑︁
𝑛=1

1
𝑛!

∞∑︁
𝑑1=1

𝑞𝑑1 · · ·
∞∑︁

𝑑𝑛=1
𝑞𝑑𝑛

∑︁
𝔪∈𝑀𝑔,𝑛 (𝑑 )

𝑡 |𝑉 (𝔪) |

| Aut(𝔪) | , (19)

where Aut(𝔪) is the group of face-preserving automorphisms of 𝔪 and the factor 1/| Aut(𝔪) | is in-
cluded to accommodate properly the maps that have non-trivial symmetries. Since it is often painful to
keep track of these, we usually work with rooted maps, which are maps together with a distinguished
oriented edge. This additional bit of information suffices to kill any symmetries. Denoting by ®𝑀𝑔 the
set of all rooted genus-𝑔 maps, it is a little exercise to see that (19) can equivalently be expressed as

𝐹m
𝑔 (𝑡, 𝑞) =

∑︁
𝔪∈ ®𝑀𝑔

1
2|𝐸 (𝔪) | 𝑡

|𝑉 (𝔪) |
∏

𝑓 ∈𝐹 (𝔪)
𝑞deg 𝑓 /2. (20)

The goal of this section will be to derive the following characterization of 𝐹m
0 (𝑞) in the planar case,

which in one form or another goes back all the way to the work of Tutte [18] in the sixties.

Theorem 3. Let 𝑅(𝑡, 𝑞) = 𝑡
1−𝑞1

+𝑂 (𝑡2) be the formal power series solution to 𝑔𝑞 (𝑅) = 𝑡 , where

𝑔𝑞 (𝑟 ) = 𝑟 −
∞∑︁
𝑘=1

𝑞𝑘

(
2𝑘 − 1
𝑘

)
𝑟𝑘 . (21)

Then

𝑅 =
𝜕2𝐹m

0
𝜕𝑡𝜕𝑞1

and 𝐹m
0 (𝑡, 𝑞) = 1

2

∫ 𝑅

0

(
(𝑔𝑞 (𝑟 ) − 𝑡)2 − (𝑟 − 𝑡)21𝑟<𝑡

) d𝑟
𝑟
. (22)
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A specialized generating function that we will encounter later is the pointed disk function𝑊 (ℓ )
• (𝑡, 𝑞)

which enumerates rooted planar maps with a distinguished vertex and in which the root face, i.e. the
face to the left of the root, is restricted to have degree 2ℓ . In this case the distinguished vertex does not
receive weight 𝑡 and the root face does not receive a weight 𝑞ℓ , meaning

𝑊
(ℓ )
• (𝑡, 𝑞) =

∑︁
𝔪∈ ®𝑀0

root face deg. 2ℓ

𝑡 |𝑉 (𝑚) |−1
∏

𝑓 ∈𝐹 (𝔪)
except root face

𝑞deg 𝑓 /2. (23)

It is not difficult to see from (19) or (20) that it is related to 𝐹m
0 via

𝑊
(ℓ )
• (𝑡, 𝑞) = 2ℓ

𝜕2𝐹m
0

𝜕𝑡𝜕𝑞ℓ
. (24)

From (22) together with 𝑔𝑞 (𝑅) = 𝑡 and 𝑅 ≥ 𝑡 it follows that

𝑊
(ℓ )
• (𝑡, 𝑞) = ℓ

𝜕

𝜕𝑡

∫ 𝑅

0

𝜕

𝜕𝑞ℓ

(
(𝑔𝑞 (𝑟 ) − 𝑡)2 − (𝑟 − 𝑡)21𝑟<𝑡

) d𝑟
𝑟

= −2ℓ 𝜕
𝜕𝑡

∫ 𝑅

0
(𝑔𝑞 (𝑟 ) − 𝑡)

(
2ℓ − 1

ℓ

)
𝑟 ℓ−1d𝑟

= 2ℓ
∫ 𝑅

0

(
2ℓ − 1

ℓ

)
𝑟 ℓ−1d𝑟

= 2
(
2ℓ − 1

ℓ

)
𝑅ℓ =

(
2ℓ
ℓ

)
𝑅ℓ .

Vice versa, this expression implies (22). To see this we note that the right-hand side of (22) indeed
determines a power series in 𝑡, 𝑞1, 𝑞2, . . . and vanishes when 𝑡 = 0 or 𝑞 = 0, as it should since every map
has at least one vertex and one face. The next section will be devoted to proving𝑊 (ℓ )

• =
(2ℓ
ℓ

)
𝑅ℓ and thus

Theorem 3.

3.3 Tree bijection

Even though its solution dates back 60 years, solving the enumeration problem of planar maps at the
level of generating functions requires some ingenuity (see e.g. [18, 2, 5]). Compared to maps, trees
are generally much simpler combinatorial objects to enumerate. This owes to the natural decompo-
sition that many types of trees admit, often leading to the associated generating function satisfying a
characteristic equation.

The simplest example is the rooted plane tree, which is a rooted planar map with a single face. If
we include for convenience the tree consisting of a single vertex, then the generating function𝐺 (𝑥) =
1 + 𝑥 + · · · of rooted plane trees with a weight 𝑥 per edge, satisfies the equation

𝐺 (𝑥) = 1 + 𝑥𝐺 (𝑥)2.

This equation follows from the observation that a rooted plane tree either is a single vertex (with weight
1) or it decomposes into a pair of plane trees (with generating function 𝐺 (𝑥)2) by removing the root
edge (which has weight 𝑥 ):
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Of course, in this case the solution to the characteristic equation leads to the generating function of the
Catalan numbers.

Since the sought-after generating function 𝑅 of Theorem 3 satisfies an equation 𝑔𝑞 (𝑅) = 𝑡 , one may
rightfully suspect that 𝑅 has an interpretation as a generating function of certain trees. The explanation
is provided by the Bouttier-Di Francesco-Guitter (BDFG) bijection [3], which we will explain now.

Let us denote by ®𝑀•
0 the set of rooted bipartite planar maps with a distinguished vertex (we say

the map is pointed and call this vertex the origin), with the additional restriction that the root edge is
oriented away from the origin (in the sense that the graph distance to the origin increases along the
root edge). See Fig. 2a for an example.

We will associate a tree with a map 𝔪 ∈ ®𝑀•
0 via the following prescription.

1. Label the (white) vertices of 𝔪 by the graph distance to the pointed vertex.

2. Draw a new black vertex in each face of 𝔪.

3. For each edge 𝑒 of 𝔪, let 𝑣 be the endpoint of 𝑒 with the largest label. Draw a new red edge
starting at 𝑣 and ending on the black vertex within the face to the left of 𝑒 when facing 𝑣 (Fig. 2b).
If 𝑒 is the root of 𝔪 we take the new edge to be the new root (oriented away from 𝑣).

4. Remove all original edges of 𝔪 as well as the origin vertex (Fig. 2d).

5. Shift all labels uniformly such that the root vertex receives label 0.

The claim is that the resulting map is a particular type of tree called a mobile. Amobile is a tree 𝔱, i.e. a
rooted planar map with only one face, with unlabeled black vertices and integer-labeled white vertices
satisfying the following properties (see Fig. 2d for an example):

(i) The endpoints of each edge have distinct color.

(ii) The root edge starts at a white vertex with label 0.

(iii) Around each black vertex, if a white neighbour has label ℓ then the next white neighbour in
counterclockwise order around the black vertex must have label at most ℓ + 1.

We denote the set of mobiles byMob.

Theorem 4 (BDFG bijection). This construction determines a bijection Φ : ®𝑀•
0 → Mob satisfying

• each face of degree 2𝑘 in 𝔪 corresponds to a black vertex of degree 𝑘 in Φ(𝔪);

• each edge of 𝔪 corresponds to an edge of Φ(𝔪);

• if ℓ0 is the distance between the endpoint of the root edge and the origin in𝔪, then the minimal label
on Φ(𝔪) is −ℓ0 + 1;
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Figure 2: The Bouttier–DiFrancesco–Guitter bijection. (a) A rooted bipartite planar map
𝔪 with a distinguished vertex (shaded in red) together with its canonical labeling by the
graph distance. (b) The prescription for drawing new (red) edges and a new root. (c) The
result of applying the prescription to 𝔪. The (blue) dashed lines indicate two left-most
geodesics. (d) After deleting the edges of 𝔪 and the origin and shifting the labels such
that the start of the root edge receives label 0, one obtains the mobile 𝔱.

• each vertex of𝔪 at graph distance ℓ > 0 from the origin corresponds to a white vertex of label ℓ − ℓ0
in Φ(𝔪).

We will only sketch the main ingredients of the proof.

The result Φ(𝔪) is a mobile. First we need to convince ourselves that the constructions yields a
tree, in particular that 𝔱 = Φ(𝔪) cannot contain cycles. The explanation is that for any edge 𝑒 of𝔪 one
can find a plane curve, called the left-most geodesic (to the origin), starting at (say, the midpoint of) 𝑒
and ending at the origin that does not intersect 𝔱. This immediately implies the impossibility of cycles
in 𝔱, because every cycle in 𝔱 would enclose the origin on one side and at least one edge on the other
side, contradicting the existence of a left-most geodesic path from that edge to the origin.

The left-most geodesic is constructed as follows (see the dashed curve in Fig. 2c for an example):
denote the endpoints of 𝑒 by 𝑣ℓ and 𝑣ℓ−1 with labels ℓ and ℓ − 1 respectively. The curve starts by
traversing 𝑒 towards 𝑣ℓ−1. If ℓ = 1, 𝑣ℓ−1 is the origin and we are done. Otherwise, the curve circles
around 𝑣ℓ−1 in clockwise direction until it encounters an edge with endpoint at distance ℓ − 2, that we
denote 𝑣ℓ−2. Such an edge always exists due to the definition of the graph distance, and by construction
of 𝔱 one encounters no edge of 𝔱 along the way. Traversing the edge to 𝑣ℓ−2 and iterating, one obtains a
curve ending at the origin 𝑣0, since that is the unique vertex with minimal label. The path 𝑣ℓ , 𝑣ℓ−1, . . . , 𝑣0
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in𝔪 is called the left-most geodesic, because it is a path of minimal length from 𝑣ℓ to the origin and at
each vertex it chooses the left-most option among such minimal paths.

In the absence of cycles, the number of connected components of 𝔱 is given by |𝑉 (𝔱) | − |𝐸 (𝔱) |. But
by construction |𝑉 (𝔱) | = |𝑉 (𝔪) | + |𝐹 (𝔪) | − 1 and |𝐸 (𝔱) | = |𝐸 (𝔪) |, which together with Euler’s formula
implies that 𝔱 has a single connected component and is thus a tree.

It remains to check the constraints on the labels of 𝔱. To this end let us have a look at a single face
of degree 2𝑘 in 𝔪, like in this example:

Examining the labels around the face in counterclockwise direction, we find exactly 𝑘 increments and
𝑘 decrements. Hence the black vertex inside this face will receive 𝑘 red edges. Moreover, each red
edge is followed by any number of decrements and exactly one increment before the next red edge
is encountered. This explains the label constraint on the mobiles as well as the properties listed in
Theorem 4.

The inverse construction. The angular region around a vertex that is delimited by two neighbour-
ing edges incident is called a corner of that vertex. The contour of a tree is the cyclic sequence of
corners one encounters while walking around the tree in clockwise direction (i.e. keeping the tree on
the right-hand side). Given a mobile 𝔱 one may construct a (rooted pointed bipartite planar) map as
follows.

1. Assuming −ℓ0 + 1 is the minimal label of 𝔱, insert a new white vertex (the origin) with label −ℓ0
in the face of 𝔱.

2. For each corner 𝑐 of a white vertex with label ℓ in 𝔱, we draw a new edge from 𝑐 to the next corner
of a white vertex in the contour that has label ℓ − 1 in case ℓ > −ℓ0 + 1 or to the origin in case
ℓ = −ℓ0 + 1. If 𝑐 is the corner of the root vertex that sits left of the root edge, then the new edge
is taken to be the new root (oriented away from 𝑐).

3. Remove all (red) edges of 𝔱.

One can show [3] that the drawing of edges can be done uniquely in a planar fashion and that this
construction yields exactly the inverse mapping Φ−1 : Mob → ®𝑀•

0 .

3.4 Generating function via mobiles

Recall that𝑊 (ℓ )
• = 2 𝜕2𝐹m

0
𝜕𝑡𝜕𝑞1

is the generating function of rooted pointed bipartite maps with root face
degree 2ℓ . Consider ℓ = 1, subtracting the contribution 2𝑡 of the maps consisting of a single edge, gluing
the two sides of the root face together and dividing by two to restrict the root edge to point away from
the origin, we deduce that

1
2𝑊

(1)
• − 𝑡 = 𝑅 − 𝑡 =

∑︁
𝔪∈ ®𝑀•

0

𝑡 |𝑉 (𝔪) |−1
∏

𝑓 ∈𝐹 (𝔪)
𝑞deg 𝑓 /2 (25)
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Figure 3: Illustration of the inverse map Φ−1. The contour is illustrated in dashed blue,
and the new black edges associated to five of the corners have been drawn.

is the generating function of the maps in ®𝑀•
0 . By Theorem 4 it therefore also is the generating function

of mobiles,
𝑅(𝑡, 𝑞) − 𝑡 =

∑︁
𝔱∈Mob

𝑡 |𝑉white (𝔱) |
∏

𝑣∈𝑉black (𝔱)
𝑞deg 𝑣 . (26)

Or if you wish, 𝑅(𝑡, 𝑞) is the generating function of mobiles which includes the degenerate mobile
consisting of a single white vertex (with label 0).

Now we can understand that 𝑅 satisfies the equation 𝑔𝑞 (𝑅) = 𝑡 , because mobiles admit a decompo-
sition analogous to the rooted plane trees before. Let us denote the root vertex by 𝑣0. If the degree of
the black vertex at the end of the root edge is 𝑘 , then it has 𝑘−1 white children 𝑣1, . . . , 𝑣𝑘−1. Each vertex
𝑣𝑖 together with its offspring, excluding the branch of the root edge in case of 𝑣0, determines a mobile,
once the labels have been shifted such that the root vertex 𝑣𝑖 receives label 0. Noting that these mobiles
may take the form of a single white vertex with no children, this leads immediately to the equation

𝑅 = 𝑡 +
∞∑︁
𝑘=1

𝑞2𝑘
∑︁

labels on
𝑣1,...,𝑣𝑘−1

=

∞∑︁
𝑘=1

𝑞2𝑘

(
2𝑘 − 1
𝑘

)
𝑅𝑘 , (27)

because there are precisely
(2𝑘−1

𝑘

)
choices for the labels ℓ1, · · · , ℓ𝑘−1 on 𝑣1, . . . , 𝑣𝑘−1 satisfying the re-

quirements ℓ1 ≥ −1, ℓ𝑘 ≤ 1, and ℓ𝑖+1 ≥ ℓ𝑖 − 1 for 𝑖 = 1, . . . , 𝑘 − 1. This is equivalent to 𝑔𝑞 (𝑅) = 𝑡 .
Since the summand gives the contribution of maps with root face of degree 2𝑘 , we also reproduce

𝑊
(2𝑘 )
• = 2

(
2𝑘 − 1
𝑘

)
𝑅𝑘 =

(
2𝑘
𝑘

)
𝑅𝑘 , (28)

where the factor of 2 takes care of lifting the restriction on the root edge to point away from the origin.
This finishes the bijective proof of Theorem 3.

3.5 Graph distance statistics in Boltzmann maps

The tree bijection not only provides insights into the structure of the generating functions, but also
provides an effective way of studying refined enumeration where we have control on graph distances.
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This insight has been crucial in the study of scaling limits of metric structure of large random planar
maps, culminating in the proofs of Gromov–Hausdorff convergence towards the Brownian sphere [10,
14] by Le Gall and Miermont.

Suppose 𝑡, 𝑞1, 𝑞2, . . . ≥ 0 are chosen small enough such that 𝑅(𝑡, 𝑞) < ∞, then according to (25),

P(𝔪) = 1
𝑅
𝑡 |𝑉 (𝔪) |−1

∏
𝑓 ∈𝐹 (𝔪)

𝑞deg 𝑓 /2 (29)

determines a probability measure on the set ®𝑀•
0 ∪ {•} of rooted pointed bipartite maps (including for

convenience a degenerate map • with weight 𝑡 ). We call this random map the pointed (𝑡, 𝑞)-Boltzmann
planar map. According to Theorem 4, the associated random mobile 𝔱 = Φ(𝔪) is distributed as

P(𝔱) = 1
𝑅
𝑡 |𝑉white (𝔱) |

∏
𝑣∈𝑉black (𝔱)

𝑞deg 𝑣 . (30)

Let 𝔱◦ denote the bicolored tree obtained from themobile 𝔱 by forgetting the labels on the white vertices.
By the same reasoning as in (27), this mapping is∏

𝑣∈𝑉black (𝔱)

(
2 deg 𝑣 − 1

deg 𝑣

)
to 1. (31)

Hence 𝔱◦ is distributed among the all (properly bicolored) plane trees as

P(𝔱◦) = 1
𝑅
𝑡 |𝑉white (𝔱◦ ) |

∏
𝑣∈𝑉black (𝔱◦ )

(
2 deg 𝑣 − 1

deg 𝑣

)
𝑞deg 𝑣 . (32)

This may be recognized as the law of a two-type Bienayme–Galton–Watson tree with appropriately
chosen offspring distributions for the white and black vertices.

Figure 4: Illustration of the height and label function (b) associated to the mobile (a).
The scaling limit of the height function is the Brownian excursion (c), which is the height
function of the CRT (d).

It is natural to ask what this random tree looks like when conditioned to have 𝑛 white vertices as
𝑛 → ∞. Under mild conditions on the weights 𝑞 such random trees admit a scaling limit described by
the Continuous Random Tree (CRT) of Aldous [1]. To be more precise, one may associate to a tree 𝔱◦

with 𝑛 white vertices a height function𝐻𝔱◦ : [0, 𝑛] → R by setting𝐻𝔱◦ (𝑖) for 𝑖 = 0, . . . , 𝑛 to be the height
of the 𝑖th white vertices (in the order encountered in the contour), where the height is (half) the graph
distance within the tree to the root vertex. Then by the invariance principle of Marckert & Miermont
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[12], there exists a 𝑐 > 0 such that we have the convergence in distribution (with respect to the uniform
topology on [0, 1]) (

1
𝑐
√
𝑛
𝐻𝔱◦ (𝑥/𝑛)

)
0≤𝑥≤1

(d)
−−−−→
𝑛→∞

Brownian excursion on [0, 1] . (33)

The right-hand side is the height function of the CRT. In particular, 𝔱◦ is typically of height
√
𝑛.

Conditionally on 𝔱◦ the labels of 𝔱 can be understood as a type of randomwalk along the branches of
the tree. We should therefore expect the typical range of the labels to be of order

√︁√
𝑛, since the height

is of order
√
𝑛. Indeed, the aforementioned invariance principle [12] implies that the label function

ℓ𝔱 : [0, 𝑛] → R, defined similarly as the height function but recording the label at each white vertex,
converges when normalized by 𝑛−1/4, together with the height function to a continuous process known
as the Brownian snake [8],(

1
𝑐
√
𝑛
𝐻𝔱 (𝑥/𝑛),

1
𝑐′𝑛1/4 ℓ𝔱 (𝑥/𝑛)

)
0≤𝑥≤1

(d)
−−−−→
𝑛→∞

Brownian snake on [0, 1] . (34)

Even though the label function only records distances to the origin, for large random maps it con-
tains sufficient information to approximate distances between arbitrary pairs of points. This was uti-
lized by Le Gall and Miermont [10, 14] to prove that the discrete metric space arising from the graph
distance on the vertices of a (𝑡, 𝑞)-Boltzmann planar map with a large number 𝑛 of vertices converges
in distribution (with respect to the Gromov-Hausdorff topology)(

𝑉 (𝔪), 𝑛−1/4𝑑graph
) (d)
−−−−→
𝑛→∞

Brownian sphere. (35)

The Brownian sphere or Brownian map [13] is a random metric space that can be naturally constructed
from the Brownian snake. It has the topology of the 2-sphere but a geometry that is truly fractal [9],
as exemplified by having a Hausdorff dimension of 4.

Figure 5: Simulation of the Brownian sphere.

4 Tree bijection for hyperbolic surfaces

Based on the similarity between the generating functions of Weil-Petersson volumes (Theorem 2) and
planar maps (Theorem 3), as well as the interpretation of the latter in terms of trees, the goal of this
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section should be clear. Can we encode hyperbolic surfaces with two distinguished cusps, whose gen-
erating function is given by 𝑅 =

𝛿2𝐹WP
0

𝛿𝑞 (0)2 , in terms of a family of trees such that 𝑍WP(𝑅) = 0 is the
characteristic equation associated to these trees?

In analogy with the planar map case, we should expect that one of the cusps plays the role of the
origin, from which we measure distances, and the other will be the root of the tree. It turns out that
such a tree can be identified in a hyperbolic surface with the help of a variant of the spine construction
of Bowditch & Epstein [4] and Penner [17].

4.1 Spine of a hyperbolic surface

Let 𝑋 ∈ M0,1+𝑛 (0, 𝐿) be a genus-0 hyperbolic surface with a cusp, that we call the origin, and 𝑛 ≥ 2
additional boundaries of length 𝐿1, . . . , 𝐿𝑛 (or cusps whenever 𝐿𝑖 = 0). The universal cover of 𝑋 can be
represented as a convex domain 𝑃 in the Poincaré upper-half plane H. Denote by Γ the Fuchsian group
Γ ⊂ PSL(2,R) such that 𝑋 = 𝑃/Γ. It is convenient to consider the extended surface 𝑋 = H/Γ ⊃ 𝑋 ,
corresponding to the surface 𝑋 in which to each geodesic boundary of positive length we glue a funnel
with a geodesic boundary of the same length.

Figure 6: Illustration of the universal cover 𝑃 of the surface 𝑋 . Note that a boundary
geodesic of 𝑋 lifts to a geodesic side of 𝑃 . The surface 𝑋 = H/Γ is extended with funnels.
The spine of 𝑋 is illustrated in red.

For any point 𝑥 ∈ 𝑋 we can make sense of the shortest geodesics from 𝑥 to the origin as follows. Let
𝑐 be a horocycle around the origin that separates 𝑥 from the cusp and 𝑑 (𝑥, 𝑐) the hyperbolic distance
between 𝑥 and 𝑐 . Let𝑤 (𝑥) be the number of distinct geodesics from 𝑥 to 𝑐 of length 𝑑 (𝑥, 𝑐). Since each
of these geodesics meets 𝑐 perpendicularly and thus continues into the cusp, the extended geodesics
and their number𝑤 (𝑥) is independent of the choice of horocycle 𝑐 .

The spine Σ of 𝑋 is defined as the subset of points with at least two shortest geodesics to the root,
i.e.

Σ = {𝑥 ∈ 𝑋 : 𝑤 (𝑥) ≥ 2} ⊂ 𝑋 . (36)

The points with three or more geodesics will be called internal vertices

𝑉 = {𝑥 ∈ 𝑋 : 𝑤 (𝑥) ≥ 3} ⊂ Σ. (37)

The following (informally formulated) lemma is a variant of [4, Lemma 2.2.1].

Lemma 5. The spine of Σ satisfies the following properties.
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1. 𝑉 is a finite set.

2. Σ \ 𝑉 = {𝑥 ∈ 𝑋 : 𝑤 (𝑥) = 2} consists of a finite union of open geodesic arcs. Tracking each arc in
each direction it either ends after finite distance at a point in𝑉 or extends indefinitely into a cusp or
funnel.

3. Each point in 𝑥 ∈ 𝑉 is the endpoint of exactly𝑤 (𝑥) ≥ 3 arcs.

4. Each boundary or cusp (except the origin) is the endpoint of at least one arc.

5. The compactified spine Σ, obtained by joining all arcs running into the same funnel or cusp with a
point at infinity (a boundary vertex), is a tree.

Sketch of the proof. Let us fix a horocycle 𝑐 around the origin that is short enough not to self-intersect
or touch any of the funnels (by the collar lemma, the unit-length horocycle satisfies this). Then 𝑐 does
not intersect the spine Σ and it lifts to a countable collection C of disjoint horocycles in H (or even
disjoint horodisks, because the horocycles cannot nest). Let 𝑥 ∈ 𝑋 be a point separated from the origin
by 𝑐 and 𝑦 ∈ H a lift of 𝑥 . Then 𝑤 (𝑥) counts the number of horocycles in C that are closest to 𝑥 , say
at distance 𝑟 . The number 𝑤 (𝑥) is finite, since every hyperbolic disk, in particular the ball of radius 𝑟
around 𝑦, can meet only finitely many disjoint horodisks.

Let 𝜀 > 0 be such that there are still only 𝑤 (𝑥) horocycles in C within distance 𝑟 + 2𝜀 of 𝑦. Then
the shape of the spine can be established within an 𝜀-neighborhood of 𝑥 , i.e. Σ ∩ Ball(𝑥, 𝜀). This is
particularly conveniently seen in the Poincaré diskDwhen𝑦 is put at the origin (Fig. 7). A compactness
argument then rather straightforwardly leads to the first three stated properties.

Figure 7: The first figure illustrates the collection C of disjoint horocycles. The blue ones
are at closest distance 𝑟 from 𝑦, while the gray ones are at distance at least 𝑟 + 2𝜀. The
other figures illustrate the spine neighbourhoods Σ∩Ball(𝑥, 𝜀) for different number𝑤 (𝑥).

For the complement of the spine 𝑋 \ Σ = {𝑥 ∈ 𝑥 : 𝑤 (𝑥) = 1} we obtain a retraction onto the
horodisk around the origin, by tracing the unique shortest geodesics to the origin. Hence, 𝑋 \ Σ is
topologically an open punctured disk. This in turn implies that the compactified spine Σ is connected
and simply-connected, so must be a tree. □

We denote the combinatorial plane tree encoding the incidence relations of the compactified spine
Σ by 𝔱. It has 𝑛 white vertices of arbitrary degree and zero or more red (internal) vertices of degree at
least three.
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Figure 8: Example of two triangles (in green) associated to the finite-length arc 𝑒 . One
of the triangles (in orange) for the half-infinite arc 𝑒′ is shown. The green-yellow region
indicates a hyperbolic wedge. The right figure shows schematically how the triangles and
wedges are arranged in the contour of the tree 𝔱.

4.2 A canonical triangulation of 𝑋

With the help of the spine Σ we can now canonically triangulate 𝑋 . To each arc 𝑒 we associate two
triangles: each 𝑥 ∈ 𝑒 has two shortest geodesics to the origin, one on the left and one on the right
(assuming we have chosen an orientation of 𝑒). The union of all such geodesics on the left when 𝑥

ranges over the arc determines a triangle, which has one side along the arc and two sides made by
geodesics to the origin. Similarly we get a triangle on the right. Since the geodesics to the left and right
are equally long, it should be clear that the two triangles are mirror copies of each other. We denote
the angles of the triangles at the ends of 𝑒 by 𝜑𝑒,1, 𝜑𝑒,2 ∈ [0, 𝜋), which can vanish (corresponding to an
ideal vertex) in case the respective end of 𝑒 runs into a cusp or funnel. Note that the angle at the origin
is necessarily 0, so it is a hyperbolic triangle of area

𝜋 − 𝜑𝑒,1 − 𝜑𝑒,2 ∈ (0, 𝜋) . (38)

The pairs of triangles associated to the arcs of the spine together nearly triangulate the whole 𝑋 .
What is left is a collection of ideal wedges, i.e. regions isometric to {𝑥 + 𝑖𝑦 : 0 < 𝑥 < 1, 𝑦 > 0} ⊂
H, extending to the boundary at infinity in the hyperbolic cylinders (see the green-yellow region in
Figure 8). An ideal wedge is

Knowledge of the angles 𝜑𝑒,𝑖 specifies uniquely the shapes of constituent triangles and the tree
structure 𝔱 indicates how the sides of the triangles and wedges are to be glued pairwise. The geodesic
shared between two triangles is half-infinite and can thus be glued unambiguously. The sides shared
by a triangle and a wedge, however, is infinite so there is a shift degree of freedom that we would like
to capture.

To this end let us zoom in on the neighbourhood of a funnel, see Figure 9 for an example where two
arcs enter the funnel. Viewed in the universal cover, we can position the lift of the closed geodesic 𝑏 of
length 𝐿 along the imaginary axis, such that the Möbius transformation associated with circling around
the boundary becomes 𝑧 → 𝑒𝐿𝑧. In case there are 𝑘 ≥ 1 arcs running into the funnel, we can identify
𝑘 pairs of triangles (in orange) and 𝑘 ideal wedges (in green-yellow). Note that the geodesics that
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separate a wedge from a triangle always intersect the imaginary axis and form a zigzagging pattern of
semicircles (right-hand side of Figure 9). This pattern is uniquely described by recording the Euclidean
radii of the semicircles, or equivalently the log-ratios of consecutive radii, which can be interpreted as
measuring hyperbolic distances along 𝑏.

Figure 9

Since the geodesic 𝑏 is partitioned into intervals of length 𝑣1,𝑤1, . . . , 𝑣𝑘 ,𝑤𝑘 we thus find that

𝑘∑︁
𝑖=1

𝑣𝑖 +𝑤𝑖 = 𝐿. (39)

It is an exercise to check that a consistent choice of horocycle around the origin imposes the further
condition

𝑘∑︁
𝑖=1

𝑣𝑖 =

𝑘∑︁
𝑖=1

𝑤𝑖 . (40)

4.3 Tree bijection

We are now in a position to formulate the tree bijection. Denote by 𝑇𝑛 the set of plane trees with 𝑛

white vertices (carrying indices 1, . . . , 𝑛) and any number of red vertices of degree at least three. And
for 𝔱 ∈ 𝑇𝑛 we introduce the set of allowed label assignments

A𝔱 (𝐿) = {(𝜑𝑒,1, 𝜑𝑒,2)𝑒∈𝐸 (𝔱) , (𝑣𝑖,1,𝑤𝑖,1, . . . , 𝑣𝑖,𝑘𝑖 ,𝑤𝑖,𝑘𝑖 )𝑛𝑖=1 : constraints} ⊂ R6𝑛−6 (41)

These constraints are

• 𝜑𝑒,1, 𝜑𝑒,2 ∈ [0, 𝜋) with 𝜑𝑒,𝑖 = 0 iff it is incident to a white vertex;

• 𝜑𝑒,1 + 𝜑𝑒,2 < 𝜋 ;

•
∑

𝑒 𝜑𝑒,1 = 𝜋 where the sum runs over edges meeting at an internal vertex;

•
∑𝑘𝑖

𝑗=1 𝑣𝑖, 𝑗 =
∑𝑘𝑖

𝑗=1𝑤𝑖, 𝑗 = 𝐿𝑖/2 for 𝑖 = 1, . . . , 𝑛.
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Some book keeping shows that A𝔱 (𝐿) is a convex polytope of dimension

dimA𝔱 (𝐿) = 2𝑛 − 4 −
∑︁

𝑣∈𝑉internal (𝔱)
(deg 𝑣 − 3). (42)

Theorem 6 (Tree bijection). For 𝑛 ≥ 2 and 𝐿1, . . . , 𝐿𝑛 > 0 the spine construction determines a bijection

M0,𝑛+1(0, 𝐿) →
⊔
𝔱∈𝑇𝑛

A𝔱 (𝐿) . (43)

4.4 Weil-Petersson volume form

To be continued.
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