Lattice walks at the Interface of Algebra, Analysis and Combinatorics BIRS, Banff, Canada - September 20th, 2017

Winding angles of simple walks on \mathbb{Z}^{2}
Timothy Budd
Based on arXiv:1709.04042 and w.i.p.

IPhT, CEA, Université Paris-Sadlay
timothy.budd@ipht.fr, http://www.nbi.dk/~budd/

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.
- Winding angle sequence $\left(\theta_{0}^{w}, \theta_{1}^{w}, \ldots, \theta_{|w|}^{w}\right), \theta_{0}^{w}=0, \theta^{w}:=\theta_{|w|}^{w}$.

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.
- Winding angle sequence $\left(\theta_{0}^{w}, \theta_{1}^{w}, \ldots, \theta_{|w|}^{w}\right), \theta_{0}^{w}=0, \theta^{w}:=\theta_{|w|}^{w}$.
- Can we compute the following generating function?

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

Building blocks

- Three types of building blocks: type A, B, J.

$$
\sum_{m=1}^{\infty} A_{l, m}(t) B_{m, p}(t)=J_{l, p}(t)
$$

Building blocks

- Three types of building blocks: type A, B, J.

$$
\sum_{m=1}^{\infty} A_{l, m}(t) B_{m, p}(t)=J_{l, p}(t) .
$$

- Interpret $A_{l, p}(t), B_{l, p}(t), J_{l, p}(t)$ as elements of "infinite matrices": walk composition then corresponds to matrix multiplication

Building blocks

- Three types of building blocks: type A, B, J.

$$
\sum_{m=1}^{\infty} A_{l, m}(t) B_{m, p}(t)=J_{l, p}(t)
$$

- Interpret $A_{l, p}(t), B_{l, p}(t), J_{l, p}(t)$ as elements of "infinite matrices": walk composition then corresponds to matrix multiplication
- To formalize this: fix $k=4 t \in(0,1)$ and choose convenient Hilbert space + basis.

Building blocks (operators)

- Let basis $\left(e_{p}\right)_{p=1}^{\infty}$ of $\ell^{2}(\mathbb{C})$ be such that $\left\langle e_{l}, e_{p}\right\rangle=p \mathbf{1}_{\{I=p\}}$ and let

$$
\left\langle e_{l}, \mathbf{A}_{k} e_{p}\right\rangle=I p A_{l, p}(t), \quad\left\langle e_{l}, \mathbf{B}_{k} e_{p}\right\rangle=B_{l, p}(t), \quad\left\langle e_{l}, \mathbf{J}_{k} e_{p}\right\rangle=I J_{l, p}(t) .
$$

Building blocks (operators)

- Let basis $\left(e_{p}\right)_{p=1}^{\infty}$ of $\ell^{2}(\mathbb{C})$ be such that $\left\langle e_{l}, e_{p}\right\rangle=p \mathbf{1}_{\{I=p\}}$ and let

$$
\left\langle e_{l}, \mathbf{A}_{k} e_{p}\right\rangle=\operatorname{lp} A_{l, p}(t), \quad\left\langle e_{l}, \mathbf{B}_{k} e_{p}\right\rangle=B_{l, p}(t), \quad\left\langle e_{l}, \mathbf{J}_{k} e_{p}\right\rangle=I J_{l, p}(t)
$$

- Then indeed $\mathbf{J}_{k}=\mathbf{A}_{k} \mathbf{B}_{k}$:

$$
I J_{l, p}(t)=I \sum_{m=1}^{\infty} A_{l, m}(t) B_{m, p}(t)=\sum_{m=1}^{\infty}\left\langle e_{l}, \mathbf{A}_{k} e_{m}\right\rangle \frac{1}{m}\left\langle e_{m}, \mathbf{B}_{k} e_{p}\right\rangle=\left\langle e_{l}, \mathbf{A}_{k} \mathbf{B}_{k} e_{p}\right\rangle
$$

Building blocks (operators)

- Let basis $\left(e_{p}\right)_{p=1}^{\infty}$ of $\ell^{2}(\mathbb{C})$ be such that $\left\langle e_{l}, e_{p}\right\rangle=p \mathbf{1}_{\{I=p\}}$ and let

$$
\left\langle e_{l}, \mathbf{A}_{k} e_{p}\right\rangle=\operatorname{lp} A_{l, p}(t), \quad\left\langle e_{l}, \mathbf{B}_{k} e_{p}\right\rangle=B_{l, p}(t), \quad\left\langle e_{l}, \mathbf{J}_{k} e_{p}\right\rangle=I J_{l, p}(t)
$$

- Then indeed $\mathbf{J}_{k}=\mathbf{A}_{k} \mathbf{B}_{k}$:

$$
I J_{l, p}(t)=/ \sum_{m=1}^{\infty} A_{l, m}(t) B_{m, p}(t)=\sum_{m=1}^{\infty}\left\langle e_{l}, \mathbf{A}_{k} e_{m}\right\rangle \frac{1}{m}\left\langle e_{m}, \mathbf{B}_{k} e_{p}\right\rangle=\left\langle e_{l}, \mathbf{A}_{k} \mathbf{B}_{k} e_{p}\right\rangle
$$

- $\mathbf{A}_{k}, \mathbf{B}_{k}, \mathbf{J}_{k}$ are bounded, self-adjoint and commuting! Simultaneous eigenvalue decomposition?

Putting the building blocks together

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

Putting the building blocks together

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

- w is encoded by a simple walk $\left(\alpha_{j}\right)_{j=0}^{N}$ on $\frac{\pi}{2} \mathbb{Z}$ from 0 to α together with a sequence ($\left.w^{(0)}, \ldots, w^{(N)}\right)$ of "matching" walks with $w^{(0)}, \ldots, w^{(N-1)}$ of type J and $w^{(N)}$ of type B.

Putting the building blocks together

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

- w is encoded by a simple walk $\left(\alpha_{j}\right)_{j=0}^{N}$ on $\frac{\pi}{2} \mathbb{Z}$ from 0 to α together with a sequence ($\left.w^{(0)}, \ldots, w^{(N)}\right)$ of "matching" walks with $w^{(0)}, \ldots, w^{(N-1)}$ of type J and $w^{(N)}$ of type B.

Putting the building blocks together

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

- w is encoded by a simple walk $\left(\alpha_{j}\right)_{j=0}^{N}$ on $\frac{\pi}{2} \mathbb{Z}$ from 0 to α together with a sequence ($w^{(0)}, \ldots, w^{(N)}$) of "matching" walks with $w^{(0)}, \ldots, w^{(N-1)}$ of type J and $w^{(N)}$ of type B.
- Hence $W_{\ell, p}^{(\alpha)}(t)=\left\langle e_{l}, \mathbf{Y}_{k}^{(\alpha)} e_{p}\right\rangle$ where $\mathbf{Y}_{k}^{(\alpha)}$ is formally given by

$$
\mathbf{Y}_{k}^{(\alpha)}=\sum_{N=0}^{\infty} \#\{\text { simple walks from } 0 \text { to } \alpha \text { of length } N\} \cdot \mathbf{J}_{k}^{N} \mathbf{B}_{k}
$$

The operator \mathbf{J}_{k}

$$
J_{\ell, p}(t)=\sum_{n=1}^{\infty} t^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} \mathbf{1}_{\{n-p \text { and } n-\ell \text { nonnegative and even }\}}
$$

The operator \mathbf{J}_{k}

$$
J_{\ell, p}(t)=\sum_{n=1}^{\infty} t^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} \mathbf{1}_{\{n-p \text { and } n-\ell \text { nonnegative and even }\}}
$$

- Not only is \mathbf{J}_{k} self-adjoint, $\left\langle e_{\ell}, \mathbf{J}_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)$, but also $\mathbf{J}_{k}=\mathbf{R}_{k}^{\dagger} \mathbf{R}_{k}$ with (recall $k=4 t$)

$$
\mathbf{R}_{k} e_{p}:=\sum_{n=1}^{\infty} e_{n}\left(\frac{k}{4}\right)^{n / 2} \frac{p}{n}\binom{n}{\frac{n-p}{2}} \mathbf{1}_{\{n-p \geq 0 \text { and even }\}}
$$

The operator \mathbf{J}_{k}

$$
J_{\ell, p}(t)=\sum_{n=1}^{\infty} t^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} \mathbf{1}_{\{n-p \text { and } n-\ell \text { nonnegative and even }\}}
$$

- Not only is \mathbf{J}_{k} self-adjoint, $\left\langle e_{\ell}, \mathbf{J}_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)$, but also $\mathbf{J}_{k}=\mathbf{R}_{k}^{\dagger} \mathbf{R}_{k}$ with (recall $k=4 t$)

$$
\begin{aligned}
\mathbf{R}_{k} e_{p} & :=\sum_{n=1}^{\infty} e_{n}\left(\frac{k}{4}\right)^{n / 2} \frac{p}{n}\binom{n}{\frac{n-p}{2}} \mathbf{1}_{\{n-p \geq 0 \text { and even }\}} \\
& =\sum_{n=1}^{\infty} e_{n}\left[z^{n}\right] \psi_{k}(z)^{p}, \quad \psi_{k}(z):=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
\end{aligned}
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{\bar{f}^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ given by $e_{p}(z)=z^{p}$ with $\left\langle e_{l}, e_{p}\right\rangle_{\mathcal{D}}=p \mathbf{1}_{\{I=p\}}$.

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ given by $e_{p}(z)=z^{p}$ with $\left\langle e_{l}, e_{p}\right\rangle_{\mathcal{D}}=p \mathbf{1}_{\{I=p\}}$.

$$
\mathbf{R}_{k} f=f \circ \psi_{k}, \quad \psi_{k}(z)=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ given by $e_{p}(z)=z^{p}$ with $\left\langle e_{l}, e_{p}\right\rangle_{\mathcal{D}}=p \mathbf{1}_{\{I=p\}}$.

$$
\mathbf{R}_{k} f=f \circ \psi_{k}, \quad \psi_{k}(z)=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
$$

- By conformal invariance of the Dirichlet inner product,

$$
\left\langle f, \mathbf{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f, \mathbf{R}_{k}^{\dagger} \mathbf{R}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

$$
\left\langle f, \mathbf{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f, \mathbf{R}_{k}^{\dagger} \mathbf{R}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

- To diagonalize \mathbf{J}_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.

$$
\left\langle f, \mathbf{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f, \mathbf{R}_{k}^{\dagger} \mathbf{R}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

- To diagonalize \mathbf{J}_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{P})\right)}$.
- Look for a nice conformal mapping.

$$
\left\langle f, \boldsymbol{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f, \mathbf{R}_{k}^{\dagger} \mathbf{R}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

- To diagonalize \mathbf{J}_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{P})\right)}$.
- Look for a nice conformal mapping.
- An elliptic integral does the job $\left(k^{\prime}=\sqrt{1-k^{2}}, k_{1}=\frac{1-k^{\prime}}{1+k^{\prime}}\right)$

$$
v_{k_{1}}(z)=\frac{1}{4 K\left(k_{1}\right)} \int_{0}^{z} \frac{\mathrm{~d} x}{\sqrt{\left(k_{1}-x^{2}\right)\left(1-k_{1} x^{2}\right)}}=\frac{\operatorname{arcsn}\left(\frac{z}{\sqrt{k_{1}}}, k_{1}\right)}{4 K\left(k_{1}\right)}
$$

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.
- Basis $\cos (2 \pi m(\cdot+1 / 4)), m \geq 1$, is orthogonal w.r.t. Dirichlet on strip of any height.

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.
- Basis $\cos (2 \pi m(\cdot+1 / 4)), m \geq 1$, is orthogonal w.r.t. Dirichlet on strip of any height.
- Hence basis

$$
f_{m}(z)=\cos \left(2 \pi m\left(v_{k_{1}}(z)+1 / 4\right)\right)-\cos (\pi m / 2), \quad m \geq 1
$$

of \mathcal{D} is orthogonal w.r.t. $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.
- Basis $\cos (2 \pi m(\cdot+1 / 4)), m \geq 1$, is orthogonal w.r.t. Dirichlet on strip of any height.
- Hence basis

$$
f_{m}(z)=\cos \left(2 \pi m\left(v_{k_{1}}(z)+1 / 4\right)\right)-\cos (\pi m / 2), \quad m \geq 1
$$

of \mathcal{D} is orthogonal w.r.t. $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right) \text {. }}$

- Conclusion: \mathbf{J}_{k} has eigenvectors $\left(f_{m}\right)_{m \geq 1}$ and eigenvalues

$$
\frac{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}}{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}(\mathbb{D})}}=\frac{\sinh \left(2 m \pi T_{k}\right)}{\sinh \left(4 m \pi T_{k}\right)}=\frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}, \quad q_{k}=e^{-\pi \frac{K\left(k^{\prime}\right)}{K(k)}} \text { "nome" }
$$

- May work out eigenvalues of \mathbf{A}_{k} and \mathbf{B}_{k} too (eigenvectors $\left.\left(f_{m}\right)_{m \geq 1}\right)$:

$\mathbf{A}_{k}: \frac{\pi}{2 K(k)} \frac{m}{q_{k}^{-m / 2}-q_{k}^{m / 2}}$

$\mathbf{B}_{k}: \frac{2 K(k)}{\pi} \frac{1}{m} \frac{1-q_{k}^{m}}{1+q_{k}^{m}}$

$\mathbf{J}_{k}: \frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}$
- May work out eigenvalues of \mathbf{A}_{k} and \mathbf{B}_{k} too (eigenvectors $\left.\left(f_{m}\right)_{m \geq 1}\right)$:

$\mathbf{A}_{k}: \frac{\pi}{2 K(k)} \frac{m}{q_{k}^{-m / 2}-q_{k}^{m / 2}}$
$\mathbf{B}_{k}: \frac{2 K(k)}{\pi} \frac{1}{m} \frac{1-q_{k}^{m}}{1+q_{k}^{m}}$
$\mathbf{J}_{k}: \frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}$
- Recall $W_{\ell, p}^{(\alpha)}(t)=\left\langle e_{l}, \mathbf{Y}_{k}^{(\alpha)} e_{p}\right\rangle, \alpha \in \frac{\pi}{2} \mathbb{Z}$, where

$$
\mathbf{Y}_{k}^{(\alpha)}=\sum_{N=0}^{\infty} \#\{\text { simple walks from } 0 \text { to } \alpha \text { of length } N\} \cdot \mathbf{J}_{k}^{N} \mathbf{B}_{k} .
$$

It has eigenvalues

$$
\mathbf{Y}_{k}^{(\alpha)} f_{m}=\frac{2 K(k)}{\pi} \frac{1}{m} q_{k}^{m|\alpha| / \pi} f_{m}
$$

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}} .
$$

$$
\alpha=0, I=\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}} .
$$

- If $\theta_{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}} .
$$

- If $\theta_{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}} .
$$

- If $\theta_{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.
- If $\theta^{w} \in 2 \beta_{+}-\alpha+\delta \mathbb{Z}$ then $\theta^{w^{\prime}} \in \alpha+\delta \mathbb{Z}, \delta=2\left(\beta_{+}-\beta_{-}\right)$.

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{n=-\infty}^{\infty}\left(W_{\ell, p}^{(\alpha+n \delta)}(t)-W_{\ell, p}^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right) .
$$

$$
\alpha=0, I=\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{\mid w}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}} .
$$

- If $\theta_{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.
- If $\theta^{w} \in 2 \beta_{+}-\alpha+\delta \mathbb{Z}$ then $\theta^{w^{\prime}} \in \alpha+\delta \mathbb{Z}, \delta=2\left(\beta_{+}-\beta_{-}\right)$.

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{n=-\infty}^{\infty}\left(W_{\ell, p}^{(\alpha+n \delta)}(t)-W_{\ell, p}^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right)
$$

- $W_{\ell, p}^{(0,(-\pi / 4, \pi / 2))}(t)=\left\langle e_{\ell}, \mathbf{X} e_{p}\right\rangle_{\mathcal{D}}$ and \mathbf{X} has e.v. $\frac{2 K(k)}{\pi m} \frac{1-q_{k}^{m}}{1+q_{k}^{m / 2}+q_{k}^{m}}$.

$$
\alpha=0, I=\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

More examples see [TB,'17, Theorem 1] for the general case.

$\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{2 K(k)}{\pi m} \frac{1-q_{k}^{m}}{1+q_{k}^{m / 2}+q_{k}^{m}}$

$\frac{1}{l}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{1}{q_{k}^{m \alpha / \pi}+q_{k}^{-m \alpha / \pi}}$

$\frac{1}{\ell p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{\pi m}{2 K(k)} \frac{1}{q_{k}^{-m \alpha / \pi}-q_{k}^{m \alpha / \pi}}$

$\frac{1}{p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, q_{k}^{m \alpha / \pi}$

Angle doubling \leftrightarrow Landen transformation

- Disregarding $K(k)$ the spectra only depend on α and $k=4 t$ through the combination $q_{k}^{\alpha / \pi}$.

$\frac{1}{l}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{1}{q_{k}^{m \alpha / \pi}+q_{k}^{-m \alpha / \pi}}$

$\frac{1}{p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, q_{k}^{m \alpha / \pi}$

Angle doubling \leftrightarrow Landen transformation

- Disregarding $K(k)$ the spectra only depend on α and $k=4 t$ through the combination $q_{k}^{\alpha / \pi}$.
- Angle doubling $\alpha \rightarrow 2 \alpha$ has same effect as Landen transformation

$$
k \rightarrow k_{1}=\frac{1-k^{\prime}}{1+k^{\prime}}, \quad k^{\prime}=\sqrt{1-k^{2}}, \quad \text { since } \quad q_{k_{1}}=q_{k}^{2}
$$

$\frac{1}{l}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{1}{q_{k}^{m \alpha / \pi}+q_{k}^{-m \alpha / \pi}}$

$\frac{1}{p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, q_{k}^{m \alpha / \pi}$

Angle doubling \leftrightarrow Landen transformation

- Disregarding $K(k)$ the spectra only depend on α and $k=4 t$ through the combination $q_{k}^{\alpha / \pi}$.
- Angle doubling $\alpha \rightarrow 2 \alpha$ has same effect as Landen transformation

$$
k \rightarrow k_{1}=\frac{1-k^{\prime}}{1+k^{\prime}}, \quad k^{\prime}=\sqrt{1-k^{2}}, \quad \text { since } \quad q_{k_{1}}=q_{k}^{2}
$$

- Deserves a combinatorial explanation!

$\frac{1}{l}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{1}{q_{k}^{m \alpha / \pi}+q_{k}^{-m \alpha / \pi}}$

$\frac{1}{p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, q_{k}^{m \alpha / \pi}$

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.
- They are in bijection with Dyck-type loops of double winding angle 2α and double length:

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.
- They are in bijection with Dyck-type loops of double winding angle 2α and double length:

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.
- They are in bijection with Dyck-type loops of double winding angle 2α and double length:

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.
- They are in bijection with Dyck-type loops of double winding angle 2α and double length:

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.
- They are in bijection with Dyck-type loops of double winding angle 2α and double length:

A partial explanation

- Consider loops w, i.e. $w_{0}=w_{|w|} \in\{(1,0),(2,0), \ldots\}$, with winding angle $\theta^{w}=\alpha \in 2 \pi \mathbb{Z}$ and $\theta_{i}^{w}<\alpha$ for $i<|w|$.
- The generating function of these is a trace: $\frac{q_{k}^{\alpha / \pi}}{1-q_{k}^{\alpha / \pi}}$.
- They are in bijection with Dyck-type loops of double winding angle 2α and double length:

A partial explanation

- Substituting $x \rightarrow \sqrt{k_{1}(t) / 4}$ in g.f. of Dyck paths on the slit plane with fixed endpoints yields the corresponding g.f. for diagonal walks.

$$
k_{1}(t)=\frac{1-k^{\prime}}{1+k^{\prime}}, \quad k^{\prime}=\sqrt{1-k^{2}}, \quad k=4 t
$$

- Open problem: give a bijective explanation of this fact!

A partial explanation

- Substituting $x \rightarrow \sqrt{k_{1}(t) / 4}$ in g.f. of Dyck paths on the slit plane with fixed endpoints yields the corresponding g.f. for diagonal walks.

$$
k_{1}(t)=\frac{1-k^{\prime}}{1+k^{\prime}}, \quad k^{\prime}=\sqrt{1-k^{2}}, \quad k=4 t
$$

- Open problem: give a bijective explanation of this fact!

Application: Excursions

- Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$
F^{(\alpha)}(t):=\sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\{\theta w=\alpha\}}, \quad \alpha \in \frac{\pi}{2} \mathbb{Z} .
$$

Application: Excursions

- Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$
F^{(\alpha)}(t):=\sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\left\{\theta^{w}=\alpha\right\}}, \quad \alpha \in \frac{\pi}{2} \mathbb{Z} .
$$

- Not quite covered by main result since walks do not avoid (0,0). However, a combinatorial trick (exercise!) shows

$$
F^{(\alpha)}(t)=4 \sum_{m, l, p=1}^{\infty}(-1)^{l+p+m+1} m W_{2 l, 2 p}^{(|\alpha|+m \pi / 2)}(t)
$$

Application: Excursions

- Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$
F^{(\alpha)}(t):=\sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\left\{\theta^{w}=\alpha\right\}}, \quad \alpha \in \frac{\pi}{2} \mathbb{Z} .
$$

- Not quite covered by main result since walks do not avoid (0,0). However, a combinatorial trick (exercise!) shows

$$
\begin{aligned}
F^{(\alpha)}(t) & =4 \sum_{m, l, p=1}^{\infty}(-1)^{l+p+m+1} m W_{2 l, 2 p}^{(|\alpha|+m \pi / 2)}(t) \\
& =\frac{2 \pi}{K(k)} \sum_{n=1}^{\infty} \frac{q_{k}^{n}\left(1-q_{k}^{n}\right)^{2}}{1-q_{k}^{4 n}} q_{k}^{2 n|\alpha| / \pi}
\end{aligned}
$$

Excursions in cones

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$, a reflection principle shows

$$
\begin{aligned}
F^{(\alpha, l)}(t) & :=\sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\left\{w_{1}=(1,1), \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for all } i\right\}} \\
& =\frac{1}{4} \sum_{n \in \mathbb{Z}}\left(F^{(\alpha+n \delta)}(t)-F^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right), \quad \delta:=2\left(\beta_{+}-\beta_{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

Excursions in cones

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$, a reflection principle shows

$$
\begin{aligned}
& F^{(\alpha, l)}(t):=\sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\left\{w_{1}=(1,1), \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for all } i\right\}} \\
& =\frac{1}{4} \sum_{n \in \mathbb{Z}}\left(F^{(\alpha+n \delta)}(t)-F^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right), \quad \delta:=2\left(\beta_{+}-\beta_{-}\right) \\
& =\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right), \\
& \text { where }
\end{aligned}
$$

$$
F(t, b):=\sum_{\alpha \in \frac{\pi}{2} \mathbb{Z}} F^{(\alpha)}(t) e^{i b \alpha}=\frac{1}{\cos \left(\frac{\pi b}{2}\right)}\left[1-\frac{\pi \tan \left(\frac{\pi b}{4}\right)}{2 K(k)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}\right]
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

$$
\begin{aligned}
F^{(\alpha, l)}(t) & =\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right), \\
F(t, b) & =\frac{1}{\cos \frac{\pi b}{2}}\left[1-\frac{\pi \tan \frac{\pi b}{4}}{2 K(k)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}\right] \quad(b \in \mathbb{R} \backslash \mathbb{Z})
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

$$
\begin{aligned}
& F^{(\alpha, l)}(t)=\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right), \\
& F(t, b)=\frac{1}{\cos \frac{\pi b}{2}}\left[1-\frac{\pi \tan \frac{\pi b}{4}}{2 K(k)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}\right] \quad(b \in \mathbb{R} \backslash \mathbb{Z}) \\
& \quad=\frac{1}{\cos \frac{\pi b}{2}}\left[1-\tan \frac{\pi b}{4}\left(2 Z(u, k)+\frac{\operatorname{cn}(u, k) \operatorname{dn}(u, k)}{\operatorname{sn}(u, k)}\right)\right], \quad u=\frac{K(k) b}{2} .
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

$$
\begin{aligned}
& F^{(\alpha, I)}(t)=\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right), \\
& F(t, b)=\frac{1}{\cos \frac{\pi b}{2}}\left[1-\frac{\pi \tan \frac{\pi b}{4}}{2 K(k)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}\right] \quad(b \in \mathbb{R} \backslash \mathbb{Z}) \\
& \quad=\frac{1}{\cos \frac{\pi b}{2}}\left[1-\tan \frac{\pi b}{4}\left(2 Z(u, k)+\frac{\operatorname{cn}(u, k) \operatorname{dn}(u, k)}{\operatorname{sn}(u, k)}\right)\right], \quad u=\frac{K(k) b}{2}
\end{aligned}
$$

- $t \mapsto F(t, b)$ is algebraic for $b \in \mathbb{Q} \backslash \mathbb{Z}$ and transcendental for $b \in \mathbb{Z}$!

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

$$
\begin{aligned}
& F^{(\alpha, l)}(t)=\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right), \\
& F(t, b)=\frac{1}{\cos \frac{\pi b}{2}}\left[1-\frac{\pi \tan \frac{\pi b}{4}}{2 K(k)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}\right] \quad(b \in \mathbb{R} \backslash \mathbb{Z}) \\
& \quad=\frac{1}{\cos \frac{\pi b}{2}}\left[1-\tan \frac{\pi b}{4}\left(2 Z(u, k)+\frac{\operatorname{cn}(u, k) \operatorname{dn}(u, k)}{\operatorname{sn}(u, k)}\right)\right], \quad u=\frac{K(k) b}{2} .
\end{aligned}
$$

- $t \mapsto F(t, b)$ is algebraic for $b \in \mathbb{Q} \backslash \mathbb{Z}$ and transcendental for $b \in \mathbb{Z}$!
- $t \mapsto F^{(\alpha, l)}(t)$ is algebraic if $\beta_{+}-\beta_{-} \in \frac{\pi}{2} \mathbb{Z}+\frac{\pi}{4}$

$$
\text { (or if } \beta_{ \pm} \in \frac{\pi}{2} \mathbb{Z} \text { and either } \beta_{+}-\beta_{-} \in \pi \mathbb{Z}+\frac{\pi}{2} \text { or } \alpha \in \pi \mathbb{Z}+\frac{\pi}{2} \text { or } \beta_{+}-\alpha \in \pi \mathbb{Z} \text {). }
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

Gessel's sequence

- Special case $\alpha=0, I=(-\pi / 4, \pi / 2)$:

$$
F^{(0, l)}(t)=\frac{1}{4} F\left(t, \frac{4}{3}\right)=\frac{1}{2}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}-1\right]
$$

Gessel's sequence

- Special case $\alpha=0, I=(-\pi / 4, \pi / 2)$:

$$
F^{(0, l)}(t)=\frac{1}{4} F\left(t, \frac{4}{3}\right)=\frac{1}{2}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}-1\right]
$$

- Gessel's conjecture, proved in [Kauers, Koutschan, Zeilberger, '09], [Bostan, Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

$$
F^{(0, I)}(t)=\sum_{n=0}^{\infty} t^{2 n+2} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=\frac{1}{2}\left[2 F_{1}\left(-\frac{1}{2},-\frac{1}{6} ; \frac{2}{3} ;(4 t)^{2}\right)-1\right]
$$

Gessel's sequence

- Special case $\alpha=0, I=(-\pi / 4, \pi / 2)$:

$$
F^{(0, l)}(t)=\frac{1}{4} F\left(t, \frac{4}{3}\right)=\frac{1}{2}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}-1\right]
$$

- Gessel's conjecture, proved in [Kauers, Koutschan, Zeilberger, '00], [Bostan, Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

$$
F^{(0, I)}(t)=\sum_{n=0}^{\infty} t^{2 n+2} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=\frac{1}{2}\left[{ }_{2} F_{1}\left(-\frac{1}{2},-\frac{1}{6} ; \frac{2}{3} ;(4 t)^{2}\right)-1\right]
$$

- Another proof: check that both satisfy same algebraic equation.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Background: planar map combinatorics

- Walks with small steps: $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

- Φ_{p} is a bijection with rooted planar maps of perimeter p with
- for each face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-I, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-I, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{l, p}$ between walks on the slit plane from $(p, 0)$ to $(-I, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{l, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{I, p}$ between walks on the slit plane from $(p, 0)$ to $(-l, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree I,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

$\Phi_{\ell, p}$

From walks to loop-decorated maps

From walks to loop-decorated maps

- This is a bijection between walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle $\alpha \in \pi \mathbb{Z}$ (and some extra conditions) and planar maps with perimeter p and marked face of degree I and
- nested (rigid) loops each carrying an angle $\pm \pi$, such that they add up to α,
- for each (unmarked \& non-loop) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

From walks to loop-decorated maps

- This is a bijection between walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle $\alpha \in \pi \mathbb{Z}$ (and some extra conditions) and planar maps with perimeter p and marked face of degree I and
- nested (rigid) loops each carrying an angle $\pm \pi$, such that they add up to α,
- for each (unmarked \& non-loop) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.
- A very similar enumeration problem ($O(n)$ loop model on random planar maps) has been solved in the mathematical physics literature.
[Borot, Bouttier, Guitter, '11] [Borot, Bouttier, Duplantier, '16]

Other walks with small steps?

- Generalization to walks with step set $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$.

$$
K(x, y)=x y t\left(\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}-\frac{1}{t}\right)
$$

Other walks with small steps?

- Generalization to walks with step set $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$.

$$
K(x, y)=x y t\left(\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}-\frac{1}{t}\right)
$$

- If \mathcal{S} is non-singular then $K(x, y)=0$ defines an elliptic curve, which determines a point in moduli space with corresponding nome q.
[Fayolle, lasnogordski, Malyshev]

Other walks with small steps?

- Generalization to walks with step set $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$.

$$
K(x, y)=x y t\left(\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}-\frac{1}{t}\right)=a y^{2}+b y+c, \quad d(x)=b^{2}-4 a c
$$

- If \mathcal{S} is non-singular then $K(x, y)=0$ defines an elliptic curve, which determines a point in moduli space with corresponding nome q.
[Fayolle, Iasnogordski, Malyshev]

$$
q=e^{-i \pi \frac{\omega_{2}}{\omega_{1}}}, \quad \omega_{1}=i \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{-d(x)}}, \quad \omega_{2}=\int_{x_{2}}^{x_{3}} \frac{\mathrm{~d} x}{\sqrt{d(x)}} \quad\left(d\left(x_{i}\right)=0\right)
$$

Other walks with small steps?

- Generalization to walks with step set $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$.

$$
K(x, y)=x y t\left(\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}-\frac{1}{t}\right)=a y^{2}+b y+c, \quad d(x)=b^{2}-4 a c
$$

- If \mathcal{S} is non-singular then $K(x, y)=0$ defines an elliptic curve, which determines a point in moduli space with corresponding nome q.
[Fayolle, Iasnogordski, Malyshev]

$$
q=e^{-i \pi \frac{\omega_{2}}{\omega_{1}}}, \quad \omega_{1}=i \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{-d(x)}}, \quad \omega_{2}=\int_{x_{2}}^{x_{3}} \frac{\mathrm{~d} x}{\sqrt{d(x)}} \quad\left(d\left(x_{i}\right)=0\right)
$$

- The operator \mathbf{X} on \mathcal{D} defined by

$$
\begin{aligned}
& \frac{1}{p}\left\langle e_{l}, \mathbf{X} e_{p}\right\rangle_{\mathcal{D}}= \\
& \sum_{\mathcal{S} \text {-walk } w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=l, \theta^{w}=\alpha, \theta_{i}^{w}>0\right\}}
\end{aligned}
$$

Other walks with small steps?

- Generalization to walks with step set $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$.

$$
K(x, y)=x y t\left(\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}-\frac{1}{t}\right)=a y^{2}+b y+c, \quad d(x)=b^{2}-4 a c
$$

- If \mathcal{S} is non-singular then $K(x, y)=0$ defines an elliptic curve, which determines a point in moduli space with corresponding nome q.
[Fayolle, Iasnogordski, Malyshev]

$$
q=e^{-i \pi \frac{\omega_{2}}{\omega_{1}}}, \quad \omega_{1}=i \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{-d(x)}}, \quad \omega_{2}=\int_{x_{2}}^{x_{3}} \frac{\mathrm{~d} x}{\sqrt{d(x)}} \quad\left(d\left(x_{i}\right)=0\right)
$$

- The operator \mathbf{X} on \mathcal{D} defined by

$$
\begin{aligned}
& \frac{1}{p}\left\langle e_{l}, \mathbf{X} e_{p}\right\rangle_{\mathcal{D}}= \\
& \sum_{\mathcal{S} \text {-walk } w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=l, \theta^{w}=\alpha, \theta_{i}^{w}>0\right\}}
\end{aligned}
$$

has eigenvalues $q^{m|\alpha| / \pi}, m \geq 1$.

Other walks with small steps?

- Generalization to walks with step set $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$.

$$
K(x, y)=x y t\left(\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}-\frac{1}{t}\right)=a y^{2}+b y+c, \quad d(x)=b^{2}-4 a c
$$

- If \mathcal{S} is non-singular then $K(x, y)=0$ defines an elliptic curve, which determines a point in moduli space with corresponding nome q.
[Fayolle, Iasnogordski, Malyshev]

$$
q=e^{-i \pi \frac{\omega_{2}}{\omega_{1}}}, \quad \omega_{1}=i \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{-d(x)}}, \quad \omega_{2}=\int_{x_{2}}^{x_{3}} \frac{\mathrm{~d} x}{\sqrt{d(x)}} \quad\left(d\left(x_{i}\right)=0\right)
$$

- The operator \mathbf{X} on \mathcal{D} defined by

$$
\begin{aligned}
& \frac{1}{p}\left\langle e_{l}, \mathbf{X} e_{p}\right\rangle_{\mathcal{D}}= \\
& \quad \sum_{\mathcal{S} \text {-walk } w} t^{|w|} \mathbf{1}_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=l, \theta^{w}=\alpha, \theta_{i}^{w}>0\right\}}
\end{aligned}
$$

has eigenvalues $q^{m|\alpha| / \pi}, m \geq 1$.

- Depending on symmetries of \mathcal{S} :

$$
\alpha \in 2 \pi \mathbb{Z}, \quad \alpha \in \pi \mathbb{Z}, \quad \text { or } \quad \alpha \in \frac{\pi}{2} \mathbb{Z}
$$

Thanks for you attention!
Comments?

