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Combinatorial problem involving winding angles

I Let w be a simple diagonal walk on Z2 \ {origin} of length |w | ≥ 0.

I Winding angle sequence (θw0 , θ
w
1 , . . . , θ

w
|w |), θw0 = 0, θw := θw|w |.

I Can we compute the following generating function?

W
(α)
`,p (t) :=

∑
w

t |w |1{w0=(p,0), |w|w||=`, θw=α}. (p, ` ≥ 1, α ∈ π
2 Z)
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Building blocks

I Three types of building blocks: type A, B, J.

∞∑
m=1

Al,m(t)Bm,p(t) = Jl,p(t).

I Interpret Al,p(t), Bl,p(t), Jl,p(t) as elements of “infinite matrices”:
walk composition then corresponds to matrix multiplication

I To formalize this: fix k = 4t ∈ (0, 1) and choose convenient Hilbert
space + basis.
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Building blocks (operators)
I Let basis (ep)∞p=1 of `2(C) be such that 〈el , ep〉 = p 1{l=p} and let

〈el ,Akep〉 = lp Al,p(t), 〈el ,Bkep〉 = Bl,p(t), 〈el , Jkep〉 = l Jl,p(t).

I Then indeed Jk = AkBk :

l Jl,p(t) = l
∞∑

m=1

Al,m(t)Bm,p(t) =
∞∑

m=1

〈el ,Akem〉
1

m
〈em,Bkep〉 = 〈el ,AkBkep〉

I Ak , Bk , Jk are bounded, self-adjoint and commuting! Simultaneous
eigenvalue decomposition?
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Putting the building blocks together

W
(α)
`,p (t) :=

∑
w

t |w |1{w0=(p,0), |w|w||=`, θw=α}. (p, ` ≥ 1, α ∈ π
2 Z)

I w is encoded by a simple walk (αj)
N
j=0 on π

2 Z from 0 to α together

with a sequence (w (0), . . . ,w (N)) of “matching” walks with
w (0), . . . ,w (N−1) of type J and w (N) of type B.

I Hence W
(α)
`,p (t) = 〈el ,Y(α)

k ep〉 where Y
(α)
k is formally given by

Y
(α)
k =

∞∑
N=0

#{simple walks from 0 to α of length N} · JNk Bk
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The operator Jk

J`,p(t) =
∞∑
n=1

tn
p

n

(
n

n−p
2

)(
n

n−`
2

)
1{n − p and n − ` nonnegative and even}

I Not only is Jk self-adjoint, 〈e`, Jkep〉 = ` J`,p(t), but also

Jk = R†kRk with (recall k = 4t)

Rkep :=
∞∑
n=1

en

(
k

4

)n/2
p

n

(
n

n−p
2

)
1{n − p ≥ 0 and even}

=
∞∑
n=1

en [zn]ψk(z)p, ψk(z) :=
1−
√

1− k z2

√
k z

.
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Dirichlet space D
I D = D(D) is Hilbert space of analytic functions f on the unit disk

D ⊂ C with f (0) = 0 and finite norm w.r.t. (dA(x + iy) := 1
πdxdy)

〈f , g〉D =

∫
D
f ′(z) g ′(z)dA(z)

=
∞∑
n=1

n [zn]f (z) [zn]g(z).

I Basis (ep)∞p=1 given by ep(z) = zp with 〈el , ep〉D = p 1{l=p}.

Rk f = f ◦ ψk , ψk(z) =
1−
√

1− k z2

√
k z

I By conformal invariance of the Dirichlet inner product,

〈f , Jkg〉D =
〈
f ,R†kRkg

〉
D

= 〈f ◦ ψk , g ◦ ψk〉D = 〈f , g〉D(ψk (D)).
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〈
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D
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I To diagonalize Jk it suffices to find a basis (fm) that is orthogonal
w.r.t. both 〈·, ·〉D(D) and 〈·, ·〉D(Ψk (D)).

I Look for a nice conformal mapping.
I An elliptic integral does the job (k ′ =

√
1− k2, k1 = 1−k′

1+k′ )

vk1 (z) =
1

4K (k1)

∫ z

0

dx√
(k1 − x2)(1− k1x2)

=
arcsn

(
z√
k1
, k1

)
4K (k1)
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I The push-forward of f ∈ D extends to an analytic function on the
strip R + i(−Tk ,Tk) that is even around ±1/4, hence 1-periodic.

I Basis cos(2πm( · + 1/4)), m ≥ 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

I Hence basis

fm(z) = cos(2πm(vk1 (z) + 1/4))− cos(πm/2), m ≥ 1

of D is orthogonal w.r.t. 〈·, ·〉D(D) and 〈·, ·〉D(Ψk (D)).
I Conclusion: Jk has eigenvectors (fm)m≥1 and eigenvalues

〈fm, fm〉D(ψk (D))

〈fm, fm〉D(D)
=

sinh(2mπTk)

sinh(4mπTk)
=

1

q
m/2
k + q

−m/2
k

, qk = e−π
K(k′)
K(k)

“nome”
.
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I May work out eigenvalues of Ak and Bk too (eigenvectors (fm)m≥1):

Ak : π
2K(k)

m

q
−m/2
k −qm/2

k

Bk : 2K(k)
π

1
m

1−qm
k

1+qm
k

Jk : 1

q
m/2
k +q

−m/2
k

I Recall W
(α)
`,p (t) = 〈el ,Y(α)

k ep〉, α ∈ π
2 Z, where

Y
(α)
k =

∞∑
N=0

#{simple walks from 0 to α of length N} · JNk Bk .

It has eigenvalues

Y
(α)
k fm =

2K (k)

π

1

m
q
m|α|/π
k fm.
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Reflection principle
I For I = (β−, β+), β± ∈ π

4 Z, α ∈ I ∩ π
2 Z and p, ` even, let

W
(α,I )
`,p (t) =

∑
w

t |w |1{w0=(p,0), |w|w||=`, θw=α, θwi ∈I for 1≤i<|w |}.

I If θw /∈ I , reflect w 7→ w ′ at first exit of I .
I If θw ∈ 2β+ − α + δZ then θw

′ ∈ α + δZ, δ = 2(β+ − β−).

W
(α,I )
`,p (t) =

∞∑
n=−∞

(
W

(α+nδ)
`,p (t)−W

(2β+−α+nδ)
`,p (t)

)
.

I W
(0,(−π/4,π/2))
`,p (t) = 〈e`,Xep〉D and X has e.v. 2K(k)

πm
1−qm

k

1+q
m/2
k +qm

k

.

α = 0, I = (−π4 ,
π
2 )
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More examples See [TB,’17, Theorem 1] for the general case.
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Angle doubling ↔ Landen transformation

I Disregarding K (k) the spectra only depend on α and k = 4t

through the combination q
α/π
k .

I Angle doubling α→ 2α has same effect as Landen transformation

k → k1 =
1− k ′

1 + k ′
, k ′ =

√
1− k2, since qk1 = q2

k .

I Deserves a combinatorial explanation!
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A partial explanation

I Consider loops w , i.e. w0 = w|w | ∈ {(1, 0), (2, 0), . . .}, with winding
angle θw = α ∈ 2πZ and θwi < α for i < |w |.

I The generating function of these is a trace:
q
α/π
k

1−qα/πk

.

I They are in bijection with Dyck-type loops of double winding angle
2α and double length:
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A partial explanation

I Substituting x →
√
k1(t)/4 in g.f. of Dyck paths on the slit plane

with fixed endpoints yields the corresponding g.f. for diagonal walks.

k1(t) =
1− k ′

1 + k ′
, k ′ =

√
1− k2, k = 4t

I Open problem: give a bijective explanation of this fact!
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Application: Excursions
I Consider set E of excursions from the origin (rectilinear or diagonal).

F (α)(t) :=
∑
w∈E

t |w |1{θw=α}, α ∈ π

2
Z.

I Not quite covered by main result since walks do not avoid (0, 0).
However, a combinatorial trick (exercise!) shows

F (α)(t) = 4
∞∑

m,l,p=1

(−1)l+p+m+1mW
(|α|+mπ/2)
2l,2p (t)

=
2π

K (k)

∞∑
n=1

qnk (1− qnk )2

1− q4n
k

q
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Excursions in cones
I For I = (β−, β+), β± ∈ π

4 Z, α ∈ I ∩ π
2 Z, a reflection principle shows

F (α,I )(t) :=
∑
w∈E

t |w |1{w1=(1,1), θw=α, θwi ∈I for all i}

=
1

4

∑
n∈Z

(
F (α+nδ)(t)− F (2β+−α+nδ)(t)

)
, δ := 2(β+ − β−)

=
π

8δ

∑
σ∈(0,δ)∩π2 Z

(
cos

(
4σα

δ

)
− cos

(
4σ(2β+ − α)

δ

))
F

(
t,

4σ

δ

)
,

where

F (t, b) :=
∑
α∈π2 Z

F (α)(t)e ibα =
1

cos
(
πb
2

) [1−
π tan

(
πb
4

)
2K (k)

θ′1
(
πb
4 ,
√
qk
)

θ1

(
πb
4 ,
√
qk
)]

α = −π/2
β− = −π
β+ = 3π/4
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Gessel’s sequence

I Special case α = 0, I = (−π/4, π/2):

F (0,I )(t) =
1

4
F

(
t,

4

3

)
=

1

2

[ √
3π

2K (4t)

θ′1
(
π
3 ,
√
qk
)

θ1

(
π
3 ,
√
qk
) − 1

]

I Gessel’s conjecture, proved in [Kauers, Koutschan, Zeilberger, ’09], [Bostan,

Kurkova, Raschel, ’13], [Bousquet-Mélou, ’16], [Bernardi, Bousquet-Mélou, Raschel, ’17]:

F (0,I )(t) =
∞∑
n=0

t2n+2 16n (5/6)n(1/2)n
(2)n(5/3)n

=
1

2

[
2F1

(
−1

2
,−1

6
;

2

3
; (4t)2

)
− 1

]
I Another proof: check that both satisfy same algebraic equation.
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Background: planar map combinatorics

I Walks with small steps: S ⊂ {−1, 0, 1}2 \ {(0, 0)}
I Excursion w in upper-half plane from (0, 0) to (−p − 2, 0), p ≥ 1.

I Wish to cut w into excursions from (0, 0) to (d − 2, 0), d ≥ 0.
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I Excursion w in upper-half plane from (0, 0) to (−p − 2, 0), p ≥ 1.

I Wish to cut w into excursions from (0, 0) to (d − 2, 0), d ≥ 0.

I Φp is a bijection with rooted planar maps of perimeter p with
I for each face of degree d ≥ 1 an excursion above or below axis from

(0, 0) to (d − 2, 0)
I for each vertex an excursion above axis from (0, 0) to (−2, 0).



Walks on the slit plane
I This extends to a bijection Φl,p between walks on the slit plane from

(p, 0) to (−l , 0) and rooted planar maps with perimeter p and
I a marked face of degree l ,
I for each (unmarked) face of degree d ≥ 1 an excursion above or

below axis from (0, 0) to (d − 2, 0)
I for each vertex an excursion above axis from (0, 0) to (−2, 0).
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Other walks with small steps?
I Generalization to walks with step set S ⊂ {−1, 0, 1}2 \ {(0, 0)}.

K (x , y) = xyt
( ∑

(i,j)∈S

x iy j − 1

t

)

= ay2 + by + c , d(x) = b2 − 4ac

I If S is non-singular then K (x , y) = 0 defines an elliptic curve, which
determines a point in moduli space with corresponding nome q.
[Fayolle, Iasnogordski, Malyshev]

q = e−iπ
ω2
ω1 , ω1 = i

∫ x2

x1

dx√
−d(x)

, ω2 =

∫ x3

x2

dx√
d(x)

(d(xi ) = 0)

I The operator X on D defined by

1
p 〈el ,Xep〉D =∑
S-walk w

t |w |1{w0=(p,0), |w|w||=l, θw=α, θwi >0}

has eigenvalues qm|α|/π, m ≥ 1.

I Depending on symmetries of S:

α ∈ 2πZ, α ∈ πZ, or α ∈ π
2 Z
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Thanks for you attention!
Comments?


