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Quadrangulations and labeled trees

» A planar map is a planar graph that is properly embedded in the
sphere modulo orientation-preserving homeomorphisms.

» A quadrangulation has faces of degree 4: represents a gluing of
squares.

» There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]

rooted quadrangulations rooted plane trees with labels
with a distinguished vertex in Z that vary by at most 1

» uniform random quadrangulations with n faces +—
uniform plane tree with n edges with a uniform label assignment.
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» The trees provide an easy way to deduce the fractal dimension:
geodesic distance ~ volumel/* [Ambjgrn, Watabiki, '95]

» Labels encode difference in graph distance to e.

» For a uniform vertex o the distance difference d — d ~ n'/4 as
n — 00. [Chassaing, Schaeffer, '02]

> Scaling limit: ({vertices}, n=1/4d(-,-)) @D, Brownian sphere

[Le Gall, "10][Miermont, '10]
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Riemann surfaces

» Consider a punctured Riemann surface X: sphere with n > 3 labeled

points removed and equipped with a complex structure.

. . N bihol i
» Riemann uniformization: X P H/G for some subgroup

G C Aut(H) = PSL(2,R) of the Mdbius transformations.
dx2+dy2
2o
» Aut(H) acts by isometries — X comes naturally equipped with

complete metric of curvature —1: hyperbolic surface with cusps.
» Moduli space:

M { Riemann surfaces } (_){ hyperbolic surfaces }
0,n = . .
with n punctures /biholomorphism with n cusps Jisometry

» dim(Mo,,) =2n—6

» H comes with a natural Poincaré metric: ds? =
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> Weil-Petersson symplectic 2-form w on Mg ,
— non-degenerate (2n — 6)-form u, = (;f?),
» Weil-Petersson volume: V, = fMo,n iy < 00.
» Wolpert '83, Penner '92: V, = 72
> Zograf '95: Z(x) = 3,53 %Vn, X = @Jl(%rm).

» Mirzakhani '06: recursion relations for all genus & boundary lengths

» Growth of V, similar to quadrangulations:
%
e~ cn2x7" x, =0.063...
n!

#{rooted quadrangulations}/n ~ ¢’n~7/212".  Universality?

» Random Riemann surface with n cusps: treat V, as a canonical
partition function, i.e. Pn(-) = J-pa(-).

» Also consider grand-canonical partition function:
X" 2

Z(x) = Zn>3 (=11 Vi, (x ~= e=2™) distribution Py (- ).
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» Several results on random Riemann surfaces for large genus g:
» Mirzakhani, '13:
( Diameter) = (length shortest separating curve) = log g as g — oo.
» Guth, Parlier, Young, '11:
total length of pants > g’/ with high probability as g — co.
» Little known about random Riemann surfaces as n — oo beyond
enumeration.

» Problem: until now no good algorithm to sample random Riemann
surfaces.

n g
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Distance statistics?

» Distance between punctures is
infinite.

» Determine horocycle of length
€ around each puncture.

> Interhorocycle distance Dj.
Dj; — Dj is independent of .

» Main result:

Theorem (TB, '19+)

€ €
Dj; — Dy,
n1/4

Var[ } 170 3.429137077... under P,

» Open problem: ({1,...,n}, n_1/4(ij),-’j) 9 Brownian sphere?

n—oo
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Building blocks?

» Quadrangulations: gluing of identical squares.
Riemann surfaces: gluing of identical ideal triangles.

» Local parametrization of Mg ,: shear coordinates z. on 3n — 6
edges with n constraints (one per cusp).

» Problem (“Moduli space vs Teichmiiller space”):

» each surface admits oo many triangulations;
> a fixed combinatorial triangulation encodes each surface oo often.

» Determine a canonical triangulation!
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v

Distinguish puncture * with label 0 and determine its Voronoi
diagram / cut locus.

It is a tree with n — 1 labeled leaves analogous to Schaeffer’s
bijection.

The dual geodesics determine an ideal triangulation.

Gluing is unique if triangles are decorated by horocycle of *.

A decorated triangle is determined by distances ¢, {5, ¢3, and two
triangles can be glued iff ¢; = ¢].
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» Let 7 be a labeled plane binary tree with n — 1 leaves.
» It has n — 3 cubic vertices. Introduce set of admissible angles

A7 ={(ou,...,az,_¢) : sum of opposing angles > 7} C (0, 7)?"~°,

. 2n—6
> Balanced trees on n — 1 leaves: B, = | | A7 with measure d o

Theorem (TB)
6

This is an isomorphism (Mo n, ftn) — (Bn,d*" %) of measure spaces. J

> . R — _ 2n—6,
Corollary: Weil-Petersson volume V,, : fMo,n fin 27 Ju, 20
» Corollary: random balanced tree «+— random Riemann surface.

a+pB>7

8

5T



Why Lebesgue measure (d2" %) on angles?

» Bijection:

{ ideal triangles with horocycles

that admit equidistant point } < {Euclldean trlangles}

preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]




Why Lebesgue measure (d2" %) on angles?

» Bijection:

{ ideal triangles with horocycles

that admit equidistant point } < {Euclldean trlangles}

preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]




Why Lebesgue measure (d2" %) on angles?

» Bijection:

{ ideal triangles with horocycles

that admit equidistant point } o {Euchdean trlangles}

preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]

A

A3
/\1 < /\2 +/\3




Why Lebesgue measure (d2" %) on angles?

» Bijection:

{ ideal triangles with horocycles

that admit equidistant point } < {Euclldean trlangles}

preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]

A

A3
/\1 < /\2 +/\3




Why Lebesgue measure (d2" %) on angles?
» Bijection:

ideal triangles with horocycles . .
) - . > {Euclldean trlangles}
that admit equidistant point

preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]
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Why Lebesgue measure (d2" %) on angles?
» Bijection:

ideal triangles with horocycles . .
) - . > {Euclldean trlangles}
that admit equidistant point

preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]
» The Weil-Petersson 2-form is w = =23 . dlog A\; A dlog ),
[Penner, '92]
n—3

> Exercise using sine rule: p, = h =...=d>"%.

sin ag

- sinng/\l < /\2 +/\$

isina;
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Zograf's formula:  Z(x) = Z V,,( X , = 2(x) h (27w Z(x)) 2 X

n—2)! ™

» Generating function F(0) = F(x;0), 6 € [0,7], s.t. F(0) = Z(x) and

N-% o

d2n6_ n—2 /d2n76
DN I RIED SPLID D Y

n>3 " labeled T T,01>0 n>3 rooted 7 7 AT,01>0
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FO)—x= foﬂ dadB F()F(8)1{p<atp<n}




Reproducing Weil-Petersson volumes

Zograf's formula: Z V 29 J1(27/ 2(x)) L x
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Reproducing Weil-Petersson volumes

Zograf's formula: Z V 29 J1(27/ 2(x)) L x

™
n>3

» Generating function F(0) = F(x;0), 6 € [0,7], s.t. F(0) = Z(x) and

d2n6_ n—2 /d2n76
DN I RIED SPLID D Y

N-% o

n>3 " labeled 7 7 AT 01>0 n>3 rooted T AT 1>0
e&e J‘\ (01777)9 6(677T)
w—ﬁlw—a T—BfT—a
FO) =z 1 | FO)-2 =[] dadB F@F(B)lp<assen)

» General solution: F(9) = ’;(O)Jl(20w/F(O)).
» F(0) = Z(x), F(r) =x = Zograf's formula!
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» Statistics in grand-canonical ensemble with three marked cusps.

> Angles along blue path are naturally encoded in process (6;).
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Proposition

In the grand-canonical ensemble with x € (0, x.),

» (0:) has the law of a Markov process with slope 1 and downward
Jjumps 0 — [3 at rate 2F(0 — B)F’(’B)

F(0) =~ zz(X) H(20+/ Z(x)), Fe(0) = Z%(X)(?XF(H) = Jo(26+/ Z2(x))



» Statistics in grand-canonical ensemble with three marked cusps.

> Angles along blue path are naturally encoded in process (6;).
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Proposition

In the grand-canonical ensemble with x € (0, x.),

» (0:) has the law of a Markov process with slope 1 and downward

jumps 0 — [3 at rate 2F (0 — B)';°((§)

> the distance difference is D — D, = [, cot 6, dt.

Fo) = Y2 40 /Z00).  Rul0) = S0nF(0) = (2072 ()
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Proposition

Under the size-biased Boltzmann distribution with x € (0, x.),

» (0:) has the law of a Markov process with slope 1 and downward

jumps 0 — 3 at rate 2F(6 — ) ’;:(('g; .

> the distance difference is  Dg — D, = [, cot 6, dt.

y

» Corollary:
Vark[Dg;—Dg,] = Fjﬂ)/o da/o df cot accot BFe(m—a)Fe(a—LB)Fe(B)
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Proposition

Under the size-biased Boltzmann distribution with x € (0, x.),

» (0:) has the law of a Markov process with slope 1 and downward

jumps @ — [3 at rate 2F (0 — B)Ii‘(('g)

> the distance difference is  Dg — D, = [, cot 6, dt.

» Corollary:
Vark[Dg;—Dg,] = Fjﬂ)/o da/o dB cot acot fFe(m—a)Fe(ax—B)Fe ()

» Singularity analysis:
Var,[Dg, — Dg,] = PGVl D] 72 3 49137077... - v/

[x"]Fe ()




» Where does D§; — Dg, = fOT cot 0, dt come from?
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> Where does D§; —

/ cothdt_ZI
0

D§, = J, cot; dt come from?

T
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sin «;
sin B,




> e - = ?
come from’
here does Dg; — Dg, = [, cot 6, dt
Wher

a2‘
:W—ﬁli/

T2

K .

sin «

! [

/ cotf,dt = E log SinB;
0 i=1



> Where does Dg; — Dg, = [, cot 8, dt come from?
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> Where does Dg; — Dg, = [, cot 8, dt come from?

T KCoosing o~ A o lo—1
t0,dt =Y | PN T og 2T —jog 20 20 Tk
/0 otV §°g sin 3; z:: AV LY 2



> Where does Dg; — Dg, = [, cot 8, dt come from?

k . k
T sin o Ni—1 Ao
t0,dt = | = | = | = =
/o orve Z,.zl %8 5in B, Zi: D VL
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Importance for (2+1)-dimensional (quantum) gravity?

» Einstein egs in 241D with A =0 = locally Minkowski space.
» Non-trivial topology S x R : solutions determined by
ISO(2, 1)-holonomies along cycles of S

Phase space: P41 = Hom(m1(S),1S0(2,1)) /ISO(2,1), Pay1 = Prr1/MCG.
» Relation to Riemann surfaces: ISO(2,1) = T PSL(2,R)
Pay1 = TTg, Teichmiiller space T, = Hom(m;(S), PSL(2,R)) / PSL(2, R)

e Poy1 = TT,/MCG = TM,
’e-‘

S xRy
The Weil-Petersson symplectic structure

—— on M g induces correct Poisson bracket
on P.

— 2+1 [TB, Loll, '09]
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Importance for (2+1)-dimensional (quantum) gravity?

» S = n-punctured sphere — S x R, = universe with n massless particles
> P, = TMop, = T{balanced trees with n — 2 leaves}.
> Natural Poisson structure on T{balanced trees with n — 2 leaves}!

» Quantizing 241D gravity «— quantizing balanced trees.

big bang singularity %




Conclusion

» The bijection between genus-0 punctured Riemann surfaces and
balanced trees provides
P a convenient way to compute Weil-Petersson volumes;
» detailed information on global distance statistics;
> a potential avenue to tree bijections in higher dimensions;
> efficient simulation of random Riemann surfaces via Boltzmann
sampling of balanced trees!




