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Quadrangulations and labeled trees

I A planar map is a planar graph that is properly embedded in the
sphere modulo orientation-preserving homeomorphisms.

I A quadrangulation has faces of degree 4: represents a gluing of
squares.

I There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, ’99]{
rooted quadrangulations

with a distinguished vertex

}
↔
{

rooted plane trees with labels
in Z that vary by at most 1

}
I uniform random quadrangulations with n faces ←→

uniform plane tree with n edges with a uniform label assignment.
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Distance statistics in large quadrangulations
I The trees provide an easy way to deduce the fractal dimension:

geodesic distance ∼ volume1/4
[Ambjørn, Watabiki, ’95]

I Labels encode difference in graph distance to •.
I For a uniform vertex • the distance difference d − d ≈ n1/4 as

n→∞. [Chassaing, Schaeffer, ’02]

I Scaling limit: ({vertices}, n−1/4d(·, ·))
(d)−−−→

n→∞
Brownian sphere

[Le Gall, ’10][Miermont, ’10]
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Riemann surfaces
I Consider a punctured Riemann surface X : sphere with n ≥ 3 labeled

points removed and equipped with a complex structure.

I Riemann uniformization: X
biholomorphic←−−−−−−→ H/G for some subgroup

G ⊂ Aut(H) = PSL(2,R) of the Möbius transformations.

I H comes with a natural Poincaré metric: ds2 = dx2+dy2

y2 .

I Aut(H) acts by isometries −→ X comes naturally equipped with
complete metric of curvature −1: hyperbolic surface with cusps.

I Moduli space:

M0,n =

{
Riemann surfaces
with n punctures

}
/biholomorphism

↔
{

hyperbolic surfaces
with n cusps

}
/isometry

I dim(M0,n) = 2n − 6
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I H comes with a natural Poincaré metric: ds2 = dx2+dy2
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I H comes with a natural Poincaré metric: ds2 = dx2+dy2
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Random Riemann surface?

I Weil-Petersson symplectic 2-form ω on M0,n

−→ non-degenerate (2n − 6)-form µn = ωn−3

(n−3)! .

I Weil-Petersson volume: Vn =
∫
M0,n

µn <∞.

I Wolpert ’83, Penner ’92: V4 = π2

I Zograf ’95: Z(x) =
∑

n≥3
xn−2

(n−2)!
Vn, x =

√
Z(x)

π
J1(2π

√
Z(x)).

I Mirzakhani ’06: recursion relations for all genus & boundary lengths

I Growth of Vn similar to quadrangulations:

Vn

n!
∼ c n−7/2 x−n∗ , x∗ = 0.063 . . .

#{rooted quadrangulations}/n ∼ c ′n−7/2 12n.

Universality?

I Random Riemann surface with n cusps: treat Vn as a canonical
partition function, i.e. Pn( · ) = 1

Vn
µn( · ).

I Also consider grand-canonical partition function:

Z(x) =
∑

n≥3
xn−2

(n−2)!Vn, (x ≈ e−2πΛ) distribution Px( · ).
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I Several results on random Riemann surfaces for large genus g :
I Mirzakhani, ’13:
〈 Diameter〉 ≈ 〈length shortest separating curve〉 ≈ log g as g →∞.

I Guth, Parlier, Young, ’11:
total length of pants ≥ g 7/6 with high probability as g →∞.

I Little known about random Riemann surfaces as n→∞ beyond
enumeration.

I Problem: until now no good algorithm to sample random Riemann
surfaces.
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Distance statistics?

I Distance between punctures is
infinite.

I Determine horocycle of length
ε around each puncture.

I Interhorocycle distance Dε
ij .

Dε
ij − Dε

ik is independent of ε.

I Main result:

Theorem (TB, ’19+)

Var

[
Dε

ij − Dε
ik

n1/4

]
n→∞−−−→ 3.429137077... under Pn

I Open problem: ({1,. . . ,n}, n−1/4(Dε
ij)i,j)

(d)−−−→
n→∞

Brownian sphere?
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Building blocks?

I Quadrangulations: gluing of identical squares.
Riemann surfaces: gluing of ???.

I Local parametrization of M0,n: shear coordinates ze on 3n − 6
edges with n constraints (one per cusp).

I Problem (“Moduli space vs Teichmüller space”):
I each surface admits ∞ly many triangulations;
I a fixed combinatorial triangulation encodes each surface ∞ly often.

I Determine a canonical triangulation!
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I Distinguish puncture ? with label 0 and determine its Voronöı
diagram / cut locus.

I It is a tree with n − 1 labeled leaves analogous to Schaeffer’s
bijection.

I The dual geodesics determine an ideal triangulation.
I Gluing is unique if triangles are decorated by horocycle of ?.
I A decorated triangle is determined by distances `1, `2, `3, and two

triangles can be glued iff `1 = `′1.
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I Let T be a labeled plane binary tree with n − 1 leaves.

I It has n − 3 cubic vertices. Introduce set of admissible angles

AT = {(α1, . . . , α2n−6) : sum of opposing angles > π} ⊂ (0, π)2n−6.

I Balanced trees on n − 1 leaves: Bn =
⊔
T AT with measure d

2n−6

α.

Theorem (TB)

This is an isomorphism (M0,n, µn) −→
(
Bn,d2n−6α

)
of measure spaces.

I Corollary: Weil-Petersson volume Vn :=
∫
M0,n

µn =
∑
T
∫
AT d2n−6α.

I Corollary: random balanced tree ←→ random Riemann surface.



I Let T be a labeled plane binary tree with n − 1 leaves.
I It has n − 3 cubic vertices. Introduce set of admissible angles

AT = {(α1, . . . , α2n−6) : sum of opposing angles > π} ⊂ (0, π)2n−6.

I Balanced trees on n − 1 leaves: Bn =
⊔
T AT with measure d

2n−6

α.

Theorem (TB)

This is an isomorphism (M0,n, µn) −→
(
Bn,d2n−6α

)
of measure spaces.

I Corollary: Weil-Petersson volume Vn :=
∫
M0,n

µn =
∑
T
∫
AT d2n−6α.

I Corollary: random balanced tree ←→ random Riemann surface.



I Let T be a labeled plane binary tree with n − 1 leaves.
I It has n − 3 cubic vertices. Introduce set of admissible angles

AT = {(α1, . . . , α2n−6) : sum of opposing angles > π} ⊂ (0, π)2n−6.

I Balanced trees on n − 1 leaves: Bn =
⊔
T AT with measure d

2n−6

α.

Theorem (TB)

This is an isomorphism (M0,n, µn) −→
(
Bn,d2n−6α

)
of measure spaces.

I Corollary: Weil-Petersson volume Vn :=
∫
M0,n

µn =
∑
T
∫
AT d2n−6α.

I Corollary: random balanced tree ←→ random Riemann surface.



I Let T be a labeled plane binary tree with n − 1 leaves.
I It has n − 3 cubic vertices. Introduce set of admissible angles

AT = {(α1, . . . , α2n−6) : sum of opposing angles > π} ⊂ (0, π)2n−6.

I Balanced trees on n − 1 leaves: Bn =
⊔
T AT with measure d

2n−6

α.

Theorem (TB)

This is an isomorphism (M0,n, µn) −→
(
Bn,d2n−6α

)
of measure spaces.

I Corollary: Weil-Petersson volume Vn :=
∫
M0,n

µn =
∑
T
∫
AT d2n−6α.

I Corollary: random balanced tree ←→ random Riemann surface.



I Let T be a labeled plane binary tree with n − 1 leaves.
I It has n − 3 cubic vertices. Introduce set of admissible angles

AT = {(α1, . . . , α2n−6) : sum of opposing angles > π} ⊂ (0, π)2n−6.

I Balanced trees on n − 1 leaves: Bn =
⊔
T AT with measure d

2n−6

α.

Theorem (TB)

This is an isomorphism (M0,n, µn) −→
(
Bn,d2n−6α

)
of measure spaces.

I Corollary: Weil-Petersson volume Vn :=
∫
M0,n

µn =
∑
T
∫
AT d2n−6α.

I Corollary: random balanced tree ←→ random Riemann surface.



I Let T be a labeled plane binary tree with n − 1 leaves.
I It has n − 3 cubic vertices. Introduce set of admissible angles

AT = {(α1, . . . , α2n−6) : sum of opposing angles > π} ⊂ (0, π)2n−6.

I Balanced trees on n − 1 leaves: Bn =
⊔
T AT with measure d

2n−6

α.

Theorem (TB)

This is an isomorphism (M0,n, µn) −→
(
Bn,d2n−6α

)
of measure spaces.

I Corollary: Weil-Petersson volume Vn :=
∫
M0,n

µn =
∑
T
∫
AT d2n−6α.

I Corollary: random balanced tree ←→ random Riemann surface.



Why Lebesgue measure (d2n−6α) on angles?

I Bijection:{
ideal triangles with horocycles
that admit equidistant point

}
↔
{

Euclidean triangles
}

preserving angles between bisectors. [Penner, ’95], [Bobenko, Pinkall,

Springborn, ’10]

I The Weil-Petersson 2-form is ω = −2
∑

corners d log λi ∧ d log λj
[Penner, ’92]

I Exercise using sine rule: µn = ωn−3

(n−3)! = . . . = d2n−6α.
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Reproducing Weil-Petersson volumes

Zograf’s formula: Z(x) =
∑
n≥3

Vn
xn−2

(n − 2)!
,

√
Z(x)

π
J1(2π

√
Z(x))

?
= x

I Generating function F (θ) = F (x ; θ), θ ∈ [0, π], s.t. F (0) = Z(x) and

F (θ) =
∑
n≥3

xn−2

(n − 2)!

∑
labeled T

∫
AT ,α1>θ

d2n−6α

=
∑
n≥3

xn−2
∑

rooted T

∫
AT ,α1>θ

d2n−6α

 1
6

4

7
11

5

2
103

8

9

I General solution: F (θ) =

√
F (0)

θ J1(2θ
√
F (0)).

I F (0) = Z(x), F (π) = x =⇒ Zograf’s formula!
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I Statistics in grand-canonical ensemble with three marked cusps.

I Angles along blue path are naturally encoded in process (θt).

Proposition

In the grand-canonical ensemble with x ∈ (0, x∗),

I (θt) has the law of a Markov process with slope 1 and downward

jumps θ → β at rate 2F (θ − β)F•(β)
F•(θ) ;

I the distance difference is Dε
01 − Dε

02 =
∫ τ

0
cot θt dt.

F (θ) =

√
Z(x)

θ
J1(2θ

√
Z(x)), F•(θ) = 1

Z′(x)∂xF (θ) = J0(2θ
√
Z(x))
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Proposition

Under the size-biased Boltzmann distribution with x ∈ (0, x∗),

I (θt) has the law of a Markov process with slope 1 and downward

jumps θ → β at rate 2F (θ − β)F•(β)
F•(θ) ;

I the distance difference is Dε
01 − Dε

02 =
∫ τ

0
cot θt dt.

I Corollary:

Varx [Dε
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Importance for (2+1)-dimensional (quantum) gravity?
I Einstein eqs in 2+1D with Λ = 0 =⇒ locally Minkowski space.

I Non-trivial topology S × R+: solutions determined by
ISO(2, 1)-holonomies along cycles of S

Phase space: P̃2+1 = Hom(π1(S), ISO(2, 1)) / ISO(2, 1), P2+1 = P̃2+1/MCG.

I Relation to Riemann surfaces: ISO(2, 1) ≡ T PSL(2,R)

P̃2+1 = TTg , Teichmüller space Tg = Hom(π1(S),PSL(2,R)) /PSL(2,R)
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Importance for (2+1)-dimensional (quantum) gravity?

I S = n-punctured sphere −→ S × R+ = universe with n massless particles

I Pn
∼= TM0,n

∼= T{balanced trees with n − 2 leaves}.
I Natural Poisson structure on T{balanced trees with n − 2 leaves}!
I Quantizing 2+1D gravity ←→ quantizing balanced trees.
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Conclusion

I The bijection between genus-0 punctured Riemann surfaces and
balanced trees provides
I a convenient way to compute Weil-Petersson volumes;
I detailed information on global distance statistics;
I a potential avenue to tree bijections in higher dimensions;
I efficient simulation of random Riemann surfaces via Boltzmann

sampling of balanced trees!


