

 d
 震
    ```

```


What is a natural random metric on S^{2} ?

Random planar map

What is a natural random metric on S^{2} ?

Random planar map

Liouville quantum gravity

What is a natural random metric on S^{2} ?

Random planar map

Liouville quantum gravity

Random Riemann surface

What is a natural random metric on S^{2} ?

Random planar map

Tree bijections
[Cori, Vauquelin, Schaeffer, Bouttier, Di Francesco, Guitter,]

Liouville quantum gravity

Random Riemann surface

Trees all over the place..... $\quad=\cdots \geqslant$.

What is a natural random metric on S^{2} ?

Random planar map
Liouville quantum gravity
Random Riemann surface

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$

Quadrangulations and labeled trees

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents a gluing of squares.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$
- uniform random quadrangulations with n faces \longleftrightarrow uniform plane tree with n edges with a uniform label assignment.

Distance statistics in large quadrangulations

- The trees provide an easy way to deduce the fractal dimension: geodesic distance \sim volume $^{1 / 4}$
[Ambjørn, Watabiki, '95]

Distance statistics in large quadrangulations

- The trees provide an easy way to deduce the fractal dimension: geodesic distance \sim volume $^{1 / 4}$
[Ambjørn, Watabiki, '95]
- Labels encode difference in graph distance to \bullet.

Distance statistics in large quadrangulations

- The trees provide an easy way to deduce the fractal dimension:

$$
\text { geodesic distance } \sim \text { volume }^{1 / 4}
$$

[Ambjørn, Watabiki, '95]

- Labels encode difference in graph distance to \bullet.
- For a uniform vertex \bullet the distance difference $d-d \approx n^{1 / 4}$ as $n \rightarrow \infty$. [Chassaing, Schaeffer, '02]

Distance statistics in large quadrangulations

- The trees provide an easy way to deduce the fractal dimension: geodesic distance \sim volume $^{1 / 4}$
[Ambjørn, Watabiki, '95]
- Labels encode difference in graph distance to \bullet.
- For a uniform vertex \bullet the distance difference $d-d \approx n^{1 / 4}$ as $n \rightarrow \infty$. [Chassaing, Schaeffer, '02]

Distance statistics in large quadrangulations

- The trees provide an easy way to deduce the fractal dimension: geodesic distance \sim volume $^{1 / 4}$
- Labels encode difference in graph distance to \bullet.
- For a uniform vertex \bullet the distance difference $d-d \approx n^{1 / 4}$ as $n \rightarrow \infty$. [Chassaing, Schaeffer, '02]
- Scaling limit: $\left(\{\right.$ vertices $\left.\}, n^{-1 / 4} d(\cdot, \cdot)\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}$ Brownian sphere [Le Gall, '10][Miermont, '10]

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.
- Riemann uniformization: $X \xrightarrow{\text { biholomorphic }} \mathbb{H} / G$ for some subgroup $G \subset \operatorname{Aut}(\mathbb{H})=\operatorname{PSL}(2, \mathbb{R})$ of the Möbius transformations.

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.
- Riemann uniformization: $X \xrightarrow{\text { biholomorphic }} \mathbb{H} / G$ for some subgroup $G \subset \operatorname{Aut}(\mathbb{H})=\operatorname{PSL}(2, \mathbb{R})$ of the Möbius transformations.
- \mathbb{H} comes with a natural Poincaré metric: $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$.

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.
- Riemann uniformization: $X \xrightarrow{\text { biholomorphic }} \mathbb{H} / G$ for some subgroup $G \subset \operatorname{Aut}(\mathbb{H})=\operatorname{PSL}(2, \mathbb{R})$ of the Möbius transformations.
- \mathbb{H} comes with a natural Poincaré metric: $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{\mathrm{y}^{2}}$.
- Aut($\mathbb{H})$ acts by isometries $\longrightarrow X$ comes naturally equipped with complete metric of curvature -1 : hyperbolic surface with cusps.

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.
- Riemann uniformization: $X \xrightarrow{\text { biholomorphic }} \mathbb{H} / G$ for some subgroup $G \subset \operatorname{Aut}(\mathbb{H})=\operatorname{PSL}(2, \mathbb{R})$ of the Möbius transformations.
- \mathbb{H} comes with a natural Poincaré metric: $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{\mathrm{y}^{2}}$.
- Aut($\mathbb{H})$ acts by isometries $\longrightarrow X$ comes naturally equipped with complete metric of curvature -1 : hyperbolic surface with cusps.

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.
- Riemann uniformization: $X \xrightarrow{\text { biholomorphic }} \mathbb{H} / G$ for some subgroup $G \subset \operatorname{Aut}(\mathbb{H})=\operatorname{PSL}(2, \mathbb{R})$ of the Möbius transformations.
- \mathbb{H} comes with a natural Poincaré metric: $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{dy}}{y^{2}}$.
- Aut($\mathbb{H})$ acts by isometries $\longrightarrow X$ comes naturally equipped with complete metric of curvature -1 : hyperbolic surface with cusps.
- Moduli space:

$$
\mathcal{M}_{0, n}=\left\{\begin{array}{c}
\text { Riemann surfaces } \\
\text { with } n \text { punctures }
\end{array}\right\}_{/ \text {biholomorphism }} \leftrightarrow\left\{\begin{array}{c}
\text { hyperbolic surfaces } \\
\text { with } n \text { cusps }
\end{array}\right\}_{/ \text {isometry }}
$$

Riemann surfaces

- Consider a punctured Riemann surface X : sphere with $n \geq 3$ labeled points removed and equipped with a complex structure.
- Riemann uniformization: $X \xrightarrow{\text { biholomorphic }} \mathbb{H} / G$ for some subgroup $G \subset \operatorname{Aut}(\mathbb{H})=\operatorname{PSL}(2, \mathbb{R})$ of the Möbius transformations.
- \mathbb{H} comes with a natural Poincaré metric: $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{dy}}{\mathrm{y}^{2}}$.
- $\operatorname{Aut}(\mathbb{H})$ acts by isometries $\longrightarrow X$ comes naturally equipped with complete metric of curvature -1 : hyperbolic surface with cusps.
- Moduli space:

$$
\mathcal{M}_{0, n}=\left\{\begin{array}{c}
\text { Riemann surfaces } \\
\text { with } n \text { punctures }
\end{array}\right\}_{/ \text {biholomorphism }} \leftrightarrow\left\{\begin{array}{c}
\text { hyperbolic surfaces } \\
\text { with } n \text { cusps }
\end{array}\right\}_{/ \text {isometry }}
$$

- $\operatorname{dim}\left(\mathcal{M}_{0, n}\right)=2 n-6$

Random Riemann surface?

- Weil-Petersson symplectic 2 -form ω on $\mathcal{M}_{0, n}$
\longrightarrow non-degenerate $(2 n-6)$-form $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}$.

Random Riemann surface?

- Weil-Petersson symplectic 2 -form ω on $\mathcal{M}_{0, n}$
\longrightarrow non-degenerate $(2 n-6)$-form $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}$.
- Weil-Petersson volume: $V_{n}=\int_{\mathcal{M}_{0, n}} \mu_{n}<\infty$.
- Wolpert '83, Penner '92: $V_{4}=\pi^{2}$
- Zograf '95: $\mathcal{Z}(x)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} V_{n}, \quad x=\frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)})$.
- Mirzakhani '06: recursion relations for all genus \& boundary lengths

Random Riemann surface?

- Weil-Petersson symplectic 2 -form ω on $\mathcal{M}_{0, n}$
\longrightarrow non-degenerate $(2 n-6)$-form $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}$.
- Weil-Petersson volume: $V_{n}=\int_{\mathcal{M}_{0, n}} \mu_{n}<\infty$.
- Wolpert '83, Penner '92: $V_{4}=\pi^{2}$
- Zograf '95: $\mathcal{Z}(x)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} V_{n}, \quad x=\frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)})$.
- Mirzakhani '06: recursion relations for all genus \& boundary lengths
- Growth of V_{n} similar to quadrangulations:

$$
\frac{V_{n}}{n!} \sim c n^{-7 / 2} x_{*}^{-n}, \quad x_{*}=0.063 \ldots
$$

$\#\{$ rooted quadrangulations $\} / n \sim c^{\prime} n^{-7 / 2} 12^{n}$.

Random Riemann surface?

- Weil-Petersson symplectic 2 -form ω on $\mathcal{M}_{0, n}$
\longrightarrow non-degenerate $(2 n-6)$-form $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}$.
- Weil-Petersson volume: $V_{n}=\int_{\mathcal{M}_{0, n}} \mu_{n}<\infty$.
- Wolpert '83, Penner '92: $V_{4}=\pi^{2}$
- Zograf '95: $\mathcal{Z}(x)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} V_{n}, \quad x=\frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)})$.
- Mirzakhani '06: recursion relations for all genus \& boundary lengths
- Growth of V_{n} similar to quadrangulations:

$$
\frac{V_{n}}{n!} \sim c n^{-7 / 2} x_{*}^{-n}, \quad x_{*}=0.063 \ldots
$$

$\#\{$ rooted quadrangulations $\} / n \sim c^{\prime} n^{-7 / 2} 12^{n}$. Universality?

Random Riemann surface?

- Weil-Petersson symplectic 2 -form ω on $\mathcal{M}_{0, n}$
\longrightarrow non-degenerate $(2 n-6)$-form $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}$.
- Weil-Petersson volume: $V_{n}=\int_{\mathcal{M}_{0, n}} \mu_{n}<\infty$.
- Wolpert '83, Penner '92: $V_{4}=\pi^{2}$
- Zograf '95: $\mathcal{Z}(x)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} V_{n}, \quad x=\frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)})$.
- Mirzakhani '06: recursion relations for all genus \& boundary lengths
- Growth of V_{n} similar to quadrangulations:

$$
\frac{V_{n}}{n!} \sim c n^{-7 / 2} x_{*}^{-n}, \quad x_{*}=0.063 \ldots
$$

$\#\{$ rooted quadrangulations $\} / n \sim c^{\prime} n^{-7 / 2} 12^{n}$. Universality?

- Random Riemann surface with n cusps: treat V_{n} as a canonical partition function, i.e. $\mathbb{P}_{n}(\cdot)=\frac{1}{V_{n}} \mu_{n}(\cdot)$.

Random Riemann surface?

- Weil-Petersson symplectic 2 -form ω on $\mathcal{M}_{0, n}$
\longrightarrow non-degenerate $(2 n-6)$-form $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}$.
- Weil-Petersson volume: $V_{n}=\int_{\mathcal{M}_{0, n}} \mu_{n}<\infty$.
- Wolpert '83, Penner '92: $V_{4}=\pi^{2}$
- Zograf '95: $\mathcal{Z}(x)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} V_{n}, \quad x=\frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x))}$.
- Mirzakhani '06: recursion relations for all genus \& boundary lengths
- Growth of V_{n} similar to quadrangulations:

$$
\frac{V_{n}}{n!} \sim c n^{-7 / 2} x_{*}^{-n}, \quad x_{*}=0.063 \ldots
$$

$\#\{$ rooted quadrangulations $\} / n \sim c^{\prime} n^{-7 / 2} 12^{n}$. Universality?

- Random Riemann surface with n cusps: treat V_{n} as a canonical partition function, i.e. $\mathbb{P}_{n}(\cdot)=\frac{1}{V_{n}} \mu_{n}(\cdot)$.
- Also consider grand-canonical partition function: $\mathcal{Z}(x)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} V_{n}, \quad\left(x \approx e^{-2 \pi \Lambda}\right) \quad$ distribution $\mathbb{P}_{x}(\cdot)$.
- Several results on random Riemann surfaces for large genus g :
- Mirzakhani, '13:
\langle Diameter $\rangle \approx\langle$ length shortest separating curve $\rangle \approx \log g$ as $g \rightarrow \infty$.
- Guth, Parlier, Young, '11: total length of pants $\geq g^{7 / 6}$ with high probability as $g \rightarrow \infty$.

- Several results on random Riemann surfaces for large genus g :
- Mirzakhani, '13:
\langle Diameter $\rangle \approx\langle$ length shortest separating curve〉 $\approx \log g$ as $g \rightarrow \infty$.
- Guth, Parlier, Young, '11: total length of pants $\geq g^{7 / 6}$ with high probability as $g \rightarrow \infty$.

- Several results on random Riemann surfaces for large genus g :
- Mirzakhani, '13:
\langle Diameter $\rangle \approx\langle$ length shortest separating curve〉 $\approx \log g$ as $g \rightarrow \infty$.
- Guth, Parlier, Young, '11: total length of pants $\geq g^{7 / 6}$ with high probability as $g \rightarrow \infty$.

- Several results on random Riemann surfaces for large genus g :
- Mirzakhani, '13:
\langle Diameter $\rangle \approx\langle$ length shortest separating curve $\rangle \approx \log g$ as $g \rightarrow \infty$.
- Guth, Parlier, Young, '11: total length of pants $\geq g^{7 / 6}$ with high probability as $g \rightarrow \infty$.
- Little known about random Riemann surfaces as $n \rightarrow \infty$ beyond enumeration.

- Several results on random Riemann surfaces for large genus g :
- Mirzakhani, '13:
\langle Diameter $\rangle \approx\langle$ length shortest separating curve $\rangle \approx \log g$ as $g \rightarrow \infty$.
- Guth, Parlier, Young, '11: total length of pants $\geq g^{7 / 6}$ with high probability as $g \rightarrow \infty$.
- Little known about random Riemann surfaces as $n \rightarrow \infty$ beyond enumeration.
- Problem: until now no good algorithm to sample random Riemann surfaces.

Distance statistics?

- Distance between punctures is infinite.

Distance statistics?

- Distance between punctures is infinite.
- Determine horocycle of length ϵ around each puncture.

Distance statistics?

- Distance between punctures is infinite.
- Determine horocycle of length ϵ around each puncture.
- Interhorocycle distance $D_{i j}^{\epsilon}$. $D_{i j}^{\epsilon}-D_{i k}^{\epsilon}$ is independent of ϵ.

Distance statistics?

- Distance between punctures is infinite.
- Determine horocycle of length ϵ around each puncture.
- Interhorocycle distance $D_{i j}^{\epsilon}$. $D_{i j}^{\epsilon}-D_{i k}^{\epsilon}$ is independent of ϵ.
- Main result:

Theorem (TB, '19+)

$$
\operatorname{Var}\left[\frac{D_{i j}^{\epsilon}-D_{i k}^{\epsilon}}{n^{1 / 4}}\right] \xrightarrow{n \rightarrow \infty} 3.429137077 \ldots \text { under } \mathbb{P}_{n}
$$

Distance statistics?

- Distance between punctures is infinite.
- Determine horocycle of length ϵ around each puncture.
- Interhorocycle distance $D_{i j}^{\epsilon}$. $D_{i j}^{\epsilon}-D_{i k}^{\epsilon}$ is independent of ϵ.
- Main result:

Theorem (TB, '19+)

$$
\operatorname{Var}\left[\frac{D_{i j}^{\epsilon}-D_{i k}^{\epsilon}}{n^{1 / 4}}\right] \xrightarrow{n \rightarrow \infty} 3.429137077 \ldots \quad \text { under } \mathbb{P}_{n}
$$

- Open problem: $\left(\{1, \ldots, \mathrm{n}\}, n^{-1 / 4}\left(D_{i j}^{\epsilon}\right)_{i, j}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}$ Brownian sphere?

Building blocks?

- Quadrangulations: gluing of identical squares.

Riemann surfaces: gluing of ???.

Building blocks?

- Quadrangulations: gluing of identical squares.

Riemann surfaces: gluing of identical ideal triangles.

Building blocks?

- Quadrangulations: gluing of identical squares.

Riemann surfaces: gluing of identical ideal triangles.

Building blocks?

- Quadrangulations: gluing of identical squares.

Riemann surfaces: gluing of identical ideal triangles.

Building blocks?

- Quadrangulations: gluing of identical squares. Riemann surfaces: gluing of identical ideal triangles.
- Local parametrization of $\mathcal{M}_{0, n}$: shear coordinates z_{e} on $3 n-6$ edges with n constraints (one per cusp).

Building blocks?

- Quadrangulations: gluing of identical squares. Riemann surfaces: gluing of identical ideal triangles.
- Local parametrization of $\mathcal{M}_{0, n}$: shear coordinates z_{e} on $3 n-6$ edges with n constraints (one per cusp).
- Problem ("Moduli space vs Teichmüller space"):
- each surface admits $\infty^{\text {ly }}$ many triangulations;
- a fixed combinatorial triangulation encodes each surface $\infty^{\text {ly }}$ often.

Building blocks?

- Quadrangulations: gluing of identical squares.

Riemann surfaces: gluing of identical ideal triangles.

- Local parametrization of $\mathcal{M}_{0, n}$: shear coordinates z_{e} on $3 n-6$ edges with n constraints (one per cusp).
- Problem ("Moduli space vs Teichmüller space"):
- each surface admits $\infty^{\text {ly }}$ many triangulations;
- a fixed combinatorial triangulation encodes each surface $\infty^{\text {ly }}$ often.
- Determine a canonical triangulation!

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.
- The dual geodesics determine an ideal triangulation.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.
- The dual geodesics determine an ideal triangulation.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.
- The dual geodesics determine an ideal triangulation.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.
- The dual geodesics determine an ideal triangulation.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.
- The dual geodesics determine an ideal triangulation.
- Gluing is unique if triangles are decorated by horocycle of $*$.

- Distinguish puncture \star with label 0 and determine its Voronoï diagram / cut locus.
- It is a tree with $n-1$ labeled leaves analogous to Schaeffer's bijection.
- The dual geodesics determine an ideal triangulation.
- Gluing is unique if triangles are decorated by horocycle of \star.
- A decorated triangle is determined by distances $\ell_{1}, \ell_{2}, \ell_{3}$, and two triangles can be glued iff $\ell_{1}=\ell_{1}^{\prime}$.

- Let \mathcal{T} be a labeled plane binary tree with $n-1$ leaves.

- Let \mathcal{T} be a labeled plane binary tree with $n-1$ leaves.
- It has $n-3$ cubic vertices. Introduce set of admissible angles

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{1}, \ldots, \alpha_{2 n-6}\right): \text { sum of opposing angles }>\pi\right\} \subset(0, \pi)^{2 n-6} .
$$

- Let \mathcal{T} be a labeled plane binary tree with $n-1$ leaves.
- It has $n-3$ cubic vertices. Introduce set of admissible angles

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{1}, \ldots, \alpha_{2 n-6}\right): \text { sum of opposing angles }>\pi\right\} \subset(0, \pi)^{2 n-6} .
$$

- Balanced trees on $n-1$ leaves: $\mathcal{B}_{n}=\bigsqcup_{\mathcal{T}} \mathcal{A}_{\mathcal{T}}$ with measure $\mathrm{d}^{2 n-6}{ }_{\alpha}$.

- Let \mathcal{T} be a labeled plane binary tree with $n-1$ leaves.
- It has $n-3$ cubic vertices. Introduce set of admissible angles

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{1}, \ldots, \alpha_{2 n-6}\right): \text { sum of opposing angles }>\pi\right\} \subset(0, \pi)^{2 n-6} .
$$

- Balanced trees on $n-1$ leaves: $\mathcal{B}_{n}=\bigsqcup_{\mathcal{T}} \mathcal{A}_{\mathcal{T}}$ with measure $\mathrm{d}^{2 n-6}{ }_{\alpha}$.

Theorem (TB)

This is an isomorphism $\left(\mathcal{M}_{0, n}, \mu_{n}\right) \longrightarrow\left(\mathcal{B}_{n}, \mathrm{~d}^{2 n-6} \alpha\right)$ of measure spaces.

- Let \mathcal{T} be a labeled plane binary tree with $n-1$ leaves.
- It has $n-3$ cubic vertices. Introduce set of admissible angles

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{1}, \ldots, \alpha_{2 n-6}\right): \text { sum of opposing angles }>\pi\right\} \subset(0, \pi)^{2 n-6} .
$$

- Balanced trees on $n-1$ leaves: $\mathcal{B}_{n}=\bigsqcup_{\mathcal{T}} \mathcal{A}_{\mathcal{T}}$ with measure $\mathrm{d}^{2 n-6}{ }_{\alpha}$.

Theorem (TB)

This is an isomorphism $\left(\mathcal{M}_{0, n}, \mu_{n}\right) \longrightarrow\left(\mathcal{B}_{n}, \mathrm{~d}^{2 n-6} \alpha\right)$ of measure spaces.

- Corollary: Weil-Petersson volume $V_{n}:=\int_{\mathcal{M}_{0, n}} \mu_{n}=\sum_{\mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}} \mathrm{d}^{2 n-6} \alpha$.

- Let \mathcal{T} be a labeled plane binary tree with $n-1$ leaves.
- It has $n-3$ cubic vertices. Introduce set of admissible angles

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{1}, \ldots, \alpha_{2 n-6}\right): \text { sum of opposing angles }>\pi\right\} \subset(0, \pi)^{2 n-6} .
$$

- Balanced trees on $n-1$ leaves: $\mathcal{B}_{n}=\bigsqcup_{\mathcal{T}} \mathcal{A}_{\mathcal{T}}$ with measure $\mathrm{d}^{2 n-6}{ }_{\alpha}$.

Theorem (TB)

This is an isomorphism $\left(\mathcal{M}_{0, n}, \mu_{n}\right) \longrightarrow\left(\mathcal{B}_{n}, \mathrm{~d}^{2 n-6} \alpha\right)$ of measure spaces.

- Corollary: Weil-Petersson volume $V_{n}:=\int_{\mathcal{M}_{0, n}} \mu_{n}=\sum_{\mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}} \mathrm{d}^{2 n-6} \alpha$.
- Corollary: random balanced tree \longleftrightarrow random Riemann surface.

Why Lebesgue measure $\left(\mathrm{d}^{2 n-6} \alpha\right)$ on angles?

- Bijection:
$\left\{\begin{array}{c}\text { ideal triangles with horocycles } \\ \text { that admit equidistant point }\end{array}\right\} \leftrightarrow\{$ Euclidean triangles $\}$
preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]

Why Lebesgue measure $\left(\mathrm{d}^{2 n-6} \alpha\right)$ on angles?

- Bijection:
$\left\{\begin{array}{c}\text { ideal triangles with horocycles } \\ \text { that admit equidistant point }\end{array}\right\} \leftrightarrow\{$ Euclidean triangles $\}$
preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]

Why Lebesgue measure $\left(\mathrm{d}^{2 n-6} \alpha\right)$ on angles?

- Bijection:
$\left\{\begin{array}{c}\text { ideal triangles with horocycles } \\ \text { that admit equidistant point }\end{array}\right\} \leftrightarrow\{$ Euclidean triangles $\}$
preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]

Why Lebesgue measure $\left(\mathrm{d}^{2 n-6} \alpha\right)$ on angles?

- Bijection:
$\left\{\begin{array}{c}\text { ideal triangles with horocycles } \\ \text { that admit equidistant point }\end{array}\right\} \leftrightarrow\{$ Euclidean triangles $\}$
preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]

Why Lebesgue measure $\left(\mathrm{d}^{2 n-6} \alpha\right)$ on angles?

- Bijection:
$\left\{\begin{array}{c}\text { ideal triangles with horocycles } \\ \text { that admit equidistant point }\end{array}\right\} \leftrightarrow\{$ Euclidean triangles $\}$
preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]
- The Weil-Petersson 2-form is $\omega=-2 \sum_{\text {corners }} \mathrm{d} \log \lambda_{i} \wedge \mathrm{~d} \log \lambda_{j}$ [Penner, '92]

Why Lebesgue measure $\left(\mathrm{d}^{2 n-6} \alpha\right)$ on angles?

- Bijection:
$\left\{\begin{array}{c}\text { ideal triangles with horocycles } \\ \text { that admit equidistant point }\end{array}\right\} \leftrightarrow\{$ Euclidean triangles $\}$
preserving angles between bisectors. [Penner, '95], [Bobenko, Pinkall,
Springborn, '10]
- The Weil-Petersson 2-form is $\omega=-2 \sum_{\text {corners }} \mathrm{d} \log \lambda_{i} \wedge \mathrm{~d} \log \lambda_{j}$ [Penner, '92]
- Exercise using sine rule: $\mu_{n}=\frac{\omega^{n-3}}{(n-3)!}=\ldots=\mathrm{d}^{2 n-6} \alpha$.

- $\mathcal{M}_{0, n} \longleftrightarrow$ \{treelike gluings of $n-3$ Eucl. triangles $\} /$ scaling

$-\mathcal{M}_{0, n} \longleftrightarrow$ \{treelike gluings of $n-3$ Eucl. triangles $\} /$ scaling

- $\mathcal{M}_{0, n} \longleftrightarrow$ \{treelike gluings of $n-3$ Eucl. triangles $\} /$ scaling

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

- Generating function $F(\theta)=F(x ; \theta), \theta \in[0, \pi]$, s.t. $F(0)=\mathcal{Z}(x)$ and

$$
F(\theta)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} \sum_{\text {labeled } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha
$$

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

- Generating function $F(\theta)=F(x ; \theta), \theta \in[0, \pi]$, s.t. $F(0)=\mathcal{Z}(x)$ and

$$
F(\theta)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} \sum_{\text {labeled } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha=\sum_{n \geq 3} x^{n-2} \sum_{\text {rooted } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha
$$

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

- Generating function $F(\theta)=F(x ; \theta), \theta \in[0, \pi]$, s.t. $F(0)=\mathcal{Z}(x)$ and

$$
F(\theta)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} \sum_{\text {labeled } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}, \alpha_{1}>\theta}} \mathrm{d}^{2 n-6} \alpha=\sum_{n \geq 3} x^{n-2} \sum_{\text {rooted } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha
$$

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

- Generating function $F(\theta)=F(x ; \theta), \theta \in[0, \pi]$, s.t. $F(0)=\mathcal{Z}(x)$ and

$$
F(\theta)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} \sum_{\text {labeled } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha=\sum_{n \geq 3} x^{n-2} \sum_{\text {rooted } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha
$$

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

- Generating function $F(\theta)=F(x ; \theta), \theta \in[0, \pi]$, s.t. $F(0)=\mathcal{Z}(x)$ and

$$
F(\theta)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} \sum_{\text {abeled } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha=\sum_{n \geq 3} x^{n-2} \sum_{\text {rooted } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha
$$

- General solution: $F(\theta)=\frac{\sqrt{F(0)}}{\theta} J_{1}(2 \theta \sqrt{F(0)})$.

Reproducing Weil-Petersson volumes

Zograf's formula: $\quad \mathcal{Z}(x)=\sum_{n \geq 3} V_{n} \frac{x^{n-2}}{(n-2)!}, \quad \frac{\sqrt{\mathcal{Z}(x)}}{\pi} J_{1}(2 \pi \sqrt{\mathcal{Z}(x)}) \stackrel{?}{=} x$

- Generating function $F(\theta)=F(x ; \theta), \theta \in[0, \pi]$, s.t. $F(0)=\mathcal{Z}(x)$ and

$$
F(\theta)=\sum_{n \geq 3} \frac{x^{n-2}}{(n-2)!} \sum_{\text {abeled } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha=\sum_{n \geq 3} x^{n-2} \sum_{\text {rooted } \mathcal{T}} \int_{\mathcal{A}_{\mathcal{T}}, \alpha_{1}>\theta} \mathrm{d}^{2 n-6} \alpha
$$

- General solution: $F(\theta)=\frac{\sqrt{F(0)}}{\theta} J_{1}(2 \theta \sqrt{F(0)})$.
- $F(0)=\mathcal{Z}(x), F(\pi)=x \quad \Longrightarrow \quad$ Zograf's formula!
- Statistics in grand-canonical ensemble with three marked cusps.

- Statistics in grand-canonical ensemble with three marked cusps.

- Statistics in grand-canonical ensemble with three marked cusps.
- Angles along blue path are naturally encoded in process $\left(\theta_{t}\right)$.

- Statistics in grand-canonical ensemble with three marked cusps.
- Angles along blue path are naturally encoded in process $\left(\theta_{t}\right)$.

- Statistics in grand-canonical ensemble with three marked cusps.
- Angles along blue path are naturally encoded in process $\left(\theta_{t}\right)$.

- Statistics in grand-canonical ensemble with three marked cusps.
- Angles along blue path are naturally encoded in process $\left(\theta_{t}\right)$.

- Statistics in grand-canonical ensemble with three marked cusps.
- Angles along blue path are naturally encoded in process $\left(\theta_{t}\right)$.

Proposition

In the grand-canonical ensemble with $x \in\left(0, x_{*}\right)$,

- $\left(\theta_{t}\right)$ has the law of a Markov process with slope 1 and downward jumps $\theta \rightarrow \beta$ at rate $2 F(\theta-\beta) \frac{F_{\cdot}(\beta)}{F_{\bullet}(\theta)}$;

$$
F(\theta)=\frac{\sqrt{\mathcal{Z}(x)}}{\theta} J_{1}(2 \theta \sqrt{\mathcal{Z}(x)}),
$$

$$
F_{\bullet}(\theta)=\frac{1}{\mathcal{Z}^{\prime}(x)} \partial_{x} F(\theta)=J_{0}(2 \theta \sqrt{\mathcal{Z}(x)})
$$

- Statistics in grand-canonical ensemble with three marked cusps.
- Angles along blue path are naturally encoded in process $\left(\theta_{t}\right)$.

Proposition

In the grand-canonical ensemble with $x \in\left(0, x_{*}\right)$,

- $\left(\theta_{t}\right)$ has the law of a Markov process with slope 1 and downward jumps $\theta \rightarrow \beta$ at rate $2 F(\theta-\beta) \frac{F_{\cdot}(\beta)}{F_{\bullet}(\theta)}$;
- the distance difference is $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$.

$$
F(\theta)=\frac{\sqrt{\mathcal{Z}(x)}}{\theta} J_{1}(2 \theta \sqrt{\mathcal{Z}(x)}), \quad F_{\bullet}(\theta)=\frac{1}{\mathcal{Z}^{\prime}(x)} \partial_{x} F(\theta)=J_{0}(2 \theta \sqrt{\mathcal{Z}(x)})
$$

Proposition

Under the size-biased Boltzmann distribution with $x \in\left(0, x_{*}\right)$,

- $\left(\theta_{t}\right)$ has the law of a Markov process with slope 1 and downward jumps $\theta \rightarrow \beta$ at rate $2 F(\theta-\beta) \frac{F_{\cdot}(\beta)}{F_{0}(\theta)}$;
- the distance difference is $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$.
- Corollary:
$\operatorname{Var}_{x}\left[D_{01}^{\epsilon}-D_{02}^{\epsilon}\right]=-\frac{2}{F_{\bullet}(\pi)} \int_{0}^{\pi} \mathrm{d} \alpha \int_{0}^{\alpha} \mathrm{d} \beta \cot \alpha \cot \beta F_{\bullet}(\pi-\alpha) F_{\bullet}(\alpha-\beta) F_{\bullet}(\beta)$

Proposition

Under the size-biased Boltzmann distribution with $x \in\left(0, x_{*}\right)$,

- $\left(\theta_{t}\right)$ has the law of a Markov process with slope 1 and downward jumps $\theta \rightarrow \beta$ at rate $2 F(\theta-\beta) \frac{F_{0}(\beta)}{F_{0}(\theta)}$;
- the distance difference is $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$.
- Corollary:
$\operatorname{Var}_{x}\left[D_{01}^{\epsilon}-D_{02}^{\epsilon}\right]=-\frac{2}{F_{\bullet}(\pi)} \int_{0}^{\pi} \mathrm{d} \alpha \int_{0}^{\alpha} \mathrm{d} \beta \cot \alpha \cot \beta F_{\bullet}(\pi-\alpha) F_{\bullet}(\alpha-\beta) F_{\bullet}(\beta)$
- Singularity analysis:

$$
\operatorname{Var}_{n}\left[D_{01}^{\epsilon}-D_{02}^{\epsilon}\right]=\frac{\left[x^{n}\right] F_{\bullet}(\pi) \operatorname{Var}^{\times}\left[D_{01}^{\epsilon}-D_{02}^{\epsilon}\right]}{\left[x^{n}\right] F_{\bullet}(\pi)} \stackrel{n \rightarrow \infty}{\sim} 3.429137077 \ldots \cdot \sqrt{n}
$$

- Where does $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$ come from?

- Where does $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$ come from?

$$
\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t=\sum_{i=1}^{k} \log \frac{\sin \alpha_{i}}{\sin \beta_{i}}
$$

- Where does $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$ come from?

$$
\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t=\sum_{i=1}^{k} \log \frac{\sin \alpha_{i}}{\sin \beta_{i}}
$$

- Where does $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$ come from?

$$
\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t=\sum_{i=1}^{k} \log \frac{\sin \alpha_{i}}{\sin \beta_{i}}=\sum_{i=1}^{k} \log \frac{\lambda_{i-1}}{\lambda_{i}}=\log \frac{\lambda_{0}}{\lambda_{k}}
$$

- Where does $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$ come from?

$$
\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t=\sum_{i=1}^{k} \log \frac{\sin \alpha_{i}}{\sin \beta_{i}}=\sum_{i=1}^{k} \log \frac{\lambda_{i-1}}{\lambda_{i}}=\log \frac{\lambda_{0}}{\lambda_{k}}=\frac{\ell_{0}-\ell_{k}}{2}
$$

- Where does $D_{01}^{\epsilon}-D_{02}^{\epsilon}=\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t$ come from?

$$
\int_{0}^{\tau} \cot \theta_{t} \mathrm{~d} t=\sum_{i=1}^{k} \log \frac{\sin \alpha_{i}}{\sin \beta_{i}}=\sum_{i=1}^{k} \log \frac{\lambda_{i-1}}{\lambda_{i}}=\log \frac{\lambda_{0}}{\lambda_{k}}=\frac{\ell_{0}-\ell_{k}}{2}=D_{01}^{\epsilon}-D_{02}^{\epsilon}
$$

Importance for $(2+1)$-dimensional (quantum) gravity?

- Einstein eqs in $2+1 \mathrm{D}$ with $\Lambda=0 \Longrightarrow$ locally Minkowski space.

Importance for $(2+1)$-dimensional (quantum) gravity?

- Einstein eqs in $2+1 \mathrm{D}$ with $\Lambda=0 \Longrightarrow$ locally Minkowski space.
- Non-trivial topology $S \times \mathbb{R}_{+}$: solutions determined by $\operatorname{ISO}(2,1)$-holonomies along cycles of S
Phase space: $\quad \tilde{\mathcal{P}}_{2+1}=\operatorname{Hom}\left(\pi_{1}(S), \operatorname{ISO}(2,1)\right) / \operatorname{ISO}(2,1), \quad \mathcal{P}_{2+1}=\tilde{\mathcal{P}}_{2+1} / \mathrm{MCG}$.

Importance for $(2+1)$-dimensional (quantum) gravity?

- Einstein eqs in $2+1 \mathrm{D}$ with $\Lambda=0 \Longrightarrow$ locally Minkowski space.
- Non-trivial topology $S \times \mathbb{R}_{+}$: solutions determined by $\operatorname{ISO}(2,1)$-holonomies along cycles of S
Phase space: $\quad \tilde{\mathcal{P}}_{2+1}=\operatorname{Hom}\left(\pi_{1}(S), \operatorname{ISO}(2,1)\right) / \operatorname{ISO}(2,1), \quad \mathcal{P}_{2+1}=\tilde{\mathcal{P}}_{2+1} / \mathrm{MCG}$.
- Relation to Riemann surfaces: $\operatorname{ISO}(2,1) \equiv T \operatorname{PSL}(2, \mathbb{R})$
$\tilde{\mathcal{P}}_{2+1}=T \mathcal{T}_{g}, \quad$ Teichmüller space $\mathcal{T}_{g}=\operatorname{Hom}\left(\pi_{1}(S), \operatorname{PSL}(2, \mathbb{R})\right) / \operatorname{PSL}(2, \mathbb{R})$

Importance for $(2+1)$-dimensional (quantum) gravity?

- Einstein eqs in $2+1 \mathrm{D}$ with $\Lambda=0 \Longrightarrow$ locally Minkowski space.
- Non-trivial topology $S \times \mathbb{R}_{+}$: solutions determined by $\operatorname{ISO}(2,1)$-holonomies along cycles of S
Phase space: $\quad \tilde{\mathcal{P}}_{2+1}=\operatorname{Hom}\left(\pi_{1}(S), \operatorname{ISO}(2,1)\right) / \operatorname{ISO}(2,1), \quad \mathcal{P}_{2+1}=\tilde{\mathcal{P}}_{2+1} / \mathrm{MCG}$.
- Relation to Riemann surfaces: $\operatorname{ISO}(2,1) \equiv T \operatorname{PSL}(2, \mathbb{R})$
$\tilde{\mathcal{P}}_{2+1}=T \mathcal{T}_{g}, \quad$ Teichmüller space $\mathcal{T}_{g}=\operatorname{Hom}\left(\pi_{1}(S), \operatorname{PSL}(2, \mathbb{R})\right) / \operatorname{PSL}(2, \mathbb{R})$

$$
\mathcal{P}_{2+1}=T \mathcal{T}_{g} / \mathrm{MCG}=T \mathcal{M}_{g}
$$

The Weil-Petersson symplectic structure on \mathcal{M}_{g} induces correct Poisson bracket on \mathcal{P}_{2+1}

Importance for $(2+1)$-dimensional (quantum) gravity?

- $S=n$-punctured sphere $\longrightarrow S \times \mathbb{R}_{+}=$universe with n massless particles

Importance for $(2+1)$-dimensional (quantum) gravity?

- $S=n$-punctured sphere $\longrightarrow S \times \mathbb{R}_{+}=$universe with n massless particles
- $\mathcal{P}_{n} \cong T \mathcal{M}_{0, n} \cong T\{$ balanced trees with $n-2$ leaves $\}$.

Importance for $(2+1)$-dimensional (quantum) gravity?

- $S=n$-punctured sphere $\longrightarrow S \times \mathbb{R}_{+}=$universe with n massless particles
- $\mathcal{P}_{n} \cong T \mathcal{M}_{0, n} \cong T$ \{balanced trees with $n-2$ leaves\}.
- Natural Poisson structure on T \{balanced trees with $n-2$ leaves\}!

Importance for $(2+1)$-dimensional (quantum) gravity?

- $S=n$-punctured sphere $\longrightarrow S \times \mathbb{R}_{+}=$universe with n massless particles
- $\mathcal{P}_{n} \cong T \mathcal{M}_{0, n} \cong T$ \{balanced trees with $n-2$ leaves $\}$.
- Natural Poisson structure on T \{balanced trees with $n-2$ leaves\}!
- Quantizing $2+1 \mathrm{D}$ gravity \longleftrightarrow quantizing balanced trees.

Conclusion

- The bijection between genus-0 punctured Riemann surfaces and balanced trees provides
- a convenient way to compute Weil-Petersson volumes;
- detailed information on global distance statistics;
- a potential avenue to tree bijections in higher dimensions;
- efficient simulation of random Riemann surfaces via Boltzmann sampling of balanced trees!

