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Boltzmann planar maps )/ 3
g

» Let m € M) be a bipartite rooted planar map with root face
degree 2/.

» Given a sequence q = (g1, @2, .. .) in [0,00), define weight of m to
be the product wq(m) = [ Gaeg(r)/2 OVer non-root faces f.

> q admissible iff W) (q) := 3,y wa(m) < 0o. Then wy gives
rise to probability measure on M(): the q-Boltzmann planar map
(with boundary of length 2/).

» q critical iff admissible and increasing any gy leads to W()(q) = cc.

» Special case: can view any rooted (bip.) planar map as having
boundary of length 2.

» Dual planar map denoted by m'.




Infinite Boltzmann planar maps %
/

» Local limit: there exists a unique random infinite map, the q-/BPM,
whose neighborhoods of the root are distributed as those of a
g-BPM conditioned to have large number of vertices.

[Bjornberg, Stefansson, '14] [Stephenson, '14]
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Non-generic Gx ~ CkK"1k=2 a€ (%v g)

Simple random
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Vol (Ball,) ~rt
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= (Gromov-Hausdorff) [Le Gall, Miermont]
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1| Vol(Ball')
=
Scaling limit
o (Gromov-liusdorff)
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2| Scaling limit Probably Brownian map
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Submaps and peeling processes

» Two convenient representations of a submap:

> Connected subset ¢° of dual edges intersecting root.
> As a planar map ¢ with holes.
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Peeling process of q-IBPM (non-branching)

» Markov property: unexplored region after i steps is distributed as a
g-IBPM with boundary length equal to perimeter 2P;.
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Peeling process of q-IBPM (non-branching) %

» Markov property: unexplored region after i steps is distributed as a
g-IBPM with boundary length equal to perimeter 2P;.
» In particular, (P;); is Markov and independent of peel algorithm A.

oo 2/
Using Wlsll) = Z Wq(m) NZ (:/\/—'yhT(/),_Q—I7 hT(/) — 2/2—2/< /)
N vertices v(k)

hT(P,' + k) qk+1lﬁlik k>0
FPia =P k)= 5my Lawene k<o
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> defines probability measure on Z
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2W (k=D g—k | <0

> defines probability measure on Z

> Let (W;); be random walk with
law v.




l/(k) _ qk+1“<‘_k k 2 0
2wk D=k k<0 :

> defines probability measure on Z '

> Let (W;); be random walk with N e

law v.
Proposition (TB, '15)
> (P); g (W,T),, i.e. (W;); started at 1 and conditioned to stay
positive.

> (W'.T),- is h-transform of (W;);: IP’(W,TH

_ WT_’_k) (VVITJ'_k)

oo

S AT+ k)u(k) 2 KT

k=—o00

A (W)
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l/(k) _ qk+1"€_k k>0 ! =
2wk gk k<0 :

» defines probability measure on Z '
» Let (W;); be random walk with TN e

law v.

Proposition (TB, '15)

> (P;); @ (W,.T),, i.e. (W;); started at 1 and conditioned to stay
positive.

> (W]); is h-transform of (W;);: ]P(W,TH = W +k) = # v(k).

» q — v defines a bijection

{q critical} +— {y : i W (1 + k)w(k) 2 m(/)}

k=—o0
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Dual graph distance

> Ballf(m.) is the submap of m.. of faces at dj, < r. @i(mw) is
its hull.

» Volume |ﬁi(mm)| is # internal vertices; half-perimeter
|9Ball} ().

» Can be obtained from peeling by layers. Each peeling step increases
average distance by =~ 1/(2FP;).
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First passage percolation

» Equip each dual edge with i.i.d. Exp(1) random length, and view
m!_ as a geodesic metric space.
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» Equip each dual edge with i.i.d. Exp(1) random length, and view
m!_ as a geodesic metric space.

> Ballipp(moo) determined by set of dual edges that are fully explored
. S5t .
after time 7; Ball,”"(m,.) its hull.
. . =
» If0 =79 <7 <--- are times at which Ball,""(ms) changes, then:
> (ﬂi‘?p(mw))' is peeling process with uniform random A.
!

> Tipl— Ti @ Exp(2P;) (with mean 1/(2P;)).




First passage percolation
» Equip each dual edge with i.i.d. Exp(1) random length, and view
m!_ as a geodesic metric space.
> BaIIprp(moo) determined by set of dual edges that are fully explored
after time 7; Ball." (mac) its hull.
» If0=179 <7 <--- are times at which mipp(moo) changes, then:
> (ﬂi‘?p(mo@))i is peeling process with uniform random A.

> Tipl— Ti @ Exp(2P;) (with mean 1/(2P;)).
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Back of the envelope: does 77 — 00? %

S = 1
Ere =Y E[Exp(2P)] =Y Ei l ] _
; P 2 2wt A

i=0

E7o, = oo iff (W;) is recurrent on Z! )
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| Simple random Recurrent Recurrent
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Non-generic Gy ~ ckK"1k=2 ac€ (%v %)

1 _
~ cos(ﬂa)‘kl ?

Vol (Ball,) ~ r ~ r2a-l
-
< Scaling limit Brownian map Stable maps
; (Gromov-Hausdorff) [Le Gall, Miermont] [Le Gall, Miermont]
&1 Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" a€ (32,2
=Tl
=| Vol (Bally) ~ r
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Non-generic Gx ~ CkK"1k=2 a€ (%, %)

Vol (Ball,) ~ r ~ r2a-l
—
< Scaling limit Brownian map Stable maps
; (Gromov-Hausdorff) [Le Gall, Miermont] [Le Gall, Miermont]
&1 Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefénsson]
"Dilute" a€ (2 3) "Dense" a€ (32,2
=Tl
=| Vol (Bally) ~ r
2| Scaling limit Probably Brownian map
O (Gromov-Hausdorff) Triangulations: [Curien, Le Gall]
Simple random Recurrent Transient
walk
Too o0 a.s. o0 a.s. Finite a.s.

Proposition (TB, Curien, '16)

Any infinite graph with ET., < co is transient.




Regular critical 9 Non-generic  qx ~ ckk"1k=? ac€ (%, %)
Vol(Ball,) ~rt ~ p2a-l
—l
< Scaling limit Brownian map Stable maps
; (Gromov-Hausdorff) [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefénsson]
"Dilute" a€ (2 3) "Dense" a€ (32,2
—t 4
—| Vol(Ball ~r ~ exp(r
2| Scaling limit Probably Brownian map
O (Gwmow&usdorff) Triangulations: [Curien, Le Gall] ><
Simple random Recurrent Transient
wa
Too o0 a.s. o0 a.s. Finite a.s.

Theorem (TB, Curien, '16)

In the dense case a € (2,2) there exists ¢, > 0 such that

_ Tl (p) - (p)
rlog (|0Ball|) 25 c,,  rlog (Ball]) —2 (a— Y)e,

— 00
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Scaling limit in dilute case
> As v(k) k2o |k|~2 we have
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» Since (P;) = @ (W), we have
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Scaling limit in dilute case
> As v(k) k2o |k|~2 we have
convergence to a (a — 1)-stable

process (S;) with P(5; < 0) = 2(31_1).”
) I

> Since (P;) = (W), we have

[Caravenna, Chaumont]

)

P d
(“) D b (D)o
t>0

na—t n—o00

Theorem (TB, Curien, '16)
The peeling process on a dilute q-IBPM satisfies

P 1% (d)
(Slad, L) L2 (o ST.ve- 2)
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> As v(k) k2o |k|~2 we have
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» Since (P;) = @ (W), we have | 5t

[Caravenna, Chaumont]

Z
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Theorem (TB, Curien, '16)
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Scaling limit in dilute case

> As v(k) k2o |k|~2 we have
convergence to a (a — 1)-stable t du
process (S;) with P(5; < 0) = 2(31_1).” Jo S5
B 1
» Since (P;) = @ (W), we have | 5t

[Caravenna, Chaumont]

Z

P d
(“) O o (S)eso
t>0

na—t n—o00

Theorem (TB, Curien, '16)
The breadth-first peeling process on a dilute q-IBPM satisfies

Pintl Vintl I (d) tdu
( Ltj 9 alllt/JZ 9 lha_tg ) <Pq : StTv Vq : Zta hcl/ _T
na—1 n a1 na—1 n—oo 0 SU t>0

=il
|0Ball| | (moo)| |Ba//[ntj (M)} () (

1 a—1/2
na—2 =t n—o00

+
Pq Set/hq Vg - Z«%/hq>
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Non-generic Gx ~ ckK"1k=? a€ (%v %)
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g Simple random Recurrent Recurrent
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11— 3 5
Non-generic Gx ~ CkK"1k=2 a€ (Ev 5)

Vol(Ball,) ~ ~ pRa-1
-
< Scaling limit Brownian map Stable maps
; (Gromov-Hausdorff) [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" ac€ (3,2)
—t a—1/2
| Vol (Bally) ~ rt ~ a2 ~ exp(r)
<C
2| Scaling limit Probably Brownian map 2 "
O (Gwmow&usdorff) Triangulations: [Curien, Le Gall] ? "Stable spheres 1 ><
Simple random Recurrent Transient
wa
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11— 3 5
Non-generic Gx ~ c kK"1k=2 a € (5, 5)

Vol(Ball,) ~ A ~ p2a-1
—
< Cealing limit D H Ciahl
=t p(t) p(t) = P(SRW at origin after t steps)
of
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Non-generic  Qk ~ ckk-1k=2 ae (%v %)

Vol(Ball,)

Cealing limit

~ ,,23—1

Siahl

[ PRIMAL

DIIAIL

fz‘_P(t)

p(t) = P(SRW at origin after t steps)
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11— 3 5
Non-generic Gx ~ CkK"1k=2 a€ (Ev 5)

walk

Vol(Ball,) ~rt ~ p2a-l
-
< Scaling limit Brownian map Stable maps
; (Gromov-Hausdorff) [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent

walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" a€ (32,2
—t a—1/2

| Vol (Bally) ~ rt ~ a2 ~ exp(r)
<C
2| Scaling limit Probably Brownian map 2 "
O (Gwmow&usdorff) Triangulations: [Curien, Le Gall] ? "Stable spheres 1 ><

Simple random Recurrent ? Transient ? Transient
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» Consider Balll(m) of a (finite) g-BPM m with boundary length 2/. w
> Let L(r) be sequence of half-degrees of the holes of Balll(m).
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Theorem (Bertoin, TB, Curien, Kortchemski, '16)

If q is dilute critical, a € (2, 3), then (L(Uaf'”)) & (cx§a>)t>é

t>0 /=00
where x&a’ is a self-similar growth-fragmentation process, taking values in

o0
£i+1/2 = {(x;);eN XX > e > O’le_aﬂ/z - OO} _
i=1
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» There exists a self-similar Markov process (X;)
closely related to (5;;) describing perimeter of
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distance may possess scaling limits with fractal dimensions
a;—_12£ >4, different from Brownian map and stable maps.

» The peeling process is tool of choice to study these distances and its
scaling limits support the belief.

» Next step: understand structure of geodesics, which prefer to merge
in high-degree vertices.

Thanks for your attention!



