Probability seminar, UMPA, Lyon, 28-04-2016 Geometry of random planar maps with high degrees Timothy Budd

Based mainly on arXiv:1602.01328 with Nicolas Curien. Niels Bohr Institute, University of Copenhagen budd@nbi.dk, http://www.nbi.dk/~budd/

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions

- Planar maps
- (Infinite) Boltzmann planar maps
- Peeling process
- Dual of IBPM with large faces
- Volume growth of balls of increasing radius
- Recurrence/transience
- Growth-fragmentation processes

Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2l.

Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2l.

Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2l.

- Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over non-root faces f.

- Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over non-root faces f.
- q admissible iff W^(I)(q) := ∑_{m∈M^(I)} w_q(m) < ∞. Then w_q gives
 rise to probability measure on M^(I): the q-Boltzmann planar map
 (with boundary of length 2I).
- **q** critical iff admissible and increasing any q_k leads to $W^{(l)}(\mathbf{q}) = \infty$.

- Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over non-root faces f.
- q admissible iff W^(I)(q) := ∑_{m∈M^(I)} w_q(m) < ∞. Then w_q gives
 rise to probability measure on M^(I): the q-Boltzmann planar map
 (with boundary of length 2I).
- **q** critical iff admissible and increasing any q_k leads to $W^{(l)}(\mathbf{q}) = \infty$.
- Special case: can view any rooted (bip.) planar map as having boundary of length 2.

- Let m ∈ M^(I) be a bipartite rooted planar map with root face degree 2I.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over non-root faces f.
- q admissible iff W^(I)(q) := ∑_{m∈M^(I)} w_q(m) < ∞. Then w_q gives
 rise to probability measure on M^(I): the q-Boltzmann planar map
 (with boundary of length 2I).
- **q** critical iff admissible and increasing any q_k leads to $W^{(l)}(\mathbf{q}) = \infty$.
- Special case: can view any rooted (bip.) planar map as having boundary of length 2.

- Let m ∈ M^(I) be a bipartite rooted planar map with root face degree 2I.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over non-root faces f.
- ▶ q admissible iff W^(I)(q) := ∑_{m∈M^(I)} w_q(m) < ∞. Then w_q gives rise to probability measure on M^(I): the q-Boltzmann planar map (with boundary of length 2I).
- **q** critical iff admissible and increasing any q_k leads to $W^{(l)}(\mathbf{q}) = \infty$.
- Special case: can view any rooted (bip.) planar map as having boundary of length 2.
- Dual planar map denoted by m[†].

Infinite Boltzmann planar maps

 Local limit: there exists a unique random infinite map, the q-IBPM, whose neighborhoods of the root are distributed as those of a q-BPM conditioned to have large number of vertices.

[Björnberg, Stefánsson, '14] [Stephenson, '14]

		Regular critical ${f q}$	Non-generic	$q_k \sim c \kappa^{k-1} k^{-a}$	$a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
IMAL	$Vol(\overline{Ball}_r)$	$\sim r^4$			
	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]			
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]			
DUAL	$Vol(Ball_r^{\dagger})$				
	Scaling limit (Gromov-Hausdorff)				
	Simple random walk				

		Regular critical ${f q}$	Non-generic	$q_k \sim c \kappa^{k-1} k^{-a}$	$a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
PRIMAL	$Vol(\overline{Ball}_r)$	$\sim r^4$			
	Scaling limit (Gromov-Hausdorff) Simple random walk	Brownian map [Le Gall, Miermont] Recurrent [Gurel-Gurevich, Nachmias]			
۲	$Vol(\overline{Ball}_r^{\dagger})$	$\sim r^4$			
DUA	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]			
	Simple random walk	Recurrent			

		Regular critical ${f q}$	Non-generic $q_k \sim c \kappa^{k-1} k^{-a}$ $a \in \left(rac{3}{2}, rac{5}{2} ight)$
	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$
IMA	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]
٩L	$Vol(\overline{Ball}_r^{\dagger})$	$\sim r^4$	
DU	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]	
	Simple random walk	Recurrent	

		Regular critical ${f q}$	Non-generic $q_k \sim c \kappa^{k-1} k^{-a}$ $a \in \left(rac{3}{2}, rac{5}{2} ight)$
IMAL	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$
	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]
_	$Vol(\overline{Ball}_{r}^{\dagger})$	$\sim r^4$?
DUA	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]	?
	Simple random walk	Recurrent	?

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - ► As a planar map ¢ with holes.

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - ► As a planar map ¢ with holes.

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - ► As a planar map ¢ with holes.

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - ► As a planar map ¢ with holes.

- Two convenient representations of a *submap*:
 - Connected subset e° of dual edges intersecting root.
 - ► As a planar map ¢ with holes.

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence e₀ ⊂ e₁ ⊂ e₂ ⊂ ···, e_{i+1} is obtained from e_i by *peeling* an edge A(e_i).

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence e₀ ⊂ e₁ ⊂ e₂ ⊂ ···, e_{i+1} is obtained from e_i by *peeling* an edge A(e_i).

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence e₀ ⊂ e₁ ⊂ e₂ ⊂ ···, e_{i+1} is obtained from e_i by *peeling* an edge A(e_i).

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence e₀ ⊂ e₁ ⊂ e₂ ⊂ ···, e_{i+1} is obtained from e_i by *peeling* an edge A(e_i).

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \mathfrak{e}_2 \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_i by *peeling* an edge $\mathcal{A}(\mathfrak{e}_i)$.
- *Branching* vs. *non-branching* (immediately explore non- ∞ holes).

- Two convenient representations of a submap:
 - Connected subset e° of dual edges intersecting root.
 - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence e₀ ⊂ e₁ ⊂ e₂ ⊂ ···, e_{i+1} is obtained from e_i by *peeling* an edge A(e_i).
- Branching vs. non-branching (immediately explore non- ∞ holes).

э

э

・ロト ・ 一 ト ・ ヨ ト

э

・ロト ・ 一 ト ・ ヨ ト

э

・ロト ・ 一 ト ・ ヨ ト

・ロト ・ 一下・ ・ ヨト・

э

э

・ロト ・ 一下・ ・ ヨト・

・ロト ・ 一下・ ・ ヨト ・

э

Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i.

イロト イポト イヨト イヨト

- Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i.
- ▶ In particular, $(P_i)_i$ is Markov and independent of peel algorithm A.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i.
- ▶ In particular, $(P_i)_i$ is Markov and independent of peel algorithm A.

Using
$$W_N^{(l)} := \sum_{\substack{\text{maps }\mathfrak{m}\\N \text{ vertices}}} w_{\mathbf{q}}(\mathfrak{m}) \stackrel{N \to \infty}{\sim} C N^{-\gamma} h^{\uparrow}(l) \kappa^{-l}, \quad h^{\uparrow}(l) := 2l 2^{-2l} \binom{2l}{l}$$
$$\mathbb{P}(P_{i+1} = P_i + k) = \frac{h^{\uparrow}(P_i + k)}{h^{\uparrow}(P_i)} \begin{cases} q_{k+1} \kappa^{-k} & k \ge 0\\ 2W^{(-k-1)} \kappa^{-k} & k < 0 \end{cases}$$

- Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i.
- ▶ In particular, $(P_i)_i$ is Markov and independent of peel algorithm A.

Using
$$W_N^{(l)} := \sum_{\substack{\text{maps }\mathfrak{m}\\N \text{ vertices}}} w_{\mathbf{q}}(\mathfrak{m}) \xrightarrow{N \to \infty} C N^{-\gamma} h^{\uparrow}(l) \kappa^{-l}, \quad h^{\uparrow}(l) := 2l 2^{-2l} \binom{2l}{l}$$
$$\mathbb{P}(P_{i+1} = P_i + k) = \frac{h^{\uparrow}(P_i + k)}{h^{\uparrow}(P_i)} \overbrace{\begin{cases} q_{k+1} \kappa^{-k} & k \ge 0\\ 2W^{(-k-1)} \kappa^{-k} & k < 0 \end{cases}$$

$$u(k)=egin{cases} q_{k+1}\kappa^{-k}&k\geq 0\ 2W^{(-k-1)}\kappa^{-k}&k<0 \end{cases}$$

 \blacktriangleright defines probability measure on $\mathbb Z$

$$\nu(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0\\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- \blacktriangleright defines probability measure on $\mathbb Z$
- ▶ Let (W_i)_i be random walk with law ν.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\nu(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0\\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- \blacktriangleright defines probability measure on $\mathbb Z$
- ► Let (W_i)_i be random walk with law ν.

Proposition (TB, '15)

(P_i)_i ^(d) = (W[↑]_i)_i, i.e. (W_i)_i started at 1 and conditioned to stay positive.

•
$$(W_i^{\uparrow})_i$$
 is h-transform of $(W_i)_i$: $\mathbb{P}(W_{i+1}^{\uparrow} = W_i^{\uparrow} + k) = \frac{h^{\uparrow}(W_i^{\uparrow} + k)}{h^{\uparrow}(W_i^{\uparrow})}\nu(k)$.

$$\sum_{k=-\infty}^{\infty} h^{\uparrow}(l+k)\nu(k) \stackrel{l>0}{=} h^{\uparrow}(l)$$

$$\nu(k) = \begin{cases} q_{k+1} \kappa^{-k} & k \ge 0\\ 2W^{(-k-1)} \kappa^{-k} & k < 0 \end{cases}$$

- \blacktriangleright defines probability measure on $\mathbb Z$
- ► Let (W_i)_i be random walk with law ν.

Proposition (TB, '15)

- (P_i)_i ^(d) = (W[↑]_i)_i, i.e. (W_i)_i started at 1 and conditioned to stay positive.
- $(W_i^{\uparrow})_i$ is h-transform of $(W_i)_i$: $\mathbb{P}(W_{i+1}^{\uparrow} = W_i^{\uparrow} + k) = \frac{h^{\uparrow}(W_i^{\uparrow} + k)}{h^{\uparrow}(W_i^{\uparrow})}\nu(k)$.
- $\mathbf{q} \rightarrow \nu$ defines a bijection

$$\{\mathbf{q} \text{ critical}\} \longleftrightarrow \left\{ \nu : \sum_{k=-\infty}^{\infty} h^{\uparrow}(l+k)\nu(k) \stackrel{l>0}{=} h^{\uparrow}(l) \right\}$$

▶ Ball[†]_r(\mathfrak{m}_{∞}) is the submap of \mathfrak{m}_{∞} of faces at $d_{gr}^{\dagger} \leq r$. Ball[†]_r(\mathfrak{m}_{∞}) is its *hull*.

・ロト ・聞ト ・ヨト ・ヨト

- 2

▶ Ball[†]_r(\mathfrak{m}_{∞}) is the submap of \mathfrak{m}_{∞} of faces at $d_{gr}^{\dagger} \leq r$. Ball[†]_r(\mathfrak{m}_{∞}) is its *hull*.

≣ *•* ९२.०

▶ Ball[†]_r(\mathfrak{m}_{∞}) is the submap of \mathfrak{m}_{∞} of faces at $d_{gr}^{\dagger} \leq r$. Ball[†]_r(\mathfrak{m}_{∞}) is its *hull*.

・ロト ・聞ト ・ヨト ・ヨト

- Ball[†]_r(𝑘_∞) is the submap of 𝑘_∞ of faces at d[†]_{gr} ≤ r. Ball[†]_r(𝑘_∞) is its hull.
- ▶ Volume $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ is # internal vertices;

・ロト ・四ト ・ヨト ・ヨト

E 990

- ▶ Ball[†]_r(\mathfrak{m}_{∞}) is the submap of \mathfrak{m}_{∞} of faces at $d_{gr}^{\dagger} \leq r$. Ball[†]_r(\mathfrak{m}_{∞}) is its *hull*.
- ► Volume $|\overline{\text{Ball}}_{r}^{\dagger}(\mathfrak{m}_{\infty})|$ is # internal vertices; half-perimeter $|\partial \overline{\text{Ball}}_{r}^{\dagger}(\mathfrak{m}_{\infty})|$.

- ▶ Ball[†]_r(\mathfrak{m}_{∞}) is the submap of \mathfrak{m}_{∞} of faces at $d_{gr}^{\dagger} \leq r$. Ball[†]_r(\mathfrak{m}_{∞}) is its *hull*.
- ► Volume $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ is # internal vertices; half-perimeter $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$.
- Can be obtained from *peeling by layers*. Each peeling step increases average distance by ≈ 1/(2P_i).

- 日本 - 1 日本 - 1 日本 - 1 日本

• Equip each dual edge with i.i.d. Exp(1) random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.

- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball^{fpp}_τ(m_∞) determined by set of dual edges that are fully explored after time τ;

- \blacktriangleright Equip each dual edge with i.i.d. Exp(1) random length, and view $\mathfrak{m}^\dagger_\infty$ as a geodesic metric space.
- Ball^{fpp}_τ(m_∞) determined by set of dual edges that are fully explored after time τ;

- \blacktriangleright Equip each dual edge with i.i.d. Exp(1) random length, and view $\mathfrak{m}^\dagger_\infty$ as a geodesic metric space.
- Ball^{fpp}_τ(𝑘_∞) determined by set of dual edges that are fully explored after time τ; Ball^{fpp}_τ(𝑘_∞) its hull.

- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball^{fpp}_τ(m_∞) determined by set of dual edges that are fully explored after time τ; Ball^{fpp}_τ(m_∞) its hull.
- If 0 = τ₀ < τ₁ < ··· are times at which Ball^{fpp}_τ(m_∞) changes, then:
 (Ball^{fpp}_{τi}(m_∞))_i is peeling process with uniform random A.
 τ_{i+1} τ_i ^(d) Exp(2P_i) (with mean 1/(2P_i)).

- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball^{fpp}_τ(m_∞) determined by set of dual edges that are fully explored after time τ; Ball^{fpp}_τ(m_∞) its hull.
- If 0 = τ₀ < τ₁ < ··· are times at which Ball^{fpp}_τ(m_∞) changes, then:
 (Ball^{fpp}_{τi}(m_∞))_i is peeling process with uniform random A.
 τ_{i+1} τ_i ^(d) Exp(2P_i) (with mean 1/(2P_i)).

Back of the envelope: does $\tau_i \rightarrow \infty$?

$$\mathbb{E}\tau_{\infty} = \sum_{i=0}^{\infty} \mathbb{E}\left[\mathsf{Exp}(2P_{i})\right] = \sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2W_{i}^{\uparrow}}\right] = \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2k} \mathbb{P}\left[\overset{w}{\downarrow}\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back of the envelope: does $\tau_i \rightarrow \infty$?

$$\mathbb{E}\tau_{\infty} = \sum_{i=0}^{\infty} \mathbb{E}\left[\mathsf{Exp}(2P_{i})\right] = \sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2W_{i}^{\uparrow}}\right] = \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2k} \mathbb{P}\left[\bigvee_{i=1}^{w} \frac{1}{2k}\right]$$
$$= \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2k} \mathbb{P}\left[\bigvee_{i=1}^{w} \frac{1}{2k}\right]$$

A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back of the envelope: does $\tau_i \rightarrow \infty$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 40

Back of the envelope: does $\tau_i \rightarrow \infty$?

Back of the envelope: does $\tau_i \rightarrow \infty$?

Back of the envelope: does $\tau_i \rightarrow \infty$?

 $\mathbb{E}\tau_{\infty} = \infty$ iff (W_i) is recurrent on \mathbb{Z} !

		Regular critical ${f q}$	Non-generic $q_k \sim c \kappa^{k-1} k^{-a}$ $a \in \left(rac{3}{2}, rac{5}{2} ight)$	
	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
IMA	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont] Recurrent [Björnberg, Stefánsson]	
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]		
_	$Vol(\overline{Ball}_{r}^{\dagger})$	$\sim r^4$?	
DUA	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]	?	
	Simple random walk	Recurrent	?	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

		Regular critical ${f q}$	Non-generic $q_k \sim c \kappa^{k-1} k^{-a}$ $a \in \left(rac{3}{2}, rac{5}{2} ight)$	
	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
PRIMAI	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
			"Dilute" $a \in \left(2, \frac{5}{2}\right)$	"Dense" $a \in \left(\frac{3}{2}, 2\right)$
DUAL	$\operatorname{Vol}(\overline{\operatorname{Ball}}_r^{\dagger})$	$\sim r^4$		
	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]		
	Simple random walk	Recurrent		
	$ au_\infty$	∞ a.s.	∞ a.s.	Finite a.s.
u(k)		$\nu(k)$		
~ k ^{-5/2}			$\sim \frac{1}{\cos(\pi a)} k ^{-a} \qquad \sim k^{-a} \\ -7.6-5-4-3-2-1 \qquad 1.2 \qquad 3.4 \qquad 5.6 \qquad 7$	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

		Regular critical ${f q}$	Non-generic $\ q_k \sim c \kappa$	$k^{k-1}k^{-a}$ $a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
IMAI	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
			"Dilute" $a \in \left(2, \frac{5}{2}\right)$	"Dense" $a \in \left(\frac{3}{2}, 2\right)$
DUAL	$\operatorname{Vol}(\overline{\operatorname{Ball}}_r^\dagger)$	$\sim r^4$		
	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]		
	Simple random walk	Recurrent		Transient
$\overline{ au_{\infty}}$		∞ a.s.	∞ a.s.	Finite a.s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition (TB, Curien, '16)

Any infinite graph with $\mathbb{E}\tau_{\infty} < \infty$ is transient.

		Regular critical ${f q}$	Non-generic $\ q_k \sim c \kappa$	$k^{k-1}k^{-a} a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
IMA	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
			"Dilute" $a \in \left(2, \frac{5}{2}\right)$	"Dense" $a \in \left(\frac{3}{2}, 2\right)$
DUAL	$\operatorname{Vol}(\overline{\operatorname{Ball}}_r^\dagger)$	$\sim r^4$		$\sim \exp(r)$
	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]		\sim
	Simple random walk	Recurrent		Transient
$\overline{ au_{\infty}}$		∞ a.s.	∞ a.s.	Finite a.s.

Theorem (TB, Curien, '16)

In the dense case $a \in (\frac{3}{2}, 2)$ there exists $c_a > 0$ such that

$$r^{-1}\log\left(|\partial \overline{BaIl}_{r}^{\dagger}|\right) \xrightarrow{(\mathrm{p})}{r \to \infty} c_{a}, \quad r^{-1}\log\left(|\overline{BaIl}_{r}^{\dagger}|\right) \xrightarrow{(\mathrm{p})}{r \to \infty} (a - \frac{1}{2})c_{a}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Simulations: dense case

a = 1.8

Simulations: dense case

a = 1.8

Simulations: dense case

a = 1.7

Simulations: dilute case

a = 2.3

Simulations: dilute case

Simulations: dilute case

a = 2.35

Simulations: dilute case

a = 2.45

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

э

Theorem (TB, Curien, '16)

The peeling process on a dilute q-IBPM satisfies

$$\left(\frac{\mathcal{P}_{\lfloor nt \rfloor}}{n^{\frac{1}{a-1}}}, \frac{\mathcal{V}_{\lfloor nt \rfloor}}{n^{\frac{a-1/2}{a-1}}}\right) \xrightarrow[n \to \infty]{(d)} \left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}\right)_{t \ge 0}$$

Theorem (TB, Curien, '16)

The uniform peeling process on a dilute q-IBPM satisfies

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor nt \rfloor}}{n^{\frac{a-1/2}{a-1}}}, \frac{\tau_{\lfloor nt \rfloor}}{n^{\frac{a-2}{a-1}}}\right) \xrightarrow{(d)} \left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}, \frac{1}{2\mathbf{p}_{\mathbf{q}}} \int_{0}^{t} \frac{\mathrm{d}u}{S_{u}^{\uparrow}}\right)_{t \geq 0}$$

Theorem (TB, Curien, '16)

The uniform peeling process on a dilute **q**-IBPM satisfies

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor nt \rfloor}}{n^{\frac{s-1/2}{a-1}}}, \frac{\tau_{\lfloor nt \rfloor}}{n^{\frac{s-2}{a-1}}} \right) \xrightarrow{(d)} \left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}, \frac{1}{2\mathbf{p}_{\mathbf{q}}} \int_{0}^{t} \frac{\mathrm{d}u}{S_{u}^{\uparrow}} \right)_{t \ge 0}$$

$$\left(\frac{|\partial \overline{Ball}_{\lfloor nt \rfloor}^{fpp}(\mathfrak{m}_{\infty})|}{n^{\frac{1}{a-2}}}, \frac{|\overline{Ball}_{\lfloor nt \rfloor}^{fpp}(\mathfrak{m}_{\infty})|}{n^{\frac{s-1/2}{a-2}}} \right) \xrightarrow{(d)} \left(\mathbf{p}_{\mathbf{q}} \cdot S_{\theta_{2\mathbf{p}_{\mathbf{q}}t}}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{\theta_{2\mathbf{p}_{\mathbf{q}}t}} \right)_{t \ge 0}$$

Theorem (TB, Curien, '16)

The breadth-first peeling process on a dilute q-IBPM satisfies

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor nt \rfloor}}{n^{\frac{a-1}{a-1}}}, \frac{r_{\lfloor nt \rfloor}}{n^{\frac{a-2}{a-1}}}\right) \xrightarrow{(d)} \left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}, \mathbf{h}_{\mathbf{q}} \int_{0}^{t} \frac{\mathrm{d}u}{S_{u}^{\uparrow}}\right)_{t \geq 0}$$

$$\left(\frac{|\partial \overline{Ball}_{\lfloor nt \rfloor}^{\dagger}(\mathfrak{m}_{\infty})|}{n^{\frac{1}{a-2}}}, \frac{|\overline{Ball}_{\lfloor nt \rfloor}^{\dagger}(\mathfrak{m}_{\infty})|}{n^{\frac{a-1/2}{a-2}}}\right) \xrightarrow{(d)} \left(\mathbf{p}_{\mathbf{q}} \cdot S_{\theta_{t}/\mathbf{h}\mathbf{q}}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{\theta_{t}/\mathbf{h}\mathbf{q}}\right)_{t \geq 0}$$

		Regular critical ${f q}$	Non-generic $~~q_k\sim c$ K	$k^{k-1}k^{-a}$ $a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
IMAL	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
			"Dilute" $a \in \left(2, \frac{5}{2}\right)$	"Dense" $a \in \left(\frac{3}{2}, 2\right)$
٩L	$\operatorname{Vol}(\overline{\operatorname{Ball}}_r^{\dagger})$	$\sim r^4$	$\sim r^{rac{a-1/2}{a-2}}$	$\sim \exp(r)$
DU	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]		\succ
	Simple random walk	Recurrent		Transient

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

		Regular critical ${f q}$	Non-generic $~~q_k\sim c$ K	$k^{k-1}k^{-a}$ $a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
IMAL	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
			"Dilute" $a \in \left(2, \frac{5}{2}\right)$	"Dense" $a \in \left(\frac{3}{2}, 2\right)$
٩L	$\operatorname{Vol}(\overline{\operatorname{Ball}}_r^{\dagger})$	$\sim r^4$	$\sim r^{rac{a-1/2}{a-2}}$	$\sim \exp(r)$
DU	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]	? "Stable spheres" ?	\succ
	Simple random walk	Recurrent		Transient

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 = 釣�?

		Regular critical ${f q}$	Non-generic $~~q_k\sim c$ K	$k^{k-1}k^{-a}$ $a \in \left(\frac{3}{2}, \frac{5}{2}\right)$
IMAL	$Vol(\overline{Ball}_r)$	$\sim r^4$	$\sim r^{2a-1}$	
	Scaling limit (Gromov-Hausdorff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
PR	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
			"Dilute" $a \in \left(2, \frac{5}{2}\right)$	"Dense" $a \in \left(\frac{3}{2}, 2\right)$
AL	$\operatorname{Vol}(\overline{\operatorname{Ball}}_r^{\dagger})$	$\sim r^4$	$\sim r^{rac{a-1/2}{a-2}}$	$\sim \exp(r)$
DU	Scaling limit (Gromov-Hausdorff)	Probably Brownian map Triangulations: [Curien, Le Gall]	? "Stable spheres" ?	\succ
	Simple random walk	Recurrent	? Transient ?	Transient

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

• Consider Ball[†]_r(\mathfrak{m}) of a (finite) **q**-BPM \mathfrak{m} with boundary length 2/.

(日)、

э

• Consider Ball[†]_r(\mathfrak{m}) of a (finite) **q**-BPM \mathfrak{m} with boundary length 2/.

(日)

- Consider $\operatorname{Ball}_r^{\dagger}(\mathfrak{m})$ of a (finite) **q**-BPM \mathfrak{m} with boundary length 2*l*.
- Let L(r) be sequence of half-degrees of the holes of $Ball_r^{\dagger}(\mathfrak{m})$.

(日)、

- Consider $\operatorname{Ball}_r^{\dagger}(\mathfrak{m})$ of a (finite) **q**-BPM \mathfrak{m} with boundary length 2*l*.
- Let L(r) be sequence of half-degrees of the holes of $Ball_r^{\dagger}(\mathfrak{m})$.

Theorem (Bertoin, TB, Curien, Kortchemski, '16) If **q** is dilute critical, $a \in (2, \frac{5}{2})$, then $\left(\frac{L(\lfloor l^{a-2} \cdot t \rfloor)}{l}\right)_{t \ge 0} \xrightarrow[l \to \infty]{(d)} (c\mathbf{X}_t^{(a)})_{t \ge 0}$ where $\mathbf{X}_t^{(a)}$ is a self-similar growth-fragmentation process, taking values in

$$\ell_{a+1/2}^{\downarrow} := \left\{ (x_i)_{i\in\mathbb{N}} : x_1 \geq x_2 \geq \cdots \geq 0, \sum_{i=1}^{\infty} x_i^{a+1/2} < \infty
ight\}.$$

There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.

(ロ) 《 母) 《 母) 《 母) (母) への

There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.

There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ∑-jump spawn an i.i.d. rescaled copy of (X_t).

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ∑-jump spawn an i.i.d. rescaled copy of (X_t).

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ∑-jump spawn an i.i.d. rescaled copy of (X_t).

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ∑-jump spawn an i.i.d. rescaled copy of (X_t).

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ∑-jump spawn an i.i.d. rescaled copy of (X_t).

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ↘-jump spawn an i.i.d. rescaled copy of (X_t).
- $\mathbf{X}_{t}^{(a)}$ enumerates sizes at time t.

- There exists a self-similar Markov process (X_t) closely related to (S[↑]_{θt}) describing perimeter of *locally largest* cycle.
- For each ↘-jump spawn an i.i.d. rescaled copy of (X_t).
- $\mathbf{X}_{t}^{(a)}$ enumerates sizes at time t.

Summary/Outlook

- Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions ^{a-1/2}/_{a-2} > 4, different from Brownian map and stable maps.
- The peeling process is tool of choice to study these distances and its scaling limits support the belief.

Summary/Outlook

- ► Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions ^{a-1/2}/_{a-2} > 4, different from Brownian map and stable maps.
- The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- Next step: understand structure of geodesics, which prefer to merge in high-degree vertices.

Summary/Outlook

- ► Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions ^{a-1/2}/_{a-2} > 4, different from Brownian map and stable maps.
- The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- Next step: understand structure of geodesics, which prefer to merge in high-degree vertices.

Thanks for your attention!