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Boltzmann planar maps
I Let m ∈M(l) be a bipartite rooted planar map with root face

degree 2l .

I Given a sequence q = (q1, q2, . . .) in [0,∞), define weight of m to
be the product wq(m) =

∏
f qdeg(f )/2 over non-root faces f .

I q admissible iff W (l)(q) :=
∑

m∈M(l) wq(m) <∞. Then wq gives

rise to probability measure on M(l): the q-Boltzmann planar map
(with boundary of length 2l).

I q critical iff admissible and increasing any qk leads to W (l)(q) =∞.
I Special case: can view any rooted (bip.) planar map as having

boundary of length 2.
I Dual planar map denoted by m†.
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Infinite Boltzmann planar maps

I Local limit: there exists a unique random infinite map, the q-IBPM,
whose neighborhoods of the root are distributed as those of a
q-BPM conditioned to have large number of vertices.
[Björnberg, Stefánsson, ’14] [Stephenson, ’14]
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Peeling process of q-IBPM (non-branching)

I Markov property: unexplored region after i steps is distributed as a
q-IBPM with boundary length equal to perimeter 2Pi .

I In particular, (Pi )i is Markov and independent of peel algorithm A.

Using W
(l)
N :=

∑
maps m
N vertices

wq(m)
N→∞∼ C N−γh↑(l)κ−l , h↑(l) := 2l 2−2l

(
2l

l

)

P(Pi+1 = Pi + k) =
h↑(Pi + k)

h↑(Pi )

{
qk+1κ

−k k ≥ 0

2W (−k−1)κ−k k < 0
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ν(k) =

{
qk+1κ

−k k ≥ 0

2W (−k−1)κ−k k < 0

I defines probability measure on Z

I Let (Wi )i be random walk with
law ν.

Proposition (TB, ’15)

I (Pi )i
(d)
= (W ↑

i )i , i.e. (Wi )i started at 1 and conditioned to stay
positive.

I (W ↑
i )i is h-transform of (Wi )i : P(W ↑

i+1 = W ↑
i + k) =

h↑(W ↑i +k)

h↑(W ↑i )
ν(k).

I q→ ν defines a bijection

{q critical} ←→

{
ν :

∞∑
k=−∞

h↑(l + k)ν(k)
l>0
= h↑(l)

}
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Dual graph distance

I Ball†r (m∞) is the submap of m∞ of faces at d†gr ≤ r . Ball
†
r (m∞) is

its hull.

I Volume |Ball
†
r (m∞)| is # internal vertices;

half-perimeter

|∂Ball
†
r (m∞)|

.

I Can be obtained from peeling by layers. Each peeling step increases
average distance by ≈ 1/(2Pi ).
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First passage percolation

I Equip each dual edge with i.i.d. Exp(1) random length, and view
m†∞ as a geodesic metric space.

I Ballfppτ (m∞) determined by set of dual edges that are fully explored

after time τ ;

Ball
fpp

τ (m∞) its hull.

I If 0 = τ0 < τ1 < · · · are times at which Ball
fpp

τ (m∞) changes, then:

I

(
Ball

fpp
τi (m∞)

)
i

is peeling process with uniform random A.

I τi+1 − τi
(d)
= Exp(2Pi ) (with mean 1/(2Pi )).
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Proposition (TB, Curien, ’16)

Any infinite graph with Eτ∞ <∞ is transient.



Theorem (TB, Curien, ’16)

In the dense case a ∈ ( 3
2 , 2) there exists ca > 0 such that

r−1 log
(
|∂Ball

†
r |
)

(p)−−−→
r→∞

ca, r−1 log
(
|Ball

†
r |
)

(p)−−−→
r→∞

(a− 1
2 )ca
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Scaling limit in dilute case
I As ν(k)

|k|→∞∼ |k |−a we have
convergence to a (a− 1)-stable
process (St) with P(St ≤ 0) = 1

2(a−1) .

I Since (Pi )
(d)
= (W ↑

i ), we have
[Caravenna, Chaumont](
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Slicing at heights (using branched peeling)
I Consider Ball†r (m) of a (finite) q-BPM m with boundary length 2l .

I Let L(r) be sequence of half-degrees of the holes of Ball†r (m).

Theorem (Bertoin, TB, Curien, Kortchemski, ’16)

If q is dilute critical, a ∈ (2, 5
2 ), then

(
L(bla−2·tc)

l

)
t≥0

(d)−−−→
l→∞

(
cX

(a)
t

)
t≥0

,

where X
(a)
t is a self-similar growth-fragmentation process, taking values in

`↓a+1/2 :=

{
(xi )i∈N : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

x
a+1/2
i <∞

}
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Growth-fragmentation process

I There exists a self-similar Markov process (Xt)

closely related to (S↑θt ) describing perimeter of
locally largest cycle.

I For each ↘-jump spawn an i.i.d. rescaled
copy of (Xt).

I X
(a)
t enumerates sizes at time t.
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Summary/Outlook
I Dilute critical Boltzmann planar maps equipped with the dual graph

distance may possess scaling limits with fractal dimensions
a−1/2
a−2 >4, different from Brownian map and stable maps.

I The peeling process is tool of choice to study these distances and its
scaling limits support the belief.

I Next step: understand structure of geodesics, which prefer to merge
in high-degree vertices.

Thanks for your attention!
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