Probability seminar, UMPA, Lyon, 28-04-2016
Geometry of random planar maps with high degrees
Timothy Budd

Based mainly on arXiv:1602.01328 with Nicolas Curien.
Niels Bohr Institute, University of Copenhagen budd@nbi.dk, http://www.nbi.dk/~budd/

Outline

- Definitions
- Planar maps
- (Infinite) Boltzmann planar maps
- Peeling process
- Dual of IBPM with large faces
- Volume growth of balls of increasing radius
- Recurrence/transience
- Growth-fragmentation processes

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(I)}$ be a bipartite rooted planar map with root face degree $2 /$.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(I)}$ be a bipartite rooted planar map with root face degree $2 /$.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(I)}$ be a bipartite rooted planar map with root face degree $2 /$.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree $2 /$.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over non-root faces f.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(I)}$ be a bipartite rooted planar map with root face degree $2 /$.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over non-root faces f.
- \mathbf{q} admissible iff $W^{(l)}(\mathbf{q}):=\sum_{\mathfrak{m} \in \mathcal{M}^{(1)}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure on $\mathcal{M}^{(1)}$: the \mathbf{q}-Boltzmann planar map (with boundary of length 21).
- \mathbf{q} critical iff admissible and increasing any q_{k} leads to $W^{(I)}(\mathbf{q})=\infty$.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(I)}$ be a bipartite rooted planar map with root face degree 2 I.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over non-root faces f.
- \mathbf{q} admissible iff $W^{(l)}(\mathbf{q}):=\sum_{\mathfrak{m} \in \mathcal{M}^{(1)}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure on $\mathcal{M}^{(1)}$: the \mathbf{q}-Boltzmann planar map (with boundary of length 21).
- q critical iff admissible and increasing any q_{k} leads to $W^{(I)}(\mathbf{q})=\infty$.
- Special case: can view any rooted (bip.) planar map as having boundary of length 2.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(I)}$ be a bipartite rooted planar map with root face degree 2 I.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over non-root faces f.
- \mathbf{q} admissible iff $W^{(l)}(\mathbf{q}):=\sum_{\mathfrak{m} \in \mathcal{M}^{(1)}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure on $\mathcal{M}^{(1)}$: the \mathbf{q}-Boltzmann planar map (with boundary of length 21).
- \mathbf{q} critical iff admissible and increasing any q_{k} leads to $W^{(I)}(\mathbf{q})=\infty$.
- Special case: can view any rooted (bip.) planar map as having boundary of length 2.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree 2 I.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over non-root faces f.
- \mathbf{q} admissible iff $W^{(l)}(\mathbf{q}):=\sum_{\mathfrak{m} \in \mathcal{M}^{(1)}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure on $\mathcal{M}^{(1)}$: the \mathbf{q}-Boltzmann planar map (with boundary of length 21).
- \mathbf{q} critical iff admissible and increasing any q_{k} leads to $W^{(I)}(\mathbf{q})=\infty$.
- Special case: can view any rooted (bip.) planar map as having boundary of length 2.
- Dual planar map denoted by \mathfrak{m}^{\dagger}.

Infinite Boltzmann planar maps

- Local limit: there exists a unique random infinite map, the q-IBPM, whose neighborhoods of the root are distributed as those of a \mathbf{q}-BPM conditioned to have large number of vertices.
[Björnberg, Stefánsson, '14] [Stephenson, '14]

		Regular critical \mathbf{q}	Non-generic $\quad q_{k} \sim c \kappa^{k-1} k^{-a} \quad a \in\left(\frac{3}{2}, \frac{5}{2}\right)$
	$\operatorname{Vol}\left(\overline{\mathrm{Ball}}_{r}\right)$		$\sim r^{2 a-1}$
\sum	Scaling limit (Gromov-Hausdofff)	Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]
$\frac{\bar{\alpha}}{\alpha}$	Simple random walk	Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]
$\mid \underset{\substack{\underset{\sim}{4} \\ \underset{\sim}{4} \\ \hline}}{ }$	$\operatorname{Vol}\left(\overline{\mathrm{BaIII}}_{r}^{\dagger}\right)$ Scaling limit (Gromov-Hausdofff) Simple random walk	$\sim r^{4}$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent	

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.
- Peeling process corresponds to sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \mathfrak{e}_{2} \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_{i} by peeling an edge $\mathcal{A}\left(\mathfrak{e}_{i}\right)$.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.
- Peeling process corresponds to sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \mathfrak{e}_{2} \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_{i} by peeling an edge $\mathcal{A}\left(\mathfrak{e}_{i}\right)$.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.
- Peeling process corresponds to sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \mathfrak{e}_{2} \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_{i} by peeling an edge $\mathcal{A}\left(\mathfrak{e}_{i}\right)$.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.
- Peeling process corresponds to sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \mathfrak{e}_{2} \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_{i} by peeling an edge $\mathcal{A}\left(\mathfrak{e}_{i}\right)$.

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.
- Peeling process corresponds to sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \mathfrak{e}_{2} \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_{i} by peeling an edge $\mathcal{A}\left(\mathfrak{e}_{i}\right)$.
- Branching vs. non-branching (immediately explore non- ∞ holes).

Submaps and peeling processes

- Two convenient representations of a submap:
- Connected subset \mathfrak{e}° of dual edges intersecting root.
- As a planar map \mathfrak{e} with holes.
- Peeling process corresponds to sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \mathfrak{e}_{2} \subset \cdots$, \mathfrak{e}_{i+1} is obtained from \mathfrak{e}_{i} by peeling an edge $\mathcal{A}\left(\mathfrak{e}_{i}\right)$.
- Branching vs. non-branching (immediately explore non- ∞ holes).

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

Peeling process of q-IBPM (non-branching)

Peeling process of q-IBPM (non-branching)

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

Peeling process of \mathbf{q}-IBPM (non-branching)

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

Peeling process of \mathbf{q}-IBPM (non-branching)

Peeling process of q-IBPM (non-branching)

Peeling process of q-IBPM (non-branching)

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

- Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$.

Peeling process of q-IBPM (non-branching)

- Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$.
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of peel algorithm \mathcal{A}.

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

- Markov property: unexplored region after i steps is distributed as a \mathbf{q}-IBPM with boundary length equal to perimeter $2 P_{i}$.
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of peel algorithm \mathcal{A}.

Using $W_{N}^{(I)}:=\sum_{\substack{\text { maps } \mathfrak{m} \\ N \text { vertices }}} w_{\mathbf{q}}(\mathfrak{m}) \stackrel{N \rightarrow \infty}{\sim} C N^{-\gamma} h^{\uparrow}(I) \kappa^{-I}, \quad h^{\uparrow}(I):=2 / 2^{-2 I}\binom{2 I}{I}$

$$
\mathbb{P}\left(P_{i+1}=P_{i}+k\right)=\frac{h^{\uparrow}\left(P_{i}+k\right)}{h^{\uparrow}\left(P_{i}\right)} \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

Peeling process of $\mathbf{q - I B P M}$ (non-branching)

- Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$.
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of peel algorithm \mathcal{A}.

Using $W_{N}^{(I)}:=\sum_{\substack{\text { maps } \mathfrak{m} \\ N \text { vertices }}} w_{\mathbf{q}}(\mathfrak{m}) \stackrel{N \rightarrow \infty}{\sim} C N^{-\gamma} h^{\uparrow}(I) \kappa^{-I}, \quad h^{\uparrow}(I):=2 / 2^{-2 I}\binom{2 /}{I}$
$\mathbb{P}\left(P_{i+1}=P_{i}+k\right)=\frac{h^{\uparrow}\left(P_{i}+k\right)}{h^{\uparrow}\left(P_{i}\right)} \overbrace{ \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases} }^{l}$

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- defines probability measure on \mathbb{Z}

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- defines probability measure on \mathbb{Z}
- Let $\left(W_{i}\right)_{i}$ be random walk with
 law ν.

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- defines probability measure on \mathbb{Z}
- Let $\left(W_{i}\right)_{i}$ be random walk with
 law ν.

Proposition (TB, '15)

- $\left(P_{i}\right)_{i} \stackrel{(\mathrm{~d})}{=}\left(W_{i}^{\uparrow}\right)_{i}$, i.e. $\left(W_{i}\right)_{i}$ started at 1 and conditioned to stay positive.
- $\left(W_{i}^{\uparrow}\right)_{i}$ is h-transform of $\left(W_{i}\right)_{i}: \mathbb{P}\left(W_{i+1}^{\uparrow}=W_{i}^{\uparrow}+k\right)=\frac{h^{\uparrow}\left(W_{i}^{\uparrow}+k\right)}{h^{\uparrow}\left(W_{i}^{\uparrow}\right)} \nu(k)$.

$$
\sum_{k=-\infty}^{\infty} h^{\uparrow}(l+k) \nu(k) \stackrel{I \geq 0}{=} h^{\uparrow}(l)
$$

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- defines probability measure on \mathbb{Z}
- Let $\left(W_{i}\right)_{i}$ be random walk with
 law ν.

Proposition (TB, '15)

- $\left(P_{i}\right)_{i} \stackrel{(\mathrm{~d})}{=}\left(W_{i}^{\uparrow}\right)_{i}$, i.e. $\left(W_{i}\right)_{i}$ started at 1 and conditioned to stay positive.
- $\left(W_{i}^{\uparrow}\right)_{i}$ is h-transform of $\left(W_{i}\right)_{i}: \mathbb{P}\left(W_{i+1}^{\uparrow}=W_{i}^{\uparrow}+k\right)=\frac{h^{\uparrow}\left(W_{i}^{\uparrow}+k\right)}{h^{\uparrow}\left(W_{i}^{\uparrow}\right)} \nu(k)$.
- $\mathbf{q} \rightarrow \nu$ defines a bijection

$$
\{\mathbf{q} \text { critical }\} \longleftrightarrow\left\{\nu: \sum_{k=-\infty}^{\infty} h^{\uparrow}(I+k) \nu(k) \stackrel{\prime \geq 0}{=} h^{\uparrow}(I)\right\}
$$

Dual graph distance

- Ball $l_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is the submap of \mathfrak{m}_{∞} of faces at $d_{\mathrm{gr}}^{\dagger} \leq r . \overline{\operatorname{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is its hull.

Dual graph distance

- Ball $l_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is the submap of \mathfrak{m}_{∞} of faces at $d_{\mathrm{gr}}^{\dagger} \leq r . \overline{\operatorname{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is its hull.

Dual graph distance

- Ball $l_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is the submap of \mathfrak{m}_{∞} of faces at $d_{\mathrm{gr}}^{\dagger} \leq r . \overline{\mathrm{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is its hull.

Dual graph distance

- Ball $l_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is the submap of \mathfrak{m}_{∞} of faces at $d_{\mathrm{gr}}^{\dagger} \leq r$. $\overline{\mathrm{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is its hull.
- Volume $\left|\overline{\operatorname{BaII}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|$ is \# internal vertices;

Dual graph distance

- Ball $l_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is the submap of \mathfrak{m}_{∞} of faces at $d_{\mathrm{gr}}^{\dagger} \leq r . \overline{\operatorname{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is its hull.
- Volume $\left|\overline{\operatorname{BaII}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|$ is \# internal vertices; half-perimeter $\left|\partial \overline{\mathrm{BaII}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|$.

Dual graph distance

- Ball $l_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is the submap of \mathfrak{m}_{∞} of faces at $d_{\mathrm{gr}}^{\dagger} \leq r$. $\overline{\operatorname{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)$ is its hull.
- Volume $\left|\overline{\operatorname{BaII}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|$ is \# internal vertices; half-perimeter $\left|\partial \overline{\operatorname{Ball}}_{r}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|$.
- Can be obtained from peeling by layers. Each peeling step increases average distance by $\approx 1 /\left(2 P_{i}\right)$.

First passage percolation

- Equip each dual edge with i.i.d. $\operatorname{Exp}(1)$ random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.

First passage percolation

- Equip each dual edge with i.i.d. $\operatorname{Exp}(1)$ random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball ${ }_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ determined by set of dual edges that are fully explored after time τ;

First passage percolation

- Equip each dual edge with i.i.d. $\operatorname{Exp}(1)$ random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball ${ }_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ determined by set of dual edges that are fully explored after time τ;

First passage percolation

- Equip each dual edge with i.i.d. $\operatorname{Exp}(1)$ random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball ${ }_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ determined by set of dual edges that are fully explored after time $\tau ; \overline{\operatorname{Ball}}_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ its hull.

First passage percolation

- Equip each dual edge with i.i.d. $\operatorname{Exp}(1)$ random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball ${ }_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ determined by set of dual edges that are fully explored after time $\tau ; \overline{\operatorname{Ball}}_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ its hull.
- If $0=\tau_{0}<\tau_{1}<\cdots$ are times at which $\overline{\operatorname{Ball}}_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ changes, then:
- $\left(\overline{\operatorname{Ball}}_{\tau_{i}}^{\mathrm{ppp}}\left(\mathfrak{m}_{\infty}\right)\right)_{i}$ is peeling process with uniform random \mathcal{A}.
- $\tau_{i+1}-\tau_{i} \stackrel{(\mathrm{~d})}{=} \operatorname{Exp}\left(2 P_{i}\right) \quad$ (with mean $\left.1 /\left(2 P_{i}\right)\right)$.

First passage percolation

- Equip each dual edge with i.i.d. $\operatorname{Exp}(1)$ random length, and view $\mathfrak{m}_{\infty}^{\dagger}$ as a geodesic metric space.
- Ball ${ }_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ determined by set of dual edges that are fully explored after time $\tau ; \overline{\operatorname{Ball}}_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ its hull.
- If $0=\tau_{0}<\tau_{1}<\cdots$ are times at which $\overline{\mathrm{BaII}}_{\tau}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)$ changes, then:
- $\left(\overline{\operatorname{Ball}}_{\tau_{i}}^{\mathrm{fpp}}\left(\mathfrak{m}_{\infty}\right)\right)_{i}$ is peeling process with uniform random \mathcal{A}.
- $\tau_{i+1}-\tau_{i} \stackrel{(\mathrm{~d})}{=} \operatorname{Exp}\left(2 P_{i}\right) \quad$ (with mean $\left.1 /\left(2 P_{i}\right)\right)$.

Back of the envelope: does $\tau_{i} \rightarrow \infty$?

$$
\mathbb{E} \tau_{\infty}=\sum_{i=0}^{\infty} \mathbb{E}\left[\operatorname{Exp}\left(2 P_{i}\right)\right]=\sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2 W_{i}^{\uparrow}}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2 k} \mathbb{P}\left[{ }^{m}\right]
$$

Back of the envelope: does $\tau_{i} \rightarrow \infty$?

$$
\begin{aligned}
& \mathbb{E} \tau_{\infty}=\sum_{i=0}^{\infty} \mathbb{E}\left[\operatorname{Exp}\left(2 P_{i}\right)\right]=\sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2 W_{i}^{\top}}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2 k} \mathbb{P}[\sqrt{w}] \\
& \left.=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2 k} \mathbb{P}\right]
\end{aligned}
$$

Back of the envelope: does $\tau_{i} \rightarrow \infty$?

$$
\begin{aligned}
& \left.\left.\mathbb{E} \tau_{\infty}=\sum_{i=0}^{\infty} \mathbb{E}\left[\operatorname{Exp}\left(2 P_{i}\right)\right]=\sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2 W_{i}^{\top}}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2 k} \mathbb{P}[\sqrt{w}]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \mathbb{P}\right] \mathbb{P}\right] \\
& =\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2 k} \mathbb{P}[\sqrt{w}]
\end{aligned}
$$

Back of the envelope: does $\tau_{i} \rightarrow \infty$?

$$
\begin{aligned}
& \mathbb{E} \tau_{\infty}=\sum_{i=0}^{\infty} \mathbb{E}\left[\operatorname{Exp}\left(2 P_{i}\right)\right]=\sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2 W_{i}^{\top}}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2 k} \mathbb{P}\left[w^{m}, \sqrt{n}\right] \\
& =\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2 k} \mathbb{P}\left[{ }^{w}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \mathbb{P}[\sqrt{w}] \\
& =\sum_{i=0}^{\infty} \mathbb{P}[\wedge \sqrt{w}]=\sum_{j=1}^{\infty} j \mathbb{P}[\sqrt{w}]
\end{aligned}
$$

Back of the envelope: does $\tau_{i} \rightarrow \infty$?

$$
\begin{aligned}
& \mathbb{E} \tau_{\infty}=\sum_{i=0}^{\infty} \mathbb{E}\left[\operatorname{Exp}\left(2 P_{i}\right)\right]=\sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2 W_{i}^{\uparrow}}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2 k} \mathbb{P}[\underbrace{w}]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{\infty} \mathbb{P}[\underbrace{w}]=\sum_{j=1}^{\infty} j \mathbb{P} \\
& =\sum_{j=1}^{\infty} \mathbb{P}[\underbrace{w}_{1}]=\mathbb{E}[\sqrt[\sim]{w}]
\end{aligned}
$$

Back of the envelope: does $\tau_{i} \rightarrow \infty$?

$$
\begin{aligned}
& \mathbb{E} \tau_{\infty}=\sum_{i=0}^{\infty} \mathbb{E}\left[\operatorname{Exp}\left(2 P_{i}\right)\right]=\sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2 W_{i}^{\top}}\right]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2 k} \mathbb{P}\left[\begin{array}{l}
w^{\prime} \\
\sim
\end{array}\right] \\
& =\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2 k} \mathbb{P}[\underbrace{w}]=\sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \mathbb{P}[\sqrt{w}] \\
& =\sum_{i=0}^{\infty} \mathbb{P}[\underbrace{w}]=\sum_{j=1}^{\infty} j \mathbb{P} \sqrt{w} \sqrt{N}] \\
& =\sum_{j=1}^{\infty}\left[\mathbb{N}^{w} \cdot \sqrt{\wedge}\right]=\mathbb{E}[\sqrt[w]{\infty}]
\end{aligned}
$$

$\mathbb{E} \tau_{\infty}=\infty$ iff $\left(W_{i}\right)$ is recurrent on \mathbb{Z} !

$\begin{array}{\|c\|} \hline \\ \frac{1}{2} \\ \frac{\lambda}{\alpha} \\ \frac{\alpha}{\alpha} \\ \hline \end{array}$	$\operatorname{Vol}\left(\overline{\mathrm{BaII}}_{r}\right)$ Scaling limit (Gromov-Hausdoff) Simple random walk	Regular critical \mathbf{q} $\sim r^{4}$ Brownian map [Le Gall, Miermont] Recurrent [Gurel-Gurevich, Nachmias]	Non-generic $q_{k} \sim c \kappa^{k-1} k^{-a} \quad a \in\left(\frac{3}{2}, \frac{5}{2}\right)$	
				$2 a-1$ maps ermont] nt fánsson]
	$\operatorname{Vol}\left(\overline{\mathrm{BaIII}}_{r}^{\dagger}\right)$ Scaling limit (Gromov-Hausdoff) Simple random walk	$\sim r^{4}$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent	"Dilute" $\quad a \in\left(2, \frac{5}{2}\right)$	"Dense" $a \in\left(\frac{3}{2}, 2\right)$
	τ_{∞}	∞ a.s.	∞ a.s.	Finite a.s.

Proposition (TB, Curien, '16)

Any infinite graph with $\mathbb{E} \tau_{\infty}<\infty$ is transient.

		Regular critical \mathbf{q}	Non-generic $\quad q_{k} \sim$	${ }^{k-1} k^{-a} \quad a \in\left(\frac{3}{2}, \frac{5}{2}\right)$
$\left\lvert\, \begin{aligned} & \frac{1}{\natural} \\ & \frac{\Sigma}{\alpha} \\ & \frac{\alpha}{Q} \end{aligned}\right.$	$\mathrm{Vol}\left(\overline{\mathrm{BaII}}_{r}\right)$ Scaling limit (Gromov-Hausdofff) Simple random walk	$\sim r^{4}$	$\sim r^{2 a-1}$	
		Brownian map [Le Gall, Miermont]	Stable maps [Le Gall, Miermont]	
		Recurrent [Gurel-Gurevich, Nachmias]	Recurrent [Björnberg, Stefánsson]	
$\left\lvert\, \frac{-1}{\underset{\sim}{x}} \underset{\sim}{\circ}\right.$	$\operatorname{Vol}\left(\overline{\mathrm{BaIII}}_{r}^{\dagger}\right)$ Scaling limit (Gromov-Hausdoff) Simple random walk	$\sim r^{4}$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent	"Dilute" $\quad a \in\left(2, \frac{5}{2}\right)$	"Dense" $a \in\left(\frac{3}{2}, 2\right)$
				$\sim \exp (r)$
				\rightarrow
				Transient

Theorem (TB, Curien, '16)

In the dense case $a \in\left(\frac{3}{2}, 2\right)$ there exists $c_{a}>0$ such that

$$
r^{-1} \log \left(\left|\partial \overline{B a l \mid}_{r}^{\dagger}\right|\right) \xrightarrow[r \rightarrow \infty]{(\mathrm{p})} c_{a}, \quad r^{-1} \log \left(\left|\overline{B a \mid I_{r}}\right|\right) \xrightarrow[r \rightarrow \infty]{\dagger}(\mathrm{p}) \quad\left(a-\frac{1}{2}\right) c_{a}
$$

Simulations: dense case

$$
a=1.8
$$

Simulations: dense case

$$
a=1.8
$$

Simulations: dense case

$$
a=1.7
$$

Simulations: dilute case

$$
a=2.3
$$

Simulations: dilute case

$$
a=2.3
$$

Simulations: dilute case

$$
a=2.35
$$

Simulations: dilute case

$$
a=2.45
$$

Scaling limit in dilute case

- As $\nu(k) \stackrel{|k| \rightarrow \infty}{\sim}|k|^{-a}$ we have convergence to a ($a-1$)-stable process $\left(S_{t}\right)$ with $\mathbb{P}\left(S_{t} \leq 0\right)=\frac{1}{2(a-1)}$.
- Since $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(W_{i}^{\uparrow}\right)$, we have [Caravenna, Chaumont]

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(d)} \mathbf{p}_{\mathbf{q}}\left(S_{t}^{\uparrow}\right)_{t \geq 0}
$$

Scaling limit in dilute case

- As $\nu(k) \stackrel{|k| \rightarrow^{\infty}}{\sim}|k|^{-a}$ we have convergence to a ($a-1$)-stable process $\left(S_{t}\right)$ with $\mathbb{P}\left(S_{t} \leq 0\right)=\frac{1}{2(a-1)}$.
- Since $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(W_{i}^{\uparrow}\right)$, we have [Caravenna, Chaumont]

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(d)} \mathbf{p}_{\mathbf{q}}\left(S_{t}^{\uparrow}\right)_{t \geq 0}
$$

Theorem (TB, Curien, '16)

The peeling process on a dilute \mathbf{q}-IBPM satisfies

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor n t\rfloor}}{n^{\frac{a-1 / 2}{a-1}}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}\right)_{t \geq 0}
$$

Scaling limit in dilute case

- As $\nu(k) \stackrel{|k| \rightarrow^{\infty}}{\sim}|k|^{-a}$ we have convergence to a $(a-1)$-stable process $\left(S_{t}\right)$ with $\mathbb{P}\left(S_{t} \leq 0\right)=\frac{1}{2(a-1)}$.
- Since $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(W_{i}^{\uparrow}\right)$, we have [Caravenna, Chaumont]

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(d)} \mathbf{p}_{\mathbf{q}}\left(S_{t}^{\uparrow}\right)_{t \geq 0}
$$

Theorem (TB, Curien, '16)

The uniform peeling process on a dilute \mathbf{q}-IBPM satisfies

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor n t\rfloor}}{n^{\frac{a-1 / 2}{a-1}}}, \frac{\tau_{\lfloor n t\rfloor}}{n^{\frac{a-2}{a-1}}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}, \frac{1}{2 \mathbf{p}_{\mathbf{q}}} \int_{0}^{t} \frac{\mathrm{~d} u}{S_{u}^{\uparrow}}\right)_{t \geq 0}
$$

Scaling limit in dilute case

- As $\nu(k) \stackrel{|k| \rightarrow^{\infty}}{\sim}|k|^{-a}$ we have convergence to a $(a-1)$-stable process $\left(S_{t}\right)$ with $\mathbb{P}\left(S_{t} \leq 0\right)=\frac{1}{2(a-1)}$.
- Since $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(W_{i}^{\uparrow}\right)$, we have [Caravenna, Chaumont]

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(d)} \mathbf{p}_{\mathbf{q}}\left(S_{t}^{\uparrow}\right)_{t \geq 0}
$$

Theorem (TB, Curien, '16)

The uniform peeling process on a dilute \mathbf{q}-IBPM satisfies

$$
\begin{gathered}
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor n t\rfloor}}{n^{\frac{a-1 / 2}{a-1}}}, \frac{\tau_{\lfloor n t\rfloor}}{n^{\frac{a-2}{a-1}}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}, \frac{1}{2 \mathbf{p}_{\mathbf{q}}} \int_{0}^{t} \frac{\mathrm{~d} u}{S_{u}^{\uparrow}}\right)_{t \geq 0} \\
\left(\frac{\left|\partial \overline{B a l l}_{\lfloor n t\rfloor}^{f p p}\left(\mathfrak{m}_{\infty}\right)\right|}{n^{\frac{1}{a-2}}}, \frac{\left|\overline{B a l l}_{\lfloor n t\rfloor}^{f p p}\left(\mathfrak{m}_{\infty}\right)\right|}{n^{\frac{a-1 / 2}{a-2}}}\right) \stackrel{(d)}{n \rightarrow \infty}\left(\mathbf{p}_{\mathbf{q}} \cdot S_{\theta_{2 \mathbf{p}_{\mathbf{q}} t}}, \mathbf{v}_{\mathbf{q}} \cdot Z_{\theta_{2 \mathbf{p}_{\mathbf{q} t}}}\right)_{t \geq 0}
\end{gathered}
$$

Scaling limit in dilute case

- As $\nu(k) \stackrel{|k| \rightarrow^{\infty}}{\sim}|k|^{-a}$ we have convergence to a $(a-1)$-stable process $\left(S_{t}\right)$ with $\mathbb{P}\left(S_{t} \leq 0\right)=\frac{1}{2(a-1)}$.
- Since $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(W_{i}^{\uparrow}\right)$, we have [Caravenna, Chaumont]

$$
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(d)} \mathbf{p}_{\mathbf{q}}\left(S_{t}^{\uparrow}\right)_{t \geq 0}
$$

Theorem (TB, Curien, '16)

The breadth-first peeling process on a dilute \mathbf{q}-IBPM satisfies

$$
\begin{gathered}
\left(\frac{P_{\lfloor n t\rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor n t\rfloor}}{n^{\frac{a-1 / 2}{a-1}}}, \frac{r_{\lfloor n t\rfloor}}{n^{\frac{a-2}{a-1}}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathbf{p}_{\mathbf{q}} \cdot S_{t}^{\uparrow}, \mathbf{v}_{\mathbf{q}} \cdot Z_{t}, \mathbf{h}_{\mathbf{q}} \int_{0}^{t} \frac{\mathrm{~d} u}{S_{u}^{\uparrow}}\right)_{t \geq 0} \\
\left(\frac{\left|\partial \overline{B a l l} l_{\lfloor n t\rfloor}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|}{n^{\frac{1}{a-2}}}, \frac{\left|\overline{B a l l}{ }_{\lfloor n t\rfloor}^{\dagger}\left(\mathfrak{m}_{\infty}\right)\right|}{n^{\frac{a-1 / 2}{a-2}}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathbf{p}_{\mathbf{q}} \cdot S_{\theta_{t / \mathbf{h}_{\mathbf{q}}}^{\uparrow}}, \mathbf{v}_{\mathbf{q}} \cdot Z_{\theta_{t / \mathrm{h}_{\mathbf{q}}}}\right)_{t \geq 0}
\end{gathered}
$$

		Regular critical \mathbf{q}	Non-generic $\quad q_{k} \sim C \kappa^{k-1} k^{-a} \quad a \in\left(\frac{3}{2}, \frac{5}{2}\right)$	
$\begin{aligned} & \frac{-r}{\varangle} \\ & \frac{\Sigma}{\alpha} \\ & \hline \end{aligned}$	$\operatorname{Vol}\left(\overline{\mathrm{Ball}}_{r}\right)$ Scaling limit (Gromov-Hausdorff) Simple random walk	$\sim r^{4}$ Brownian map [Le Gall, Miermont] Recurrent [Gurel-Gurevich, Nachmias]	Stab [Le Gall, Recu [Björnberg,	$a-1$ aps rmont] nt ánsson]
- - -	$\operatorname{Vol}\left(\overline{\mathrm{BaII}}_{r}^{\dagger}\right)$ Scaling limit (Gromov-Hausdorff) Simple random walk	$\sim r^{4}$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent	"Dilute" $\quad a \in\left(2, \frac{5}{2}\right)$ $\sim r^{\frac{a-1 / 2}{a-2}}$	$\begin{gathered} \text { "Dense" } a \in\left(\frac{3}{2}, 2\right) \\ \sim \exp (r) \\ \text { Transient } \end{gathered}$

		Regular critical \mathbf{q}	Non-generic $\quad q_{k} \sim C \kappa^{k-1} k^{-a} \quad a \in\left(\frac{3}{2}, \frac{5}{2}\right)$	
$\begin{aligned} & \frac{-r}{\varangle} \\ & \frac{\Sigma}{\alpha} \\ & \hline \end{aligned}$	$\operatorname{Vol}\left(\overline{\mathrm{Ball}}_{r}\right)$ Scaling limit (Gromov-Hausdorff) Simple random walk	$\sim r^{4}$ Brownian map [Le Gall, Miermont] Recurrent [Gurel-Gurevich, Nachmias]	Stable [Le Gall, Recur [Björnberg, St	$a-1$ aps rmont] nt ánsson]
- - -	$\operatorname{Vol}\left(\overline{\mathrm{BaII}}_{r}^{\dagger}\right)$ Scaling limit (Gromov-Hausdorff) Simple random walk	$\sim r^{4}$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent	$\begin{gathered} \text { "Dilute" } a \in\left(2, \frac{5}{2}\right) \\ \sim r^{\frac{a-1 / 2}{a-2}} \\ \text { ? "Stable spheres"? } \end{gathered}$	$\begin{gathered} \text { "Dense" } a \in\left(\frac{3}{2}, 2\right) \\ \sim \exp (r) \\ \text { Transient } \end{gathered}$

		Regular critical \mathbf{q}	Non-generic $\quad q_{k} \sim C \kappa^{k-1} k^{-a} \quad a \in\left(\frac{3}{2}, \frac{5}{2}\right)$	
$\left\lvert\, \begin{aligned} & \frac{-}{4} \\ & \frac{\Sigma}{\alpha} \\ & \frac{1}{\alpha} \end{aligned}\right.$	$\operatorname{Vol}\left(\overline{\mathrm{Ball}}_{r}\right)$ Scaling limit (Gromov-Hausdorff) Simple random walk	$\sim r^{4}$ Brownian map [Le Gall, Miermont] Recurrent [Gurel-Gurevich, Nachmias]	Stable [Le Gall, Recur [Björnberg,	$a-1$ aps rmont] nt ánsson]
$\stackrel{-1}{\text { - }}$	$\operatorname{Vol}\left(\overline{\mathrm{BaIII}}_{r}^{\dagger}\right)$ Scaling limit (Gromov-Hausdorff) Simple random walk	$\sim r^{4}$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent	$\begin{gathered} \text { "Dilute" } a \in\left(2, \frac{5}{2}\right) \\ \sim r^{\frac{a-1 / 2}{a-2}} \end{gathered}$? "Stable spheres"? ? Transient ?	"Dense" $a \in\left(\frac{3}{2}, 2\right)$

Slicing at heights (using branched peeling)

- Consider Ball ${ }_{r}^{\dagger}(\mathfrak{m})$ of a (finite) $\mathbf{q - B P M} \mathfrak{m}$ with boundary length 21 .

Slicing at heights (using branched peeling)

- Consider Ball ${ }_{r}^{\dagger}(\mathfrak{m})$ of a (finite) $\mathbf{q - B P M} \mathfrak{m}$ with boundary length 21 .

Slicing at heights (using branched peeling)

- Consider Ball ${ }_{r}^{\dagger}(\mathfrak{m})$ of a (finite) $\mathbf{q}-\mathrm{BPM} \mathfrak{m}$ with boundary length 21 .
- Let $\mathbf{L}(r)$ be sequence of half-degrees of the holes of $\operatorname{Ball}_{r}^{\dagger}(\mathfrak{m})$.

Slicing at heights (using branched peeling)

- Consider Ball ${ }_{r}^{\dagger}(\mathfrak{m})$ of a (finite) $\mathbf{q - B P M} \mathfrak{m}$ with boundary length 21 .
- Let $\mathbf{L}(r)$ be sequence of half-degrees of the holes of Ball ${ }_{r}^{\dagger}(\mathfrak{m})$.

Theorem (Bertoin, TB, Curien, Kortchemski, '16)

 If \mathbf{q} is dilute critical, $a \in\left(2, \frac{5}{2}\right)$, then $\left(\frac{\mathbf{L}\left(\left\lfloor^{I^{-2} \cdot 2} \cdot t\right\rfloor\right)}{l}\right)_{t \geq 0} \xrightarrow[l \rightarrow \infty]{(\mathrm{d})}\left(c \mathbf{X}_{t}^{(a)}\right)_{t \geq 0}$, where $\mathbf{X}_{t}^{(a)}$ is a self-similar growth-fragmentation process, taking values in$$
\ell_{a+1 / 2}^{\downarrow}:=\left\{\left(x_{i}\right)_{i \in \mathbb{N}}: x_{1} \geq x_{2} \geq \cdots \geq 0, \sum_{i=1}^{\infty} x_{i}^{a+1 / 2}<\infty\right\}
$$

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each \searrow-jump spawn an i.i.d. rescaled copy of $\left(X_{t}\right)$.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each \searrow-jump spawn an i.i.d. rescaled copy of $\left(X_{t}\right)$.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each \searrow-jump spawn an i.i.d. rescaled copy of $\left(X_{t}\right)$.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each \searrow-jump spawn an i.i.d. rescaled copy of $\left(X_{t}\right)$.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each \searrow-jump spawn an i.i.d. rescaled copy of $\left(X_{t}\right)$.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each \searrow-jump spawn an i.i.d. rescaled copy of $\left(X_{t}\right)$.
- $\mathbf{X}_{t}^{(a)}$ enumerates sizes at time t.

Growth-fragmentation process

- There exists a self-similar Markov process $\left(X_{t}\right)$ closely related to $\left(S_{\theta_{t}}^{\uparrow}\right)$ describing perimeter of locally largest cycle.
- For each $\searrow_{\text {-jump spawn an i.i.d. rescaled }}$ copy of $\left(X_{t}\right)$.
- $\mathbf{X}_{t}^{(a)}$ enumerates sizes at time t.

Summary/Outlook

- Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions $\frac{a-1 / 2}{a-2}>4$, different from Brownian map and stable maps.
- The peeling process is tool of choice to study these distances and its scaling limits support the belief.

Summary/Outlook

- Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions $\frac{a-1 / 2}{a-2}>4$, different from Brownian map and stable maps.
- The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- Next step: understand structure of geodesics, which prefer to merge in high-degree vertices.

Summary/Outlook

- Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions $\frac{a-1 / 2}{a-2}>4$, different from Brownian map and stable maps.
- The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- Next step: understand structure of geodesics, which prefer to merge in high-degree vertices.

Thanks for your attention!

