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Abstract

The search for scale-invariant random geometries is central to the Asymptotic Safety hy-
pothesis for the Euclidean path integral in quantum gravity. In an attempt to uncover new
universality classes of scale-invariant random geometries that go beyond surface topology, we
explore a generalization of the mating of trees approach introduced by Duplantier, Miller
and Sheffield. The latter provides an encoding of Liouville Quantum Gravity on the 2-sphere
decorated by a certain random space-filling curve in terms of a two-dimensional correlated
Brownian motion, that can be viewed as describing a pair of random trees. The random
geometry of Liouville Quantum Gravity can be conveniently studied and simulated numeri-
cally by discretizing the mating of trees using the Mated-CRT maps of Gwynne, Miller and
Sheffield. Considering higher-dimensional correlated Brownian motions, one is naturally led to
a sequence of non-planar random graphs generalizing the Mated-CRT maps that may belong to
new universality classes of scale-invariant random geometries. We develop a numerical method
to efficiently simulate these random graphs and explore their possible scaling limits through
distance measurements, allowing us in particular to estimate Hausdorff dimensions in the two-
and three-dimensional setting. In the two-dimensional case these estimates accurately repro-
duce previous known analytic and numerical results, while in the three-dimensional case they
provide a first window on a potential three-parameter family of new scale-invariant random
geometries.

1 Introduction

According to general relativity, the gravitational force we experience is accounted for by the dynam-
ical geometry of spacetime, as described by a (pseudo-Riemannian) metric on a four-dimensional
spacetime manifold satisfying Einstein’s classical field equations. Since our world appears fun-
damentally quantum mechanical, general relativity is widely believed to capture merely the low-
energy limit of a more fundamental quantum theory of gravity. A question central to the devel-
opment of such a theory is: what is to replace the classical smooth metric notion of spacetime
geometry? Proposals for the resulting structure, going under the umbrella term of Quantum Ge-
ometry, differ considerably from one approach to the other. But the characteristics are generally
quite different from the smooth metric structure of general relativity because of increasingly large
quantum fluctuations at microscopic length scales at and beyond the Planck scale. This becomes
evident when one treats the metric field perturbatively in the gravitational quantum field the-
ory, where its nonrenormalizability spoils the predictive power at microscopic scales. A scenario in
which predictive power can be restored, while retaining the pseudo-Riemannian metric structure as
an effective description of spacetime geometry at arbitrarily short length scales, has been proposed
in the form of Asymptotic Safety [1, 2, 3]. In this scenario the non-perturbative renormalization
group flow of the gravitational quantum field theory approaches an ultraviolet (UV) fixed point
at which the dimensionless couplings take finite values and do not change with the energy scale.
If these couplings are the ones of geometrical operators, we are led to the conclusion that the
quantum laws of the spacetime geometry itself at such a fixed point must be scale-invariant.
Focusing on Euclidean quantum field theories of four-dimensional Riemannian metrics, func-
tional renormalization group methods [2] relying on truncations of the renormalization group flow
onto finite numbers of couplings have consistently found evidence for the existence of a suitable
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fixed point, see e.g. [4]. From a mathematical or statistical physics point of view, a Euclidean
quantum field theory is ideally understood as a probability measure on an appropriate space of
field configurations. This suggest that a mathematical construction of a UV fixed point of Eu-
clidean quantum gravity amounts to the identification of a suitable model of scale-invariant random
geometry on the spacetime manifold.

In the toy model of Euclidean two-dimensional quantum gravity this has been realized in the
form of the Brownian plane (and its cousins on compact surfaces, like the Brownian sphere), an
exactly scale-invariant probability measure on metric spaces with the topology of the plane, that
represents a rigorous construction of what is called the pure-gravity universality class in the physics
literature. It appears not just as the scaling limit of uniform random triangulations of the 2-sphere
[5], but also naturally arises from Liouville Quantum Gravity in the absence of matter coupling
[6, 7, 8]. The latter is related to the Liouville Conformal Field Theory [9], which due to the
scaling symmetry of conformal field theories makes it clear that we are dealing with a fixed point
of the renormalization group flow. As a consequence of this symmetry, the Brownian plane is
not a (random) Riemannian manifold, which would require the geometry in any sufficiently small
neighbourhood to resemble that of the Euclidean plane, but is genuinely fractal. For instance, its
Hausdorff dimension, equal to 4 [10], differs substantially from its topological dimension.

Beyond two dimensions, however, we currently know of no explicit examples of non-trivial scale-
invariant random metric spaces with the topology of a three- or four-dimensional manifold. The
construction of natural examples is therefore not only an important ingredient for the asymptotic
safety scenario but also presents an important open mathematical problem. Essentially there are
three ways of approaching the problem, mimicking what we know from two dimensions (where all
three ways lead to the same results).

The first way would be to construct a scale-invariant quantum field theory on the spacetime
manifold that describes the gauge-fixed degrees of freedom of the Riemannian metric. Subsequently,
we would need to figure out how to extract the metric geometry from these. This would be
analogous in the two-dimensional setting to first identifying the Liouville Conformal Field theory,
which aims to describe two-dimensional Riemannian metrics in conformal gauge, and extract the
geometry from there using an appropriate regularization procedure (which has largely been achieved
via Quantum Loewner Evolution in the case of pure gravity and Liouville First Passage Percolation
in the presence of matter fields). However, this procedure is difficult to generalize to higher
dimensions, because of the lack of good global coordinate gauges and the challenges involved in
constructing non-perturbative interacting quantum field theories.

The second way is to introduce discreteness in the field configurations following the philosophy
of lattice field theory. Having a non-zero lattice spacing regularizes the ultraviolet divergences in
the path integral while allowing to include field configurations beyond the perturbative regime,
as is successfully employed in the numerical investigation of QCD in its strongly-coupled regime.
The main difference with discretization of matter field theories, in which the lattice provides
the geometry on which the fields live, is that in gravity the field should describe the geometry
itself. This is naturally achieved by allowing the lattice itself to become dynamical, with the
gravitational degrees of freedom entirely contained in the combinatorial data describing the lattice
and its geometry. In Dynamical Triangulations [11, 12, 13] the lattice is constructed by gluing
equilateral simplices (triangles, tetrahedra, ..., depending on the dimension in which the model
is considered), while much more general random planar map models have been investigated in
two dimensions. In order to find a scale-invariant random geometry, representing a potential
Euclidean quantum field theory at the UV fixed point, it is necessary to take a scaling limit
where the number of building blocks is taken to infinity while their size is taken to zero. As
is well known from statistical physics, for such a non-trivial scaling limit to exist, the discrete
model must be critical, in that it exhibits diverging correlation lengths. Besides criticality, another
very important criterion in the case of random geometry is that the manifold structure does
not degenerate in the scaling limit. For instance, in Dynamical Triangulations of the 3-sphere,
the piece-wise flat geometries built from equilateral tetrahedra have the topology of the 3-sphere
and display criticality in the so-called branched polymer phase of the model. However, numerical
simulations indicate that shrinking the building blocks leads to the topology degenerating into that
of trees, nothing like the manifold structure of the 3-sphere. Apart from the branched polymers,
simulations of Dynamical Triangulations in three and four dimensions have not (yet) uncovered
critical phenomena that escape this branched-polymer universality. This means that the lattice
approach is yet to uncover concrete opportunities to establish scale-invariant random geometries
on three- and four-dimensional manifolds. There are however promising avenues in models that
restrict the family of triangulations considered. Simulations suggest that four-dimensional Causal
Dynamical Triangulations (CDT) [14] feature continuous phase transitions [15, 16] where one



expects criticality to be found, while a numerical investigation of a recently proposed model of
three-dimensional dynamical triangulations assembled from triples of trees is underway [17].

The third route towards scale-invariant random geometry, the one that we follow in this work,
also aims to assemble geometries out of simpler building blocks, but instead of relying on criticality
and scaling limits to approach scale-invariance with random discrete objects, one takes the building
blocks themselves to be scale-invariant. If the assembly does not spoil the scale-invariance and the
resulting geometry has the desired topology, this provides a very economical way of uncovering new
universality classes. A simple example of such an assembly procedure is that of the Continuum
Random Tree (CRT), which is the scaling limit of the branched polymer universality class men-
tioned above, out of Brownian motion [18]. Brownian motion, seen as a random continuous real
function on the line (or equivalently as a massless free scalar field in one dimension), is the prime
example of a scale-invariant random object. This random real function naturally gives rise to a
gluing procedure of the real line into a topological tree with a metric, namely the CRT, that shares
the same scaling symmetry (see Section 2.5 for a discussion). Since the CRT is not a topological
manifold, its relevance for quantum gravity is not obvious, but stems from the possibility of using
the CRT itself as building block for larger random geometries.

The hope of assembling manifolds out of random trees may seem far-fetched, but is well estab-
lished in two-dimensional quantum gravity. At the level of discretized surfaces, bijective encoding
of planar maps in treelike combinatorial structures has a long tradition, starting with Mullin’s
bijection for tree-decorated maps [19] and the Cori-Vauquelin—Scheafer bijection between quad-
rangulations [20, 21] and labeled trees. The study of the latter bijection in the scaling limit, in which
the discrete trees approach the CRT, paved the way for a mathematically rigorous construction of
(and convergence to) the scale-invariant Brownian sphere [22, 5, 23]. Generalizations of Mullin’s
bijection to random planar maps decorated by various critical statistical systems [24, 25, 26, 27]
hinted at a different appearance of CRTs in the continuum limit, in a way that ties in closely
with Liouville Quantum Gravity and conformally invariant random curves described by Schramm-—
Loewner Evolution (SLE). In the foundational paper [28] by Duplantier, Miller and Sheffield this
approach, going under the name of Mating of Trees, was introduced in its generality. Starting from
two independently sampled CRT's, there exists a simple assembly procedure that identifies points
in the contours of the two trees, resulting in a scale-invariant random metric space that (almost
surely) has the topology of the 2-sphere. This metric space is known to correspond with Liouville
Quantum Gravity for a particular value of its coupling constant (v = v/2). Remarkably, any other
value of this coupling v € (0,2) associated to a gravitational universality class in the presence of
an arbitrary matter conformal field theory (as long as the matter central charge is below 1), can
be achieved by introducing a correlation between the pair of CRTs. As alluded to above, a CRT is
assembled from a Brownian motion, meaning that a pair of CRTs is naturally obtained from the
two coordinates of a two-dimensional Brownian motion, and this correlation can be understood as
the choice of a non-trivial covariance matrix for the latter Brownian motion.

The fact that the CRT provides the universal building block for essentially all scale-invariant
random geometries relevant to two-dimensional quantum gravity naturally raises the question
whether higher-dimensional random geometries can be constructed in similar fashion. One can
question whether this is sufficiently motivated from a path integral perspective on quantum gravity,
but given that at present we do not know of a single explicit example of a scale-invariant random
geometry with three-dimensional manifold topology one should not set too stringent conditions. In
this work we propose a rather straightforward generalization of the mating of trees construction,
in which the pair of correlated CRTs is replaced by a triple. If the result has a well-defined
and scale-invariant random metric structure, something that requires checking, it necessarily gives
rise to new universality classes beyond random surfaces. Naturally the model possesses a three-
dimensional parameter space as opposed to the one-dimensional parameter space of mated-CRT
surfaces. One of the critical exponents, the string susceptibility, can be calculated (analytically
for special regions and numerically elsewhere) and displays a non-trivial dependence on the three
parameters, suggesting that they really parameterize an entire family of new universality classes.
To start exploring the parameter space we develop a numerical toolbox to simulate the result
of mating a triple of trees and measure an important critical exponent related to the metric: the
Hausdorff dimension, which governs the relative scaling between volume and radius of geodesic balls
in the geometry. Whether the topology induced by the metric really is that of a three-dimensional
manifold requires a more refined analysis that is beyond the scope of the current work.

This paper is organised as follows: we start in Section 2 by reviewing the mating of trees ap-
proach to two-dimensional quantum gravity and its relation to random planar map models and
Liouville Quantum Gravity. To access the metric properties of mated CRTSs, it is necessary to
consider regularizations in the form of Mated-CRT maps, where geodesic distances can be conve-



niently approximated by graph distances on the map. In Section 3 we propose a generalization
of the Mated-CRT maps to Mated-CRT graphs associated to Brownian motion of arbitrary di-
mension and outline an algorithm to effectively sample them. Section 4 describes our numerical
implementation and simulation of Mated-CRT graphs associated to two- and three-dimensional
Brownian motions and a finite-size scaling analysis of geodesic distances. The resulting estimates
of the Hausdorff dimension in the two-dimensional case serve as an important benchmark of the
numerical method, while in three dimensions the estimated Hausdorfl dimensions combined with
the computed string susceptibilities provide a first window into a large family of potentially three-
dimensional random geometry universality classes. In the last section we discuss our results in the
context of scale-invariant random geometries and Quantum Gravity.
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2 Mating of trees: 2D quantum gravity from Brownian mo-
tion

The basic idea of the Mating of Trees approach is that both the geometry and the matter de-
grees of freedom in two-dimensional quantum gravity on the 2-sphere can be encoded in a single
continuous path in the Euclidean plane. For a detailed story of the correspondence, we direct
the mathematically-inclined audience towards the foundational paper by Duplantier, Miller and
Sheffield [28] and the recent survey by Gwynne, Holden and Sun [29], as well as the many references
in the latter. In this section we provide a high-level introduction to the topic for those that are not
entirely comfortable with the probability theory literature. First, we will review two examples of
mating-of-trees bijections between discrete surfaces decorated with statistical systems and certain
discrete walks in the quadrant. Next, we will explain how this picture extends to the continuum
limit and generalizes to the full family of two-dimensional quantum gravity theories coupled to
conformal matter.

2.1 First discrete example: spanning-tree decorated quadrangulations

The simplest example of a model of discrete surfaces that is naturally encoded by a walk in the
quadrant, is that of spanning-tree decorated quadrangulations, which goes back to a bijection of
Mullin [19] in the sixties. To define the model, we need to introduce some terminology. A planar
map is a planar graph, in which loops and multiple edges between vertices are allowed, together
with a proper embedding in the 2-sphere. A region in the sphere that is delimited by edges of
the map is called a face and the degree of a face is the number of edges in its contour. A planar
map is said to be rooted if it has a distinguished oriented edge. A quadrangulation is a planar
map in which all faces have degree four (Figure la). To see that a quadrangulation describes a
discrete surface, it is sometimes useful to think of the faces as identical unit squares equipped with
the Euclidean metric and the incidence relations of the map as prescriptions on how to glue these
squares along their sides in order to obtain a piecewise flat metric on the sphere.

A spanning-tree-decorated quadrangulation is a quadrangulation together with a choice of di-
agonal in each face, such that the graph formed by the diagonals alone has no loops (Figure 1b).
In this case the diagonals necessarily take the form of two disjoint trees that together span the
vertices of the quadrangulation, hence the name of the model. The two vertices of the root edge
belong to the two different trees and mark a root for each of them. If one assigns equal Boltzmann
weight to each spanning-tree-decorated quadrangulation (in other words, one samples uniformly),
one may think of this decoration as a statistical system coupled to the geometry of the surface
described by the quadrangulation, thus as a rather abstract form of matter. Note that the presence
of the statistical system has an (entropic) effect on the geometry, as the number of decorations
differs from one quadrangulation to the other.
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Figure 1: (a) A rooted quadrangulation (note that the white outer region is a face of degree
four as well). (b) A spanning-tree-decorated quadrangulation. (c¢) The space-filling curve. (d) The
corresponding excursion (Z;) in the quadrant. Figure adapted from [30].

According to Mullin [19] rooted spanning-tree-decorated quadrangulations with n faces are in
bijection with excursions in the quadrant of length 2n with unit steps parallel to the axes. An
excursion in the quadrant is a walk Zy, Z1,..., 2oy € 22>O with 2n steps that starts and ends at
the origin, Zy = Z,, = 0 (Figure 1d). The bijection is rather easy to understand: there exists a
unique closed path on the surface starting and ending at the root edge that intersects all edges of
the quadrangulation while avoiding all diagonals (Figure 1c). The corresponding excursion simply
records for the ith visited edge the heights Z; € Z2 of its left and right extremity in the tree,
where the height of a vertex in a tree is the distance in the tree to its root. From the figure
it should be clear that between consecutive visits, exactly one of the heights changes by +1, so
Ziv1 — Z; € {(0,£1),(£1,0)} and one indeed obtains the desired excursion in the quadrant. It
is straightforward to check that any such excursion can be obtained in this was and that the
quadrangulation together with its decoration can be reconstructed from the excursion.

In light of what follows, it is useful to think of the reconstruction starting from an excursion
as a three step procedure. In the first step one only examines the sequence of horizontal steps of
the excursion (and ignoring the vertical coordinate), which encodes a Dyck path, i.e. a walk with
unit steps on the non-negative integers starting and ending at zero. It encodes a plane tree, which
we draw in blue. In the second step, a red tree is constructed similarly from the vertical steps of
the excursion. Now every visit of the excursion naturally corresponds to a pair of corners, one on
each tree, such that following the excursion corresponds to tracing the contour of the blue tree in
counterclockwise direction and the contour of the red tree in clockwise direction. Finally, in the
third step the blue and red tree are “mated” into a spanning-tree-decorated quadrangulation by
drawing a black edge between each pair of corners.

2.2 Second discrete example: site-percolated triangulations

The previous example is archetypal, where it is intuitively clear that the surface can be encoded
in trees, because the decoration already takes the form of a tree. Admittedly, it is not the most
natural statistical system one would think of when trying to couple quantum gravity to a matter
field. So let us look at a model that has a simpler interpretation, but for which the trees are
well hidden. This is the model of (loopless) triangulations with site percolation [31, 25, 32]. A
triangulation is a planar map in which all faces have degree three and it is loopless if it has no
edges starting and ending on the same vertex. A site percolation on a rooted triangulation is
simply an assignment of one of two colors, say blue and red, to each vertex of the map, with
the only requirement that the root edge points from a red to a blue vertex (see Figure 3a). If
one assigns equal Boltzmann weight to every such rooted site-percolated triangulation with 2n
triangles, we obtain a very simple example of a statistical system on a random surface. One could
think of this system as the high-temperature limit of the standard Ising model living on the vertices
of the triangulation. Note that, contrary to the spanning-tree-decorated quadrangulations, each
triangulation admits the same number of distinct site percolations, namely 2™ because there are
precisely n vertices that are not incident to the root edge. This means that the statistical system
does not affect the statistics of the geometry, and we are dealing with a model whose geometry
lives in the universality class of pure gravity, coupled to a rather trivial type of matter in the form
of white noise.

Just like in the previous example, we would like to find a self-avoiding closed curve that in
some sense explores the full triangulation. It is natural to consider the partition of the vertex set
into monochromatic clusters and examine the cluster interfaces, which naturally correspond to a
collection of disjoint closed loops on the graph dual to the triangulation (Figure 3a). Since the
root edge crosses an interface, it is natural to start the exploration along this interface. Unless the



site-percolated triangulation is exactly of the type of Figure 1b, with exactly one blue cluster and
one red cluster and such that the monochromatic edges in each cluster form a tree, the exploration
will return to the root edge before having explored the full map. The rough idea described in
[25] is that one can merge all cluster interfaces into a single exploration by following an interface
and taking detours into neighbouring interfaces at the very last opportunity before they become
inaccessible.
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Figure 2: The five types of possibilities when peeling away an edge in the exploration. The pair of
integers indicates the length change of the contour to the left respectively right of the exploration
path.

More precisely, one may setup a peeling exploration that visits all 3n edges of the triangulation
as follows (see [32, Section 2.3]). We start the exploration in the triangle at the right of the root
edge and position the tip of the exploration at the other non-monochromatic edge of that triangle
(see the top left of Figure 3c). Then at each step the edge e at the tip is removed, in such a way
that we eventually return to the root edge (the final target). There are five different cases (a to
e) to be considered, which are summarized in Figure 2. If e is adjacent to a triangle containing a
non-boundary vertex, then the exploration traces the cluster interface, meaning that it turns left
or right depending on the color of the vertex (cases a and b). If however, all vertices of the triangle
are on the boundary, one considers the two components that are separated by the triangle, and
one implements a detour through the component that does not contain the target. The choice of
detour is shown in Figures 2c and d by a light green arrow pointing from one component, where it
can be regarded as an intermediate target for the exploration, to the other, indicating where the
exploration will continue after the first component has been fully explored. Finally, if instead of
a triangle the edge e is adjacent to a detour, the detour is followed (case e¢). An example of a full
exploration is shown in Figure 3c.

To obtain a lattice walk, at every step i = 1,...,3n of the exploration one keeps track of the
distances Z; € Z2 < in clockwise respectively counterclockw1se direction along the contour between
the tip of the exploration and the root edge. It is easily seen that the only possible changes in
these distances are (0,1), (1,0) and (=1, —1), so one obtains an excursion with these increments in
the quadrant of length equal to the number of edges of the triangulation (Figure 3b). These walks
are known as Kreweras walks [33]. It is a non-trivial fact that this determines a bijection, see [32,
Theorem 2.2] and the earlier references [25, 34].



Figure 3: (a) A rooted site-percolated triangulation with cluster interfaces indicated in pink. (b)
The corresponding excursion in the quadrant with increments (1,0), (0,1) and (—1,—1). (c) The
peeling exploration. The dark green curve illustrates the iteratively constructed exploration path,
while the lighter green curves indicate the required detours. The integers above each map are
contour lengths on the left respectively right of the exploration path.

2.3 Scaling limit of the walks

A first consequence of these bijections is that one can easily understand the asymptotics of the
enumeration. Let us denote by Z) the canonical partition function with unit Boltzmann weight
per configuration, meaning simply the total number of decorated rooted planar maps in the model.
In the case of spanning-tree decorated quadrangulations, the number of simple excursions of length
2n is easily found to be
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™
where Cat(n) = n%rl (2:) are the Catalan numbers. Note that the exponential growth 4" reflects

the four different increments available for each of the 2n steps of a simple walk. In the case of
site-percolated triangulations, the number of Kreweras excursions of length 3n is [33, 25]
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Also here the 33" agrees with the three possible increments of the walk at each of the 3n steps.
More importantly, the exponents of the power-law correction differ between the two models.

This should not be surprising, because the models feature qualitatively different matter systems
and should be expected to belong to different universality classes. In general, for a model of random
geometry the partition function is expected to scale with n as

Zx " o2k, (3)

where 7y, is a critical exponent, known in the physics literature as the string susceptibility. If the
universality class corresponds to two-dimensional quantum gravity coupled to a matter conformal
field theory with central charge ¢ € (—oo, 1], then the KPZ formula predicts [35]

c—1—4/(c—1)(c—25)

frng . 4
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We see that spanning-tree-decorated quadrangulations feature the exponent s = —1 corresponding
to ¢ = —2 and the site-percolated triangulations exponent v, = —1/2 corresponding to ¢ = 0, in

accordance with the expectation that the latter live in the pure gravity universality class.
Why do we see two different exponents appearing in the enumerations of excursions in the
quadrant? In the large-n limit the random walks in the quadrant, rescaled by 1/y/n, approach a



Brownian excursion in the quadrant, i.e. a two-dimensional Brownian motion that is conditioned
to start and end at the origin and remain in the quadrant. In order to specify this process, it is
sufficient to know the covariance of the unrestricted Brownian motion, which appears as the limit of
the unrestricted random walks. It is precisely in this covariance that the two models differ. Indeed,
denoting the z and y components of a walk on Z? by L; and R; respectively, an unrestricted simple
random walk on the square lattice has covariance

Var(Ly) = Var(R,) = % Cov(Ly, Ry) = 0, (5)

while an unrestricted Kreweras random walk satisfies

2t t
Var(Lt) = Var(Rt) = g, COV(Lt7 Rt) = g (6)
In general, for a random walk with
Cov(Ly, Ry) = pVar(Ly) = p Var(Ry), pe(-1,1) (7)

it is known [36] that the number of excursions in the quadrant of length n grows like
Cn ™t wwstn k", (8)

for some C' > 0 and x > 1. Note that for p = 0 respectively p = 1/2 this indeed agrees with (1)
respectively (2). Moreover, it suggests that any other model of random decorated planar maps that
admits a bijection with walks in the quadrant and belongs to a universality class with a certain

1
which this is the case, including bipolar-oriented triangulations (¢ = =7, 75 = —2, p = —1/2) [26]
and Schnyder-wood-decorated triangulations (¢ = —25/2, 75 = —3, p = —1/1/2) [27].

central charge ¢ must satisfy p = — cos (%v) Several further examples are indeed known for

2.4 Mating of trees and Liouville Quantum Gravity

The discrete examples make one wonder whether there is a continuum interpretation to the en-
coding by trees and whether it extends to other universality classes of two-dimensional quantum
gravity coupled to conformal matter with ¢ € (—oo, 1]. This has indeed been shown to be the case
in a framework going under the name of mating of trees [28], putting the case ¢ = 1 aside with
its peculiarities [37]. In order to understand the result, we need to explain first how to describe
geometry and space-filling curves in the continuum. We are dealing with quantum gravity on the
2-sphere, which is conveniently represented by the Riemann sphere C = CU{oc}. Let §qp be some
fixed conformal® background metric on C of unit area. Then, we are after a random real field
¢ on C, that we informally interpret as describing a random Riemannian metric gqp = €7?§qp of
unit volume, and independently a random continuous space-filling curve n; : [0,1] — C such that
n4(0) = ng(1) and n4([s, t]) has volume ¢t — s with respect to the background measure /g d?z for
0 < s <t < 1. The former is provided by Liouville Quantum Gravity (LQG) and the latter by
Schramm-Loewner Evolution (SLE), which we both briefly discuss.

By the uniformization theorem, any two-dimensional Riemannian metric on the sphere is iso-
metric to a conformal rescaling g, = €7?§qs of the background metric §qp. Liouville Quantum
Gravity with coupling constant v € (0,2) is the path integral quantization of this field ¢ (known
as the dilaton) with action

1 N
Si= o / /G (0,006 + QRo + amie™?) (9)
where 5
Q=5+, (10)

R is the scalar curvature of ja and i > 0 a parameter known as the cosmological constant. If
gravity is coupled to a conformal matter field with central charge ¢ € (—o0, 1), then the parameter
Q € (2,00) is related to ¢ via

c=25-6Q% (11)

LConformal in the sense that Jab preserves the angles of C and thus corresponds to a metric of the form
f(2)(da? + dy?) for z = x + iy € C for somc function f € — [0,00). A natural choice, corresponding to constant
curvature R = 87 and unit area, is f(z) = = La+z)2
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Figure 4: (a) LQG,: simulation of the random measure 14 on the round 2-sphere (lighter regions
contain more quantum area than darker regions). (b) Space-filling SLE,/: an illustration of the
imaginary geometry flow lines from z and 2’ to co. Here 7, (in red) meets 7./ (in blue) from the
left, and thus z precedes 2’ in the space-filling curve. (c) 1;([0,t]) is a closed region (in white)
of g-area t in C with co and n,(t) on its boundary. (d) LQG. 4 SLE,/: the region 7,([0,t]) has
quantum area pe(ng([0,t])) =t and L(t) and R(t) are the left and right boundary lengths of this
region measured by vy respectively.

It is not obvious that one can make sense of a random field with density proportional to e™°* in
an appropriate space of generalized functions. Luckily ¢ is closely related to the Gaussian Free
Field (GFF) on gap, the free massless real scalar field with action Sy, in which @ and i are set to
zero, which has an unambiguous probabilistic interpretation if we restrict the constant mode, for
instance, by requiring zero mean (see [38] for a recent introduction to the GFF). Accounting for
the residual Mobius symmetry by marking three points, say z1, 292, 23 € C, it can be shown that ¢
is obtained from the GFF by a deterministic position-dependent shift [9, 39].

The resulting random field ¢ is not defined point-wise but should be viewed as a generalized
function. In order to make sense of the rescaling gos = €Y?gap, it is thus necessary to consider a
suitable regularization. For instance, we could look at the circle average ¢.(z), taken to be the
average of ¢(z) over a circle of radius € around z. Then, a normalized quantum area measure on
C can be defined via

e19<(2) /5 d?2

He = 25% fé €7¢6(Z)\/§d22”

that is independent of g, and is such that z1, 23, 23 are uniform points for u¢2. See Figure 4a for
an illustration. Similarly, one may introduce a quantum length measure via

. 67¢e(z)/2{1/§|d2|
Vg = 11m .
0 [ eroea) /G 22

Given a region U C C and a curve T : [0,1] = C, uy(U) and v4(I([0,1])) should be interpreted
as rigorous definitions for the usual area [, \/gd®z and length fol Vg’ (t)|dt as measured by the
Riemannian metric g, = €7?§q5. The Riemann sphere c equipped with the random measures fig
and vy is called the unit-area y-quantum sphere.

Next, we describe the random space-filling curve 7; arising from SLE,, with &' = 16/9? €
(4,00). A concise way to introduce this curve is via imaginary geometry. If h: C — R is a smooth

(12)

(13)

real function, one can consider the flow lines of the complex vector field /X where y = @ — \/2;,
More precisely, to z € C we associate the curve 7, determined by
m(t) = exm=) 0y =2, t>0. (14)

Remarkably these flow lines are still well-defined if we take h to be the (far from smooth) whole-
plane GFF h on C (independently but similar to the one for LQG). It can be shown, see [40], that
for each z € C the flow-line 7, (¢) does not self-intersect and approaches co as t — oo, and that for
two distinct starting points z, 2’ € C the flow lines 7, and 7,/ almost surely eventually meet and
stay together before reaching oo (Figure 4b). One may use this to associate an order to the points
in the complex plane: z precedes 2’ if 7, meets 7,/ from the left. The space-filling curve SLE,.
is the continuous non-self-crossing path n; : [0,1] — C starting and ending at oo that visits the
points of C in this order, parametrized such that n,([s,t]) has area t —s for 0 <s <t < 1.

2More precisely, this means that if we sample three new independent points 2, b, zé with probability distribution
g and look at the transformation of p4 under the unique Mobius transformation that sends 2] to z;, i = 1,2, 3,
then the result has the same law as 4.



Figure 5: Illustration of the mating of trees construction. The excursions L(t) and R(t) in the
positive half line each encode a real tree (in red and blue respectively). Upon pairwise identification
of points in their contours a topological sphere emerges. The right figure illustrates an intermediate
state in which only part of the contour is identified.

Liouville Quantum Gravity for v € (0,2) and the space-filling SLE,, for v’ € (4,00) are
intimately related to each other when x’ = 16/72. To formulate this let us consider a unit-area
~-quantum sphere g, v4 and an independently-sampled space-filling curve n;. It is then natural
to consider the reparametrization n, of 75 such that it explores the quantum area at unit rate,
meaning that pe(ny([s,t])) =t —s for 0 < s <t < 0. Now for every t € (0, 1), the traces n4([0,t])
and n,([t,o0]) are closed subset of C. The boundary 7,([0,]) N 7,([t,o0]) at which they meet
consists of two continuous curves starting at 7,(¢) and ending at co. Let Z(t) = (L(t), R(t)) € R%,
be the vy4-lengths of these curves (Figure 4d). The crucial insight of the mating of trees approach
[28] is that the process Z(t) has a very simple law. To be precise, according to [41, Theorem 1.1]
(and [42, Theorem 1.3] for the precise normalization) it has the law of a two-dimensional Brownian
motion (L(t), R(t)) started from (0,0) with covariance

2

It|, and Cov(L(t), R(t)) = —2cot (”Z) i (15)

2
sin (%’2)
and conditioned to stay in [0,00)? and to return to (0,0) at time ¢ = 1. Moreover, both the
quantum sphere and the space-filling curve are almost surely determined by this process. This
means that, at least in principle, one can reconstruct the measures g and vy as well as the curve
ng simply by looking at the Brownian excursion Z(t). In the next subsection we will discuss an
explicit procedure.

At this point one should recognize the analogy with the discrete mating-of-trees bijections that
we described above. The quantum surface is the continuum analogue of the random planar map,
while the space-filling SLE, is the analogue of the exploration path determined by the statistical
system living on the planar map. In the discrete case the bijections with lattice walks show that the
random discrete surface is completely determined by a corresponding random walk, which starts
at the origin and is conditioned to stay in the positive quadrant Z%, before returning to the origin
after n steps. Upon rescaling the walk by 1/4/n and normalizing the time to run over [0, 1], its law
converges in a probabilistic sense to that of the Brownian excursion (L(t), R(t)). Comparing (7)
to (15) we observe that p = — cos(my?/4) and therefore the string susceptibility s must be related
to v by

Var(L(t)) = Var(R(t)) =

4
7521—?7 (]‘6)

which is easily checked to be consistent with the relations between ~, 7, ¢, @ given in (4), (10)
and (11).

To wrap up, mating of trees provides a procedure to go back and forth between a unit-area
y-quantum sphere together with a space-filling SLE,/ curve on one side and a pair or correlated
continuum random trees encoded by a Brownian excursion in the quadrant on the other, and each
side (almost surely) determines the other.

2.5 Mated-CRT maps

As should be clear from Figure 4b, the union of the flow lines 7,,,...,n,, of points z;,...,2, € C
has the structure of a tree spanning z1, ..., 2; and co. If we increase the number k of points this
tree approaches a tree that spans the whole sphere, and the space-filling curve 7, can be understood
as tracing the contour of this tree. The quantum length measure vy assigns a metric structure to
the tree, and one can interpret the process R, as the distance in the tree between 74(t) and oo.
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Similarly, L; is the distance to co along a complementary tree, which informally one can think of
as what is left of the surface after the first tree is removed.

The reconstruction of the quantum sphere from the two-dimensional Brownian excursion can
also be understood from the perspective of the trees. Both coordinates L(¢) and R(t) describe
a continuous excursion in the positive real line starting and ending at 0. Any such excursions
X :[0,1] = R naturally gives rise to a continuous metric space: the real tree given by the unit
interval [0, 1] with metric

d(s,t) = X(s)+ X(t) —2 inf X(u), (17)

u€|s,t]

where it is understood that we identify s and ¢ whenever d(s,t) = 0. If L(t) and R(t) are uncor-
related, which happens for v = V2, each is an independent Brownian excursion on the line and
the corresponding real tree is called the Continuum Random Tree (CRT). In general they encode
a pair of correlated random trees very similar to the CRT. It is relatively straightforward (see [28,
Section 1.3]) to see that pairwise identification of points in the contours of the two trees leads
to a space that is (almost surely) topologically equivalent to the 2-sphere. See Figure 5 for an
illustration. What is not at all obvious is that the result has a natural conformal structure, let
alone a natural metric. A convenient way to see that it does is by considering successively finer
discretizations of the surface as follows.

Consider an excursion X : [0,1] — Rx( in the positive real line such that X(0) = X(1) =
0. For any positive integer n one may associate to X a triangulation of the n-sided polygon
with vertices labeled from 1 to n as follows [43]. We divide the interval [0,1] into n equal parts
[0, %]7 [%, %], BN %7 1], one for each vertex. For any 1 < z < y < n such that the vertices

with labels x and y are not neighbours, we draw a diagonal connecting these vertices if there is

a horizontal segment below the graph of X connecting the intervals [2=1, £] and [, £] in the

n ’'n n ’

graph, i.e. if there is an s € [2=1, 2] and a t € [£1, £] such that X(s) = X (t) and X (u) > X(s)
for all u € [s,t]. For generic X, for instance when X is a Brownian excursion, the result is a
triangulation.

In the case of a two-dimensional Brownian excursion (L(t), R(t)) we thus naturally obtain a
pair of triangulated polygons by applying the construction to both coordinates. Gluing these two
polygons together produces a triangulation of the 2-sphere with 2n — 4 triangles, called the Mated-
CRT map [43]. Tt is naturally equipped with a Hamiltonian cycle, i.e. a simple closed path on the
triangulation that visits all vertices (in this case in order of their labels 1,...,n), and rooted on
the edge that connects the vertices with label 1 and n. See Figure 6 for an example. This random
triangulation is very much analogous to the discrete models in sections 2.1 and 2.2, except that
it exists for any of the universality classes parametrized by v € (0,2). For any n we obtain a
unit-area Riemannian metric gfg) on the 2-sphere by interpreting each triangle as an equilateral
Euclidean triangle of area 1/(2n — 4). Informally, the metric associated to the mating of trees
should be obtained as the large-n limit of these metrics g((LZ). More precisely, one can work with
the canonical Tutte embedding of the triangulation in the sphere and it is shown in [43, Theorem
1.1 and Remark 3.7] that the corresponding measure y/g(™d?z converges (in a weak sense) to
as n — oo and the Hamiltonian cycle to the space-filling curve n,.

11
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Figure 6: Left: The components (X,Y) of a 2D Brownian excursion are drawn with Y drawn
upside down for illustration purposes. The interval [0, 1] is divided in n equal parts and each of them
correspond to a vertex. The horizontal segments that lead to edges between vertices are indicated.
Right: The triangulation resulting from gluing the pair of triangulated n-gons (the one associated
to Y in blue on top and the one associated to X on the bottom). Note that the top and bottom
arc are yet to be identified. The shaded region represents the region explored by the space-filling
curve up to time to.

So far we have not discussed geodesic distances in the quantum sphere. Naively, one would
expect to find a metric structure, i.e. a distance between z,y € C, by minimizing the quantum
length v4(I'([0,1])) of a curve I' from « to y. But due to the fractal nature of the geometry, this
limit is identically zero. Instead one should consider a different regularization [7], namely there
exists a deterministic positive real number d, > 2 depending only on 7y such that the regularized
distance

infr f;.e™ ) ()7 |dz|
(Jo e70(2) /G d22)

possesses a well-defined limiting metric Dg(z,y) (in probability) as e — 0 when appropriately

D (z,y) =

(18)

rescaled (by a factor of order e_1+% in €). The value d, is precisely the Hausdorff dimension of
this metric [44], which informally is saying that the p14-quantum area of a geodesic ball of radius r
around any point is of order 7% when 7 — 0. The exact value of d. is only known for v = /8/3,
corresponding to the pure gravity universality class, where d Nl 4. For v # \/%, rigorous

bounds are known [45, 46] as well as numerical estimates [30]. Moreover, as v — 0 the dimension
d~ approaches 2 (see [47] for bounds on the convergence rate) in accordance with the constant
curvature solution g, to the classical Liouville action at v = 0.

It is widely expected that this random metric Dy(x,y) agrees with the large-n limit of the
graph distance within the n-vertex Mated-CRT map when normalized by n~/% | and also with
the geodesic distance as measured by gl(l’;) with the same normalization. A proof is still out of
reach, but it is known [45, Theorem 1.6] that the number of vertices in a ball of radius r around a
randomly chosen vertex in the limit n — oo grows like 7% with increasing radius r. Therefore the
simple model of Mated-CRT maps can be used to estimate the Hausdorfl dimension of Liouville
Quantum Gravity for any v € (0,2). We will pursue this avenue in the next section.

The string susceptibility vs can also be interpreted at the level of the Mated-CRT maps in terms
of the distribution of sizes of minimal-neck baby universes (minbus) within the geometry. Since
the Mated-CRT map is a loopless triangulation, the minimal length of a simple closed cycle is two.
We let a minbu of size k for 2 < k < n — 2 be a connected region of 2k — 2 triangles not containing
the root edge that is separated by a cycle of length two from the remaining 2(n — k) — 2 triangles.
The string susceptibility is often introduced [48] as the exponent featuring in the expected number
E, i of minbus of size k,

E,
lim L

n—oo N

=Ck*24o(k*"?) ask— oo (19)

Let us verify that this definition agrees with the relation (16).
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Note from the construction of the Mated-CRT map that a minbu of size k is associated to
any ¢ = 1,...,n — k for which both triangulated polygons have a diagonal connecting x to x + k.
Therefore E,, ;,/n is the probability of this event when z is sampled uniformly. Denoting X (¢) =
(X1(t), Xa(t)) = (L(t), R(t)), this happens precisely when

min  X;(u) > max min  X,(s), min Xi(t) fori=1,2.
z ztk—1 se[mfl z) tE[I+:71 er]

n’ n n 'n

u€|

' n

In the limit n — oo the probability is the same as that for an unrestricted correlated two-
dimensional Brownian motion (X7 (t), X3(t)), such that

E, ~
lim —F —p ( min _ X;(u) > max ( min _X,(s), min Xi(t)) for i = 1,2) .
n—oo M u€lz,x+k—1] s€lz—1,z] te[z+k—1,x+k]
(20)

But this is essentially the probability that a two-dimensional correlated Brownian motion started
close to the origin, remains in the quadrant for time at least k and is close to the origin again at
time k. This can be estimated using the heat kernel of the Brownian motion [49, Lemma 1], and

scales with k as k=177°/4 (see discussion about Brownian motion in the wedge below). We thus
find

lim Bnk _ Cl7/4 0(k‘1_72/4) as k — oo. (21)

n—oo N

This is clearly in agreement with (16) and (19).

3 Mated-CRT graphs from multi-dimensional Brownian ex-
cursions

3.1 Mated-CRT graphs

Now that we know how to read metric properties and the string susceptibility from the combi-
natorial data of a Mated-CRT map, let us introduce a natural generalization. Let d = 2,3, ...
and C be a real positive-definite symmetric d x d matrix. Then we may consider d-dimensional
Brownian motion X (t) = (X1(t),...,Xq(t)) started at the origin in R? with covariance matrix
Cov(X;(t), X;(t)) = Cyj[t|]. A Brownian excursion with covariance C is then such a Brownian
motion for ¢ € [0,1] that is conditioned to start and end at the origin and stay in the octant RZ,
for ¢t € (0,1). We can associate to this Brownian excursion a random (multi-)graph GS on n
vertices with a distinguished Hamiltonian cycle by gluing the d triangulated n-gons associated to
the d excursions X (t), ..., X4(t) along their boundary (Figure 7). For d = 2 this graph is planar
and G corresponds to the graph underlying the Mater-CRT map, while for d > 3 the graph is
generally non-planar.

(a)

Figure 7: (a) Ilustration of a three-dimensional Brownian excursion. (b) To each of the d = 3
components of the excursion we may associate a triangulation of the n-gon. (c¢) The resulting
Mated-CRT graph GS with the Hamiltonian cycle appearing in black.

The central question is whether the graph G, seen as a metric space induced by the graph

distance, possesses a scaling limit, meaning that there exists some real number dg > (0 for which
the rescaled metric space n~1/% G€ has a continuous limit as n — oo (in a Gromov-Hausdorff
sense). A positive answer for d > 3 would give rise to new families of universality classes of random
geometries, which based on the two-dimensional case one would expect to depend on the covariance
matrix C. Note that the construction of GS is invariant under scaling of the coordinate axes, and
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its law therefore is invariant under coordinate-wise rescaling of the matrix C. We may thus assume
unit diagonal entries of C without loss of generality, and we are left with a d(d — 1)/2-dimensional
phase space of models. In d = 2 this 1-dimensional phase space is parametrized by the Liouville
coupling v € (0,2).

As a first indication of a non-trivial scaling limit for d > 2, we will compute the string suscep-
tibility of GS. The definition of a minbu (minimal-neck baby universe) is easily extended to GS:
a minbu of size k in GS is a pair of vertices with label z and z + k, such that removing = and
x + k and all incident edges from GS one is left with two connected components with n — k — 1
and k — 1 vertices respectively. Following the same reasoning as in the two-dimensional case the
expected number EE . of minbus of size k satisfies

EC
lim —2F = Ok =2 4 (k75 2),
n—oo N

if the heat kernel P (z,y) of the d-dimensional Brownian motion with covariance matrix C on the
octant with absorbing boundary conditions falls off like PC(z,y) = ct7~2 + o(t"*~2) as t — oo.
Let us take a closer look at this process to see whether this is realized.

3.2 Brownian Excursions in a cone

Instead of dealing with correlated Brownian motion in the octant Rio, it is often more convenient
to work with uncorrelated Brownian motion in an appropriate cone W C R?. If C is a positive-
definite symmetric matrix, then we can find an invertible real d x d matrix R such that C = RRT
(in fact R may be taken to be lower-triangular with positive entries on the diagonal, in which case
it is called the Cholesky decomposition of C). Let W = R_lRiO be the preimage of the octant by
the linear map R. Then the standard d-dimensional Brownian motion in the cone W is mapped
by R to a Brownian motion with covariance matrix C in the octant.

The corresponding heat kernel PC(z,y)d%y measures the probability density that a standard
Brownian motion started at x € W remains within W for at least time ¢ and is located at y € W
at time ¢. By separation of radial and angular motion, it can be explicitly expressed in terms of the
orthonormal eigenmodes of the spherical Laplace-Beltrami operator Lgs—1 on the spherical region
W N S?! ¢ R? with Dirichlet boundary conditions,

Lsd—lmi(fl}) = —)\imi([i:) for 2eWn Sd_l, (22)
mi(Z) =0 for ¥ € OW N Sa-L,

Namely [49, Lemma 1]

|z 2+]y|2 0o
e = 1 =[]y x y
P = e S oy (0 Yy () (). (23)

d_ d_
|2 yl2 1j:1

where I, (r) is a modified Bessel function satisfying I, (r) ~ r* as r — 0 and

a; =1/ + (‘21 - 1>2. (24)

It follows that for fixed z,y € W,
PC(z,y) = ct= 7 fo(t 1) (25)

as t — 0o, where the exponent depends on the fundamental eigenvalue A\; of Lga—: on W NS~
Hence the string susceptibility of the mated-CRT graph with covariance matrix C is

d 2
In the two-dimensional case, the appropriate linear transformation R is

_ [sina —cosa . T 1 —cos
R= (TP emme = (L0, YY) (21)
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Then R’1R220 is a cone of opening angle «, with the right boundary ray along the positive x-
axis (Figure 8). The corresponding fundamental eigenmode is m;(0) = sin(rf/«) with eigenvalue
A = 72/a?. We see that 75 = 1 — m/a = 1 — 4/~ is consistent with (16).

Uncorrelated Correlated

Figure 8: An uncorrelated BE in a cone of opening angle « is mapped to a Correlated BE in R220
by (27).

In the three-dimensional case the most general positive-definite symmetric matrix C with unit
diagonal entries is given by [50]

1 —cos(a) —cos(7)
C=|—cos(a) 1 —cos(3) with o, 8,7 € (0,7), a+ 8+~ > 7. (28)
—cos(y) —cos(B) 1

The corresponding cone W, 5., = R7'R%, intersects S? in a spherical triangle T, 5, with angles
a, B and v (Figure 9) and its corresponding 3-dimensional phase space is the interior of a rounded
tetrahedron (Figure 10). The eigenvalue Ay of the fundamental eigenmode my of Ty, g, is only
known for special values of the angles. For example, for birectangular spherical triangles (8 = v =

m/2) the fundamental eigenvalue is known to be [51]

)\1:(1+E) (2+3), (29)
e o
corresponding to a string susceptibility of vs = f% — 2. On the other hand, for spherical triangles

with very small area a4+ 8+~ — w the fundamental eigenvalue is well approximated by that of the

Laplacian on a Euclidean triangle with angles «, 8,7 — a — 8 and area a + 8 4+ v — 7w. Denoting

the fundamental eigenvalue of the unit-area Euclidean triangle with these angles by Agua(a, 8),
we thus have Aeat(r, B)

A = Bl P o asy =T —a—f. 30

1= I i —— (1) Y B (30)

In the case of the equilateral triangle, it is a classical computation that Agua (%, §) = %772. Hence,

for the equilateral case we find the string susceptibility

2
VS:—Wh‘Fl—‘rO( Oé—%)- (a:ﬁ:fy) (31)

We see that s — —oo as @ — % analogous to the behaviour of the string susceptibility in 2D

when the cone becomes very narrow. The maximum is reached near the maximal area region in
both cases. For more general regions we use the Finite Element Method (FEM) to determine the

solutions numerically®. See Figure 10.

3Recently, more precise methods to compute these fundamental eigenvalues have been developed in [52].
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Figure 9: The cone W, g~ corresponds to the solid spherical region delimited by the spherical
triangle T 5, in the unit sphere.

(m, 7, )
O
%
(,0,0) (7.0,0)
(070,71') (0.0‘.7‘_)
Figure 10: Left: The phase space of covariance matrices C, parametrized by Ci2 = — cos (),

Cas = —cos (), C13 = — cos (), spans the “tetrahedral” region C3,4C33+C3;—2C12C13C23 < 1.
The corners are labeled with their spherical angles (a,,7). The blue diagonal corresponds to
equilateral spherical triangles (o = 8 = «), while the gray plane indicates the isosceles spherical
triangles (8 = 7). The red dots are the smallest (%, T, ) and largest (7,7, w) equilateral triangles,
which will be of particular interest in the results. Right: estimates of the string susceptibility ~s
for isosceles triangles obtained from Finite Element Methods.

3.3 A simpler biased Brownian excursion

Unit-time Brownian excursions in a non-trivial cone W are challenging objects to simulate effi-
ciently. For this reason we introduce a slightly biased version of the Brownian excursion, which
is easier to simulate. As we will see in a minute, for a unit-time Brownian excursion the integral
fol | X (¢)|2*1~2d¢ has finite expectation value C,, = 217 1T'(ay)/; > 0. We may thus introduce
the Brownian excursion X (t) obtained from X (t) by biasing its law by the value of this integral,
meaning that the probability measure of X (t) is that of X (¢) multiplied by fol | X (t)|?*1=2dt/C,, -
In probabilistic terms, the new random excursion X (t) is absolutely continuous with respect to the
unit-time Brownian excursion and therefore displays the same critical exponents. In particular,
the Mated-CRT graph GS associated to the excursion X (t) will display the same local geometry as
the unbiased Mated-CRT graph G when n — oo, and therefore agree on the Hausdorff dimension
d~ (if it exists) and the string susceptibility ~,.

This is quite useful, because we claim that X (t) can be more easily sampled than X (¢). Let
S be a random point chosen from the spherical region W N S~ with probability distribution
mq(x)? (recall that this eigenmode is assumed to be normalized and thus m1(x)? integrates to one
on W N S?1). Independently, we sample two independent Brownian motions X! (¢) and X?2(t)
started at S and conditioned to touch the boundary OW at the origin. If 77 and T5 are the hitting
times of the origin, then we make the identification

1
%) = i X O A T)) 0SES i (32)
VI T | X2(UT1 4+ To) —Th) 1>t> 5l
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In words, we concatenate the reversal of the first curve with the second to produce an excursion from
the origin, which is then rescaled to have unit duration (taking into account the usual Brownian
scaling relations).

To understand why this works, let us first compute the distribution of the hitting time T}
(which is the same as that of T3). From the y — 0 limit of the heat kernel (23) with |z| =1,

pfmﬂgaﬁnm%éwaﬁl%leﬂ)nu@x (o] = 1)
Yy

it follows that the hitting time 77 is independent of the starting position S and distributed as an
inverse gamma distribution with index «; and scale 1/2, i.e. has density
1

o el digy R=o. 33
2017 (ay) ¢ om0 (33)

Next, we determine the density of the Brownian excursion X (¢) in W at a fixed time s € (0, 1),
which is obtained from the heat kernel (23) via the limit
2\ 2
x| 1 my () . (39)
||

It follows that X (s)/|X (s)| for any s is distributed like the point S above and that the distance
| X (s)| to the origin has probability density

lim Ps(ylax)Pl—s(xva) _ 1 |x‘20¢1+1€—‘xg‘2<%+f15)
Y1,y2—0 Pi(y1,92) s tl(1 —s)artl

1 p2oitl r2 (1 1
J(r)dr = *7(;+1fs)d . 35
P: (T) T Sa1+1(1 _ S)al-‘rl Q(XF(a + 1)6 T ( )
Integrating this expression against 721 =2 yields the previously claimed expectation value
1 1 0o
r
Coy :=E { / X (t)2“1_2] - / a / ar 2=, (r) = 2011 101, (36)
0 0 0 aq

Suppose now that X (t) is the biased Brownian excursion and, conditionally on X (), let U €
[0,1] be a random variable sampled with density proportional to | X (u)|?**~2du. Then we let
U 1-U XU
n=—"r m=2T, =29 (37)
[ X(U)| | X(U)] | X(U)]
We will demonstrate that 717, T» and S are independent and 77 and T3 are distributed precisely as
the inverse gamma distribution mentioned above. R
From (35) it follows that the joint distribution of the pair (| X (U)|,U) has probability density

1

C—pu(r)rzo‘l*zdrdu on Rs¢ x (0,1). (38)
a

Since T} and Tj are bijectively related to | X (U)| and U via (37), the joint density of the pair
(T1,T») € R is obtained from this by the transformation r = 1/y/71 + 72, u = 71 /(11 + 72), with
Jacobian 2r—°drdu = drydry, which yields

1 1
C—pu(r)r2“1_2dsdr =
[e5]

—041—1

(21T (o)) !

1

67ﬁ’7'2_a e T drdr. (39)
Comparing with (33), we observe that T} and T5 are independent and distributed with the desired
inverse gamma distribution.

Finally, conditionally on 77, T and S, the curves X(U —t) and X (U + t) are independent
d-dimensional Brownian motions both started at X (U) = S/V/T1 +T» and conditioned to hit to
the origin after time U = T1/(Th + T») and 1 — U = Ty /(T + T) respectively. By the scale
invariance of the Brownian motion the curves

Mmﬂwﬂﬁ(ﬂ”), ﬁ@ﬁwrﬁ(ﬂ”) (40)

T +1T5

are distributed as independent d-dimensional Brownian motions started at S and conditioned to hit
the origin after time 77 and 75 respectively. But as we computed above, 77 and T have precisely
the distribution of the hitting time of the origin of a d-dimensional Brownian motion started at S
and conditioned to tough the boundary OW at the origin, so we may lift the latter conditioning.
Since this is precisely the inverse of (32), we have proven that the identity (32) holds for the law
of X(¢).

17



3.4 Brownian motion conditioned to hit the origin

We have seen that the biased excursion X (t), and therefore also the biased Mated-CRT graph G’S,
can be constructed from a pair of d-dimensional Brownian motions that are conditioned to hit the
boundary W at the origin. Let us discuss these processes in a bit more detail. An important role
is played by the harmonic function

h(z) = ||~ 5+ 1m, (r;') . (41)

It can be recovered from the heat kernel by first computing the ¢-integral

o Nl d i edaas x y
/ Ptc(;p,y)dt = Zf‘xp 2 J|y|1 2t im; (> m; <) for ‘I| > |y| (42)
: 25 o)™

As y tends to zero we thus have

ly|>*
a;

oo
| Pe@ e = wie) ) (13)
0

which estimates the probability that an unrestricted d-dimensional Brownian motion started at x
leaves the cone W at a point close to the origin. Even though the Brownian motion has vanishing
probability of hitting OW at the origin, we may still condition on this event by a so-called Doob’s
h-transform [53] of a standard Brownian motion with respect to this harmonic function. Without
diving into the theory of h-transforms, we can characterize the Brownian motion X*(t) conditioned
to hit W at the origin as follows. If A C W is a closed neighbourhood of zo = X*(0) and we
consider the exit time 7 when X(t) leaves A, then the distribution of the exit point X*(7) is
related to that of a standard Brownian motion started at zo by a factor h(X*(7))/h(zo).

This characterization gives a simple iterative procedure of constructing X(¢) started at zg € W
from standard Brownian motion, see Figure 11. We take the subset A to be the largest Euclidean
ball centered at x¢ and contained in W and let x7 be a random variable on the sphere 9A with
probability density h(x)/h(xzg). We may then consider a standard Brownian motion started at xg
until it hits the boundary of the ball at time t;. By symmetry this happens at a uniform point Z; on
0A. A d-dimensional rotation around x( that brings Z; to 7 then gives an appropriately sampled
path for X?(t) for t € [0,1]. Since X*(¢) is a Markov process, we may iterate this procedure with
the new starting point X%(t;) = z1 to obtain the path for X%(t) with t € [t1,ts], etcetera. Of
course, infinite iteration is required to reach the origin, but if one is only interested in the path
until reaching some small distance € > 0 from the origin, then the number of required iterations
can be seen to grow only logarithmically in 1/e.

ow

Figure 11: The first step in the iterative procedure to produce Xi(t) in the case of a two-
dimensional cone W: ¢ is sampled from the unit circle W N S' with density m1(x)? = h(z)?;
a standard 2-dimensional Brownian motion is run until it exits the disk A at Z;, which is then
rotated to end at the random position x; with distribution h(x)/h(zo). This procedure is to be
repeated with a new disk centered at x;.
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4 Simulations and Hausdorff dimension estimates

4.1 Sampling Mated-CRT graphs numerically

In the previous section we have introduced the random Mated-CRT graph G’% constructed from the
biased Brownian excursion. Let us now turn to the numerical implementation of this construction.

Sampling é% with exactly the right probability distribution is challenging, as it relies on contin-
uous Brownian motions. What helps is that the graph G‘% is determined by the ranges of X*(t) and
X2(t) on intervals of length (T} +T%)/n, where T} and Th are the time extents that we know to be
inverse-gamma distributed. The probability of T} or T5 being much shorter than their expectation
value 1/(2« — 2) is very small. Hence, to approximate G'% well, it suffices to sample the Brownian
motions at a time resolution e that is significantly smaller than E[(T} +T%)/n] = 1/(n(a—1)). This
we do by approximating the Brownian motion by a driftless random walk with increments that are
sampled uniformly on the sphere of radius /¢ in R?. In this case, we use /e € [0.0001,0.001]. The
reason to opt for these increments instead of the potentially more accurate Gaussian increments
is that the exit times and exit positions (e.g. from the cone W) are more easily controlled with
bounded increments.

To be precise, for a desired correlation matrix C we compute the exponent a; and fundamental
mode my (either analytically or numerically if an analytical solution is not available). Then to
obtain a single sample of CJS we perform the following procedure, based on the construction in
Section 3.3. A random starting point ¢ with distribution m;(z)? on W N S?! is chosen using
rejection sampling. Two random piece-wise linear curves from zg to the origin are obtained by
running the random walk in an iterative fashion as follows. We find the largest radius r such
that the ball Ball,.(z¢) around z( is contained in W and choose a point 7 on its boundary with
distribution h(z)/h(zp), again using rejection sampling. Next, we run the mentioned random walk
with steps of size /e until it leaves Ball,.(z), denoting the exit point on the sphere by ;. This
random walk is rotated by an orthogonal transformation that only depends on g, x; and Z; to
produce a piece-wise linear path from zy to z; (note that the last segment of this path has to
be shortened a bit to end precisely at x; instead of ending outside Ball,.(zp)). We iterate this
procedure, but now using x; as the starting point, which extends the piece-wise linear path from
x1 to a random point x2 on the boundary of the largest ball Ball,(z1) around z;, and so on. This
is continued until we reach a point within distance 2,/€ from the origin, after which we add a final
segment connecting to the origin. The result is a piece-wise linear path from g to the origin that
stays strictly in the cone W and approximates the law of the Brownian motion in W conditioned to
hit the origin. Concatenating the two paths according to (32) leads to a piece-wise linear excursion
that approximates the biased unit-time Brownian excursion X (t). Finally, the mated-CRT graph
of size n is obtained as explained in Section 3.1, resulting in an adjacency matrix for the n vertices
of the graph.

4.2 Hausdorff dimension estimates via finite-size scaling

As explained in Section 3.1, the central question is whether the metric space induced by the graph
distance on G'S possesses a scaling limit. Does there exist a real number d > 0, which we then
call the Hausdorff dimension of the model, such that the metric space n~*/ dii G’S has a limit as
n — oo (in the Gromov—Hausdorff sense)? This statement about the limit is not something one
can effectively verify numerically, but there is a necessary condition that is within numerical reach.
Let d,, be the graph distance between two uniformly sampled vertices in the random graph CA}’T,C
Then for the existence of a sane Gromov-Hausdorff limit it is necessary that d,, /n'/ di converges
in distribution as n — oo. Since d,, is relatively easy to measure, this allows us to verify the
convergence in distribution and at the same time estimate the value dg through finite-size scaling.

The probability distributions p,(r) = P(d, = r) for r = 0,1,2,... were estimated for n =
211 212 919 a5 follows. For each size n, the graph G was sampled 80000 times and, in
each sampled graph, the graph distances from a uniformly chosen vertex to all other vertices were
determined several times. All these distances were stored in a histogram, which upon normalization,
provides our best estimate for p,(r) with small statistical errors. See Figure 12.
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Figure 12: Normalized histogram p,(r) for « = 8 = v = %, obtained by sampling m = 10000
graphs independently and measured distances kK = 10 times from a uniformly random chosen vertex.

For convenience we extend p, (1) to a continuous function of r € R>¢ via linear interpolation.

If d,/ nt/di converges in distribution to a random variable with density p(z), we expect to have
the limit

lim n'/% p, (n*/ % 1) = p(z). (44)

n—oo

This a mildly stronger assumption than what is implied by the Gromov—Hausdorff convergence,
but one that is supported by our data. In order to study the limit (44), we choose as reference
size ng = 2! and aim to collapse the curves p, for the other sizes n to p,,. More precisely, for
each n =21, ... 2!® we determine fit parameters k, and s,, that minimize the integrated square
deviation between k, p, (k,t(z + s,) — sn) and p,,. The shift s, is included to compensate for
discretization effects and is largely independent of n. By comparing this expression with (44), we
see that k, ~ Cn~'/?1 ie. finding the asymptotic behaviour of k, is the key to estimating dp.

ko (ky (2 4 50) — 50)

n
0.05 — 2048
4096
— 8192
0.04 — 16384
— 32768
0.03 — 65536
— 131072
262144
0.02 — 524288
0.01
0.00 €T

10 20 30 40 50 60
Figure 13: Collapsed histograms with optimal shift for o = = § and no = 219,

In order to find more accurate values for dgy, we collapse p, two times. In the first one
ki ton (kY (2 + 8n) — Sn) — png, We extract the values s, to compute its mean s. In the second
one, we use s to collapse k, 1p,(k,1(z + s) — s) — pn, and we extract k,. Finally, we estimate

dg by fitting k,, to the ansatz
—1/dy -5
(”) <a+b (”) ) (45)
no no
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where a ~ 1, ¢ of order 1/dy and |b| < 1. This expression takes into account a leading-order
correction and has proven to work well for Hausdorff dimension estimations in a similar setting
[30]. The fitting procedure was tested by varying the range of volumes included, as well as the
values of ¢ and dy while keeping a ~ 1 and |b| < 1. In this way, we determine systematic errors.
On the other hand, the statistical errors in the fit parameters were determined using batching (by
dividing the data into eight independent batches and applying the analysis each independently).
The results are presented in the next subsections.

4.3 Results for Mated-CRT maps (d = 2)

As explained in Section 2.5, the Gromov—Hausdorff convergence of the Mated-CRT maps has not
been proved, but the number of vertices within a ball of radius r in the graph GS with very large
n is known to grow as r® as r — oo, where d., is the Hausdorff dimension of Liouville Quantum
Gravity. Here the covariance C1 = — cos () is related to v through the relation o = 72 /4. This
strongly suggests that the convergence (44) holds with Hausdorff dimension dg = d., and thus our
methods provide a means of estimating the Hausdorff dimension d, of Liouville Quantum Gravity.
In Figure 14 and Table 1, we show the numerical values of dy as a function of ~.

A distinction between the regions v < 1 and v > 1 is made, since the latter is the domain
analysed in [30]. The reason for choosing the four values v = 1, \/m, V2, \/8% is that they are
the values associated to the universality classes of Schnyder-wood-decorated triangulations, bipolar-
oriented triangulations, spanning-tree-decorated quadrangulations and uniform quadrangulations,
respectively. For these models, discrete mating-of-trees bijections are available that are at the basis
of the high-precision estimates of dy in [30]. They thus form a good benchmark for the techniques
developed in this work. Our results in Table 1 are seen to be very well consistent with those in
[30, Table 5], although the errors here are significantly larger.

Our current method has the advantage that it can be used to perform simulations at any
~v € (0,2), in particular in the region v < 1 where very few numerical estimates for dy were
known (see [30, Section 5] for estimates based on Liouville first-passage percolation). Gaining
more accurate estimates for small v is important, because it is in this region that some proposed
formulas for the Hausdorff dimension deviate substantially. Two such formulae are the one due to
Watabiki [54] (shown in blue in Figure 14)

W 7 72\*
d :1+Z+ <1+4> +’72, (46)

and one by Ding and Gwynne [45] (shown in yellow in Figure 14)

e _ o, 7
"% =24 o+ (47)

e

As can be seen in Figure 14, our new estimates strengthen the conclusion of [30] that Watabiki’s
formula is ruled out numerically (in addition to being already inconsistent with the v — 0 bounds
in [47]). However, the measurements are still statistically consistent with Ding and Gwynne’s
formula.

Y dy
3/8 |2.24+0.01
1/2 | 235+0.01
5/8 | 2.47+0.01
3/4 | 2.60+0.02

1 2.90 + 0.04

4/3 | 3.13+0.05
V2 | 3.5940.07

8/3 | 4.07+0.14

Table 1: Our Hausdorff dimension estimates from simulated mated-CRT maps for different values
of 7. The errors have been determined according to the procedure outlined at the end of Section 4.2.
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Figure 14: Hausdorff dimension estimates from simulated mated-CRT maps for different values
of . Watabiki’s formula (46) is plotted in blue, while Ding and Gwynne’s formula (47) is plotted
in yellow.

4.4 Results for Mated-CRT graphs in d =3

I 3

Figure 15: The cone W, s is spanned by the isosceles spherical triangle T, s in the unit sphere.

Having benchmarked the numerical methods, we turn to the main numerical results of this work,
the Hausdorff dimension estimates of mated-CRT graphs in d = 3. Since the phase diagram
is significantly larger than in d = 2, being three-dimensional instead of one-dimensional, we have
chosen to restrict our attention to the two-dimensional subspace corresponding to isosceles spherical
triangles (Figure 15) in which two of the angles are equal: v = 3 or, equivalently, Co3 = Cy3*.

The estimates for the Hausdorff dimension d$ including error bars for a variety of angle pairs
(a, B) are presented in Figure 16 and listed in Table 2. For convenience we record a reasonable fit
for dg using a quadratic ansatz in C that respects the symmetries,

dyg ~ 4.83+0.42(C12+C23+Cl3)+0.37(C%2+C§3+C%3)—0.38(012023+013023+012023). (48)

Although we have only been able to effectively simulate a limited region of the full phase
diagram, several conclusions can be drawn based on the data. First of all, the dependence of
d$ on C differs qualitatively from that of the string susceptibility in Figure 10, suggesting that
we are really dealing with a multi-parameter family of universality classes. Secondly, contrary to
the two-dimensional case there appears to be no limit, at least in the isosceles region, where the
Hausdorff dimension approaches a “classical” value equal to d itself, in this case 3. Instead we seem
to observe a minimum dy ~ 4.1 when (o, 8,7) — (7/3,7/3,7/3) corresponding to a Brownian
excursion in the cone spanned by a tiny equilateral spherical triangle.

4These results extend of course to the planes o = v and a = 8 due to rotational symmetry.
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Figure 16: Top left: Hausdorff dimension estimates from Mated-CRT graphs constructed from
correlated 3D Brownian Excursions as a function of the covariances Ci2 = —cos («) and Cas =
C13 = —cos (B). The contours are based on a linear interpolation of the simulated data points (see
Table 2) that are shown in blue. The light blue line (C12 = Caz3) indicates the models corresponding
to equilateral spherical triangles. Top right: The corresponding errors in the estimates (including
both systematic and statistical contributions). Bottom: The same contours as the top left plot

shown in the full three-dimensional phase diagram.
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(avﬂ) dH (aaﬂ) dH

(gf"”%> 5.12£0.55 (3.5 +0.04) 4.36 +0.11
I L L
(%1.37) 4.63+0.21 (%,1.29) 4.47+0.11
(23,1.41)  4.61+£0.26 (2,3) 4.67 £ 0.04
(%5,146)  4.73+020 (%5 +0.005,F +0.005) 4.08+0.04
(%.%3) 4.79+£0.11 (3.0.79) 4.42 £ 0.09
(%5.1.68)  4.96+0.23 (3.0.81) 4.45£0.18
(3,1.19)  4.36+0.13 (5.0.83) 4.60 £0.14
($.121)  4.45+0.08 (3.0.95) 4.42 £ 0.06
(3,1.28)  4.45+0.11 (%,1.11) 4.52 +0.09
(%,1.37)  4.49+0.06 (%,%) 4.83 £ 0.06

(5.3) 4.64£0.13 (37,0.68) 4.71+0.21

T,177)  5.01+0.14 2%.0.86) 5.09 4 0.25

(g(% +0.01) 4.12+0.04 ((32;,g) 5.15 4 0.09
(2,2 40.02) 4.35+0.11

Table 2: Hausdorff dimension measurements with error bars of the Mated-CRT graph GC obtained
from correlated 3D Brownian Excursions. The angles (a, 8) correspond to the spherical angles of
the isosceles spherical triangles T, 3.

5 Discussion

In this study, we have proposed a sequence of discrete metric spaces GS, Mated-CRT graphs,
associated to a correlated Brownian excursion in d dimensions, generalizing the Mated-CRT maps
in d = 2. We hypothesize that upon normalization of distances these metric spaces approach
a non-trivial continuous random metric as n — oo that inherits its scaling properties from the
Brownian excursion. In d = 2 this has largely been demonstrated as part of the mating of trees
approach to Liouville Quantum Gravity, and the result is (depending on the correlation) either
known or strongly suspected to yield a scale-invariant random metric with the topology of the
2-sphere. In d = 3 the situation is, of course, much less clear, but our numerical study indicates
that for the examined correlation matrices the distance profiles of GS display accurate scaling with
n. Assuming this scaling persists to the full metric space and the Gromov-Hausdorff convergence
of n=1/dv GC as n — oo holds, this would establish a family of new universality classes of random
geometries constructed from triples of correlated CRTs. While the characteristics of the random
geometries are yet to be studied in detail, two critical exponents of these prospective universality
classes can be calculated or estimated from our data: the string susceptibility and the Hausdorff
dimension.

Our measurements pinpoint an interesting point on the boundary of parameter space where the
off-diagonal elements of C approach —1/2; corresponding to a tiny equilateral spherical triangle
(a = B =~ = %), where the string susceptibility diverges (s — —o0) and the Hausdorff dimension
appears to reach a minimum just above 4. This limit is analogous to the a — 0 limit of mating
of trees in d = 2, corresponding to the semi-classical limit v — 0 in 2-dimensional Liouville
Quantum Gravity. Note that in both cases the covariance matrix C degenerates, and the Brownian
motion effectively becomes (d—1)-dimensional, moving on the plane perpendicular to the diagonal.
However, since one is forcing the curve to perform a unit-time excursion in Rio the limit is rather
singular, so it is not entirely clear how the classical v = 0 geometry is to be retrieved at o = 0 in
d = 2. If one relaxes the positivity constraint in d = 2, which naturally happens when consider
infinite-volume limits, and considers Brownian motion that is nearly supported on the anti-diagonal
in R?, the a — 0 limit leads to identifications of points at equal height in a single CRT, resembling
the foliated structure of two-dimensional Causal Dynamical Triangulation [55] (see the final remarks
of [56]). The analogous interpretation in the case d = 3 amounts to the following. If we consider a
two-dimensional Brownian motion on the = +y + z = 0O-plane in R3, then the first two components
have covariance Ci2 = —1/2. Mating these two infinite correlated CRTs results in a random
measure on R? that is an infinite analogue of the unit-area y-quantum sphere with v = /4/3. The
third tree then leads to identification of certain pairs of points of R? that have equal sum of heights
within the two embedded trees. It is a natural question to ask whether the discrete mating of trees
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bijection for bipolar-oriented triangulations, which lives in the v = \/m universality class [26],
can incorporate such identifications to describe three-dimensional discrete geometries.

This picture extends to other points on the two-dimensional boundary of parameter space where
a + B+ v = 7, but with the random metric on the plane replaced by that of Liouville Quantum
Gravity with v = 24/a/7 and the identification performed by equal linear combination of the
two heights (with coefficients sin~ and sin 8 respectively). Here, as well as in the interior of the
parameter space where det C > 0, one may ask the same question of whether discrete mating of
trees bijections, like the ones in Section 2.1 and 2.2, have a combinatorial interpretation at the level
of discrete 3-manifolds. It would be preferable to take the opposite route, in which one starts with a
combinatorial model of discrete 3-manifolds, like three-dimensional Dynamical Triangulations [13],
perhaps dressed with some matter statistical system and one would identify a bijective encoding
into a triple of trees. However, the combinatorics of discrete 3-manifolds is still poorly understood,
making this a challenging route. First steps towards encoding 3-sphere triangulations in trees has
been taken by Lionni and one of the authors [17] by greatly restricting the type of triangulations
considered.

In regard to Hausdorff dimension estimates using the numerical implementation of the Mated-
CRT maps in the 2-dimensional case, our estimates for vy = 1, \/m, V2, \/8/73 are statistically com-
patible with previous numerical results [30] and rigorous bounds [45, 57, 46]. Moreover, this numer-
ical toolbox proved to be reliable in sampling random geometries in the region v < 1 which has been
inaccessible with other methods. We measured dy with good accuracy for v = 3/8,1/2,5/8,3/4.
These results are compatible with a guessed formula of Ding and Gwynne, based on rigorous
bounds [45], and contradict Watabiki’s formula, based on a heuristic heat kernel analysis in Liou-
ville Quantum Gravity.

In the case d = 3, a technical problems is finding sufficiently accurate numerical solutions to
the harmonic equation (22) in general cones, which could be further improved with the methods
of [52]. However, the main challenge in extending the results further out in the parameter space
(and even to higher dimensions) is due to the large system sizes required, because of the following
two reasons. As 1 — 7 = a; becomes smaller, the distribution of the time extents of the Brownian
motions X(¢) and X2(¢) out of which we construct the excursion X (t) becomes increasingly heavy
tailed (see Section 3.3), making it harder to produce unbiased samples. Secondly, the occurrence
of higher Hausdorff dimensions means that a larger number of vertices is necessary to reach metric
spaces of the same diameter, and this number is limited by the computing power available.

Perhaps the most important question that we leave open in this work is whether the new
family of scale-invariant random geometries, if it exists, describes anything resembling spacetime
geometry, in particular whether it has manifold topology. Deciding whether this is the case is
considerably more difficult in d = 3 compared to d = 2. One of the reasons is the lack of a
natural interpretation of the Mated-CRT graphs as a discrete geometry of deterministic topology.
The other reason is that even if one has such a topology at the discrete level, there are many
ways in which it can degenerate in the scaling limit. In the two-dimensional case, there exist
practical sufficient criteria that ensure the limit has 2-sphere topology (see [58] for a discussion
and application to the Brownian sphere), while the situation in d = 3 is less clear.

Short of answering these questions, having a catalogue of potential scale-invariant random
geometries available is of value to research in Quantum Gravity. It opens up the possibility of
comparing characteristics of the UV fixed point in asymptotically safe gravity, established through
other approaches, to the concrete list of models arising from mating of trees. Drawing a bridge at
the level of the dynamics is difficult, but a natural starting point is to compare critical exponents
in various approaches. Hausdorff dimensions are often difficult to assess, since in approaches where
the quantum geometry of spacetime is approximated with differentiable metrics, they tend to come
out identical to the topological dimension. On the other hand, the string susceptibility, seen as
the scaling behaviour of the partition function or as the distribution of sizes of minbus, should
be easier to compare. Finally, the best studied critical exponent in Quantum Gravity appears to
be the spectral dimension [59, 60, 61, 62], which characterizes diffusion processes in the geometry.
It is consistently found to decrease below the topological dimension in the UV. In the case of
2-dimensional mated-CRT maps, the spectral dimension is exactly equal to 2 for all v € (0, 2) [63].
A numerical estimation of the spectral dimension of the mated-CRT graphs in d = 3 would be a
logical follow up for the numerical methods developed in this work.
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