26-10-2022, Tensor Journal Club
A family of triangulated 3-spheres constructed from trees
Timothy Budd

Based on arXiv:2203.16105 with Luca Lionni

Radboud University

Motivation: The search for universality classes in quantum gravity

- Asymptotic safety hypothesis in quantum gravity: gravity is described by a QFT of the (pseudo)Riemannian metric $g_{\mu \nu}$ on spacetime that at microscopic scales (in the UV) is governed by a non-perturbative fixed point of the RG flow.

[Wilson, Kogut, '74][Weinberg, '76, '79][Reuter, '98]

Motivation: The search for universality classes in quantum gravity

- Asymptotic safety hypothesis in quantum gravity: gravity is described by a QFT of the (pseudo)Riemannian $\underbrace{\text { metric } g_{\mu \nu} \text { on spacetime }}$ that at microscopic scales
geometry fluctuates but topology is fixed
(in the UV) is governed by a $\underbrace{\text { non-perturbative }}_{\text {high curvatures }} \underbrace{\text { fixed point }}_{\text {scale invariance }}$ of the RG flow.
- It requires the existence of scale-invariant quantum geometry modeling the spacetime geometry on sub-Planckian length scales.

[Wilson, Kogut, '74][Weinberg, '76, '79][Reuter, '98]

Motivation: The search for universality classes in quantum gravity

- Asymptotic safety hypothesis in quantum gravity: gravity is described by a QFT

geometry fluctuates but topology is fixed
(in the UV) is governed by a $\underbrace{\text { non-perturbative }}_{\text {high curvatures }} \underbrace{\text { fixed point }}_{\text {scale invariance }}$ of the RG flow.
- It requires the existence of scale-invariant quantum geometry modeling the spacetime geometry on sub-Planckian length scales.
- In the (wick-rotated) Euclidean setting, it amounts to the existence of scale-invariant random geometry:

$$
Z=\int_{\text {geometries }} \frac{\mathcal{D} g_{a b}}{\text { Diff }} e^{-S[g]} \rightsquigarrow \quad \text { probabilistic interpretation? }
$$

[Wilson, Kogut, '74][Weinberg, '76, '79][Reuter, '98]

Scale-invariant random geometry

Scale-invariant random geometry

QFT
 Liouville CFT
 $g_{a b}(x)=e^{\gamma \phi(x)} \hat{g}_{a b}$

in 2D

Scale-invariant random geometry

in $2 Q$ 3 (or higher)
 Liouville CFT
 $g_{a b}(x)=e^{\gamma \phi(x)} \hat{g}_{a b}$

Proposals:
Random Feuilletages
[Lionni, Marckert, '19]
Mating of Trees generalized [TB, Castro, '22]
Topology = ??

Assembly

Dynamical Triangulations (DT) [Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, ...]

Dynamical Triangulations (DT) [Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, ...]

3D

$\mathbb{P} \propto x^{\# \text { vertices }}=e^{k_{0} \# \text { vertices }}$

Dynamical Triangulations (DT) [Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, ...]

Challenges faced by 3D DT \& guiding principles

3D topology is hard.

- No simple topological invariants.
- No polynomial-time 3-sphere recognition algorithm known (recognition $\in P ? ?$)...
- ... but certificate can be checked efficiently (S^{3} recognition \in NP [Schleimer, '04]).

Challenges faced by 3D DT \& guiding principles

3D topology is hard.

- No simple topological invariants.
- No polynomial-time 3-sphere recognition algorithm known (recognition $\in \mathrm{P}$??)...
- ... but certificate can be checked efficiently (S^{3} recognition \in NP [Schleimer, '04]).
Enumeration is hard.
- Not known whether \#triangulated 3 -spheres $<C^{N}$ for some $C>0$. [Durhuus, Jonsson, '95] [Gromov, '00] [Benedetti, Ziegler, Chapuy, Perarnau, ...]
- Exponential subclasses have been identified: vertex decomposable, shellable, locally constructible, ...

Challenges faced by 3D DT \& guiding principles

3D
topology is hard.

- No simple topological invariants.
- No polynomial-time 3-sphere recognition algorithm known (recognition $\in \mathrm{P}$??)...
- ... but certificate can be checked efficiently (S^{3} recognition \in NP [Schleimer, '04]).
Enumeration is hard.
- Not known whether \# triangulated 3 -spheres $<C^{N}$ for some $C>0$. [Durhuus, Jonsson, '95] [Gromov, '00] [Benedetti, Ziegler, Chapuy, Perarnau, ...]
- Exponential subclasses have been identified: vertex decomposable, shellable, locally constructible, ...
Monte Carlo results disappointing.
- Branched polymer universality class is not new.
- Crumpled phase has no scaling limit (or limit is out of reach numerically).
- Transition appears first order.

[Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, Kogut, Renken, Hagura, Tsuda, Yukawa, Hotta, Izubuchi,
Nishimura, Thorleifsson, ...]

Challenges faced by 3D DT \& guiding principles

A tractable and interesting model should ...
\Rightarrow...supply a certificate of spherical topology;

3D topology is hard.

- No simple topological invariants.
- No polynomial-time 3-sphere recognition algorithm known (recognition $\in \mathrm{P}$??)...
- ... but certificate can be checked efficiently (S^{3} recognition \in NP [Schleimer, '04]).
Enumeration is hard.
- Not known whether \#triangulated 3 -spheres $<C^{N}$ for some $C>0$. [Durhuus, Jonsson, '95] [Gromov, '00] [Benedetti, Ziegler, Chapuy, Perarnau, ...]
- Exponential subclasses have been identified: vertex decomposable, shellable, locally constructible, ...
Monte Carlo results disappointing.
- Branched polymer universality class is not new.
- Crumpled phase has no scaling limit (or limit is out of reach numerically).
- Transition appears first order.

[Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, Kogut, Renken, Hagura, Tsuda, Yukawa, Hotta, Izubuchi, Nishimura, Thorleifsson, ...]

Challenges faced by 3D DT \& guiding principles

A tractable and interesting model should ...
\Rightarrow...supply a certificate of spherical topology;
$\Rightarrow \ldots$ only involve a subset of triangulations, for which exponential bound is available;

Challenges faced by 3D DT \& guiding principles

A tractable and interesting model should ...
\Rightarrow...supply a certificate of spherical topology;
$\Rightarrow \ldots$ only involve a subset of triangulations, for which exponential bound is available;
\Rightarrow... preferably change phase diagram qualitatively.
[Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, Kogut, Renken, Hagura, Tsuda, Yukawa, Hotta, Izubuchi, Nishimura, Thorleifsson, ...]

Challenges faced by 3D DT \& guiding principles

A tractable and interesting model should ...
\Rightarrow...supply a certificate of spherical topology;
$\Rightarrow \ldots$ only involve a subset of triangulations, for which exponential bound is available;
\Rightarrow... preferably change phase diagram qualitatively.
\Rightarrow... preferably admit encoding in trees.

Challenges faced by 3D DT \& guiding principles

A tractable and interesting model should ...
$\Rightarrow \ldots$ supply a certificate of spherical topology;
$\Rightarrow \ldots$ only involve a subset of triangulations, for which exponential bound is available;
\Rightarrow... preferably change phase diagram qualitatively.
\Rightarrow. . preferably admit encoding in trees.
Note: 3D Causal Dynamical Triangulations (CDT) satisfies $2 \frac{1}{2}$ of these! [Ambjørn, Loll,...]
[Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, Kogut, Renken, Hagura, Tsuda, Yukawa, Hotta, Izubuchi, Nishimura, Thorleifsson, ...]

Locally constructible triangulations [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

Locally constructible triangulations [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

Locally constructible triangulations [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.

Locally constructible triangulations [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.

- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]
- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.

- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]
- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.
- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.
- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.
- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.

- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]
- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.
- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.
- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]
- They are exponentially bounded:

$$
\# \text { trees }<7^{n}, \quad \# \text { gluings }<32^{n} .
$$

$$
\underbrace{\{\text { locally constructible }\}}_{<22^{n}} \subset \underbrace{\{3 \text {-spheres }\}}_{<C^{n} ? ?}
$$

- A local construction of a triangulation T is a tree T_{0} of $n-1$ tetrahedra and a gluing sequence

$$
T_{0} \rightarrow T_{1} \rightarrow \quad \cdots \quad \rightarrow T_{n}=T
$$

- Each step $T_{i} \rightarrow T_{i+1}$ involves selecting an edge in ∂T_{i} and gluing the adjacent triangles.
- The result T always has S^{3} topology. [Durhuus, Jonnson, '95]
- They are exponentially bounded:

$$
\# \text { trees }<7^{n}, \quad \# \text { gluings }<32^{n} .
$$

- Some triangulated 3-spheres are not locally constructible. [Benedetti, Ziegler, '11]

$$
\underbrace{\{\text { locally constructible }\}}_{<224^{n}} \subsetneq \underbrace{\{3 \text {-spheres }\}}_{<C^{n} ? ?}
$$

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E
\end{array}
$$

$$
C_{0}=T^{T_{0}}=T \backslash T_{0}
$$

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.
- The critical tree $E=C_{n}$ is a tree spanning the vertices of T.

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.
- The critical tree $E=C_{n}$ is a tree spanning the vertices of T.
- Up to reordering steps, a local construction of T is determined by the two spanning trees T_{0} and E.
 $C_{3}=E$

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.
- The critical tree $E=C_{n}$ is a tree spanning the vertices of T.
- Up to reordering steps, a local construction of T is determined by the two spanning trees T_{0} and E.
- Remark: another starting point in discrete Morse theory led to essentially the same data. [TB, Lionni]

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.
- The critical tree $E=C_{n}$ is a tree spanning the vertices of T.
- Up to reordering steps, a local construction of T is determined by the two spanning trees T_{0} and E.
- Remark: another starting point in discrete Morse theory led to essentially the same data. [TB, Lionni]
- Any model of random tree-decorated triangulations (T, T_{0}, E) satisfies our first two criteria (S^{3}-certificate, exponential bound).

Another tree: the critical tree [Benedetti, Ziegler, '11]

- A dual description of local construction: the collapsing sequence $C_{i}=T \backslash T_{i}$ of the "cave" $T^{T_{0}}=T \backslash T_{0}$,

$$
\begin{array}{lll}
T_{0} \rightarrow T_{1} \rightarrow & \cdots & \rightarrow T_{n}=T . \\
C_{0} \rightarrow C_{1} \rightarrow & \cdots & \rightarrow C_{n}=E .
\end{array}
$$

- Each step $C_{i} \rightarrow C_{i+1}$ involves removing a free edge (=degree 1) and adjacent triangle.
- The critical tree $E=C_{n}$ is a tree spanning the vertices of T.
- Up to reordering steps, a local construction of T is determined by the two spanning trees T_{0} and E.
- Remark: another starting point in discrete Morse theory led to essentially the same data. [TB, Lionni]
- Any model of random tree-decorated triangulations (T, T_{0}, E) satisfies our first two criteria (S^{3}-certificate, exponential bound).

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?

$$
T^{T_{0}}=T \backslash T_{0}
$$

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
$-T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.

$$
T_{E}^{T_{0}}=\left(T \backslash T_{0}\right) \backslash E
$$

$$
T^{T_{0}}=T \backslash T_{0}
$$

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
- $T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
- $T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Proposition

$T_{E}^{T_{0}}$ is a tree of triangles \Longleftrightarrow the preimage of E on T_{0} is a spanning tree.

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
- $T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Proposition

$T_{E}^{T_{0}}$ is a tree of triangles \Longleftrightarrow the preimage of E on T_{0} is a spanning tree.

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
- $T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Proposition

$T_{E}^{T_{0}}$ is a tree of triangles \Longleftrightarrow the preimage of E on T_{0} is a spanning tree.

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
- $T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Proposition

$T_{E}^{T_{0}}$ is a tree of triangles \Longleftrightarrow the preimage of E on T_{0} is a spanning tree.

- In this case, $\left(T, T_{0}, E\right)$ is called a spanning-tree avoiding local construction (STALC).
$\{$ STALC $\} \subsetneq\{$ locally constructible $\} \subsetneq\{3$-spheres $\}$

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
$-T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Proposition

$T_{E}^{T_{0}}$ is a tree of triangles \Longleftrightarrow the preimage of E on T_{0} is a spanning tree.

- In this case, $\left(T, T_{0}, E\right)$ is called a spanning-tree avoiding local construction (STALC). $\{$ STALC $\} \subsetneq\{$ locally constructible $\} \subsetneq\{3$-spheres $\}$
- A STALC is fully determined by
$T_{E}^{T_{0}}$ with spanning tree $+T_{0}$ with spanning tree.

Further restriction: triple trees [TB, Lionni, '22]

- What data do we need to supplement T_{0} and E with to recover T ?
- $T_{E}^{T_{0}}=T^{T_{0}} \backslash E$ generally has multiple components and is multiply connected. . . so complicated.
- May restrict to subclass in which $T_{E}^{T_{0}}$ is a tree of triangles (decorated with a spanning tree).

Proposition

$T_{E}^{T_{0}}$ is a tree of triangles \Longleftrightarrow the preimage of E on T_{0} is a spanning tree.

- In this case, $\left(T, T_{0}, E\right)$ is called a spanning-tree avoiding local construction (STALC). $\{$ STALC $\} \subsetneq\{$ locally constructible $\} \subsetneq\{3$-spheres $\}$
- A STALC is fully determined by $T_{E}^{T_{0}}$ with spanning tree $+T_{0}$ with spanning tree.

$$
T^{T_{0}}=T \backslash T_{0}
$$

- Claim: both can be conveniently represented as 2 d triangulations!

Encoding in plane trees

Encoding in plane trees

Encoding in plane trees

Main bijective result

- A triple $\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ is called a triple tree if

$$
\begin{cases}\operatorname{Glue}\left(t, \pi_{\mathrm{H}}\right) & \text { is hierarchical } \\ \operatorname{Glue}\left(t, \pi_{\mathrm{A}}\right) & \text { is Apollonian. }\end{cases}
$$

Main bijective result

- A triple $\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ is called a triple tree if

$$
\begin{cases}\operatorname{Glue}\left(t, \pi_{\mathrm{H}}\right) & \text { is hierarchical } \\ \operatorname{Glue}\left(t, \pi_{\mathrm{A}}\right) & \text { is Apollonian. }\end{cases}
$$

Theorem (TB, Lionni, '22)

This construction is a bijection
$\{$ triple trees $\} \longleftrightarrow\{$ STALCs $\}$.

Main bijective result

- A triple $\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ is called a triple tree if

$$
\begin{cases}\operatorname{Glue}\left(t, \pi_{\mathrm{H}}\right) & \text { is hierarchical } \\ \operatorname{Glue}\left(t, \pi_{\mathrm{A}}\right) & \text { is Apollonian. }\end{cases}
$$

Theorem (TB, Lionni, '22)

This construction is a bijection

$$
\{\text { triple trees }\} \longleftrightarrow\{\text { STALCs }\} \text {. }
$$

Moreover

- T is a triangulated 3 -sphere.

Main bijective result

- A triple $\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ is called a triple tree if

$$
\begin{cases}\operatorname{Glue}\left(t, \pi_{\mathrm{H}}\right) & \text { is hierarchical } \\ \operatorname{Glue}\left(t, \pi_{\mathrm{A}}\right) & \text { is Apollonian. }\end{cases}
$$

Theorem (TB, Lionni, '22)

This construction is a bijection

$$
\{\text { triple trees }\} \longleftrightarrow\{\text { STALCs }\} .
$$

Moreover

- T is a triangulated 3 -sphere.
- $\#_{\text {vertices }}(T)=1+\#_{\text {loops }}\left(\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ in the Meander system $\left[\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right]$.

Main bijective result

- A triple $\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ is called a triple tree if

$$
\begin{cases}\operatorname{Glue}\left(t, \pi_{\mathrm{H}}\right) & \text { is hierarchical } \\ \operatorname{Glue}\left(t, \pi_{\mathrm{A}}\right) & \text { is Apollonian. }\end{cases}
$$

Theorem (TB, Lionni, '22)

This construction is a bijection

$$
\{\text { triple trees }\} \longleftrightarrow\{\text { STALCs }\} .
$$

Moreover

- T is a triangulated 3 -sphere.
- $\#_{\text {vertices }}(T)=1+\#_{\text {loops }}\left(\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ in the Meander system $\left[\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right]$.

Main bijective result

- A triple $\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ is called a triple tree if

$$
\begin{cases}\operatorname{Glue}\left(t, \pi_{\mathrm{H}}\right) & \text { is hierarchical } \\ \operatorname{Glue}\left(t, \pi_{\mathrm{A}}\right) & \text { is Apollonian. }\end{cases}
$$

Theorem (TB, Lionni, '22)

This construction is a bijection

$$
\{\text { triple trees }\} \longleftrightarrow\{\text { STALCs }\} \text {. }
$$

Moreover

- T is a triangulated 3 -sphere.
- $\#_{\text {vertices }}(T)=1+\#_{\text {loops }}\left(\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)$ in the Meander system $\left[\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right]$.

Model proposal: random triple trees

- Consider the partition function ($z=e^{-k_{3}}, x=e^{k_{0}}$ in notation DT)

$$
\begin{aligned}
& M(z, x)=\sum_{n=1}^{\infty} z^{n} M_{n}(x), \quad M_{n}(x)=\sum_{\text {triple trees }\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)} x^{\# \text { of siops }^{\#}\left(\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right)} . \\
& \quad=2 x^{2} z^{2}+\left(8 x+12 x^{3}\right) z^{4}+\left(60 x+40 x^{2}\right) z^{5}+\left(336 x+996 x^{2}+420 x^{3}+618 x^{4}\right) z^{6}+
\end{aligned}
$$

Model proposal: random triple trees

- Consider the partition function ($z=e^{-k_{3}}, x=e^{k_{0}}$ in notation DT)

$$
\begin{aligned}
& M(z, x)=\sum_{n=1}^{\infty} z^{n} M_{n}(x), \quad M_{n}(x)=\sum_{\substack{\text { triple trees } \left.s t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right) \\
\text { of sizen }}} x^{\# \operatorname{loops}\left(\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right) .} \\
& \quad=2 x^{2} z^{2}+\left(8 x+12 x^{3}\right) z^{4}+\left(60 x+40 x^{2}\right) z^{5}+\left(336 x+996 x^{2}+420 x^{3}+618 x^{4}\right) z^{6}+
\end{aligned}
$$

- We have explicit exponential bounds $\left(\frac{9 \sqrt{x}}{2}\right)^{n}<M_{n}(x)<(48 x)^{n} \ldots$

Model proposal: random triple trees

- Consider the partition function ($z=e^{-k_{3}}, x=e^{k_{0}}$ in notation DT)

$$
\begin{aligned}
& M(z, x)=\sum_{n=1}^{\infty} z^{n} M_{n}(x), \quad M_{n}(x)=\sum_{\substack{\text { triple trees } \left.s t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right) \\
\text { of sizen }}} x^{\# \operatorname{loops}\left(\pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right) .} \\
& \quad=2 x^{2} z^{2}+\left(8 x+12 x^{3}\right) z^{4}+\left(60 x+40 x^{2}\right) z^{5}+\left(336 x+996 x^{2}+420 x^{3}+618 x^{4}\right) z^{6}+
\end{aligned}
$$

- We have explicit exponential bounds $\left(\frac{9 \sqrt{x}}{2}\right)^{n}<M_{n}(x)<(48 x)^{n} \ldots$
-and configurations are explicitly encoded in trees.

Model proposal: random triple trees

- Consider the partition function ($z=e^{-k_{3}}, x=e^{k_{0}}$ in notation DT)

$$
\begin{aligned}
& M(z, x)=\sum_{n=1}^{\infty} z^{n} M_{n}(x), \quad M M_{n}(x)= \\
& \text { triple trees }\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right) \\
& \text { of sizen }
\end{aligned}
$$

- We have explicit exponential bounds $\left(\frac{9 \sqrt{x}}{2}\right)^{n}<M_{n}(x)<(48 x)^{n} \ldots$
- ... and configurations are explicitly encoded in trees.
- So the random triple tree of size n with coupling x satisfies three of our criteria (S^{3}-certificate, exponentially bounded, encoded in trees).

Model proposal: random triple trees

- Consider the partition function ($z=e^{-k_{3}}, x=e^{k_{0}}$ in notation DT)

$$
\begin{aligned}
& M(z, x)=\sum_{n=1}^{\infty} z^{n} M_{n}(x), \quad M M_{n}(x)= \\
& \text { triple trees }\left(t, \pi_{\mathrm{H}}, \pi_{\mathrm{A}}\right) \\
& \text { of sizen }
\end{aligned}
$$

- We have explicit exponential bounds $\left(\frac{9 \sqrt{x}}{2}\right)^{n}<M_{n}(x)<(48 x)^{n} \ldots$
- ... and configurations are explicitly encoded in trees.
- So the random triple tree of size n with coupling x satisfies three of our criteria (S^{3}-certificate, exponentially bounded, encoded in trees).
- How about phase diagram? Need to compare Monte Carlo simulations with DT...

Dynamical triangulations \& Monte Carlo simulation

- Let $\mathrm{DT}_{n}=\left\{3\right.$-triangulations of S^{3} with n tetrahedra $\}$. Note: we disallow loops here. [Thorleifsson, '99]

Dynamical triangulations \& Monte Carlo simulation

- Let $\mathrm{DT}_{n}=\left\{3\right.$-triangulations of S^{3} with n tetrahedra $\}$. Note: we disallow loops here. [Thorleifsson, '99]
- Aim: sample $T \in \mathrm{DT}_{n}$ with probability $\mathbb{P}(T) \propto e^{k_{0} N_{0}}$ where $N_{0}=\#$ vertices of T.

Dynamical triangulations \& Monte Carlo simulation

- Let $\mathrm{DT}_{n}=\left\{3\right.$-triangulations of S^{3} with n tetrahedra $\}$. Note: we disallow loops here. [Thorleifsson, '99]
- Aim: sample $T \in \mathrm{DT}_{n}$ with probability $\mathbb{P}(T) \propto e^{k_{0} N_{0}}$ where $N_{0}=\#$ vertices of T.
- Solution: Find a Markov chain $T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow \cdots$ in DT_{n} that has \mathbb{P} as stationary distribution $\left(T_{i} \sim \mathbb{P} \Longrightarrow T_{i+1} \sim \mathbb{P}\right)$. If the chain is irreducible/ergodic then $T_{\infty} \sim \mathbb{P}$ is guaranteed (no matter T_{0})!

Dynamical triangulations \& Monte Carlo simulation

- Let $\mathrm{DT}_{n}=\left\{3\right.$-triangulations of S^{3} with n tetrahedra $\}$. Note: we disallow loops here. [Thorleifsson, '99]
- Aim: sample $T \in \mathrm{DT}_{n}$ with probability $\mathbb{P}(T) \propto e^{k_{0} N_{0}}$ where $N_{0}=\#$ vertices of T.
- Solution: Find a Markov chain $T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow \cdots$ in DT_{n} that has \mathbb{P} as stationary distribution ($T_{i} \sim \mathbb{P} \Longrightarrow T_{i+1} \sim \mathbb{P}$). If the chain is irreducible/ergodic then $T_{\infty} \sim \mathbb{P}$ is guaranteed (no matter T_{0})!
- How to define Markov chain? Set of local moves: [Pachner ,'91]

$2 \leftrightarrow 3$

Dynamical triangulations \& Monte Carlo simulation

- Let $\mathrm{DT}_{n}=\left\{3\right.$-triangulations of S^{3} with n tetrahedra $\}$. Note: we disallow loops here. [Thorleifsson, '99]
- Aim: sample $T \in \mathrm{DT}_{n}$ with probability $\mathbb{P}(T) \propto e^{k_{0} N_{0}}$ where $N_{0}=\#$ vertices of T.
- Solution: Find a Markov chain $T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow \cdots$ in DT_{n} that has \mathbb{P} as stationary distribution ($T_{i} \sim \mathbb{P} \Longrightarrow T_{i+1} \sim \mathbb{P}$). If the chain is irreducible/ergodic then $T_{\infty} \sim \mathbb{P}$ is guaranteed (no matter T_{0})!
- How to define Markov chain? Set of local moves: [Pachner ,'91]

- Note $N_{3}=$ \#tetrahedra not fixed! Instead $\mathbb{P}(T) \propto e^{-k_{3} N_{3}-\epsilon\left(N_{3}-n\right)^{2} / n} e^{k_{0} N_{0}}$ and tune k_{3} and ϵ such that $\left\langle N_{3}\right\rangle \approx n$.

$$
\begin{aligned}
& N=1600, k_{0}=3.0 \\
& k_{3}=2.727, \epsilon=0.12
\end{aligned}
$$

- Perform measurements only when $N_{3}=n$.

Summary of known results [Agistein, Migdal, Ambjorn, Varsted, Catterall, Thorleifsson, '90s]

$$
\mathbb{P}(T) \propto e^{-k_{3} N_{3}-\epsilon\left(N_{3}-n\right)^{2} / N_{2}} e^{k_{0} N_{0}}
$$

- Increasing k_{0} means increasing $N_{0} \in\left[4, N_{3} / 2+2\right]$.
- k_{3} gives good estimate of exponential growth of $\sum_{T} e^{k_{0} N_{0}}$.

Summary of known results [Agistein, Migdal, Ambjorn, Varsted, Catterall, Thorleifsson, '90s]

$$
\mathbb{P}(T) \propto e^{-k_{3} N_{3}-\epsilon\left(N_{3}-n\right)^{2} / N_{2}} e^{k_{0} N_{0}}
$$

- Increasing k_{0} means increasing $N_{0} \in\left[4, N_{3} / 2+2\right]$.
- k_{3} gives good estimate of exponential growth of $\sum_{T} e^{k_{0} N_{0}}$.

Summary of known results [Agistein, Migdal, Ambjorn, Varsted, Catterall, Thorleifsson, '90s]

$\mathbb{P}(T) \propto e^{-k_{3} N_{3}-\epsilon\left(N_{3}-n\right)^{2} / N} e^{k_{0} N_{0}}$

- Increasing k_{0} means increasing $N_{0} \in\left[4, N_{3} / 2+2\right]$.
- k_{3} gives good estimate of exponential growth of $\sum_{T} e^{k_{0} N_{0}}$.
- Phase transition at $k_{0} \approx 3.8$ between Crumpled phase and branched-polymer phase.

Summary of known results [Agistein, Migdal, Ambjorn, Varsted, Catterall, Thorleifsson, '90s]

$\mathbb{P}(T) \propto e^{-k_{3} N_{3}-\epsilon\left(N_{3}-n\right)^{2} / N_{2}} e^{k_{0} N_{0}}$

- Increasing k_{0} means increasing $N_{0} \in\left[4, N_{3} / 2+2\right]$.
- k_{3} gives good estimate of exponential growth of $\sum_{T} e^{k_{0} N_{0}}$.

- Phase transition at $k_{0} \approx 3.8$ between Crumpled phase and branched-polymer phase.
- Order parameters: N_{0} / N_{3} and max vertex degree.
- Phase transition is 1st order: double peaks in histograms become more pronounced as $N \rightarrow \infty$.

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

$$
\begin{aligned}
\operatorname{TwoTrees}_{n} & =\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n} \text { and no restrictions on } T_{0}, E\right\} \\
\mathrm{LC}_{n} & =\left\{\left(T, T_{0}, E\right) \in \operatorname{TwoTrees}_{n}: \text { local construction }\right\} \\
\text { TripleTrees }_{n} & =\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
\end{aligned}
$$

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

TwoTrees $_{n}=\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n}\right.$ and no restrictions on $\left.T_{0}, E\right\}$

$$
\mathrm{LC}_{n}=\left\{\left(T, T_{0}, E\right) \in \text { TwoTrees }_{n}: \text { local construction }\right\}
$$

$$
\operatorname{TripleTrees}_{n}=\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
$$

- Adapt Markov chain to sample from these with $\mathbb{P}\left(T, T_{0}, E\right) \propto x^{N_{0}}=e^{k_{0} N_{0}}$, rejecting whenever restrictions on (T, T_{0}, E) are violated.

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

TwoTrees $_{n}=\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n}\right.$ and no restrictions on $\left.T_{0}, E\right\}$

$$
\mathrm{LC}_{n}=\left\{\left(T, T_{0}, E\right) \in \text { TwoTrees }_{n}: \text { local construction }\right\}
$$

$$
\operatorname{TripleTrees}_{n}=\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
$$

- Adapt Markov chain to sample from these with $\mathbb{P}\left(T, T_{0}, E\right) \propto x^{N_{0}}=e^{k_{0} N_{0}}$, rejecting whenever restrictions on (T, T_{0}, E) are violated.

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

TwoTrees $_{n}=\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n}\right.$ and no restrictions on $\left.T_{0}, E\right\}$

$$
\mathrm{LC}_{n}=\left\{\left(T, T_{0}, E\right) \in \text { TwoTrees }_{n}: \text { local construction }\right\}
$$

$$
\operatorname{TripleTrees}_{n}=\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
$$

- Adapt Markov chain to sample from these with $\mathbb{P}\left(T, T_{0}, E\right) \propto x^{N_{0}}=e^{k_{0} N_{0}}$, rejecting whenever restrictions on (T, T_{0}, E) are violated.

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

$$
\begin{aligned}
\text { TwoTrees }_{n} & =\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n} \text { and no restrictions on } T_{0}, E\right\} \\
\mathrm{LC}_{n} & =\left\{\left(T, T_{0}, E\right) \in \mathrm{TwoTrees}_{n}: \text { local construction }\right\} \\
\text { TripleTrees }_{n} & =\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
\end{aligned}
$$

- Adapt Markov chain to sample from these with $\mathbb{P}\left(T, T_{0}, E\right) \propto x^{N_{0}}=e^{k_{0} N_{0}}$, rejecting whenever restrictions on (T, T_{0}, E) are violated.

- TwoTrees ${ }_{n}$: Any move in $O(\log n)$ time (using link/cut tree data structure).

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

$$
\begin{aligned}
\text { TwoTrees }_{n} & =\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n} \text { and no restrictions on } T_{0}, E\right\} \\
\mathrm{LC}_{n} & =\left\{\left(T, T_{0}, E\right) \in \text { TwoTrees }_{n}: \text { local construction }\right\} \\
\text { TripleTrees }_{n} & =\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
\end{aligned}
$$

- Adapt Markov chain to sample from these with $\mathbb{P}\left(T, T_{0}, E\right) \propto x^{N_{0}}=e^{k_{0} N_{0}}$, rejecting whenever restrictions on (T, T_{0}, E) are violated.

- TwoTrees n_{n} : Any move in $O(\log n)$ time (using link/cut tree data structure).
- LC_{n} : Reject if $T^{T_{0}}$ does not collapse on E. Worst case $O(n)$ time per move \approx pretty bad.

Towards simulating triple trees

- Three new ensembles TripleTrees ${ }_{n} \subset$ LC $_{n} \subset$ TwoTrees $_{n}$:

$$
\begin{aligned}
\text { TwoTrees }_{n} & =\left\{\left(T, T_{0}, E\right): T \in \mathrm{DT}_{n} \text { and no restrictions on } T_{0}, E\right\} \\
\mathrm{LC}_{n} & =\left\{\left(T, T_{0}, E\right) \in \mathrm{TwoTrees}_{n}: \text { local construction }\right\} \\
\text { TripleTrees }_{n} & =\left\{\left(T, T_{0}, E\right) \in \mathrm{LC}_{n}: T_{E}^{T_{0}} \text { is tree of triangles }\right\}
\end{aligned}
$$

- Adapt Markov chain to sample from these with $\mathbb{P}\left(T, T_{0}, E\right) \propto x^{N_{0}}=e^{k_{0} N_{0}}$, rejecting whenever restrictions on (T, T_{0}, E) are violated.

- TwoTrees n_{n} : Any move in $O(\log n)$ time (using link/cut tree data structure).
- LC_{n} : Reject if $T^{T_{0}}$ does not collapse on E. Worst case $O(n)$ time per move \approx pretty bad.
- TripleTrees s_{n} : Back to $O(\log n)$ per move (trees are easier!) but high rejection.

Ergodicity?

- Caution: we do not know for sure that the Markov chain is ergodic/irreducible in TripleTrees ${ }_{n}$.

Ergodicity?

- Caution: we do not know for sure that the Markov chain is ergodic/irreducible in TripleTrees ${ }_{n}$.
- But we can perform sanity checks, e.g. by estimating $M_{n}(x)$ from the N_{3}-histograms ...

Ergodicity?

- Caution: we do not know for sure that the Markov chain is ergodic/irreducible in TripleTrees ${ }_{n}$.
- But we can perform sanity checks, e.g. by estimating $M_{n}(x)$ from the N_{3}-histograms ...
-and they agree with the exact enumeration for small n,

$$
\begin{aligned}
M(z, x)= & 2 x^{2} z^{2}+\left(8 x+12 x^{3}\right) z^{4}+\left(60 x+40 x^{2}\right) z^{5}+\left(336 x+996 x^{2}+420 x^{3}+618 x^{4}\right) z \\
& +\left(5460 x+10416 x^{2}+6496 x^{3}+1652 x^{4}\right) z^{7} \\
& +\left(63344 x+135776 x^{2}+150544 x^{3}+75360 x^{4}+46360 x^{5}\right) z^{8}+\cdots .
\end{aligned}
$$

Data: first impressions

Data: first impressions

- Inclusion of T_{0}, E adds much more entropy than the restriction $\mathrm{LC}_{n} \subset$ TwoTrees $_{n}$ takes away.

Data: first impressions

- Inclusion of T_{0}, E adds much more entropy than the restriction $\mathrm{LC}_{n} \subset \mathrm{TwoTrees}_{n}$ takes away.
- TripleTrees ${ }_{n} \subset L C_{n}$ is a lot more restrictive.

Data: first impressions

- Inclusion of T_{0}, E adds much more entropy than the restriction $\mathrm{LC}_{n} \subset$ TwoTrees $_{n}$ takes away.
- TripleTrees ${ }_{n} \subset L C_{n}$ is a lot more restrictive.
- Not unsurprisingly: spanning trees favour the branched polymer phase.

Data: first impressions

- Inclusion of T_{0}, E adds much more entropy than the restriction $\mathrm{LC}_{n} \subset$ TwoTrees $_{n}$ takes away.
- TripleTrees ${ }_{n} \subset L C_{n}$ is a lot more restrictive.
- Not unsurprisingly: spanning trees favour the branched polymer phase.
- Qualitative changes? Let's have a look!

DT
$n=3200$

$$
k_{0}=2.5
$$

$$
k_{0}=3.3
$$

$k_{0}=3.4$

$$
k_{0}=4.0
$$

TwoTrees

DT
$n=3200$

$$
k_{0}=2.5
$$

$$
k_{0}=3.3
$$

$k_{0}=4.0$

TripleTrees (with no logps)
$n=6400$

Conclusions

- Incorporating local construction data into triangulations allows to avoid two important roadblocks (certified topology and exponential bound).
- Encoding in trees may facilitate analytic investigation and increase chances of criticality: trees are simple and don't mind being critical!
- Enumeration of triple trees is still out of reach, but the formulation in planar map language should enlarge attack surface (and enthuse more mathematicians).
- Glimpse of changes in phase diagram compared to DT, but the numerics is challenging.
- Naturally the phase diagram of locally constructible triangulations is larger (3d) with triple trees in one corner. Any new phase transitions?

