


Motivation: The search for universality classes in quantum gravity
▶ Asymptotic safety hypothesis in quantum gravity: gravity is described by a QFT

of the (pseudo)Riemannian metric gµν on spacetime

︸ ︷︷ ︸
geometry fluctuates but topology is fixed

that at microscopic scales

(in the UV) is governed by a non-perturbative

︸ ︷︷ ︸
high curvatures

fixed point

︸ ︷︷ ︸
scale invariance

of the RG flow.

▶ It requires the existence of scale-invariant quantum geometry modeling the
spacetime geometry on sub-Planckian length scales.

▶ In the (wick-rotated) Euclidean setting, it amounts to the existence of
scale-invariant random geometry:

Z =

∫
geometries

Dgab
Diff

e−S[g ] ⇝ probabilistic interpretation?

[Wilson, Kogut, ’74][Weinberg, ’76, ’79][Reuter, ’98]
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Scale-invariant random geometry

QFT

Lattice
Assembly
from scale-invariant building blocks: Mating of Trees

[Duplantier, Miller, Sheffield,'14]
[Gwynne, Holden, Sun, ...]

(simulations of 
large random maps
coupled to statistical
systems [Barkley, TB, '19])

Brownian sphere

scale-invariant
random geometry

scaling limit
in 2D Liouville CFT

Not a single explicit
example known with
3D topology!

3D (or higher)

Proposals:
Random Feuilletages
[Lionni, Marckert, '19]
Mating of Trees generalized
[TB, Castro, '22]
                Topology = ??
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scaling limit

Brownian sphere

2D 3D

Regge action



Challenges faced by 3D DT & guiding principles

3D topology is hard.
▶ No simple topological invariants.
▶ No polynomial-time 3-sphere recognition algorithm

known (recognition ∈ P??)...
▶ ... but certificate can be checked efficiently

(S3recognition ∈ NP [Schleimer, ’04]).

Enumeration is hard.
▶ Not known whether #triangulated 3-spheres < CN for

some C > 0. [Durhuus, Jonsson, ’95] [Gromov, ’00]
[Benedetti, Ziegler, Chapuy, Perarnau, . . . ]

▶ Exponential subclasses have been identified: vertex
decomposable, shellable, locally constructible, . . .

Monte Carlo results disappointing.
▶ Branched polymer universality class is not new.
▶ Crumpled phase has no scaling limit (or limit is out

of reach numerically).
▶ Transition appears first order.

[Ambjorn, Boulatov, Krzywicki, Varsted, Caterall, Kogut,

Renken, Hagura, Tsuda, Yukawa, Hotta, Izubuchi,

Nishimura, Thorleifsson, . . . ]

A tractable and interesting
model should . . .

⇒ . . . supply a certificate of
spherical topology;

⇒ . . . only involve a subset
of triangulations, for
which exponential bound
is available;

⇒ . . . preferably change
phase diagram
qualitatively.

⇒ . . . preferably admit
encoding in trees.

Note: 3D Causal Dynamical
Triangulations (CDT) satisfies
2 1
2
of these! [Ambjørn, Loll,. . . ]
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Locally constructible triangulations [Durhuus, Jonnson, ’95]

▶ A local construction of a triangulation T is a tree
T0 of n − 1 tetrahedra and a gluing sequence

T0 → T1 → · · · → Tn = T .

▶ Each step Ti → Ti+1 involves selecting an edge in
∂Ti and gluing the adjacent triangles.

▶ The result T always has S3 topology. [Durhuus,

Jonnson, ’95]

▶ They are exponentially bounded:

#trees < 7n, #gluings < 32n.

▶ Some triangulated 3-spheres are not locally
constructible. [Benedetti, Ziegler, ’11]

{locally constructible}

︸ ︷︷ ︸
<224n

⊂ {3-spheres}

︸ ︷︷ ︸
<Cn??
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Another tree: the critical tree [Benedetti, Ziegler, ’11]

▶ A dual description of local construction: the
collapsing sequence Ci = T ∖ Ti of the “cave”
TT0 = T ∖ T0,

T0 → T1 → · · · → Tn = T .

C0 → C1 → · · · → Cn = E .

▶ Each step Ci → Ci+1 involves removing a free edge
(=degree 1) and adjacent triangle.

▶ The critical tree E = Cn is a tree spanning the
vertices of T .

▶ Up to reordering steps, a local construction of T is
determined by the two spanning trees T0 and E .

▶ Remark: another starting point in discrete Morse
theory led to essentially the same data. [TB, Lionni]

▶ Any model of random tree-decorated triangulations
(T ,T0,E) satisfies our first two criteria
(S3-certificate, exponential bound).

▶ Simplest choice, sampling (T ,T0,E) uniformly,
seems to not satisfy last two criteria (departure
from DT phase diagram, encoding in trees).
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Further restriction: triple trees [TB, Lionni, ’22]

▶ What data do we need to supplement T0 and E
with to recover T?

▶ TT0
E = TT0 ∖ E generally has multiple components

and is multiply connected. . . so complicated.

▶ May restrict to subclass in which TT0
E is a tree of

triangles (decorated with a spanning tree).

Proposition

TT0
E is a tree of triangles ⇐⇒ the preimage of E on

T0 is a spanning tree.

▶ In this case, (T ,T0,E) is called a spanning-tree
avoiding local construction (STALC).

{STALC} ⊊ {locally constructible} ⊊ {3-spheres}

▶ A STALC is fully determined by

TT0
E with spanning tree + T0 with spanning tree.

▶ Claim: both can be conveniently represented as 2d
triangulations!
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Main bijective result
▶ A triple (t, πH , πA ) is called

a triple tree if{
Glue(t, πH ) is hierarchical

Glue(t, πA ) is Apollonian.

Theorem (TB, Lionni, ’22)

This construction is a bijection

{triple trees} ←→ {STALCs}.

Moreover

▶ T is a triangulated 3-sphere.

▶ #vertices(T ) = 1 +#loops(πH , πA ) in
the Meander system [πH , πA ].
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Model proposal: random triple trees

▶ Consider the partition function (z = e−k3 , x = ek0 in notation DT)

M(z, x) =
∞∑
n=1

znMn(x), Mn(x) =
∑

triple trees (t,π
H
,π

A
)

of size n

x#loops(πH
,π

A
).

= 2x2z2 + (8x + 12x3)z4 + (60x + 40x2)z5 + (336x + 996x2 + 420x3 + 618x4)z6 + · · ·

▶ We have explicit exponential bounds ( 9
√

x
2

)n < Mn(x) < (48x)n. . .

▶ . . . and configurations are explicitly encoded in trees.

▶ So the random triple tree of size n with coupling x satisfies three of our criteria
(S3-certificate, exponentially bounded, encoded in trees).

▶ How about phase diagram? Need to compare Monte Carlo simulations with
DT. . .
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Dynamical triangulations & Monte Carlo simulation

▶ Let DTn = {3-triangulations of S3 with n tetrahedra}. Note: we disallow loops
here. [Thorleifsson, ’99]

▶ Aim: sample T ∈ DTn with probability P(T ) ∝ ek0N0 where N0 = #vertices of T .

▶ Solution: Find a Markov chain T1 → T2 → T3 → · · · in DTn that has P as
stationary distribution (Ti ∼ P =⇒ Ti+1 ∼ P). If the chain is
irreducible/ergodic then T∞ ∼ P is guaranteed (no matter T0)!

▶ How to define Markov chain? Set of local moves: [Pachner ,’91]

▶ Note N3 = #tetrahedra not fixed! Instead P(T ) ∝ e−k3N3−ϵ(N3−n)2/nek0N0 and
tune k3 and ϵ such that ⟨N3⟩ ≈ n.

▶ Perform measurements only when N3 = n.
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▶ Note N3 = #tetrahedra not fixed! Instead P(T ) ∝ e−k3N3−ϵ(N3−n)2/nek0N0 and
tune k3 and ϵ such that ⟨N3⟩ ≈ n.
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Summary of known results [Agistein, Migdal, Ambjorn, Varsted, Catterall, Thorleifsson, . . . , ’90s]

P(T ) ∝ e−k3N3−ϵ(N3−n)2/Nek0N0

▶ Increasing k0 means increasing
N0 ∈ [4,N3/2 + 2].

▶ k3 gives good estimate of
exponential growth of

∑
T ek0N0 .

▶ Phase transition at k0 ≈ 3.8
between Crumpled phase and
branched-polymer phase.

▶ Order parameters: N0/N3 and
max vertex degree.

▶ Phase transition is 1st order:
double peaks in histograms
become more pronounced as
N →∞.
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Towards simulating triple trees

▶ Three new ensembles TripleTreesn ⊂ LCn ⊂ TwoTreesn:

TwoTreesn = {(T ,T0,E) : T ∈ DTn and no restrictions on T0,E}
LCn = {(T ,T0,E) ∈ TwoTreesn : local construction}

TripleTreesn = {(T ,T0,E) ∈ LCn : TT0
E is tree of triangles}

▶ Adapt Markov chain to sample from these with P(T ,T0,E) ∝ xN0 = ek0N0 ,
rejecting whenever restrictions on (T ,T0,E) are violated.

tree moves

▶ TwoTreesn: Any move in O(log n) time (using link/cut tree data structure).

▶ LCn: Reject if TT0 does not collapse on E . Worst case O(n) time per move ≈
pretty bad.

▶ TripleTreesn: Back to O(log n) per move (trees are easier!) but high rejection.
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Ergodicity?
▶ Caution: we do not know for sure that the Markov chain is ergodic/irreducible in

TripleTreesn.

▶ But we can perform sanity checks, e.g. by estimating Mn(x) from the
N3-histograms . . .

▶ . . . and they agree with the exact enumeration for small n,

M(z, x) = 2x2z2 + (8x + 12x3)z4 + (60x + 40x2)z5 + (336x + 996x2 + 420x3 + 618x4)z6

+ (5460x + 10416x2 + 6496x3 + 1652x4)z7

+ (63344x + 135776x2 + 150544x3 + 75360x4 + 46360x5)z8 + · · · .
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Data: first impressions

▶ Inclusion of T0,E adds much
more entropy than the restriction
LCn ⊂ TwoTreesn takes away.

▶ TripleTreesn ⊂ LCn is a lot more
restrictive.

▶ Not unsurprisingly: spanning trees
favour the branched polymer
phase.

▶ Qualitative changes? Let’s have a
look!
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Conclusions
▶ Incorporating local construction data into triangulations allows to avoid two

important roadblocks (certified topology and exponential bound).
▶ Encoding in trees may facilitate analytic investigation and increase chances of

criticality: trees are simple and don’t mind being critical!
▶ Enumeration of triple trees is still out of reach, but the formulation in planar map

language should enlarge attack surface (and enthuse more mathematicians).
▶ Glimpse of changes in phase diagram compared to DT, but the numerics is

challenging.
▶ Naturally the phase diagram of locally constructible triangulations is larger (3d)

with triple trees in one corner. Any new phase transitions?


