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CHAPTER 1

Introduction

The discovery of general relativity in the early twentieth century
did not only provide an extension of Newton’s theory of gravity
to a wider range of masses and velocities, it completely changed
our concept of space and time. Before, space and time were be-
lieved to merely provide a stage on which particles and forces,
including gravity, perform their act. Einstein’s theory of gen-
eral relativity, however, has taught us that space and time have
dynamics of their own. Space-time can curve and the effect of
this curvature on particles is to be interpreted as the force of
gravity. In other words, Newton’s theory of gravity disappeared
from stage and reappeared, in the form of general relativity, as a
property of the stage itself. Ever since, the force of gravity has
kept its special position among the known fundamental forces.
Another major revolution in physics, which came about around

the same time, was the discovery of quantum mechanics. It forced
us to reconsider the nature of particles and forces on microscopic



scales, where gravity seemingly plays no role. Point particles
were replaced by wave functions that describe the probabilities
of outcomes of measurements. In its initial form a global time
was necessary to describe the evolution of these wave functions.
However, the application of quantum mechanics to fields rather
than individual particles led to a probabilistic description com-
patible with Einstein’s special theory of relativity. At present we
have such quantum field theories, collectively known as the stan-
dard model, describing all known particles and three of the four
fundamental forces.

Individually, general relativity and quantum mechanics have
withstood every single experimental test to which they have been
subjected since their discovery. On large scales we can treat grav-
itational sources completely classically and general relativity tells
us precisely how space-time curves. On microscopic scales we
are allowed in practice to completely ignore gravitational effects
because of its weakness as compared to the other forces. There-
fore, quantum field theory is at present all we need, for instance,
to understand the results of particle collisions at the LHC. The
fact that presently no experiment requires a quantum description
of general relativity for an explanation, does however not mean
that such measurements are inconceivable in principle. General
relativity and quantum field theory combined do not currently
make any prediction about, for instance, the outcome of any ex-
periment involving energies close to the Planck scale. To make
any predictions at these energy scales we most likely require a
quantum theory incorporating gravity.

Initial attempts to quantize general relativity along the same
lines which were so successful in the case of the other funda-



mental forces have failed. In particular, a perturbative expan-
sion around flat Minkowski space leads to a non-renormalizable
quantum theory. This failure might have to do with the special
position taken by gravity. Conventional quantum field theory
relies on having a fixed background metric of space and time,
and a well-defined notion of causality that comes along with it.
When we introduce gravity into the framework, all these notions
become dynamical themselves. It is far from clear how to in-
corporate a dynamical background in the principles of quantum
field theory.

One can take several attitudes towards the problem of quan-
tizing gravity. It could be that the degrees of freedom in gen-
eral relativity are not fundamental, in the sense that they merely
provide an effective description of more fundamental degrees
of freedom at a microscopic scale. String theory is one of the
most studied approaches following this idea. It relies on a radi-
cal departure from the conventional field theory of particles, by
introducing extended objects as the fundamental constituents.
Another more conservative attitude is to not disqualify the space-
time geometry as a fundamental description of gravity, but ques-
tion the perturbative methods used in the initial quantization
attempts. In this thesis we will take the latter point of view.

Let us briefly summarize the origin and the consequences of
perturbative non-renormalizability in the context of gravity. As
one attempts to calculate quantum corrections to correlation func-
tions in perturbative quantum field theory, often infinities are
encountered which must be absorbed in the couplings of the the-
ory. As can be deduced from the negative mass dimension of
Newton'’s constant, at each order in the perturbative expansion of



gravity the divergent terms contain increasingly higher powers
of the curvature. Unless these divergent terms magically cancel,
they must be added as counterterms to the action. Each new term
comes with a new coupling constant, whose value must be deter-
mined experimentally. At an energy scale well below the Planck
scale a finite number of such terms suffices to calculate observ-
ables to a desired accuracy, leading to non-trivial predictions. At
the Planck scale, however, there is an infinite number of relevant
terms, hence an infinite number of undetermined couplings.

A potential way out of this situation is the asymptotic safety sce-
nario proposed already in 1976 by Weinberg [104]. Essentially the
predictivity of the theory would be restored if the infinite num-
ber of couplings would satisfy an infinite number of relations.
According to the asymptotic safety scenario this is achieved if
the renormalization group flow on theory space, i.e. the infinite-
dimensional space of actions parametrized by the values of all
possible (dimensionless) couplings, has an ultra-violet (UV) fixed
point with only a finite number of attractive directions. The crit-
ical surface in theory space, i.e. the subspace containing all ac-
tions that flow towards the UV fixed point under renormaliza-
tion, is then finite-dimensional. The requirement that the gravi-
tational action is contained in this critical surface provides a non-
trivial prediction. Evaluating the flow on the infinite-dimensional
theory space is a highly non-trivial task. However, using an ap-
proximation scheme, known as truncation, in which the flow is
projected onto some finite-dimensional set of actions, evidence
has been gathered that a UV fixed point might exist [80, 95].
This fixed point does not correspond to vanishing couplings and
therefore its existence is a truly non-perturbative phenomenon.



Whether a suitable UV fixed point exists in the full theory
space is unknown. Instead of “deriving” the UV theory of grav-
ity by including higher and higher energy modes, an alternative
route can be taken. As a result of some quantization method
one may obtain a proposal for a UV theory of gravity. To check
whether this theory reproduces general relativity in the appropri-
ate regime, one should integrate out the high energy modes and
thus flow down towards an infra-red effective action. This action
can then be compared to the Einstein-Hilbert action of general
relativity. Perhaps the best known proposal is loop quantum
gravity [97, 101], which is the result of a canonical quantization of
general relativity. Related, but employing a path integral quan-
tization, are the spin foam models [52, 92] and the more general
framework of group field theories [91].

In this thesis we will study path integral models of gravity
sitting, in some sense, in between the asymptotic safety approach
and these approaches. The models are collectively referred to as
dynamical triangulations and have the interpretation of lattice reg-
ularizations of the gravitational path integral. They are partly in-
spired by the lattice treatments of strongly coupled non-gravitationa
field theories. A good example of a field theory that has signif-
icantly benefited from a lattice regularization is quantum chro-
modynamics (QCD) at low energies. After a Wick-rotation lattice
QCD can be probed by computer simulations using Monte Carlo
techniques [98]. Much has been learned about the confined phase
of QCD in this way [87], including accurate calculations of the
masses of light hadrons.

Roughly speaking we can view a lattice field theory action
as an effective action at an energy scale determined by the lattice



spacing. In this picture the renormalization group flow discussed
above takes on a concrete interpretation, namely; it tells us how
we should change the action in order to compensate the effect of
a change in the lattice spacing on physical observables. These ob-
servables can be taken to be correlation functions or Wilson loops
depending on whether gauge symmetry is present. If we are
interested in the UV behaviour of the field theory, we decrease
the lattice spacing and adjust the couplings accordingly. This is
what we are after in the context of gravity.

However, when we try to apply the same methods to general
relativity, we run into a number of difficulties. First of all, the
gravitational field describes the geometry of space-time, there-
fore a lattice version should describe the geometry of the lattice
itself. In this case it makes no sense to fix a regular lattice with
prescribed lattice spacing, as often used in lattice field theory. To
maintain geometric degrees of freedom, either the lattice spacing
must become dynamical, leading to Regge calculus [105, 106], or
the connectivity of the lattice (see [82] for a summary of various
approaches). Dynamical triangulations are based on the latter
option, in which the fixed lattice spacing has the interpretation
as a UV regulator.

Secondly, in the absence of a preferred time variable in general
relativity it is far from clear how an explicit Wick rotation can
be implemented even in principle. As we will see, attempts in
this direction have inspired the introduction of a slightly adapted
version of dynamical triangulations, known as causal dynamical
triangulations (CDT).

Thirdly, after Wick-rotating the gravitational action presum-
ably takes the form of the Euclidean Einstein—-Hilbert action, which



is known to be unbounded below in three and four dimensions
[39, 84]. This so-called conformal mode problem implies that the
classical solutions of the bare action do not correspond to the
lowest-energy states of the system. The naive (semiclassical) path
integral does not seem to exist, since the unboundedness leads
to arbitrarily large integrands. Even if the unboundedness is
“cured” by a UV cut-off on the degrees of freedom, the naive
classical limit 7 — 0 will presumably have little to do with the
classical solutions of the action.

The last difficulty we mention here holds for any approach
to quantum gravity going beyond perturbations around a fixed
background. Namely, it is much harder to define observables
for a diffeomorphism-invariant system than it is for field the-
ories in a fixed space-time. Since such observables should be
independent of the chosen coordinates, we cannot simply take
correlation functions of local scalars constructed from the metric.
Diffeomorphism-invariant observables are necessarily non-local
and will, in the absence of additional ingredients like clocks and
rods, generically involve integrations over the full space-time
manifold. In the canonical formulation of gravity, observables,
or more precisely Dirac observables, have to commute with the
constraints, and their identification involves partially solving the
dynamics of general relativity [46].

Nonetheless, the identification of observables seems neces-
sary for several reasons. Real experiments correspond to ob-
servables in the sense above, either directly or indirectly. If we
want to regard a model of gravity as a scientific theory, it should
predict the outcome of real experiments, such that it can be fal-
sified in principle. Two kinds of gravitational experiments are of



importance, namely, experiments that have been performed and
agree with general relativity and experiments we might perform
in the future including ones that are sensitive to quantum effects.
A viable model of quantum gravity should, in principle, address
both kinds of experiments and agree with general relativity on
the first kind.

On a more abstract level, observables allow us to physically
distinguish different models of (quantum) gravity or find unex-
pected connections between them. An example of an observable
in quantum gravity that has led to unexpected connections is
the scale-dependent spectral dimension, first measured in CDT
in 3+1 dimensions [15]. Similar scaling has later been observed
in, among others, asymptotic safety [96], Hofava-Lifshitz grav-
ity [68] and four-dimensional Euclidean dynamical triangulation
[79] (see also [37]).

As we already hinted at before, having a toolbox of observ-
ables is useful, or perhaps even necessary, when searching for
a continuum limit in the sense of lattice field theory. The re-
quirement that the outcomes of measurements of physical ob-
servables, at least the dimensionless ones, do not change under
a change in the lattice spacing leads to non-trivial relations be-
tween the couplings of the theory.

The final reason is purely pragmatic, namely, the only sen-
sible way to get numbers out of a Monte Carlo simulations is
through observables. This is quite clear in the case of dynamical
triangulations, where the computer only keeps track of the con-
nectivity of the lattice sites. The computer knows nothing about
coordinates and therefore we simply cannot ask it coordinate-
dependent questions. Although one can quite easily construct



a complete set of “lattice observables”, the challenge is to select
observables from this huge set that have a good continuum inter-
pretation.

These considerations lead us to the main research questions
that we will attempt to address in this thesis. What interesting
observables can we define in the setting of dynamical triangu-
lations having an interpretation in terms of continuum geome-
try? Given such observables, how can we use them to study the
physical properties of the model? In particular, in the case of
CDT in 2+1 dimensions, can we deduce from measurements the
existence and nature of a classical and/or continuum limit?

1.1 (Causal) Dynamical Triangulations

Most path integral approaches to quantum gravity in d dimen-
sions have as starting point the purely formal path integral

Dg i‘s
7 — | 22 o%5euld .
/ Diff ¢ (1.1)

over Lorentzian space-time metrics g,,,, () on a fixed d-dimensional
manifold. The action appearing in the exponent is the Einstein—
Hilbert action

Senlg) = / A/ g(R—2) (12)

of classical general relativity, where k = 1/(167G) is related to
the Newton’s constant G and A is a cosmological constant.

To turn this path integral into a less ill-defined quantity, we
would like to invoke a Wick-rotation to imaginary time. We want



to go beyond perturbation theory around Minkowski space and
therefore cannot rely on a preferred time variable (up to Lorentz
transformations). It is unclear how one could give, even in prin-
ciple, a “unique” coordinate-invariant prescription for a Wick
rotation from Lorentzian to Euclidean geometries. One may take
the attitude that such a prescription is not strictly necessary, as
long as physical predictions can be obtained from the theory and
compared to nature. We follow the Euclidean quantum gravity
approach introduced by Hawking [65] and simply take the Eu-
clidean version of (1.1) as our starting point,!

Dg _i1g

7 — | 29 o—#Senld 13
Diff © ’ (1.3)
where now the integral is over Riemannian metrics g,, on a d-
dimensional compact manifold M and the Euclidean Einstein—
Hilbert action is given by

Sgulg] = —k / d?z\/g(R — 2A). (1.4)

This formal path integral has the interpretation of a partition
function of a thermal system, since each space-time metric occurs
with a Boltzmann weight determined by the “energy” Sgwu|[g].

Most observables evaluated with respect to the partition func-
tion (1.3) will have no direct interpretation in terms of the origi-
nal Lorentzian path integral. In conventional lattice field theory
one has to perform an inverse Wick-rotation on the Euclidean
correlation functions to obtain the physical correlation functions
in Minkowski space. A similar procedure for the observables

n the remainder of this thesis we set i = 1, effectively absorbing it in .



Figure 1.1: Triangles, tetrahedra, and four-simplices with fixed edge
length a form the elementary building blocks of dynamical triangula-
tions in d = 2, 3,4 dimensions, respectively.

in some well-defined version of the gravitational path integral
likely involves a choice of time. Whether and how this might
be achieved, is a non-trivial question, which we will not touch
upon in this thesis. Using observables we will try to understand
the Euclidean path integral as a statistical theory of geometries,
therefore not relying on any kind of Wick-rotation. For instance,
in chapter 3 we will study the relation between a lattice regular-
ization and a continuum treatment of the Euclidean path integral
in two dimensions. In chapters 4, 5, and 6, we will try to un-
derstand the large-distance limit of a three-dimensional lattice
regularization, again in a purely Euclidean setting but with a
notion of time.

Dynamical triangulations (DT) in d dimensions is a particular
regularization of the formal partition function (1.3). The integral
over the space of all geometries, i.e. the space of metrics modulo
diffeomorphisms, is replaced by a sum over a countable set 7.
The ensemble 7 is formed by all piecewise flat manifolds with
the topology of M that can be constructed from a finite number



of flat equilateral d-simplices with fixed edge length a, as shown
infigure 1.1 for d = 2, 3, 4. The fixed edge length a is the analogue
of the lattice spacing in lattice field theory. The idea is that taking
a — 0 the ensemble 7 becomes more and more dense in the full
space of geometries.

In general, the curvature of a piecewise flat manifold has sup-
port on the (d — 2)-dimensional simplices, i.e. on the vertices
for d = 2, the edges for d = 3, and the triangles for d = 4.
Despite the singular character of the curvature, the Euclidean
Einstein-Hilbert action (1.4) can be generalized unambiguously?
to these geometries, leading to the so-called (Euclidean) Regge
action [93]. In the case of dynamical triangulations, where all
edge lengths are fixed, the Regge action simplifies to a linear
combination of the numbers of simplices of various dimensions.

Dynamical triangulations were first studied in d = 2 dimen-
sions mainly in the context of non-critical string theory [6, 40,
77]. This model will be the subject of chapters 2 and 3. In the
early nineties its generalizations to d = 3 [7, 19] and d = 4 [1]
gained a lot of attention. As we will briefly discuss in the in-
troduction to chapter 4, detailed simulations revealed that these
higher-dimensional models in their current form seem to be lack-
ing a good continuum limit.?

It the late nineties a new model of dynamical triangulation

2The Regge action is unambiguous in the sense that it can be derived from the
Einstein-Hilbert action by considering a family of smooth metrics approximating
a piecewise flat geometry [53]. If one is merely looking for discretizations of the
Einstein-Hilbert action that become exact in the low curvature regime, the usual
discretization ambiguities apply.

3However, see [79] for some renewed interest in a slightly adapted model of
4d dynamical triangulations.



was introduced [5, 13, 16], referred to as causal dynamical triangu-
lation (CDT). It was constructed in an attempt to resemble better
the causal structure present in the Lorentzian path integral (1.1),
by introducing a time foliation in the dynamical triangulations.
The leaves of the foliation, i.e. the constant-time hypersurfaces,
are required to have a fixed topology. We will see precisely what
this means when we introduce CDT in 2+1 dimensions in chapter
4.

As a consequence of the causality condition on the triangu-
lations, the CDT ensemble forms a proper subset of the DT en-
semble described above. In terms of continuum geometry, the
CDT ensemble seems to be best understood as an approximate
sampling of the subset of Riemannian geometries that allow for
a proper-time foliation. In support of this point of view, the con-
tinuum limit of CDT in 1+1 dimensions [16] has been shown to
agree with continuum quantization of two-dimensional gravity
in proper-time gauge [88].

The presence of a preferred time slicing in CDT has several
consequences. First of all, with a preferred time variable there
seems to be a closer connection, in the sense of Wick-rotations, to
Lorentzian gravity. Secondly, the foliation provides more oppor-
tunities to define observables, since we can apply an observable
for d-dimensional geometries to a certain constant-time surface
in (d + 1)-dimensional CDT. We will make use of this property
extensively in this thesis. Finally, it naturally opens up the pos-
sibility to compare CDT to other models of gravity with a pre-
ferred time slicing. These include the various formulations of
Hotava-Lifshitz gravity [66, 67] and shape dynamics, which we
will discuss in chapter 7.



1.2 Conformal perspective

Two-dimensional Riemannian geometry on compact surfaces is
well-understood, especially compared to geometry in higher di-
mensions. This is likely due to the fact that the conformal equiv-
alence classes of Riemannian geometries are directly related to
Riemann surfaces, which are classified according to the well-known
uniformization theorem. Any geometry on the two-sphere can be
obtained by a conformal transformation of a single symmetric
two-sphere. Geometries on the torus are obtained by conformal
transformations of flat tori, of which there is a two-parameter
family. To be precise, any metric g,; on the torus can be decom-
posed in suitable coordinates as

gav(x) = @ gy (7), (1.5)

where §qp(7) is a family of unit-volume flat metrics parametrized
by the moduli 7 and 7 and ¢(x) is a position-dependent confor-
mal factor. This conformal decomposition is unique up to trans-
lations in the coordinates and therefore gives rise to a complete
set of diffeomorphism-invariant observables, namely, the moduli
T together with all translation-invariant functionals of the confor-
mal factor.

This abundance of potential observables, especially the con-
formally invariant moduli, is the main reason why we chose to
study two-dimensional DT on the torus and three-dimensional
CDT with spatial topology of the torus. It is very valuable to
have access to both conformally invariant, or transverse traceless,
degrees of freedom and conformal factor, or pure trace, degrees
of freedom in the spatial geometry, because of the distinct roles



they play in general relativity. As we will see they appear in the
kinetic term of the Einstein—Hilbert action with opposite signs.
Moreover, in the canonical formulation of gravity one can iden-
tify precisely the transverse traceless degrees of freedom as the
physical degrees of freedom [109, 110].

1.3 Qutline

In this thesis we discuss three different models of gravity: two-
dimensional dynamical triangulation in chapters 2 and 3; causal
dynamical triangulation in 2+1 dimensions in chapters 4, 5 and 6;
canonical general relativity in 2+1 dimensions in the formulation
of shape dynamics in chapter 7.

In chapter 2 we consider so-called baby universes in two-dimen-
sional gravity. These baby universes can be interpreted as the
result of local excitations in the conformal factor and characterize
the fractal nature of random surfaces. To test an old conjecture
concerning the distribution of baby universes as function of their
neck size, we introduce an observable that measures the length
of the shortest topologically non-trivial loop on a triangulation of
the torus.

In chapter 3 we introduce the conformally invariant moduli
as observables for 2d gravity on the torus. Using Monte Carlo
simulations we determine numerically the distribution of these

4To prevent confusion we will refrain from using the term “conformal degrees
of freedom”, since unfortunately it can be found in the literature to refer to either

type.



moduli, which we compare to analytical results from Liouville
theory.

In chapter 4 we perform an initial investigation of CDT with
spatial topology of a torus. Using Monte Carlo simulations we
measure expectation values and correlations of the spatial vol-
umes, which can be interpreted as the global conformal mode, at
different instances in time. We show how these measurements
relate to classical solutions of three-dimensional general relativ-
ity.

In chapter 5 we apply the moduli observables to the spatial
geometries in CDT. By combining the measurements of the mod-
uli and the spatial volumes, we can establish the relative strength
with which they appear in the kinetic term of the effective action.
These results suggest a general kinetic term of the form given by
a non-covariant Wheeler-DeWitt metric.

In chapter 6 we qualitatively confirm these results by measur-
ing correlations in the extrinsic curvature of a fixed boundary in
space-time.

Finally, in chapter 7 we discuss shape dynamics in 2+1 dimen-
sions, which is a reformulation of general relativity, where the
refoliation symmetry has been traded for spatial conformal sym-
metry. This shows that a preferred time slicing is not necessarily
in contradiction with general relativity.



CHAPTER 2
Baby universes in 2d gravity

This thesis is mainly concerned with lower-dimensional mod-
els of gravity, i.e. models with a number of dimensions lower
than the four space-time dimensions we observe around us. In
this and the next chapter we will focus on Euclidean gravity in
two dimensions, which is one of such models that attracted a lot
of attention in the 1980s and early 1990s. The main reason for this
is its close connection to string theory. The central ingredients of
string theory are strings that sweep out a two-dimensional world
sheet embedded in some higher-dimensional space time mani-
fold. The way one usually describes the dynamics of these strings
is by assigning a geometry to the world-sheet and viewing the
coordinates of the embedding as matter fields. In particular one
can interpret a bosonic string living in a flat d-dimensional back-
ground as two-dimensional gravity on the world sheet coupled

This chapter is largely based on [2] with some additions from [3].



to d Gaussian matter fields. From this point of view pure 2d grav-
ity is equivalent to bosonic string theory in a zero-dimensional
background.

Although our reasons for studying two-dimensional gravity
are not directly related to string theory, we can benefit from the
set of tools that have come available to us through this connec-
tion. One of these tools that we will briefly discuss in the next
chapter is Liouville theory, which allows us to perform analytic
quantum gravity calculations in the continuum. In this chapter
we will restrict ourselves to a discrete formulation of 2d gravity
known as 2d dynamical triangulations (DT).

This purely combinatorial model, which we will introduce
shortly, allows for numerical evaluation using Monte Carlo tech-
niques, just like its higher-dimensional versions including the
model of causal dynamical triangulations in 2+1 dimensions that
we will discuss later. Contrary to its higher-dimensional cousins,
DT in two dimensions also allows for some calculations to be
done analytically. As such it provides an ideal testing ground
for observables we have designed and intend to study in higher
dimensions. This will be the subject of chapter 3 where we will
investigate the modular parameter as an observable in 2d DT.
Later, in chapter 5, we will actually make use of this observable
in CDT in 2+1 dimensions.

In this chapter we will have a closer look at the two-dimensional
geometries appearing in the DT model. These geometries turn
out to be quite different from smooth Riemannian manifolds. A
particular manifestation of their non-smooth structure is the ap-
pearance of baby universes, i.e. regions within the geometry that
are connected to the rest of the universe through a neck of mi-



croscopic size. The distribution of such baby universes has been
investigated by Jain and Mathur in [70] using simple scaling ar-
guments. The main goal of this chapter is to show that their con-
jecture concerning the distribution of baby universes with non-
minimal necks cannot be correct. Instead, we will put forward
a modified conjecture. In section 2.4 we present a non-trivial
numerical check of this conjecture by measuring non-contractible
loops within DT on a torus. However, let us first introduce the
set-up of dynamical triangulations in two dimensions.

2.1 Introduction to 2d dynamical triangu-
lations

Our starting point is the Euclidean Einstein-Hilbert (1.4), given
in d = 2 dimensions by

S[g] = —k / d?z\/g(R — 2A) (2.1)

in terms of the two-dimensional Riemannian metric g,;, on a com-
pact surface. Special to two dimensions is that the first term in
this action is a topological invariant. According to the Gauss—
Bonnet theorem it is determined by the genus g of the surface, i.e.
the number g of handles one has to attach to a sphere to obtain
the topology of the surface, namely,

/de\/gR = 87(1 — g). (2.2)

This means that as long as we keep the topology constant the cur-
vature term does not contribute to the dynamics. We can there-



fore drop it from the action and are left with only a cosmological
term,
Slgl = AVlgl, (23)

where V[g] is the two-dimensional volume corresponding to the
metric gqp and A = 2kA.

Classically this action is of little interest, since for A = 0 the
equations of motion are automatically satisfied and for A # 0
there is no solution. However, quantum-mechanically this action
leads to quite an interesting theory. Formally we can write the
path integral for two-dimensional Euclidean quantum gravity as

Z(\) = / Dge VIl (2.4)

where Dy represents some measure on the space of metrics. This
partition function can be expressed as the Laplace transform of
the fixed-volume partition function Z(V),

Z(A)/OOo dv Z(V)e Y and Z(V):/Dg§(V7V[g]).

(2.5)
We will not attempt to give a rigorous meaning to the measure in
the integrals over metrics, but in keeping with the invariance of
the theory it should involve an integration over diffeomorphism
classes only, i.e. geometries instead of metrics.

Dynamical triangulations is a lattice regularization of the path
integral over geometries in which the integral in (2.4) is replaced
by a sum over triangulated geometries. Moreover we choose the
triangles from which the geometries are assembled to be equi-
lateral with edge length a. More precisely, we are led to the DT



partition function

ZN) = Cie—W[Tl, (2.6)

TeT

where 7T is a suitable ensemble of triangulations consisting of a fi-
nite number of equilateral triangles. The combinatorial factor Cr
is equal to the order of the symmetry group of the triangulation
T and is usually implicitly taken into account by working with
labelled or marked triangulations. The volume V[T] is simply
proportional to the number N[T] of triangles:

VIT] = ?cﬁN[T]. 2.7)
Usually we work with the renormalized cosmological constant
n= ?cﬂ)\ in terms of which the partition function becomes

Z(pw) = L i), (2.8)

TeT Cr

In practice we will usually not consider the grand canonical
partition function (2.8), but rather the canonical partition function
Z(N) with fixed number N of triangles, i.e.

Z(IN)= Y CLT (2.9)
TeT(N)

which is the discrete counterpart of (2.5).

For the ensemble 7 several natural options are available, which
have to do with the particular restrictions we impose on the way
the triangles are to be glued. In general the differences between



the various ensembles become unimportant in the large volume
limit N — oo, but at finite N certain ensembles can be more con-
venient than others. The ensemble that we will use most often
and denote by 7; is the ensemble in which we put no restrictions
on the pair-wise gluing of edges, as long as the resulting piece-
wise linear manifold has the topology of a surface with genus g.
These triangulations can be described dually by a 3-valent graph
embedded in a genus-g surface. In this representation 7; corre-
sponds to the set of all inequivalent embedded 3-valent graphs.
In the case of spherical topology these graphs correspond exactly
to planar graphs.

A slightly smaller ensemble 73 C 7; that we will consider
consists of all triangulations in 77 that have the structure of a
simplicial complex. In a simplicial complex the simplices, in this
case the triangles and the edges, have to be uniquely determined
by the set of vertices they contain. This means that edges are not
allowed to begin and end at the same vertex and any pair of ver-
tices is allowed to be connected only by a single edge. In terms
of the dual 3-valent graphs this implies that we do not allow for
tadpoles and self-energy diagrams.®

Ignoring the symmetry factor Cr, which equals 1 for the vast
majority of large triangulations, the partition function Z(N) sim-
ply counts the number of inequivalent triangulations with N tri-
angles. Explicit expressions can in principle be worked out for
Z(N). It can be shown that its leading behaviour as N — oo is

ZWD(N) oc N®I=/2emoN, (2.10)

5The notation 7; refers to the minimal loop length I we allow in the edge
graph: in 7; we allow loops of a single edge, while in 73 a loop consists of at
least three edges.



where (1 is independent of the genus but does depend on the
chosen ensemble T (see e.g. [8]).

The partition functions described up to now are for pure two-
dimensional gravity. In this case, as is apparent from (2.9), all
geometries appear in the canonical partition function with the
same weight. This changes when we couple matter to the grav-
itational field. In general the partition function for dynamical
triangulations coupled to gravity will be of the form

Z(N)=>_ LZW(T), (2.11)
TeT

where Z,,(T') is the partition function of the matter fields on a
fixed triangulation T'.

In addition to the pure gravity case we will study in this thesis
gravity coupled to Gaussian fields. As mentioned at the begin-
ning of this chapter we can interpret 2d gravity coupled to d
Gaussian fields as a model of non-critical bosonic strings moving
in a d-dimensional flat background, as described by the Polyakov
action. As a conformal field theory this model has a central charge
c equal to the number of dimensions d (and therefore we will in
the following refer to ¢ instead of d). For Euclidean quantum
gravity coupled to conformal matter with central charge ¢ the
partition function can be shown (see e.g. [45]) to scale with vol-
ume V as

ZO(V) = V@93V (2.12)

Here ) is a bare cosmological constant, and v(g) is the susceptibil-



ity exponent given by

Y(9) =Y + 9(2 = 0), (2.13)

c—1—+/(c—=1)(c—25
where 9 =~7(0) = (12 I )

One can introduce a discretized version of this model by as-
signing to each triangle i a position X{ in R%. Then we can write
the matter partition function as [77]

N N
Z(T) = / [Tdextexp | = > XfA; X6,  (214)
i=1 ij=1
where A;; it the graph Laplacian on the 3-valent graph dual to
T, i.e. its non-vanishing entries are A;; = 3 fori =1,..., N and
A;; = —1if the triangles 7 and j are adjacent.

Since the action is quadratic in X7 the partition function eval-
uates (up to some irrelevant prefactors) to

Zm(T) o (det’ A)=¢/2, (2.15)

where the prime means that we should first project out the con-
stant mode from the Laplacian before evaluating the determi-
nant.

Due to Kirchhoff’s theorem the determinant det’ A is equal to
the number N (T) of spanning trees on the 3-valent graph dual
to T'. A spanning tree of a graph is a connected subgraph which
connects any two vertices but has no loops. The partition func-
tion (2.11) for dynamical triangulations coupled to ¢ Gaussian



fields becomes

Zm(N)= > CLTN (T)~</2. (2.16)
TeT(N)

Considering the dimension d as a formal parameter we see that

¢ = —2 is special because we get just the factor N'(T) in the
summand. Hence we can write for ¢ = —2
1
Ze=—o(N) = —_, 2.17
2(N)= >, & (217)
TeT*(N)

where 7 is the ensemble of triangulations in 7~ decorated with a
spanning tree. Thus we count two such triangulations as different
even if they are identical as triangulations but are decorated with
different spanning trees.

As we will see in the next section dynamical triangulations
with ¢ = —2 are especially simple to treat numerically. Therefore
in this chapter and the next we choose to restrict our attention to
the case of pure gravity ¢ = 0 and the case ¢ = —2.

2.2 Monte Carlo simulations of dynamical
triangulations

Suppose we have an observable O which assigns a real number
O(T) to a triangulation T As usual we define its expectation
value as

1 1
(O)rvy = 0 TG;N) C—TO(T). (2.18)



Figure 2.1: The local update move used in Monte Carlo simulations of
dynamical triangulations of pure gravity.

We can use Monte Carlo techniques to evaluate such expectation
values numerically.

In the case of pure gravity this is easily accomplished by a
Markov process in which we start with a triangulation with the
desired number N of triangles and the desired topology. A se-
quence of triangulations {T; };—1 2,.., which constitutes a Markov
chain, is then generated by iterating the procedure of selecting
a random edge and performing a flip move on the two triangles
sharing the edge (figure 2.1). These flip moves are ergodic in the
sense that any triangulation can be obtained from any other by
a finite number of such moves. The triangulation 7} we obtain
after a large number ¢ of moves will be independent of the start-
ing configuration. We can view it as a random element in the
ensemble 7 with uniform probability. In figure 2.4 we show a
typical random triangulation for large V.

This procedure can be generalized to dynamical triangula-
tions coupled to matter fields, e.g. Ising spins, by also perform-
ing update moves on the matter fields and ensuring that a de-
tailed balance condition is fulfilled. However, we will not discuss
this here. Instead, let us consider the special case of ¢ = —2
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Figure 2.2: A decorated triangulation can be represented by a binary
tree and a unicellular map.

presented in the previous section. It was realized in [75] in the
case of genus zero that random triangulations with the correct
Boltzmann weight can be generated directly. This algorithm cir-
cumvents the problem of having to construct a sufficiently long
Markov chain, which becomes increasingly time consuming when
N is large. It therefore allows us to manage computationally
larger system sizes than in the pure gravity case. We will present
here a generalization of the method in [75] to arbitrary genus.

Suppose we are given a triangulation of genus g with N tri-
angles together with a spanning tree on its dual graph (see figure
2.2 for an example in which we take the triangulation to be the
icosahedron). Let us consider the set of edges of the triangulation
which are not intersected by the spanning tree. This set of edges
forms a graph consisting of /NV/2+-1 links and containing 2g loops.



If we cut open the triangulation along these links, we obtain a
triangulation of the disc with a boundary consisting of N + 2
links. This triangulated disc in the plane is completely charac-
terized by the 3-valent tree dual to it. This tree has IV internal
vertices and is obtained from the spanning tree by adding IV + 2
external lines (see the top part of figure 2.2). To get back to the
original triangulation, the boundary edges of the disc have to be
glued pairwise. This construction suggests that any decorated
triangulation can be obtained by combining a tree and a pairwise
gluing.

To make this more precise, let us mark one of the external lines
of the 3-valent tree such that we obtain a rooted tree (denoted by
an arrow in figure 2.2). This way the tree becomes precisely of
the form of a binary tree® with N nodes. The external links are by
construction in 1-to-1 correspondence with the boundary links of
the disc. The pairwise gluing of the edges of the disc to a genus-
g surface corresponds to a pairwise identification of the external
lines in the binary tree such that the resulting trivalent graph can
be placed on a genus-g surface without any lines crossing (this
is the meaning of the trivalent graph being of genus g). Such a
pairwise gluing of a polygon is known as a unicellular map [38]
(or one-face map) of genus g with N + 2 half-edges. Any combina-
tion of a binary tree and a genus-g unicellular map will lead to a
triangulation of genus g together with a marked half-edge, i.e. a
triangulation of which one side of an edge not intersected by the
spanning tree is marked.

6A binary tree is a directed tree in which each node has at most two child
nodes: a “left” child and a “right” child.



It follows that we can write (2.17) as

Zem 5(N) = Y %:ﬁ DD D S e )

TeT* bEB(N) u€ldy(N+2)

where B(N) is the set of rooted binary trees with N nodes and
Uy(N + 2) is the set of genus-g unicellular maps with N + 2
half-edges. Therefore, we can generate a random decorated tri-
angulation with the correct probability by separately generating
a random binary tree and a random unicellular map. Efficient
algorithms exist for generating binary trees, see e.g. [78], section
7.2.1.6.

The difficulty is the implementation of the random unicellular
map. The case g = 0 was originally solved because it was under-
stood that a genus-zero unicellular map with N + 2 half-edges
is given simply by a planar tree with one half-edge marked [29,
77] (see figure 2.2 for an example). These planar trees can also
be identified with rooted binary trees (see again [78]) and can
therefore be easily generated.

To generate a torus we need a random genus-one unicellular
map with N +2 half-edges. Luckily in [38] an explicit connection
was found between unicellular maps of genus g and genus g + 1.
In particular, for a genus-0 unicellular map a procedure is given
in which three distinct vertices are identified and the half-edges
are relabelled in such a way that one obtains a genus-1 unicel-
lular map. It is shown that any genus-1 unicellular map can be
obtained through such a procedure in exactly two different ways
(see [38], proposition 1 and corollary 1).

Let us briefly summarize the procedure. We label the half-
edges of the N + 2-gon anti-clockwise by 1,2,...,N + 2 and



provide them with the corresponding orientation, such that they
have a starting vertex and a final vertex. A unicellular map of
genus zero is fixed by giving a list e of N/2 + 1 pairs of integers
which tell us which edges to glue. After the gluing we have a
tree with N/2 + 2 vertices (see figure 2.2) of which we randomly
select three distinct ones. For each of them we select from the
set of half-edges having that vertex as its final vertex the smallest
index. We denote these indices by a1, a2, and a3 and reorder them
such that 1 < a1 < a2 < ag < N + 2. The resulting unicellular
map of genus one is now given by gluing according to the list «
but replacing ¢ — f(¢), where

14 a3z — as ifa; <i<as
f(’L) = i—ag+a; ifay<i<az . (220)
i otherwise

We refer to [38] for the actual proof of this statement.

As an example consider the genus-0 unicellular map in figure
2.3 for which three vertices are selected (the encircled ones). The
pair-wise gluing is given by

o = {{1,20},{2,3},{4,7},{5,6},{8,15}, {9, 10}, (2.21)
{11,14},{12,13}, {16, 19}, {17, 18}, {21,22}}

The distinguished half-edges are a; = 1, ap = 17 and a3 = 20.
Therefore the relabelling according to (2.20) reads

{1,2,3,4,5,6,7,8,9,10,11,12, 13,14, 15,16,17, 18,19, 20, 21, 22}
(2.22)

- {1,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19, 20,2, 3,4, 21, 22}



Figure 2.3: A genus-0 unicellular map with three marked vertices.

The corresponding genus-1 unicellular map is given by the glu-
ing obtained by applying this relabelling to o, i.e

o = {{1,4},{5,6},{7,10},{8,9}, {11,18},{12,13},  (2.23)
{14,17},{15,16}, {19, 3}, {20, 2}, {21, 22} }.

2.3 Distribution of baby universes

Having established algorithms to produce random configurations
in the DT partition functions for pure gravity and gravity cou-
pled to ¢ = —2 conformal matter, we might ask what a typical
geometry looks like. In figure 2.4 an embedding in three di-
mensions is shown of a random triangulation taken from one of
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Figure 2.4: An illustration of a typical geometry appearing in the par-
tition function of DT.

the DT partition functions to illustrate the non-smooth structure.
One aspect of the non-classical behaviour of 2d gravity is dis-
cussed by Jain and Mathur in [70]. They relate the susceptibility
exponent vy defined in (2.13) to the creation of so-called baby uni-
verses.

First of all they define a minbu, or minimal neck baby universe,
to be a region in a triangulated surface with topology of a disc
whose boundary consists of a minimal number of edges. What
this minimal number is depends on the precise ensemble consid-
ered. In the ensembles 7; and 73 we introduced in section 2.1
the minimal neck sizes are 1 and 3 respectively. Jain and Mathur
show that the average number of minbus of volume B is given
by

nn(B) = k(g)N(1 — B/N)"9)~2B70=2, (2.24)

where N is the total volume of the surface, k(g) is a constant



depending on the genus g, and we have assumed B < N/2.

The leading power-law behaviour of B in (2.24) provides a
convenient way to determine -, in numerical simulations and
has been extensively used to check the relation (2.13) for dynam-
ical triangulations (see e.g. [18]).

Jain and Mathur also put forward generalized relations based
on a conjectured formula involving non-minimal necks (equation
(9) in [70]). These necks also divide the surface into two pieces
with volumes N — B and B but have an arbitrary length L < v/N.
We show that the conjectured formula cannot be correct and dis-
cuss how to modify it appropriately while maintaining many of
the results derived there. Our key observation is that the necks
of baby universes are by construction special curves on the sur-
face whose scaling as function of the volume N is different from
generic curves. In the next section we will perform a non-trivial
numerical check of our improved conjecture.

For the moment we will restrict ourselves to the case of pure
gravity, ie. ¢ = 0. We will discuss the general situation with
¢ <1, and ¢ = —2 in particular, in section 2.5.

Consider a (triangulated) surface of area IV and spherical topol-
ogy with n boundary loops of length L;, ¢ = 1,...,n, counting
the number of edges in the boundaries. Assume also that none of
the boundary loops can be deformed into a loop of shorter length
in the same homotopy class, unless the deformation sweeps an
area which is a sizeable fraction of N. Jain and Mathur conjec-
tured that the number of such surfaces behaves like

n
Zu(N,Li) ~ N"Z@=O(N) [T L; ), Li VN, (2.25)
=1



The factor N™ corresponds simply to the number of ways n bound-
ary loops can be located on a genus-0 surface. The power for the

lengths L; was determined by making a general ansatz L, (1+e),
To determine « they calculated the genus-1 partition function
from Z,(N, L, L) by gluing together both boundaries to form a

torus and integrating over L up to v IV,

VN N
ZO=D(N) ~ / dL L Zs(N, L, L), (2.26)

where the factor L in the integrand takes into account the free-
dom in gluing the boundaries. Now « = 7 follows from evalu-
ating this integral and comparing to (2.12).

A number of interesting results were derived in [70] using the
ansatz (2.25). In particular the relation v(g) = v + g(2 — o) in
(2.13) can be directly derived from the ansatz in a way similar to
(2.26). Indeed one can construct a genus-g surface from a genus-0
surface with ¢ pairs of boundaries, for which the two boundaries
in each pair have the same length L;,i = 1,...,g. Itis not hard to
see that integration over each L; as in (2.26) leads to an additional
factor of N?770,

As Jain and Mathur point out, the number of surfaces of area
N with n boundaries of prescribed length which cannot be de-
formed without increasing their length is strictly smaller than the
number of surfaces with n boundaries without such restrictions,
for which explicit formulas are known. The reason for this is
that curves that serve as baby universe necks are special curves.
However, the consequences of this are even more drastic than
envisaged in [70] and are directly related to why ansatz (2.25)
cannot be correct. By definition the boundary loop in (2.25) is



a geodesic curve and it is well-known that the lengths of such
curves scale anomalously in dynamical triangulations [17, 22, 62,
72]. In fact, the dimension of geodesic curves is volume!/* and
not volume'/?, as one might have expected naively, implying
that the Hausdorff dimension d;, of surfaces in the DT ensemble
is 4. This is reflected in the scaling behaviour of the expectation
values

(R)n ~ N (N(r))n ~ 1, forr < AV, (2.27)

where R is the linear extension of a surface of area N, and N (r)
the area contained within a geodesic distance r from a given
point.

The necks of length L along which Jain and Mathur cut sur-
faces into disconnected pieces are geodesic curves, which means
that their ensemble average is much shorter than the generic v N
used as upper limit in integrations like (2.26). (Note that the
main contribution to this integral comes precisely from the upper
limit.) Instead, according to (2.27), N'/4 should be used as upper
limit, and, more generally, N 1/dn if the Hausdorff dimension is
dn. An alternative ansatz, which will reproduce most of the re-
sults of Jain and Mathur, is to replace (2.25) by

ZL(N,L;) ~ N"Z@=O(N) ] ;7“0 (c=0). (2.28)
=1

This formula is supposed to be valid for L; < N/ with the
understanding that any integration over NV; is to be performed
from the minimal neck length up to N/, For L; > N/ the
function Z/ (N, L;) is assumed to vanish fast.



2.4 Shortest non-contractible loops

As an application of our modified conjecture (2.28), let us con-
sider the case of torus topology, i.e. g = 1. The expression
(2.26) relating the torus partition function Z 9=V (N) to the parti-
tion function Zy(N, L, L) of genus-0 surfaces with two geodesic
boundaries of length L is modified to

N1/4
Z@=D(N) ~ / dL L Z4(N, L, L). (2.29)

From the point of view of the torus the curve corresponding to
the glued boundaries is a non-contractible loop of minimal length
(see figure 2.5 for an example). The integrand in (2.29) gives us a
prediction for how the length L of the shortest non-contractible
loop is distributed in the ensemble of genus-1 dynamical trian-
gulations. We expect the fraction Py (L) of triangulations with N
triangles that have a shortest non-contractible loop of length L to
be given by

_ LZyN,L,L) L L
Pn(L) = 7= () —N1/2F N7 ) (2.30)

for some function F(z) that is approximately constant for small
2 and goes to zero rapidly when = 2 1.

To test this we generate triangulations in the ¢ = 0 ensem-
ble with various volumes NN using the Monte Carlo technique
outlined in section 2.2. Then we determine the length L of the
shortest non-contractible loop using the following algorithm.

First we need a method of constructing curves in the trian-
gulation that generate the fundamental group. Inspired by the
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Figure 2.5: An example of a shortest non-contractible loop of length 4.

methods for producing random ¢ = —2 triangulations described
in section 2.2 we generate an arbitrary spanning tree on the 3-
valent graph dual to the triangulation. Then we consider the
set of edges of the triangulation that are not intersected by this
spanning tree (see figure 2.6). As mentioned in section 2.2 the
graph G formed by these edges contains 2¢ cycles, where g is
the genus of the triangulation. To extract these cycles we choose
an arbitrary vertex v in G and generate a spanning tree for G
based at v. This tree will contain all but 2¢g of the edges of G.
Adding any of the remaining 2g edges to the tree will lead to a
cycle and therefore to a unique closed path based at v. The set of
2g paths {~; }i=1,... 25 thus constructed generates the fundamental
group of the triangulation. Once we have such a set of generators
we can establish for any closed curve whether it is contractible
or not by computing its oriented intersection number with the
generators ;. The curve is contractible if and only if all these
intersection numbers vanish.

Given a vertex v we can find a shortest non-contractible loop



Figure 2.6: A triangulated torus decorated with a spanning tree (in
red). The edges (in blue) not intersected by the spanning tree form a
graph with two cycles.

based at v by performing a so-called breadth-first search in the
edge-graph of the triangulation starting at v. Once we encounter
a vertex that we have already visited before, we have implicitly
established a loop in the edge-graph. The first such loop we meet
that is non-contractible will automatically have minimal length.

In principle we can repeat this procedure for each vertex v
in the triangulation to find the overall shortest non-contractible
loop (or rather a non-contractible loop of minimal length as there
is usually more than one). However, in general the set V' of ver-
tices for which we have to perform this procedure can be greatly
reduced. We know that any non-contractible loop will intersect
at least one of the generators v;, so it suffices to take V' to consist
of all vertices contained in the ;. In order to obtain such a set
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Figure 2.7: The rescaled distribution of the shortest non-contractible
loop length L for volumes N = 125,250,500,...,64000 and
L=1,2,...,15forc=0.

V with as few vertices as possible it is worthwhile to first spend
some time to shorten the ~;. This will result in a set V with a
number of vertices of the order N*/? with N the number of
triangles. Since a single breadth-first search involves a number
of steps of the order N, the full algorithm will have an expected
run-time of the order N'+1/d» which amounts to N2 for ¢ = 0.

In figure 2.7 the measured distributions Py (L) for random
¢ = 0 triangulations from the ensemble 7; are shown for volumes
N ranging from 125 up to 64 000 triangles. We rescaled the dis-
tribution according to our ansatz (2.30) and observe that the data
satisfies the finite-size scaling with good accuracy. Moreover, we



see that the universal function F'(x) has the form of a smooth cut-
off function, which equals a constant for small x and goes to zero
rapidly for x 2 1.

These simulations are in clear disagreement with the ansatz
of [70] which predicts a probability distribution

L forL <+/N
PJ%‘M)@)N{“N e (2.31)

0 forLZ\/ﬁ’

as noted in [71]. Our improved ansatz also resolves a discrepancy
found in [71], namely, that (2.31) leads to an average shortest loop
length (L) ~ N'/2 while one would expect

(L) ~ NYdn = N1/4 (2.32)

because of the anomalous scaling of geodesic distances. It is
exactly the latter that follows from our ansatz (2.30), based on
(2.28). We have also verified (2.32) numerically as is shown in
figure 2.8.

2.5 Baby universes in the presence of con-
formal matter

The arguments presented above for ¢ = 0 need to be refined for
the general case of 2d gravity coupled to conformal matter with
central charge ¢ < 1. Integrating out the matter fields we end up
with a partition function in which every triangulation appears
with a certain weight Z,,,(T") as in (2.11). In general this weight
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Figure 2.8: A log-log plot of the expectation value (L) for volumes
N = 125,250,500, ...,128000 for ¢ = 0. The fitted curve corre-
sponds to (L) = 0.376 N'*/* (error bars are too small to display).

depends on the connectivity of the triangulation and is therefore
not invariant under cutting and gluing.

We can illustrate this for the case of Ising spins coupled to
DT, with spins located at the centres of the triangles and nearest-
neighbour interactions. This model has a critical point describing
a ¢ = 1/2 conformal field theory coupled to 2d gravity [76]. If we
consider a triangulated surface with a neck associated to a baby
universe, there is clearly an energy associated with the interac-
tions between spins on either side of the neck. There seems to
be no non-trivial way of recovering the weight associated with



this energy when considering the separate partition functions
of the two surfaces we obtain after cutting along the neck. A
proper treatment would be to consider partition functions with
fixed boundary conditions on the matter fields and to sum over
inequivalent boundary conditions with the appropriate weight
when gluing.

The error we are making by neglecting the matter boundary
conditions will depend on the length of the neck. In the case of
minimal-neck baby universes the energy contribution associated
with them will become negligible in the continuum limit. This
explains why the result (2.24) derived by Jain and Mathur has
turned out to be robust also when ¢ # 0.

The derivations in [70] building on (2.25) for non-minimal
necks are much harder to justify. The contributions from the
boundary energies might become significant when the boundary
lengths become of the order of the linear system size. Notice that
it is precisely those long boundary lengths that give important
contributions to integrals like (2.26). Nevertheless, let us for the
sake of simplicity assume that we can ignore such boundary en-
ergies. In that case we can simply repeat our derivation from the
previous section taking into account that the string susceptibility
~ and the Hausdorff dimension d;, depend on the central charge ¢
of the matter. It was shown in [103] that the Hausdorff dimension
dy, governing the linear extent of random triangulations coupled
to conformal matter of central charge c is given by the general
formula

_2\/25—c+\/49—c

i) =2 e e

(2.33)



The straightforward generalization of (2.28) is
Z;L(N, L) ~ an(QZO)(N) H Li—(1+’70(0)dh(0)/2) (any ¢ < 1),
i=1
(2.34)
where vy(c) is given by (2.13).

The distribution of the length of the shortest non-contractible
loop on the torus is altered accordingly. The fraction Py (L) of tri-
angulations with N triangles that have a shortest non-contractible
loop of length L is now expected to be given by

o I [70(c)ldn(c)—1 L
Py(L) =N~/ <]W) F(Nl/dm)>

(2.35)
for some function F'(x) that is approximately constant for small x
and goes to zero rapidly when z > 1. We conclude that N'1/4r(¢) Py (
should be a universal function 2 F'(x) of the rescaled length z = N~
with
a = |yo(c)dn(c) — 1. (2.36)

Let us test this hypothesis for the case of DT coupled to matter
with central charge ¢ = —2, for which we developed a numerical
method in section 2.2. According to (2.33) the Hausdorff dimen-
sion for ¢ = —2 is given by d;, = (3 + V17)/2 ~ 3.56. We
can verify this value by measuring the expectation value (L)
of the shortest non-contractible loop length, which should satisfy
(L)n oc N'/4(e). The measurements, which are plotted in fig-
ure 2.9, show that the theoretical scaling already sets in for quite
small triangulations.

As in the case ¢ = 0 the distribution Py (L) satisfies a beautiful
finite-size scaling as is shown in figure 2.10. To determine the
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Figure 2.9: A log-log plot of the expectation value (L) for volumes
N = 64,...,1024000 for c = —2. The fitted curve corresponds to
(L) = 0.454 N''/3-6 (error bars are too small to display).

behaviour of Py (L) at small L we have plotted the same data
on a logarithmic scale in figure 2.11. We observe that the data
does not agree well with the expected scaling Py (L) oc L® with
a = (14 /17)/2 =~ 2.56. A naive power-law fit to the data yields
a value of « around 2.2. This means either that the convergence
towards the continuum power-law scaling is very slow or that
our ansatz (2.35) is incorrect for ¢ = —2.

As in the case of DT coupled to Ising spins we can under-
stand qualitatively where the error might come from. Notice
that when we cut open a decorated torus along a neck to get a
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Figure 2.10: The distribution of the shortest non-contractible loop
length L for volumes N = 64,...,1024000 and L = 1,2,...,32

forc=—2.

sphere with two boundaries, we generally cut the spanning tree
into several pieces as well. This means that for the cut-open sur-
faces we should consider the partition function of surfaces with
boundaries decorated with multiple trees which together form a
spanning forest, instead of a single spanning tree. The boundary
conditions should then specify for every pair of boundary edges
whether they are connected through the spanning forest or not.
Needless to say those partition functions are hard to construct in
general.
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CHAPTER 3

Moduli in 2d gravity

In the previous chapter we considered the appearance of baby
universes in 2d gravity, which can be viewed as local outgrowths
of the geometry. In the continuum we can represent any metric
on a 2d surface as a conformal transformation of one of a small
set of background geometries. We will make this statement more
precise when we introduce Liouville field theory in section 3.1,
where the Liouville field plays the role of conformal factor. In
such a representation baby universes correspond roughly to local
excitations in the conformal factor and they therefore reveal the
quantum nature of the Liouville field.

In this chapter, however, we will be primarily concerned with

degrees of freedom that are invariant under conformal transfor-
mations, i.e. the degrees of freedom that remain after integrating

This chapter is largely based on [3].



out the Liouville field. These degrees of freedom are referred to
as the moduli and parametrize the set of background geometries.
In non-critical string theory using Liouville theory one can eval-
uate the integral over the Liouville field and the matter fields in
the partition function explicitly in the special case of the torus.
What remains is an integral over the two moduli parameters of
the torus. The corresponding integrand gives a density in mod-
uli space, which is a measure of how often certain torus shapes
occur.

The model of dynamical triangulations (DT) is regarded as
a lattice formulation of non-critical string theory. This point of
view is backed up by an extensive list of observables that can be
calculated analytically in both approaches and for which agree-
ment is found. The moduli parameters as observables, however,
are not (yet) on this list. Although some analytical connections
have been found between dynamical triangulations and moduli
spaces using matrix model techniques [4], at present we do not
know how to derive densities in moduli space explicitly. Instead
in this chapter we will resort to numerical methods to find ev-
idence for agreement with the moduli density from non-critical
string theory.

To do this we will present in section 3.2 a robust method of
assigning moduli parameters to triangulations of the torus. The
ensemble of dynamical triangulations with a fixed number N of
triangles will lead to a (large but finite) number of points in mod-
uli space. When NV goes to infinity we expect this set of points to
converge to a smooth density distribution. It is this distribution
that we want to compare to the continuum result presented in
section 3.1.



The possibility of performing such a comparison was pioneered
by Kawai and collaborators in [73, 74] for ¢ = 0, ¢ = 1 and
¢ = 2. They found good qualitative agreement with the results
from non-critical string theory. We will improve these results by
making them more quantitative in the case ¢ = 0 and we will
also investigate the case ¢ = —2. Finally, in appendix B we will
show how one can generalize these techniques to higher genus.
Unfortunately at present a theoretical calculation of the moduli
density in non-critical string theory for genus larger than one is
lacking, so at this stage no comparison is possible.

3.1 Introduction to Liouville gravity

The standard method of evaluating the non-critical string parti-
tion function is by gauge fixing the two-dimensional world sheet
metric to the so-called conformal gauge. In particular, for a surface
of genus g one can choose coordinates such that the metric takes
the form”

gap(x) = €277 g (1), (3.1)
where g, (7") is taken from a (2g — 2)-dimensional space of back-
ground metrics parametrized by the moduli 7, i = 1,...,2¢g — 2.

Special to two dimensions is not only that the moduli space M is
finite-dimensional, but also that due to the uniformization theo-
rem we can choose simple representatives for these background
geometries, namely, constant-curvature metrics of unit volume.

"For convenience we have added a normalization constant /3 in the exponent,
which will later be fixed to bring the action for the Liouville field ¢ to canonical
form.



In particular, in the case of the torus we will take the background
geometries to be flat.

Formally, the fixed-genus partition function for conformally
invariant matter coupled to 2d gravity reads

70 = / DyDX exp (-AV[g - SwlX.g),  (32)

where S,,[X, g] is some conformally invariant action for the mat-
ter fields X. For this partition function to make sense the dif-
feomorphism symmetry has to be gauge-fixed. In the conformal
gauge (3.1) the partition function reduces to an integral over the
moduli 7 and the Liouville field ¢,

Z(\) = /dTDg(,Z5DgX Jyexp (—AV[e**g] — Sn[X,4]).  (3.3)

Here J, is the Faddeev-Popov determinant associated with the
conformal gauge fixing.

Even though the matter action is conformally invariant, the
matter part of the partition function does depend on ¢ through
the measure Dy X and the Faddeev-Popov determinant .J,. It
turns out that one can rewrite them in terms of the background
metric g as

c —

Sosilodl). G4

DyX J, = DyX Jyexp <

where S [, g] is the Liouville action

1

SL[QS,E]} = A7

/ d%z\/g (g“b8a¢8b¢ + Ro + ﬂ62ﬂ¢) . (35)



In critical string theory we would then require ¢ = 26, leading
to the usual critical dimension 26, in which the Liouville field
completely decouples from the dynamics of the matter fields X.
In the case of non-critical string theory the central charge is not
restricted to ¢ = 26 and a non-trivial integration over the Li-
ouville field is required. The idea is that the integration over
¢ should restore the conformal invariance. Remember that the
background geometries §(7) are merely representatives of the
conformal equivalence classes of metrics and the partition func-
tion is supposed not to depend on the choice of these representa-
tives. In particular, this means that the partition function for the
Liouville field and matter fields combined should be invariant
under conformal transformations of the background g.

The measure D,¢ cannot be straightforwardly rewritten in
terms of the ¢-independent measure D;¢. However, if one as-
sumes that its contribution is again of the form of the Liouville
action (3.5) then the requirement of conformal invariance com-
pletely determines the values of the couplings. This way one
ends up with a partition function

2= [arDo DX Jyexpl-u00.6) - SulX.5). G9)

where the full Liouville action is now given by

1 R
Sul0nd] = 3= [ Rav/G (570,000 + QR + ) @)

and @ and g are fixed in terms of central charge c,

_ 25—0_3 _\/25—0—\/1—0
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Figure 3.1: Any flat torus can be obtained by identifying opposite sides
of a suitable parallelogram. This identification is unique if we restrict T
to the fundamental domain M (the shaded region).

In general, the partition function (3.6) is hard to evaluate, but
it simplifies considerably for genus-1 topology [27, 63]. In that
case we can choose the background metrics G(7) to be flat, i.e.
R = 0. Starting from the Euclidean plane we can obtain any flat
torus by identifying the opposite sides of a parallelogram. The
moduli 7y and 7 are associated with the position 7 = 7 + im
of the upper-left corner of the parallelogram when we position
it in the upper-half complex plane as shown in figure 3.1. This
representation of a flat torus is not unique since there are dif-
feomorphisms of the torus that do not leave 7 invariant. These
so-called large diffeomorphisms form the modular group of the torus
and act on 7 according to

4)0,7'+b a b
cr+d’ d

) € SL(2,2)/Z. (3.9)



To remove this redundancy we have to restrict 7 to a fundamental
domain M of the modular group in (3.9). The standard choice for
M is the “key-hole” region in the upper-half plane,

MZ{—% <7 <0and|7|>1}U{0<m <%and|7|>1},
(3.10)
as illustrated in figure 3.1. If we choose (periodic) coordinates
0 < z',2z? < 1 on the torus, we can write down explicitly a
position-independent metric Gq,(7) of unit volume,

gab(T):1<1 g ) (3.11)

To \ T2 ’7'12-|-T22

Using this background metric and restricting to fixed volume,
as we did in section 2.1, the partition function (3.6) simplifies to
[63]

1
Z(V) :/ dT/ngf)DgX Jg exp (— = /d2x\/§g“b8agb8b¢
M ™
(3.12)

— S[X, g]>5 (V - / d%\/§e2ﬁ¢> . (3.13)

The delta function is taken care of by integrating over the con-
stant mode of ¢. If we take the matter action to be the Polyakov
action in ¢ dimensions,

SmlX,§] o / 22§90, X0, X76;; with1 <i,j <e¢, (3.14)

we see that ¢ appears in the partition function exactly as an extra
dimension. The integrals over the matter fields X and ¢ lead to



a functional determinant of the Laplacian for the metric g on the
torus (see e.g. [51], section 10.2, for an explicit calculation). It
turns out that the full partition can be written as

2y [ @ (o) (2ep) T eas

where the first factor comes from J; and the second from the
integral over ¢ and X. Here 7(7) is the Dedekind function

_ 7rz'r/12 H 27r7.n'r (316)
We conclude that
d2
Z(V) oc/ e (3.17)
M TS

where F(7) is a function of the moduli 7 that is invariant under
the action of the modular group (3.9),

F(r)=ry 2emm/0 T 11 — e2minm| =2, (3.18)

Notice that, since F (1) grows exponentially with 74, the partition
function (3.17) converges only for ¢ < 1.

It is precisely this density F'(7)°"" in moduli space that we
want to verify using dynamical triangulations. We will do this

both for ¢ = 0 and ¢ = —2 in section 3.3.

3.2 Assigning moduli to triangulations

Our strategy for assigning moduli to a triangulation of the torus
is to first determine such an algorithm for Riemannian manifolds



using only differential forms. Then we will mimic the procedure
for triangulations using the notion of discrete differential forms.

Suppose we are given a Riemannian metric g4, on the torus.
In the previous section we observed that periodic coordinates
0 < z', 2% < 1 exist in which the metric g, takes the form

ds® = €25 g (1)dxdx®. (3.19)

This means that once we have these coordinates we can extract 7
and 7, simply from the form of the metric. How do we construct
the coordinates ¢ if we are just given the metric g,;,? First of all
notice that these coordinates are not unique since the modular
group (3.9) acts non-trivially on them. To fix this non-uniqueness,
suppose that we are given or that we can construct a pair of
simple closed curves ; and v, that generate the fundamental
group of the torus. Given such a pair of curves we impose that
the coordinate z! increases by 1 when running around v; and
does not change when running around +,, and likewise for z2.
More precisely, in terms of the 1-forms o' = dz' and o = dz?
we demand that

/ of =6l (3.20)

i

Now, up to constant shifts, the coordinates zb, 22 are uniquely
determined by (3.19) and (3.20).

To see in what sense the coordinates z® are special we need
to introduce some differential geometry. Let d denote the exterior
derivative and ¢ the divergence or co-differential, which is the adjoint
of d with respect to the standard inner product on p-forms,

(6,9) = / b A *. (3.21)



Here x* is the Hodge dual on differential forms®. The Hodge
Laplacian A mapping p-forms to p-forms is defined as

A = d§ + dd. (3.22)

The p-forms in its kernel are called harmonic forms and according
to the Hodge theorem form a linear space with dimension equal
to the p'® Betti number. In particular, for 1-forms on the torus
the space of harmonic forms is two-dimensional and is spanned
precisely by the 1-forms o' = dz’. This follows from the fact
that the harmonicity of 1-forms is preserved under conformal
transformations and clearly the dz* are harmonic with respect
to the flat, position-independent metric gq in (3.19).

Hence, to construct the coordinates % we should solve Aa = 0,
which is equivalent to o having a vanishing curl and divergence,

da=0 and da=0. (3.23)

For the two-dimensional space of solutions we choose a basis o'
dual to the v; according to (3.20). The coordinates can now be
reconstructed from the o’ by integration (the o are closed and
therefore their integrals do not depend on the chosen path).

We claim that the moduli 7 can be directly expressed in terms

8In components, the Hodge dual of a p-form v on a n-dimensional Rieman-
nian manifold is defined as:

1
b= ey et A A da®

\/§ ai...a b b
. -e-Qp 1 - —
*h = ol —p)! €ay...ap,by. by ¥ dz®l A - Adx®r-r.



of the inner products (o', a?) through’

__tahe?) +Z_\/<oz1,oz1> - <<a1,a2>>2_ (3.24)

(@%,0%)  \(a?,a?)

To see this notice that it follows from (3.21) and (3.11) that

(') = g9 and (at,a')(a? a?) — (o', a?)? = det §® = 1.
(3.25)

With the formula (3.24) we have succeeded in expressing the
moduli 7 completely in terms of the linear spaces of differential
forms together with the associated exterior derivatives and inner
products. This is a good starting point because these notions can
be extended naturally to the piecewise linear geometries encoun-
tered in the DT formalism. Let us for the moment assume that we
are working in the DT ensemble 73 (see section 2.1) in which all
the triangulations have the structure of a simplicial complex. The
construction we are about to discuss can be straightforwardly
generalized to the larger ensemble 77, but various definitions
look more natural in the simplicial set-up.

For precise definitions of discrete differential forms on trian-
gulations, for which the geometry is specified by the lengths of
the edges, we refer to [42, 43, 69]. In the case of DT the defini-
tions become simpler because all simplices are identical. As a
consequence we are closer to the more abstract notion of discrete
differential forms on simplicial complexes used in the study of
simplicial cohomology (see e.g. [86]).

9The square root term is just equal to 1/{az, az), but we write it this way to
make sure that the expression is independent of the normalization of the inner
product (-, -).



A discrete p-form ¢ is defined to be a function that associates
to each oriented p-simplex o a real number ¢(c). By definition,
if we evaluate ¢ on a simplex o with reversed orientation we get
—¢(0). In this way the linear space (2, of discrete p-forms has a
dimension equal to the number of p-simplices in the triangula-
tion. For our purposes we choose the inner product, which is the
discrete counterpart of (3.21), to be simply

= 6(o)i(o0), (3.26)

where the sum is over all oriented p-simplices ¢ in the triangula-
tion. The exterior derivative d : 0, — 2,11 is defined as

D) (op1) = D> (o), (3.27)

OpE€ETp+1

where the sum is over all p-subsimplices ¢, of g,y; with the
appropriate orientation. As in the continuum we define the di-
vergence § : 2, — €,,_; to be the adjoint of d with respect to the
inner product (3.26).

Let us make this more explicit for 1-forms on a two-dimensional
simplicial complex. We denote simplices by tuples of vertex la-
bels, i.e. we write (ij) for a directed edge from vertex i to vertex
j and similarly (ijk) for a triangle. Then ¢((ji)) = —¢({ij)) and

(do)((ijk)) = o((if)) + ¢((7k)) + d((ki)), (3.28)

> b))

edges(ji)

The discrete Hodge Laplacian A = dd + dd can now be rep-
resented simply by a square matrix of dimension equal to the



number of edges in the triangulation. It can be shown [69] that on
a torus triangulation it has a kernel of dimension two, just like in
the continuum. In principle we could now use standard numeri-
cal linear algebra techniques to compute this kernel for any given
triangulation. However, below we will describe a more practical
method which directly yields the preferred basis for this kernel.

Before doing this, we need to add one more ingredient to
this discrete geometry framework, the discrete counterparts of
the curves v; in (3.20). In the previous chapter, in section 2.4,
we already described an algorithm to construct for a torus tri-
angulation a pair of closed paths v;, consisting of a sequence of
edges, that generate the fundamental group. Using the natural
pairing between discrete paths and discrete 1-forms, we obtain
the discrete version of (3.20),

/ai: > ai((if) =45 (3.29)

7 (i7) €y

A convenient way to find the discrete 1-forms o' satisfying both
da' = 6a’ = 0 and (3.29) is to first construct two closed, but not
necessarily co-closed, 1-forms 8 dual to the ~; in the sense of
(3.29). This can be done, say, for 3!, by slightly displacing the
path 7, into a path 9, on the dual 3-valent graph. Then we set
BY((ij)) = 1forall the edges (ij) that intersect 3 (with the proper
orientation) and demand that 3! vanishes on all other edges. We
do the same for 4%, but now we set 32((ij)) = —1 for the edges
intersecting ;. It follows from the theory of cohomology that
a' — B* = dz* for a pair of 0-forms z’, which are of course the
discrete counterparts of the coordinates in (3.19). The values z°
on the vertices of the triangulation are then found by solving the



matrix equation
Az’ = -4, (3.30)

where A = dd is now the standard graph Laplacian on the edge
graph of the triangulation, i.e.

(ARG = Y (f6) = £())- (3.31)

edges(ij)

Once we have the 0-forms z?, we easily obtain the desired har-
monic forms o = 3% + dz'. Finally, we determine the inner prod-
ucts (o', at), (at,a?), and (a?,a?) from (3.26), and plug them
into the expression (3.24) to obtain the moduli 7. This value for 7
might be outside of the fundamental domain M that we specified
in (3.10). In that case we use the modular transformations (3.9) to
map it to M.1°

A nice by-product of this construction is that we obtain an ex-
plicit embedding of the triangulated torus into a parallelogram in
the Euclidean plane, determined by the coordinates z* modulo 1,
see figure 3.2. This embedding is harmonic in the sense that every
vertex is located at the centre of mass of its neighbours, which is
a property that is invariant under linear transformations. The
value for 7 that we get using the algorithm described above cor-
responds exactly to the shape of the unit-volume parallelogram
that minimizes the total of all squared edge lengths.

The fairly regular torus appearing in figure 3.2 is not a typi-
cal triangulation appearing in the DT ensemble. Typical random

197t turns out that the following algorithm will map any value of 7 to M in a
few steps: first move 7 to the strip —1/2 < 71 < 1/2 by shifting 71 by some
integer; stop if 7 € M, otherwise map 7 — —1/7 and repeat these steps.



Figure 3.2: A harmonic embedding of a torus triangulation into a
parallelogram in the Euclidean plane.

triangulations tend to be quite wild and have fractal properties,
of which one aspect is the presence of baby universes discussed
in chapter 2. To illustrate this fractal nature we have plotted in
figure 3.3 embeddings into the unit square of two large triangu-
lations, one taken from the DT ensemble of pure gravity ¢ = 0
and the other from the ensemble of DT coupled to matter with
central charge ¢ = —2.

Apart from the overall shape of the parallelogram, which is
the main subject of this chapter, these embeddings contain quite
a lot of interesting information. For instance, the embedding as-
signs to each triangle an area with respect to the flat background
metric. Since all triangles are identical in the actual geometry
we can interpret this area as being proportional to the inverse
conformal factor e~2%¢. It can be seen that all triangles will have
a non-zero area, meaning that they will eventually become visi-
ble when zooming in, except those that are contained in a baby
universe with neck size L = 2 (or L = 1). The triangulations
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Figure 3.3: The harmonic embeddings of triangulations with 150 000
triangles into the unit square taken from the ensemble for ¢ = 0 (top)
and ¢ = —2 (bottom). The thick red curve corresponds to the shortest
non-contractible loop.

in figure 3.3 are from the ensemble 7; which contains such baby
universes, whose general scaling we have discussed in section
2.3. This means that a fraction of the 150 000 triangles is actually
invisible in figure 3.3. Measurements show that this fraction is
approximately 0.73 for ¢ = 0 and 0.46 for ¢ = —2. In appendix A
we show, by renormalizing the propagator for the dual ¢*-graph,
that this fraction for ¢ = —2 as N — oo is given analytically by
212 — 37572

a1y ~ 0.46160. (3.32)



3.3 Measurement of the moduli distribu-
tion

Using the Monte Carlo methods described in section 2.2 we gen-
erated a large number of random triangulations in the DT en-
semble of pure gravity. Initially we used the ensemble 73 (see
section 2.1), in which different corners of the same triangle are
not allowed to be glued and at most one edge is allowed to con-
nect any pair of vertices. For each triangulation we measured
the moduli 7 in the fundamental domain M and used these to
produce a histogram of the imaginary part 7 of 7. The result
for N = 8000 triangles is shown in figure 3.4 (the lightest data
points), together with the theoretical values derived from (3.17)
by integrating over 7. We see a clear deviation from theory
which is mainly due to a lack of triangulations with a large value
of T 2.

As is clear from figure 3.1, 7 corresponds roughly to the ratio
of lengths of the sides of the parallelogram. This means that as
far as the flat background geometry is concerned a large value for
T, corresponds to a torus that is very elongated in one direction
as compared to the other. Of course this does not necessarily
reflect a property of the triangulations since we have a (discrete)
conformal map in between the triangulation and the flat back-
ground. However, on average one would expect a large 7 to
reflect a torus triangulation with short non-contractible loops in
one direction as compared to the loops in other directions. For
triangulations appearing in the DT ensemble there are two re-
strictions entering. By definition, there is a shortest allowed loop
length since a loop consists of a number of edges of fixed length.
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Figure 3.4: The measured moduli density P(72) with N = 8000 for
the ensembles T (lightest), T2 and Ty (darkest). The theoretical curve
for ¢ = 0 is shown as a solid line.

Also for a fixed number of triangles N there is a limit on how
long one can make geodesic loops. These restrictions suggest
two ways of improving the distribution for large 7, either by
increasing N or by decreasing the allowed shortest loop length.

The minimal loop length for the ensemble 73 is three edges.
In order to decrease the shortest loop length we have to switch
to a different ensemble. In section 2.1 we already introduced the
ensemble 7; in which all 3-valent graphs are allowed as the dual
description of the triangulation. This means that loops of length
one can occut, i.e. two corners of the same triangle are allowed to
be glued. Likewise we can introduce 7 in which multiple edges
are allowed between pairs of vertices but edges may not start and
end at the same vertex. The results for the moduli density P(73)
for 73 and 7; are shown in figure 3.4 (the middle and darkest



data points respectively). Clearly, replacing the ensemble 73 by
the more general ensemble 7; greatly improves the data quality
for fixed number of triangles.

To get even closer to the theoretical curve we have to increase
the system size determined by the number of triangles N. In-
creasing N also increases the simulation run-time significantly,
since the number of Monte Carlo moves needed to produce inde-
pendent configurations grows with IV as well as the dimension
of the matrix equation (3.30), which we need to solve numerically
to determine 7. However, we managed to collect high-precision
data for volumes up to N = 64 000. In figure 3.5 the deviation of
the data from the theoretical distribution is plotted for volumes
N =1000up to N = 64000, showing a good convergence.

For DT coupled to matter with central charge ¢ = —2 the com-
parison with theory is slightly easier. For ¢ = —2 the theoretical
distribution falls off like e~""2/2 for large 7> as compared to the
slower fall-off e =772/ for ¢ = 0. Therefore the problematic large-
T2 configurations contribute less to the partition function. More-
over, we developed a fast numerical method for dynamical trian-
gulations coupled to ¢ = —2, which naturally produces random
triangulations in the desired ensemble 7;. Already at a volume
N = 8000 the measured distribution P(72) becomes practically
indistinguishable from the theoretical curves, as is shown in fig-
ure 3.6. To illustrate how good the agreement is for N = 8000,
we measured the fraction of triangulations having 7 < 1.5,

P(19 < 1.5) = 0.64067 &+ 0.00014. (3.33)
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Figure 3.5: The deviation of P(12) from the theoretical curve for ¢ = 0,
ensemble Ty, and volumes N ranging from 1000 (darkest points) up to
64 000 (lightest points).

This is to be compared to the result from Liouville theory

2
Sitiracrs ST FE)?
P(m < 1.5) = “M7<lb ™ —0.640648...  (3.34)

INCTGE

Let us now have a closer look at the relation between the
geometry of the triangulations and the moduli 7. Due to the
conformal invariance this relation cannot be very direct. We ob-
served above that short non-contractible loops are important for
the large-7, part of the moduli distribution. To quantify this rela-
tion we have measured for all generated triangulations the length
L of the shortest non-contractible loop in addition to the moduli
7. In section 2.4 we already observed that the distribution of this
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Figure 3.6: The distribution P(72) for ¢ = —2 with N = 8000
triangles. The theoretical curves are shown in red.

length L scales with the area as N/ where dj, = 4 for ¢ = 0 and
dp, = 3.56 for ¢ = —2 (see (2.33)). In figure 3.7 we again show the
distribution P(72), this time plotted as a ratio of the theoretical
values, forc = 0 and N = 64000, and ¢ = —2 and N = 8000.
In addition we have colour-coded the triangulations according
to the length L of their shortest loop. Clearly the distribution
for large 7, is dominated by triangulations that have small loop
lengths L.

Presently we do not have a good ansatz for what the com-
bined distribution for 75 and L should look like in the continuum
N — o0. One aspect that we can measure is the exponential fall-
off with 7 if we split the DT-ensemble into subsets according to
L. To be precise, let us denote by Py(L,72) the fraction of all
triangulations with IV triangles that have a shortest loop length
L and imaginary part of the moduli parameter between 75 £ A7s,.
Then we fit this distribution to an exponential for large 7,

Pn(L,7) oc e” 5728, (3.35)
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Figure 3.7: The distribution P(72) plotted as ratio of the theoretical
value. The triangulations appearing in the ensemble are colour-coded
according to the length L of their shortest non-contractible loop. The
left figure is for ¢ = 0 and N = 64000, the right figure for c = —2
and N = 8000.

The measured values of 3 are shown in figure 3.8 for ¢ = 0 and
¢ = —2. The results indicate a universal dependence in terms of
the “dimensionless” variable L/N'/%. What this also shows is
that only the sub-ensembles with small L attain the slow fall-off

us

of the full distribution, i.e. e~ 1=972 for central charge c.

Thus statistically there is a clear relation between small L in
the triangulation and large 7 of the conformal embedding in
the Euclidean plane. “Small” can be quantified: the typical lin-
ear extension of the triangulation will be of the order N'/4» and
“small” means small compared to this linear extension. Finally,
let us emphasize that the measurement of a small L in a triangu-
lation does not imply that 7» is large. For instance, it can happen
that there are two short non-contractible loops that together gen-
erate the fundamental group, however, for large N such configu-
rations seem to be rare.
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Figure 3.8: The exponential fall-off Pn(L,T2) o< exp(—g7203) for
¢ = 0 (bottom curve) and ¢ = —2 (top curve). The fitted curves cor-
respond to B = 1 + 14(LN~Y*)18 and g = 3 + 31(LN~1/3-56)20,
To attain the clean collapse for ¢ = —2 we had to perform a small
shift L — L — 0.4 in the length L, which becomes irrelevant in the
continuum.



3.4 Discussion and outlook

We have found good agreement between the numerically deter-
mined density in moduli space from dynamical triangulations
and the analytic results from Liouville theory in the case of pure
gravity ¢ = 0 and gravity coupled to matter with central charge
¢ = —2. A priori it was unclear whether these methods were
going to work since the differential geometry techniques we use
have only been tested for well-behaved triangulations approx-
imating smooth geometries. The results confirm our intuition
that the spaces of differential forms and the linear structures on
them are objects that are well-suited for studying the large-scale
geometry of triangulations.

Indeed, the moduli may be viewed as describing the degrees
of freedom in the geometry of the torus associated with the largest
scale, in the sense that they are the only degrees of freedom that
remain when inhomogeneities are ironed out. This fact is re-
flected in the actual construction we discussed in section 3.2: we
expressed the moduli solely in terms of harmonic forms, which
are extracted from the kernel of the Hodge Laplacian. Usually
one interprets the eigenvalues of the Laplacian as representing
the length scale (to the power minus two) at which one is prob-
ing the geometry, and therefore one can interpret the kernel as
corresponding to the largest possible length scale.

The topological nature of the moduli probably explains the
small ambiguity in its construction on the triangulation. For in-
stance, in general the precise spectra and eigenspaces of the Lapla-
cians depend on the choice of discrete inner product (3.26). How-
ever, it is not easy to write down a combinatorially defined in-



ner product that changes the kernel of the Laplacian on 1-forms
and thereby changes the values for the moduli. Alternatively,
we could try and deduce the moduli from the dual 1-forms, i.e.
the discrete 1-forms that take values on the edges of the dual 3-
valent graph (see e.g. [42, 43]). Again, there is no precise relation
between discrete forms and the dual discrete forms except in the
case of harmonic forms and one can show that the dual analogue
of our formula (3.24) leads to exactly the same values for the
moduli.

Not only are these results interesting in their own right, but
they also give us confidence that similar measurements make
sense when we will apply them in chapter 5 to spatial geometries
in CDT in 2+1 dimensions. There we do not have a theoretical
ansatz for the distribution of moduli, and the continuum limit is
not as easily approached as it is here. However, generic geome-
tries appearing in 2d gravity are expected to be wilder than the
spatial geometries in CDT. Therefore, if a continuum limit exists
in CDT which can be described by a metric, we are confident
that these moduli measurements will relate to the moduli of the
continuum metric.






CHAPTER 4
Torus universes in CDT

In section 1.1 we have discussed some of the issues of the models
of Euclidean dynamical triangulations (DT) in three and four di-
mensions. These are direct generalizations of the two-dimensional
model that we investigated in chapters 2 and 3. Contrary to
the two-dimensional case few analytic techniques are available
to investigate its continuum limit. However, Monte Carlo simu-
lations have revealed a number of properties that already seem to
disqualify them in their current form as viable quantum descrip-
tions of gravity. In particular, in three dimensions two phases
of the model are identified, a branched polymer phase and a
crumpled phase [19, 30, 94]. Typical 3-geometries appearing in
either phase have little to do with continuum geometry on any
scale. Moreover, the phase transition separating both phases is
first order and therefore cannot give rise to a scaling limit.

Several ways of adapting Euclidean dynamical triangulations
have been investigated in order to solve these issues. One such



attempt that has turned out to be quite successful is the model
of causal dynamical triangulation (CDT), which will be the sub-
ject of this and the next two chapters. The way in which CDT
differs from the Euclidean version is in the choice of the ensem-
ble of geometries appearing in the partition function. Instead of
summing over all possible triangulations with the desired three-
dimensional topology, we restrict to those triangulations that have
a foliated structure. What this precisely means will be discussed
in section 4.1. Roughly speaking the foliation requirement intro-
duces a notion of time into the system which allows us to view
the full 3-geometry as a time evolution of a 2-geometry. By re-
quiring the topology of the 2-geometries not to change in time we
are effectively suppressing the appearance of three-dimensional
baby universes, i.e. the higher-dimensional analogues of the baby
universes discussed in chapter 2. In two dimensions it has been
shown explicitly that CDT can be obtained from DT (and vice
versa) by surgery of baby universes [5, 16].

The hope is that the foliation will tame the degeneracies in the
typical geometries to such a degree that at a large-distance scale
a continuum geometry will emerge. Several pieces of evidence in
this direction have been gathered in the last decade. In particular,
it has been observed that CDT possesses a phase in which the
space-time dimension, as measured by the spectral dimension both
in three [26] and four dimensions [10, 15], approaches the correct
continuum value at large distances. This is to be contrasted with
DT in three and four dimensions where the Hausdorff dimen-
sion diverges in the crumpled phase and is equal to two in the
branched-polymer phase.

Another piece of evidence that has boosted the interest in CDT



comes from the measurements of spatial volumes in configura-
tions with spherical spatial topology. The expectation values of
these observables correspond very closely to the spatial volume
profile of Euclidean de Sitter space, i.e. the constant-curvature
3-sphere. These results might lead one to conjecture that in the
large-distance limit CDT describes quantum fluctuations around
some emergent classical background. If this turns out to be the
case, the obvious question to ask is what the equations are that
govern the geometry of the classical background. Do they have
anything to do with the Einstein equations of general relativity?
This brings us to the main question that we will attempt to ad-
dress in this chapter and the next two: can we construct an effective
action depending on a continuum metric that agrees on the outcome of
measurements of large-scale observables in CDT?

Unfortunately our toolbox of observables in CDT that have
an interpretation in terms of large-scale geometry is quite small.
At present, it only contains the spatial volumes at different times
and their correlations.!! Still the measurements of these observ-
ables provide clues concerning the effective action. In [13] it was
shown that the outcome of the measurements are well-described
by an effective action for the spatial volumes alone, which can
be obtained by evaluating the Euclidean Einstein-Hilbert on a
spherical homogeneous cosmology. The main goal of this chapter
will be to extend these results to the case of non-trivial spatial
topology, namely, that of the torus.

Having an additional non-trivial test of the dynamics of the

This situation is already much better than it is in DT, where one cannot take
advantage of the foliation to define observables at different times and therefore
has to resort to full space-time observables.



spatial volume is not our main reason for studying non-trivial
spatial topology. In chapter 3 we introduced the moduli as ob-
servables in the partition function of two-dimensional triangula-
tions of the torus. These observables can be easily extended to
observables in CDT with spatial topology of the torus, by apply-
ing them to the two-dimensional triangulations at a fixed time.
Having these observables and studying their dynamics is of great
importance if we wish to understand better the nature of the
large-distance limit in CDT. We know that in general relativity
the physical degrees of freedom of the gravitational field reside in
the (transverse) traceless components of the metric, i.e. those that
capture the local shape of space rather than the local scale fac-
tor.!2 As we will see later, the traceless degrees of freedom enter
the Einstein—-Hilbert action with the opposite sign in the kinetic
term, compared to the pure trace degrees of freedom. This minus
sign is at the heart of the conformal mode problem of Euclidean
gravity: the classical solutions to the Euclidean Einstein equa-
tions are not (local) minima of the Euclidean Einstein—Hilbert
action. To see if and how CDT deals with this unboundedness
it is necessary to probe both pure trace and traceless degrees of
freedom of the geometry. This is achieved by the spatial volume
and the moduli as observables. They are distinguished examples
of observables measuring respectively trace and traceless degrees
of freedom in that they probe the geometry at the largest possible
scale. They are also the only degrees of freedom remaining in the
presence of homogeneity. This opens up the possibility of com-

12This point has been much emphasized by York in the context of the initial
value problem of GR [109, 110] and was the inspiration for the development of
Shape Dynamics, which we will discuss in chapter 7.



paring the measurements of these observables to minisuperspace
actions of homogeneous torus universes.

This chapter may be viewed as a preparation for the program
outlined above. First we will introduce the set-up of CDT in
2+1 dimensions and discuss suitable boundary conditions. Then
we will attempt to compare the measured expectation values of
the spatial volume to classical solutions that we derive from the
Euclidean Einstein-Hilbert action. Finally, we consider the corre-
lations in the quantum fluctuations of the spatial volume, which
will give us some non-trivial information about kinetic term in
the effective action.

4.1 Causal dynamical triangulation in 2+1
dimensions

Given a pair of metrics g, and g/, on a two-dimensional mani-
fold X, we can write the formal statistical path integral

gabagnb /ﬁexp g]) (41)

The integral is over three-dimensional geometries on the space-
time manifold [0, 1] x X, which are redundantly parametrized by
metrics g, that reduce to g,5 and g/, when restricted to the initial
and final boundary respectively. The redundancy, determined by
the action of the diffeomorphism group, is to be factored out in
order not to overcount the physical configurations.

Causal dynamical triangulations (CDT) is a particular regu-
larization of this path integral which turns the infinite-dimensional



integral into a discrete sum. This is achieved by restricting the
ensemble of geometries to piecewise linear geometries of a spe-
cific form. Roughly speaking, we restrict the geometries to con-
sist of a fixed number T of slices consisting of three-dimensional
simplices. For this to make sense, we must first assume that the
boundary geometries g,; and g/, correspond to two-dimensional
triangulations Ty and Tr that are built from equilateral trian-
gles, just like the ones we discussed in chapters 2 and 3. We
choose a time coordinate ¢ on our three-dimensional geometry
that is equal to 0 on the initial boundary and equal to T' on the
final boundary. The spatial geometries at each intermediate time
stept = 1,2,...,T — 1 are required to be of the form of a two-
dimensional equilateral triangulation T;. The space-time in be-
tween two spatial triangulations T; and T, is filled with tetra-
hedra making the three-dimensional geometry into a simplicial
manifold. To be more precise, we allow tetrahedra of three types,
31-simplices, 22-simplices and 13-simplices, according to the dis-
tribution of their vertices into consecutive spatial slices (figure
4.1). Finally, we restrict all tetrahedra of a particular type to be ge-
ometrically identical. In particular, this implies that all the edges
connecting consecutive slices, which we will refer to as timelike
edges, are assumed to have equal length. The same holds for
all spacelike edges, i.e. the edges that are contained in the spatial
triangulations.

The main advantage of taking identical building blocks is that
we can now describe the geometry purely combinatorially. To
specify a triangulation we only need to keep track of a finite list
of numbers describing the adjacency of the simplices, e.g. in the
form of an adjacency matrix. This way the ensemble of geome-



Figure 4.1: Different types of simplices: a 31-simplex, a 22-simplex
and a 13-simplex.

tries in the path integral (4.1) becomes a discrete set 7 of three-
dimensional triangulations T. The partition function for CDT
becomes
Zcpr[To, Tr, T) = 1L scon(T), (4.2)
TeT T
where Cr is the order of the automorphism group of the trian-
gulation T and the action Scpr[T] can only depend on the com-
binatorics of T. We take this action to be the Euclidean Einstein—
Hilbert action evaluated on the piecewise linear manifold corre-
sponding to the triangulation T, which (according to [13]) leads
to
Scor[T] = k3 N3 — koNo, (4.3)

in terms of the number Ny of vertices and the number N3 of
tetrahedra. The couplings ko and k3 can be expressed in terms of
Newton'’s constant, the cosmological constant, and the spacelike



and timelike edge lengths, but the precise expressions are of little
interest here. The important point is that the Einstein—Hilbert ac-
tion yields a function which is linear in the number of simplices
of various dimensions. It is also the most general such expres-
sion, since the number of triangles and the number of edges can
be expressed in terms of Ny and N3, and the same holds for the
number of 31-simplices, 22-simplices and 13-simplices. It also
means that the choice of spacelike and timelike edge lengths does
not affect the CDT partition function other than renormalizing
the bare Newton’s constant and cosmological constant.

We can view the foliation in CDT as a discrete analogue of the
proper-time (or rather proper-distance) foliation of a Riemannian
manifold. If we define the edge distance between two vertices as
the minimal number of edges connecting them, any vertex in the
spatial triangulation T has a fixed edge distance ¢ to the initial
boundary. In particular, both boundaries are separated by a fixed
distance 7" in lattice units, see figure 4.2. We will see later that this
feature has important consequences for the classical limit of the
theory.

The partition function Zcpt can be used to define the expec-
tation value of an observable O : 7 — R according to

)—kN+kN
34V3 00 4‘4
§ch (44)

0) = ZCDT
In Monte Carlo simulations of CDT we can measure these ex-
pectation values for certain observables, but we do not have di-
rect access to the transition amplitude Z[Ty, Tr] as function of
the boundary geometries. In practice we therefore try to avoid
putting in artificial boundary geometries T¢ and Tr. One rea-
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Figure 4.2: Any vertex in the final boundary of a CDT geometry has a
fixed edge-distance T to the initial boundary.

son is that we do not know what generic spatial geometries look
like in CDT; an ad hoc boundary geometry constructed by hand
might well affect the simulation in a way that we have no control
over. The standard approach is to avoid boundaries altogether
by making time periodic, such that the topology of the triangu-
lation becomes S! x X. Another option is to take Ty and T to
be singular such that the spatial volume shrinks to zero when
approaching the boundary.

To approximate expectation values of observables using Monte
Carlo simulations we need to generate a large set of random CDT
configurations according to the Boltzmann distribution in (4.2).
As in the case of the 2d dynamical triangulations described in
section 2.2, this can be accomplished by a Markov process. We
start by constructing by hand a triangulation T with the desired
topology and satisfying the desired boundary conditions. We



Figure 4.3: A set of local update moves on the CDT configurations.

then apply a large number of random update moves on T, where
each move occurs with a probability carefully chosen to satisfy a
detailed balance condition. In the case of CDT in 2+1 dimensions
a suitable set of local update moves is shown in figure 4.3, see
[12, 13] for more details.

4.2 Torus universes

Let us now restrict the spatial topology X to that of the torus.
The goal of this section is to present an initial investigation of the
spatial volume profiles in the CDT simulations and to determine
which boundary conditions yield the most interesting dynamics.
We first consider periodic boundary conditions, which have been
extensively used in CDT with spherical spatial topology in both
three and four dimensions.



It is important to note that periodic boundary conditions im-
ply that there is a time translation symmetry present in the sys-
tem. This means that shifting the time ¢ — ¢ + 1 (modulo T
maps the ensemble 7 of CDT configurations to itself and leaves
the action Scpr invariant. A consequence of the time transla-
tion symmetry is that strictly speaking the spatial volume profile
(V(t)) is time-independent and therefore contains little informa-
tion. However in the spherical case it has been observed, both
in three [13] and four dimensions [14], that the time translation
symmetry is spontaneously broken for sufficiently large time ex-
tent 7. The simplices do not distribute homogeneously in time,
but condense into a subinterval in time with macroscopic spatial
volumes, while the remaining time slices acquire a minimal spa-
tial volume. To obtain a non-trivial profile the spatial volumes
are not averaged at fixed time ¢ but at a fixed time ¢’ with respect
to the centre of the extended region. The resulting volume profile
is illustrated in figure 4.4, which shows a typical volume distri-
bution V(') together with its expectation value (V(¢')). To high
accuracy the expectation value (V'(¢')) coincides with the spatial
volume of a proper-time foliation of the 3-sphere, leading to the
conjecture that Euclidean de Sitter space emerges from CDT on
the sphere in 2+1 dimensions.

A similar behaviour might be expected for CDT on the torus,
however we have not observed any such breaking of the time
translation symmetry in our simulations. In none of the simu-
lations we performed, with a wide range of three-volumes, time
extents T, and couplings kg, did we observe any tendency of spa-
tial slices to degenerate to minimal-volume configurations. This
is illustrated on the right-hand side of figure 4.4, which shows a



typical volume profile from a CDT simulation with 7" = 70 time
slices. Of course, the absence of degenerate spatial geometries
does not prove that the classical limit has time translation sym-
metry. A more detailed analysis, for instance involving the dis-
tribution of Fourier modes of V(t), would be necessary to make
more definite statements.

One might wonder which feature of the torus topology in
CDT is responsible for the quite different behaviour when com-
pared to spherical topology. One way in which the CDT config-
urations are different is in the number of triangles in a minimal
triangulation of X. In the case of the sphere the minimal configu-
ration is given by the boundary of a tetrahedron, which consists
of four triangles. A triangulation of the torus, however, requires
a minimum of 14 triangles and therefore we need substantially
more tetrahedra to produce a “stalk” of minimal spatial volume.
It could be that the extra cost of the stalk (as measured by the N3-
term in the CDT action) is no longer outweighed by the entropic
gain of the tetrahedra clumping together. Perhaps this is not the
full story, since it seems to imply that the macroscopic ground
state of the system depends sensitively on the microscopic de-
tails. Hopefully we will be able to give a more satisfactory ex-
planation once we understand better the effective dynamics of
CDT.

Without symmetry breaking there is little we can learn from
measurements of the spatial volume. One way to produce a non-
trivial time dependence of the spatial volume is by explicitly break-
ing the time translation symmetry of the action. For instance,
we could insert a time-dependent coupling k2 () for the number
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Figure 4.4: Volume profiles of CDT with topology S* x S (left) and
S x T? (right). The solid curves represent typical configurations,
while the shaded areas correspond to the expectation values (V (') and
(V (¢)) respectively.

Ns(t) of spatial triangles at time ¢:

T
Scor[T] = ksNs — koNo + Y _ ka(t)Na(t). (4.5)

t=1

Such a coupling has an interpretation in the continuum as a time-
dependent cosmological constant, which acts as a source for the
spatial volume.

In this chapter we will take another approach which involves
trading the periodic boundary conditions for fixed boundaries.
In the case of spherical spatial topology it is hard to imagine that
fixing the boundaries at ¢ = 0 and ¢ = T to minimal triangu-
lations (or zero volume if allowed by the simulation code) will
affect the overall volume profile other than introducing some
minor boundary artefacts. By contrast, similar boundaries for
CDT on the torus will presumably have a major impact on the



dynamics of the spatial volume, since minimal spatial volumes
do not occur with periodic boundary conditions. In addition to
a non-trivial volume profile we would also like the shape of the
tori to evolve in time. This can be achieved by taking an initial
torus elongated in one direction and a final torus elongated in
the other direction. If we try to produce boundary triangulations
with such geometries, we need a lot of boundary triangles and
there is quite some ambiguity in the way we put them together.
Luckily, we have an easier option, namely, to take the boundary
to be completely degenerate in one of the two directions, result-
ing in a one-dimensional circle consisting of a number [, of edges
instead of a two-torus. As an example we have depicted in figure
4.5 a portion of a CDT configuration with an initial boundary
consisting of Iy = 8 edges.

With this choice, the topology of the space-time region 0 < ¢ < ¢/
for some 0 < ¢’ < T becomes that of a solid torus. If we impose
similar boundary conditions on the final boundary, the same will
hold for the region ¢ < ¢ < T'. Therefore the most general space-
time topology is that of a pair of solid tori glued along their
boundaries (in this case corresponding to the torus at time t').
This can be done in several ways, giving rise to S x S!, S3, or
more generally a lens space L(p, q) (see e.g. [64]). For our pur-
poses the second option is the most interesting, because it is the
simplest topology that allows for a non-trivial shape evolution.
It is achieved by taking the initial and final singularity such that
together they form the so-called Hopf link in S3. This is illustrated
in figure 4.5, in which the final singularity is shown in blue and
the embedding space R? represents S® with one point removed
(e.g. after stereographic projection). The foliation of the 3-sphere



Figure 4.5: A degenerate initial boundary at t = 0 consisting of lo = 8
edges (solid red curve). The light triangles belong to the triangulation
at t = 1. If we choose the final singularity according to the blue curve,
we end up with the Hopf foliation of S°.

by tori that we obtain in this way is known as the Hopf foliation,
see also figure 4.7.

The results that we will present in this chapter are based on
CDT simulations with a time extent 7' = 19 and, unless indicated
otherwise, we take the length [; of the final singularity at ¢t = T
to be identical to the length [, of the initial singularity at ¢ = 0
in order to maintain time-reversal symmetry. In figure 4.6 the
expectation value (V' (¢)) of the spatial volume is shown for a sim-
ulation with fixed number N3 = 60000 of tetrahedra, boundary
length Iy = 60, and coupling ko = 2.5. We observe a clear expan-
sion of the volume at early times and a contraction at late times,
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Figure 4.6: Volume profile for N3 = 60 000 with boundaries consist-
ing of lo = 60 edges and ko = 2.5. The shaded area corresponds to the
standard deviation in V (t) and gives an idea of the size of the quantum
fluctuations. Error bars are not shown but they are of the order of 0.1%.

indicating non-trivial dynamics of the spatial volume. Moreover,
the expansion close to the singularity is roughly linear, which is
in accordance with the initial geometry being one-dimensional.
Before we start exploring various other values of N3, ly, and ko,
let us see what classical solutions we might expect from general
relativity.



4.3 Classical solutions

Classical solutions of general relativity with Euclidean signature
are given by the stationary points of the Euclidean Einstein—Hilbert
action

Serlguw] = / d32,/g(R — 2A). (4.6)

Its Euler-Lagrange equations are known as the Einstein equa-
tions

1
Ruy - §Rguu + Ag/,bl/ =0, (47)

which in three dimensions are equivalent to (see e.g. [35])

Ruupa = A(gupguo - guogup)- (4.8)

Hence, solutions have constant Riemann curvature and are there-
fore locally isometric to the 3-sphere (A > 0), flat Euclidean space
(A = 0) or hyperbolic space (A < 0), depending on the sign of
the cosmological constant. As a consequence, classical general
relativity in three dimensions has no local degrees of freedom.

To find the solutions explicitly we switch to the ADM formal-
ism, i.e. we rewrite the metric g, in terms of a spatial metric g,s,
a shift vector N* and lapse NV,

ds* = N2dt? + gap(dz® + Ndt)(dz® + NPdt). (4.9)
In terms of these the Einstein—Hilbert action becomes

Sapmlgar, N, N| = —H/dt/d2x\/§N (K? — Koy K + R — 2A)
(4.10)



where R now refers to the two-dimensional curvature and K, is
the extrinsic curvature tensor

Ka gab - va]\/vb - vb]\/va) . (411)

1
b= 5 (
The only difference with the (usual) Lorentzian case is the minus
sign in front of the kinetic term K,, K — K2. If one puts the
lapse N to 1, the set of constant-¢ surfaces defines a proper-time
foliation for the space-time manifold. Hence, the gauge NV = 11is
particularly useful when comparing to CDT.

We can find the classical solutions by putting (4.10) into canon-
ical form (see [85] or [35]) and imposing the constant mean curva-
ture (CMC) gauge condition in which one can solve the dynamics
completely.’®> In this gauge the classical solutions for the torus
can be shown to be spatially flat. The lapse only depends on
time while we can choose the shift to vanish, which means that
on shell the foliation fixed by the CMC gauge is a proper-time
foliation (up to a reparametrization of the time variable).

It follows that in general all solutions can be obtained from
a minisuperspace model where we impose spatial homogeneity
from the outset. To achieve this, let us put N = N(¢), N* = 0
and gqp(t) = V(¢)Gap(7i(t)), where §qp(7;) is the flat unit-volume
metric on the torus parametrized by the moduli 7, and  (see
(3.11) from chapter 3),

gab(r):1<1 n ) (4.12)

To \To 7'12 + 722

1BOf course, the situation is slightly different than usual, since we are consid-
ering Euclidean gravity instead of Lorentzian gravity. Hence, we cannot be sure
that we capture all possible solutions. This is not really a problem, since we are
interested in a limited class of solutions matching our boundary conditions.



Plugging this ansatz into (4.10) we obtain the minisuperspace
action

1 (Vi 433

(4.13)
To find the classical solutions, we identify two conserved quanti-
ties, £ and p, given by

O e
E=—-——|——4yv-L1_-2 INAV, 4.14
2N < Vv + 722 >+ ’ ( )
V -2 -2
p= VYVt (4.15)

N T2

Moreover, variation with respect to the lapse N(t) yields the ini-
tial value condition £ = 0. Imposing the proper-time gauge
N = 1, we easily find the most general solution for the spatial
volume V' (t) up to time translation and time reversal,

ﬁ sin(2V/A t) ifA>0
V(t) = {pt ifA=0 (4.16)
5% sinh (2V—At) if A <0.

In addition, we have the static solution V = p = 0 for A = 0%
and an exponentially expanding solution V (¢) = exp (2v/—At)
and p =0 for A < 0.

4Notice that general relativity with spherical spatial topology does not have
such a static solution due to presence of a spatial curvature term. We could view
this as an explanation for the breaking of time translation symmetry in the spher-
ical case. However, this fact relies crucially on the initial value condition £ = 0,
which we will revisit below.



Only for A > 0 we get a solution with both an initial and a
final singularity, at t = 0 and t = T = 7/(2/A) respectively.
In general the modular parameter 7 = 7 + im, will traverse a
geodesic in the Poincaré upper half-plane, which is the genus-1
Teichmiiller space, with speed determined by p in (4.15). When
approaching either of the singularities, 7 will hit the boundary
of Teichmiiller space and therefore lead to degenerate tori at the
boundaries. In particular, the boundary conditions 7(0) = 0
and 7(T') = ioco give precisely the Hopf foliation of the 3-sphere,
which we described in the last section. The general solution with
these boundary conditions is parametrized by the lengths [y and
l; of the singularities and is given by the space-time metric

ds? = dt? + 12 cos? (VA t)da® + 12 sin® (VA t)dy?. (4.17)

The three-volume V5 of this geometry is Vs = lyl;/ (2\/K), which
directly relates the cosmological constant A and the volume V5.

When we try to compare the corresponding volume profile
V(t) = % sin(2v/A t) (4.18)

to measurements in CDT simulations, we immediately run into
a difficulty. The time extent T = 7/(2v/A) of the classical so-
lution (4.18) is fixed in terms of A or, equivalently, in terms of
the three-volume and the boundary conditions. However, in our
CDT simulations the time extent 7" appears as an additional free
parameter set by hand.

This is a specific case of the more general issue of comparing
CDT to general relativity. As we mentioned in section 4.1 the
configurations appearing in the CDT ensemble all have roughly



Figure 4.7: The Hopf foliation of the 3-sphere, which is depicted by two
3-balls with their spherical boundaries identified. The red curves denote
the initial and final singularity.

constant distance 7" between their boundaries. This means that
any “average” continuum geometry emerging from such an en-
semble in a classical limit will have the same property. Assuming
that an effective action in terms of a continuum metric exists that
describes the classical limit, the classical solution should arise at
its stationary point when restricted to the ensemble of geome-
tries having fixed distance T" between the boundaries. Such an
ensemble of geometries is most easily characterized in proper-
time gauge. It contains the geometries that allow a metric with
lapse N = 1 and boundaries occurring att = 0and ¢t = T..

If we take the Einstein—Hilbert action as ansatz for the effec-
tive action, we should, according to the previous discussion, not
take into account the equation of motion obtained by varying the



lapse V. This means that

95 = V(K K® — K>+ R —2A) (4.19)
SN | yoy

should no longer be required to vanish, although its constancy
in time is guaranteed by the other equations of motion. To sum-
marize, in order to take into account the fixed time extent T, we
should consider the equations of motion of the ADM action in
whichweput N =1,

T
S[gap, N = _,@/ dt/dx\/g (K? = K@K® + R—2A).

’ (4.20)
Effectively we lose one of the Einstein equations and therefore
the number of local physical degrees of freedom increases from
zero to one. From the canonical point of view we lose the Hamil-
tonian constraint, which normally allows us to solve for the trace
part of the spatial metric in terms of the traceless degrees of free-
dom.

Let us now see what effect this has on the family of homo-
geneous solutions for the torus universe.!> We still have the con-
served quantities £ and p from (4.14) and (4.15) with N set to one.
However, now E is not required to vanish and therefore it serves
as an additional parameter in the family of solutions, which we
can tune to arrive at the desired time extent T". Restricting to the

I5Contrary to the general relativistic case, homogeneity here is a non-trivial
restriction of the full set of solutions to (4.20). There is an infinite-dimensional
family of classical solutions due to the presence of a local degree of freedom.
Only when the boundary conditions are homogeneous, which is the case we are
interested in, can we safely assume homogeneity of the solutions.



solutions with two singularities and non-vanishing p, we find a
family of volume profiles,

sinh(v=A(T—t)) sinh(v—=At)

lOll sinh2( ﬁ_AT) lf A < 0
V(t) = Lol (T — t)t/T? ifA=0
sin(VA(T—t)) sin(VAt . 12
lOll ( sin2(\/)KT)( ) lfO < A < (T) .

(4.21)
For fixed Iy, l1, and T, the three-volume increases monotonically
as a function of A from V3 = 0at A = —coto V3 = coat A = (7/T)2.
In figure 4.8 we have plotted the volume profiles normalized
by their time average V,, = V3/T for various values of A. The
shape of the profile only depends on the dimensionless quantity
v = V3/(lolyT). For v — 0 we find a flat profile, for v = 1/6
a parabola, for v = 1/7 a sine, and for v — oo a sine-squared
profile.

4.4 Measurement of volume profiles

Now that we have a proper ansatz for the classical trajectories
let us return to the data from our Monte Carlo simulations. Since
we have a wide range of shapes available as classical volume pro-
files, it is perhaps no surprise that we can find relatively good fits
to most of the experimental data. The expectation values (V' (¢))
shown in figure 4.6 are well described by the volume profile cor-
responding to a value v = 0.98 (see figure 4.8).

To see whether our simulations can reproduce volume pro-
files in our simulations with a wider range of shapes, we should
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Figure 4.8: The spatial volume V (t) from (4.21) normalized by its
time average Vo, = V3 /T for different values of v = Vs/(lol1T).
The curves, from dark to light, correspond to v = 0 (flat), v = 0.01,
v = 1/6 (parabola), v = 1/ (sine), v = 2, and v = oo (sine squared).

vary some of the free parameters in our partition function. In the
current set-up there are four such parameters (five if we count
the boundary lengths Iy and [; separately): the time extent T,
the discrete three-volume N3, the coupling ko, and the boundary
length ly. Probing the full parameter space would have been too
time-consuming, therefore we decided to fix the three-volume to
N3 = 60000 and the time to 7" = 19 and perform simulations
for a wide range of values of the coupling &y and the boundary
length lo.

To determine the relevant range of couplings ky, we should
first briefly discuss the phase diagram of CDT in 2+1 dimensions.



Remember that our original CDT action (4.3) contained two cou-
plings, ko and k3. To approach a continuum limit the coupling
ks is decreased towards a critical line, at which the expectation
value of the three-volume N3 diverges. However, in practice we
work with an ensemble in which the system size N3 is fixed and
the continuum limit is approached by increasing N3. In any case,
what remains is a one-dimensional phase space parametrized by
ko. It is not hard to see that the effect of increasing k is to re-
duce the number of 22-simplices in favour of 31-simplices and
13-simplices. As ko approaches the critical value k§ =~ 5.6 the
fraction ngo of simplices of type 22 collapses to (nearly) zero,
see figure 4.9. Since the 22-simplices provide the coupling be-
tween consecutive spatial triangulations, we find that the spatial
geometries in the phase ky > k; are uncoupled and therefore
the space-time geometry loses its physical interpretation. We are
interested in a classical limit and therefore restrict our attention to
the “physical” phase ky < kj. We also make sure not to come too
close to the phase transition where the fluctuations in the spatial
volume are large.

In figure 4.10a we show the results for fixed Iy = 60 and ko
varying from 1.0 to 5.0 in steps of 0.5. Clearly, as we increase
ko towards the phase transition, the shape of the volume profile
becomes flatter, which corresponds to the parameter v approach-
ing zero. This is in accordance with the discussion above, since a
complete decoupling of the spatial triangulations would lead to
a flat volume profile with v = 0.

In figure 4.10b we fixed kg = 2.5 but took for the boundary
length [, the values 5, 20, 40, 60, 80, 120, and 180. As we decrease
lo we observe an approach towards the sine-squared shape, i.e.
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Figure 4.9: The fraction nao of simplices of type 22 as function of the
coupling ko.

v — oo. If we had been confident about the system being well
approximated by the classical minisuperspace description, we
would quantitatively test the classical relation v = V3/(T13).16
However, as we will argue in a moment we should probably not
put too much trust in this classical description.

The qualitative similarity between the measurements and the
classical solutions may be due to the rather generic nature of the
classical volume profiles, which represent roughly the smoothest
profiles with a given slope and time-reversal symmetry. More
significant tests of the hypothesized classical limit would involve

16Even if the minisuperspace formulation is a good approximation, we would
probably find deviations from the power-law dependence v o< [~2, which we
would interpret as a renormalization of the boundary length. It might well be
that the path determined by the singularity shows some random walk behaviour
in the three-dimensional triangulation, leading to an anomalous scaling of the
continuum singularity length with the discrete ly.
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Figure 4.10: The normalized volume profiles for several simulations
with N3 = 60000: (a) lo = 60 and different values of ko and (b)
ko = 2.5 and different boundary lengths. The lightest curves corre-
spond to ko = 1.0 and lo = 5 respectively.

studying higher-order corrections to the volume profile. The sit-
uation is different when we drop the time reversal symmetry in
CDT, by using unequal boundary lengths [y and ;. The classical
solutions (4.21) yield a non-trivial prediction in this case, namely,
that the volume profile remain symmetric. To test this prediction
we performed simulations with fixed initial singularity length
ly = 60 and varying final singularity length [; = 5, 20, 40, 60, 80, 120.
The results are shown in figure 4.11, from which it is clear that
the symmetry is not present in our system when [, # [;. In-
stead of identical slopes at the two boundaries, we see that the
slope at the initial boundary hardly changes when changing [;.
This probably means that the information about the geometry
at ¢ = T is not propagated all the way to small ¢, in the sense
that spatial geometries at small time ¢ are oblivious to the final
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Figure 4.11: The normalized volume profiles for ko = 2.5,
N3 = 60000, and T = 19. The initial singularity has fixed
length lo = 60, while we varied the final singularity length
li = 5,20,40,60,80,120 (i1 = 120 corresponding to the darkest
curove).

boundary conditions. In classical gravity, however, the geometry
is sensitive to the boundary conditions no matter how far one is
from the boundary.

The discrepancy between the data and the classical solutions
(4.21) can mean several things: either the classical limit of CDT,
at least for certain boundary conditions, is genuinely different
from the minisuperspace ansatz following from general relativ-
ity, or our systems are too far from classicality or too small to
make a sensible comparison. At system sizes that are currently
available we will probably not learn much from more detailed
measurements of volume profiles, since it is hard to distinguish
alternatives for the classical dynamics from quantum corrections.



Therefore we will slightly change our strategy by assuming that
effective actions exist that describe the CDT systems at their cur-
rent system sizes. We will then attempt to deduce some of their
properties directly from the data. Once we manage to signifi-
cantly narrow down the relevant terms in the effective action, we
will in principle be able to study the scaling properties of these
terms when approaching a classical limit.

4.5 Volume correlations

Suppose that the effective action S[V] for the spatial volume in
CDT is local in time and can be written in terms of a Lagrangian
L(V,V)as

S[V] = /OT dt L(V,V). (4.22)

Assuming time reversal symmetry we have the condition
L(V,~V) = L(V, V), which implies that only even powers of V'
can appear in the Lagrangian.

Given a proper set of boundary conditions, the action S[V]
will have a unique classical solution V;(t), satisfying 65[Vp] = 0,
supposed to describe the expectation values (V' (t)) measured in
the simulations. Since in general V(¢) depends on all terms in
the Lagrangian £, it is hard to deduce specific information about
the form of £ from measurements of (V' (¢)) alone.

It turns out that more specific information is contained in the
quantum fluctuations around the classical solution. To see this,
let us assume that the fluctuations are small enough for a semi-
classical treatment to make sense. In that case the fluctuations



0V (t) = V(t) — (V(t)) are correlated according to
: : m o (P80 e
BV V() = VO VEN- VNV E)  (§506)  (w.)
(4.23)
This means that we can deduce numerically the operator

P(t,t') = 5‘/2 5 [Vo] from the spatial volume by inverting the matrix
of spatial volume correlations.

In figure 4.12 the measured volume correlations are shown
for a CDT simulation with N3 = 70000, [ = 75, and kg = 1.2.
Restricted to 1 < ¢, < T'—1 the correlation matrix (§V (t) §V (')
is invertible. In figure 4.13a we have plotted the diagonal and
subdiagonals of its inverse P(t,t'). We observe that the matrix
elements away from the diagonal and the first subdiagonal have
all approximately the same value, which we will denote by 7.
This constant non-local contribution to the inverse correlation
is due to the global constraint on the three-volume N3 and can
therefore be regarded as an artefact of the simulation set-up. If
we wish to take this effect into account in the effective action
(4.22), we should add a term of the form f( fOT dt V(t)). However,
for convenience we will simply subtract this constant term from
P(t,t') and work with the normalized inverse correlation matrix

P'(t,t") = P(t,t') — Py. (4.24)

According to our ansatz (4.22) the operator P’ is given by

o*L d [ 9L d (82C (d
/ AN - = _ = = _ - = . _I
p(t,t)_[a ST (a a') dt<5'2<dt >)]5(t )
(4.25
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Figure 4.12: The volume correlation function for a simulation with
T =19, N3 = 70000, lop = 75, and ko = 1.2. The curves
are for various fixed values of t'; the dark curve corresponds to

VOV () = (V) V(7))

where the partial derivatives of the Lagrangian are evaluated at
V = Vi(t). We see that P’ consists of a purely diagonal part and
a second-order time derivative. Moreover, the time-dependent
coefficient of the second part only depends on the kinetic term in
the Lagrangian.

In figure 4.13a, the values on the first subdiagonal of P’(¢,t')
equal —1/2 times the values on the diagonal to high accuracy.
We conclude that the matrix P(¢,t") represents a discretization
of a second-order time derivative operator like the last term in
(4.25). The pure diagonal component is absent or small compared
to the second-order time derivative part. We can now extract
the prefactor 92£/0V?[V;] of the kinetic term V2 in the effective
action from the data. It turns out that this prefactor is very close
to 1/Vy(t) = 1/(V(¢)), as shown in figure 4.13b, where we have
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Figure 4.13: (1) The diagonal of P(t,t") (top/blue curve), its first sub-
diagonal (bottom/red curve), and the remaining off-diagonal elements
(grey). (b) The volume expectation value (V (t)) (solid curve) com-
pared to the diagonals of the normalized inverse correlation function
P'(t,t') = P(t,t") — Py. The fitted proportionality constant is given
by Cco ~ 0.35.

plotted the measured volume profile (solid curve) together with
rescalings of the inverses of the diagonals from figure 4.13a (red
and blue dots). The proportionality constant ¢y ~ 0.35 has been
obtained by a best fit.

We conclude that the correlations are accurately described by
a kinetic term in the effective action of the form

SV ()] = /OT dt (C;“/j +-- ) : (4.26)

This kinetic term is almost of the same form as the one appearing
in the minisuperspace action (4.13) (with N = 1). The only dif-
ference is that there is no minus sign in front of the kinetic term
in (4.26). The positive sign should come as no surprise, since the



semiclassical treatment relies on the fact that the classical solu-
tion V{(¢) appears at a (local) minimum of the action. The minisu-
perspace action, however, has its classical solution at a maximum
of the action as far as the spatial volume is concerned. Of course,
a maximum is easily changed into a minimum by changing the
overall sign in front of the Einstein-Hilbert action.

As we will see in the next chapter, the Einstein-Hilbert and
the CDT effective action can no longer be related by a simple
overall sign flip when we take into account degrees of freedom
beyond the spatial volume. Traceless degrees of freedom in the
metric, like the moduli 7;, appear in the Einstein—Hilbert action
with a kinetic term that - unlike the spatial volume - already
has the “correct”, positive sign. In this case, the prescription of
switching the overall sign clearly does not render the Einstein—
Hilbert action positive around the classical solutions.

4.6 Conclusions

We have presented an initial investigation of the behaviour of
three-dimensional CDT universes with spatial topology of a torus.
Novel boundary conditions had to be introduced to obtain an
interesting dynamics for the spatial volume. Our attempts to un-
derstand the spatial volume profiles by comparing them to classi-
cal general relativity have not proved very successful. However,
we have uncovered a number of interesting issues along the way.
These are believed to be central to CDT, but not all have surfaced
explicitly in previous studies of CDT with spherical spatial topol-

ogy.



First of all, the introduction of fixed boundary conditions forces
us to take into account the effect of a fixed time extent in the
classical theory we are comparing to. This issue did not occur
explicitly in the case of spherical spatial topology with periodic
boundary conditions, due to the presence of a “stalk” of min-
imal spatial volume (see figure 4.4). The fixed time extent T
there holds for the extended universe and the stalk together, but
for sufficiently large T the system can choose how much time it
spends in each one of them dynamically. If one disregards the
stalk, it seems as though the time extent of the extended universe
is no longer fixed. To be more precise, let us consider the en-
semble Tr+ for T < T containing all CDT configurations with
time extent 7", initial and final boundary fixed to the minimal
triangulation, and all intermediate spatial volumes non-minimal.
To each configuration in 77+ we can associate a configuration in
the original ensemble 7, unique up to time translation, by gluing
a stalk of length 7' — T” to it. We know that the full ensemble
T is dominated by configurations that contain a single extended
universe. Therefore, if we neglect the microscopic contribution
of the stalk to the action we can approximate the full partition
by a sum over 7" < T of the partition functions corresponding
to 7. In this way the effective time extent 7" has become a free
parameter in the system. Still, the geometries of the extended
universe, appearing in all ensembles 77 together, form only a
slightly larger subclass than in the fixed boundary case: the time
extent 7" is allowed to vary, but it is still required to be position-
independent. As a consequence, one additional equation of mo-
tion can be satisfied in the classical limit: the homogeneous part
of, say, the time-time component of the Einstein equations. This



means that in the case of spherical spatial topology one does not
have to worry about fixed time extents when comparing CDT to
homogeneous cosmologies.

Secondly, the measurements presented in section 4.4 show
beyond doubt that the boundary conditions have an effect on
the spatial volume profile. This means that the spatial volume
is not completely decoupled from the other degrees of freedom
in the spatial geometry. Although this is what we expect from a
potential theory of gravity, this coupling makes it harder to assess
the size of quantum contributions to the volume profiles. As we
know from previous research and have confirmed in section 4.5,
quantum fluctuations of the spatial volume itself are fairly well
understood. On the other hand, we do not know how big the
quantum fluctuations in the moduli trajectories are, although we
will gather some clues in chapter 5. Any major deviation from
the classical trajectories will have an effect on the volume pro-
file. This might explain the observations we made in section 4.4
concerning systems with asymmetric boundary conditions.

Finally, a semiclassical comparison of the correlations in the
quantum fluctuations to an effective action requires a (local) min-
imum around the classical solution. The Euclidean Einstein-Hilbert
action, however, does not have this property, a fact which is known
as the conformal mode problem [39, 84] and which we discuss in
more detail in the next chapter. In the case of CDT in 3+1 dimen-
sions with spherical topology (see [10]) it was already observed
that the minisuperspace action, derived from the Einstein—Hilbert
action, for the spatial volume alone can be rendered positive by
flipping its overall sign. In our case it becomes immediately clear
that such a procedure on the minisuperspace action, including



the moduli, does not render it positive.

This last issue leads us directly to the main question of the
next chapter: how does CDT render the kinetic term in the effec-
tive action positive definite? In view of the results we will present
there we have added a discussion in appendix C showing that
any classical solution to the original unbounded minisuperspace
action (4.13) can also be obtained from a bounded action with a
suitable potential.



CHAPTER 5
Moduli measurements in

The model of Causal Dynamical Triangulations (CDT) on the
torus provides an explicit example of a space-time path integral
with a non-trivial time evolution of the two-dimensional confor-
mal geometry, i.e. of the shape!” of the spatial tori. In chapter
4 we attempted to understand this shape evolution by consider-
ing its effect on the dynamics of the spatial volume. Although
we found qualitative similarities between measured spatial vol-
ume profiles and solutions of a classical minisuperspace action, a
quantitative description is still lacking. By examining the volume

A brief summary of the results in this chapter has appeared in [32].
17To prevent confusion, in this chapter and the rest of this thesis we will not use
the word “shape” in the sense of “shape of the volume profile” used in chapter 4.
Unless explicitly indicated otherwise, by “shape” we mean the conformal shape
of the torus parametrized by the moduli.



correlations we did manage to establish the effective kinetic term
for the spatial volume. We will take this result as a firm starting
point and try to fill in some of the dots in the full effective action
governing CDT on the torus,

T 72
Sutlga(£)] = / dt (J, + ) . (5.1)

To do this we introduce a new observable into our simula-
tions, the moduli 7;(¢) governing the conformal shape of the spa-
tial geometries. We have already seen the moduli in action in the
model of dynamical triangulations in two dimensions in chap-
ter 3. There we found good agreement of the measured mod-
uli distributions in an ensemble of random triangulations and
predictions from a continuum description in terms of Liouville
theory. This result was non-trivial in that the discrete moduli
were defined in terms of discrete differential geometry, whose
applicability in random geometries is not obvious. The relation
between continuum and discrete differential geometry is rather
well understood in low-curvature regimes, while dynamical tri-
angulations display large curvatures on short scales.

There is some evidence that the spatial triangulations in CDT
are slightly better behaved than the geometries of the same di-
mension appearing in the DT, at least not worse.!® Therefore,
if the spatial geometry in CDT has an effective description in
some large-distance limit in terms of a continuum metric on the
torus, we are confident that our discrete moduli measurements

18Gee [13] for some partial results on spatial Hausdorff dimension in 2+1 di-
mensions and [11] for more detailed results in 3+1 dimensions.



will be related to the moduli of that metric. This means that we
can add the moduli to the list of observables that we can use as
probes for the effective dynamics of CDT. As far as we know, this
chapter contains the first non-trivial results in CDT concerning
the dynamics of the traceless degrees of freedom of the spatial
geometry."

We will extend the method from section 4.5 to study the effec-
tive kinetic term of the spatial volume and the moduli combined.
In order to do this we first construct a continuum ansatz for the
effective kinetic term of the full spatial metric. As mentioned
before, we cannot simply take the Euclidean Einstein—-Hilbert ac-
tion in ADM form, because it suffers from the conformal mode
problem and does not have a minimum at its classical solution.
There are not that many alternatives when we insist on full dif-
feomorphism invariance. However, if we merely insist on actions
that are invariant under foliation-preserving diffeomorphisms,
there are natural candidates for effective actions. We will argue
that the preferred time-foliation in CDT actually points in the
direction of this reduced diffeomorphism symmetry.

This chapter will be structured as follows. In section 5.1 we
will show how to generalize the procedure of assigning moduli
to a two-dimensional triangulation to CDT configurations, in or-
der to obtain a well-defined trajectory in moduli space. After that
we will have a brief look at the average trajectories and compare
these to the classical solutions we found in chapter 4. In section
5.3 we will consider the moduli correlations and describe what
they mean in terms of the effective action.

19Gee [47] for an analytic investigation of similar degrees of freedom in CDT in
a reduced setting.



5.1 Moduli as observables in CDT

Let us summarize the algorithm described in 3.2 of assigning a
point in moduli space to a two-dimensional triangulation Ty of
the torus. The construction relies on the notion of discrete dif-
ferential forms in a simplicial manifold. Recall that a discrete
p-form is defined as a function that assigns a real number to each
oriented p-simplex. In particular, a discrete 1-form « assigns a
number to a directed edge e and this number should be inter-
preted as the integral along that edge. As a consequence, we
have a natural notion of discrete integration of a 1-form « along
a discrete curve « given by a sequence of directed edges,

Aa = Z a(e). (5.2)

ecy

To find the moduli we first need a pair of closed discrete curves
~; that generates the fundamental group of the topological man-
ifold defined by the triangulation Ty. Such a pair can be con-
structed using the algorithm described in section 2.4. Next we
determine a basis o' of the two-dimensional space of harmonic
1-forms, i.e. discrete 1-forms that satisfy da’ = 0 and da’ = 0
in terms of the discrete exterior derivative d and its adjoint § in
(3.28). This basis is uniquely determined if we require it to be
dual to the generators ; in the sense that

/ al = Z a'(e) = (5; (5.3)
Vi e€v;

In terms of these harmonic forms the modular parameter 7 can



be defined as

N AT i\/<a1,a1> (al,a2)\?
— <a2’a2>+ (a2, a?) <<a2,a2)>’ (5.4)

where the inner product (a’, o) is defined simply as

(o, o) Z o' (5.5)

The value we obtain for 7 depends on the choice of the curves
~;. This has to do with the fact that 7 parametrizes the Teichmiiller
space of the torus, i.e. the space of conformal structures on a
torus with a marked pair of curves. A different choice of curves
will lead to a value of 7 related to the original by the action of the
modular group (3.9),

ar +b (a b
%

— d) € SL(2,2)/Z». (5:6)

Therefore the moduli space of metrics modulo conformal trans-
formations and diffeomorphisms corresponds to the space of or-
bits of the modular group in the Teichmdiller space. This ambigu-
ity was resolved in chapter 3 by restricting 7 to a fundamental do-
main M of the modular group in the complex upper half-plane.
The method outlined above can be applied directly to the spa-
tial triangulation T, appearing in a CDT configuration at time t.
However, in general there is no need to map the moduli to the
fundamental domain M since there might be a canonical set of
generating curves arising from the boundary conditions at ¢t = 0
and t = T This happens for the system with degenerate bound-
ary conditions described in section 4.2. In such a case a CDT



configuration defines an unambiguous sequence in Teichmiiller
space given by the values 7(¢) fort =0,...,T.

Let us see how we can determine this canonical pair of gener-
ating curves. Recall that the foliated geometries appearing in the
CDT ensemble are topologically of the form of a Hopf foliation
of the 3-sphere as in figure 5.1. The initial and final singularity
together describe a Hopf link, i.e. two circles linked together
exactly once, embedded in the 3-sphere. To any closed curve vy in
the complement of the Hopf link in the 3-sphere one can assign a
pair of linking numbers Ly and L; describing how often  links
the initial and final singularity respectively. It is not hard to see
that on each spatial torus a pair (Lo, L1) of integers determines a
homotopy class of closed curves. Therefore we find a canonical
pair of generators on a spatial torus by selecting a closed curve 7,
with linking numbers (0, 1) and 7, with linking numbers (1,0).
Examples of these curves are shown in figure 5.1. The curve v,
can be chosen to contract to zero length when approaching the
initial singularity, and the same holds for v, when approaching
the final singularity. We can therefore naturally assign to the
singularities the values 7(0) = 0 and 7(7') = ico lying on the
boundary of Teichmiiller space.

In practice, we do not determine first all canonical pairs of
curves on the spatial triangulations, since a direct calculation of
the linking numbers in the three-dimensional geometry is non-
trivial. Instead, for each spatial triangulation T; we generate
an arbitrary pair of generating curves -1 (t) and ~5(t) using the
same methods as in chapter 3. We use these to determine an
initial sequence of moduli 7/(¢). We then compare for each time
t =2,...,T — 1 the generators /() with those at time ¢t — 1 and



Figure 5.1: Projection of the upper and lower hemisphere of the 3-
sphere onto two 3-balls whose boundary 2-spheres are identified. The
dashed red curves correspond to the initial and final singularity while
the blue curves denote sets of canonical generators of the fundamental
group of the Hopf tori.

determine the modular transformation m; € SL(2,Z) relating
the two. Moreover, we can easily determine the linking number
L of the curves /(1) at time ¢ = 1 and the linking number L of
the curves /(T — 1) at time ¢ = T — 1. These linking numbers
together with the matrices m; provide enough information to
construct for each time ¢ the modular transformation that relates
the ~/(t) to the desired ~;(¢), and therefore 7/(¢) to 7(¢).

The representation of the moduli evolution 7(¢) in the upper
half-plane is perhaps not the most convenient one. Instead, let us
map the upper half-plane to the Poincaré disk by the fractional



Figure 5.2: Sequence of moduli in the Poincaré disk. The points at
7 = —land T = 1 correspond to the degenerate geometries at the
initial and final singularity respectively.

linear transformation

T—1
F = , 7
TTT +1 (.7)
The degenerate tori are now located on the boundary of the disk
corresponding to |7| = 1. The initial and final singularity get

mapped to 7(0) = —1 and 7(T)) = 1. In figure 5.2 an example
is shown of a trajectory in the Poincaré disk corresponding to
a CDT configuration taken from one of our simulations. Apart
from the compactness this representation has the advantage that
the discrete symmetries of the CDT system are easily represented:
parity symmetry corresponds to mirroring in the real axis, while
time reversal symmetry corresponds to mirroring in the imagi-
nary axis. The latter is of course only a real symmetry when the
boundary lengths [y and I, are equal.

In section 3.2 we noticed that as a by-product of the construc-



Figure 5.3: A triangulated torus taken from a CDT simulation and
a corresponding periodic embedding in the plane. This triangulation
consists of 470 triangles and T ~ 0.304-2.09:. The triangles are colored
according to their conformal factor, i.e. their area in the embedding.

tion of the moduli for a two-dimensional triangulation we ob-
tain an explicit embedding into a parallelogram in the Euclidean
plane. In figure 5.3 we show an example of such an embedding
for a spatial triangulation close to the final singularity from an
actual CDT simulation. We have coloured the triangles according
to their area in the embedding. As we will see in section 5.3 the
distribution of these areas is of importance when studying the
dynamics of the moduli.



5.2 Classical solutions

Let us start, as in chapter 4 for the spatial volume, by comparing
the average trajectories of the moduli to classical solutions of the
Euclidean Einstein-Hilbert action. We saw in section 4.3 that our
boundary conditions are homogeneous in space, which implies
that the relevant classical solutions will have the same property.
Moreover, we argued that we should restrict the Einstein—Hilbert
action to geometries with a fixed distance T' between the bound-
aries. These considerations allowed us to restrict our attention to
space-time geometries of the form

ds® = dt® + V(t)§ap (7 (t))dzda?, (5.8)

where §G,(7) is the flat background metric (4.12) determined by
the moduli. The minisuperspace action is obtained by evaluating
the Euclidean Einstein—Hilbert action on the metric (5.8), giving

1V? Vil +73

We already determined the spatial volumes of the classical solu-
tions to be

sinh(\/j(T—t)) sinh(\/jt)

loll sinhz(\/jT) ifA<0
V(t) = b (T = t)t/T? ifA=0
sin \/X(T—t) sin(VA t . \2
lOll ( SinQ(\/;\T)( ) lfo < A < (T) .

(5.10)



The moduli trajectories can now be found easily by integrating
the constant of motion p = V /7% + 73 /72,

. sinh(v—At .
75—;%(\/(_7—/\@_)”) ifA<O
() = it 7 if A =0 (5.11)
z%% if0 <A< (%)
In terms of the Poincaré disk coordinates 7 = 71 + 172, these
solutions parametrize the real axis 7> = 0. In general the tra-
jectories 71 (t) depend on the dimensionless parameters /1 /Iy and
v =V/(lol1T). In figure 5.4a we have plotted the classical trajec-
tories in the symmetric case [; /I = 1 for values v ranging from 0
to co. For v = 1/6 we find simply 7»(t) = —1/2 +t/T.

In chapter 4 we already reported on the measurement of the
volume expectation value (V'(t)) for CDT simulations with kg = 2.5
and N3 = 60000 and boundary lengths [y = [; varying between
5 and 180 (see figure 4.10b). In figure 5.4b the corresponding
average trajectories (7 (t)) of the real part of the moduli in the
Poincaré disk are shown. As for the spatial volumes, we observe
that the measured trajectories are qualitatively represented by
classical trajectories with certain values of v. However, when we
compare the fitted values of v to those that we obtain from fitting
the volume expectation values to the classical volume profiles,
we find that they are systematically larger. This means that the
moduli are attracted to the centre of the Poincaré disk more than
expected from the classical solutions.

Some comments on our results are in order. First of all the
distributions of the moduli in the Poincaré disk for a fixed time ¢
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Figure 5.4: (a) The classical trajectories 71 for different values of
v = V3/(loliT). The curves, from dark to light, correspond to
v =0,0.01,1/6,1/m,2, co (as in figure 4.8). (b) Expectation values
(T1(t)) for simulations with V3 = 60000, ko = 2.5 and boundary
lengths running between 5 (lightest curve) and 180 (darkest curve).

are not sharply peaked around their average. This is illustrated
in figure 5.5, which shows a sequence of density plots for ¢t = 1
up to t = 18. We can conclude from this that as far as the moduli
are concerned our system is situated quite far into the quantum
regime. As a consequence we expect the back-reaction of the
various degrees of freedom, including the conformal ones, on
the volume and moduli evolution to be substantial. Secondly,
it is hard to gather a lot of statistics in our simulations, since the
autocorrelation time of the moduli within a Monte Carlo simu-
lation is very high, much higher than the autocorrelation time of
the spatial volumes. This means that one has to perform a very
large number of moves to make sure that two consecutive mea-
surements are uncorrelated. Even then one cannot be completely
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Figure 5.5: Density plots of the measured moduli 7(t) in the Poincaré
disk for each time t = 1,...,18 from a simulation with V3 = 60000,
ko = 2.5and lg = 11 = 80, based on 140 000 measurements.
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sure that one is not stuck in a local minimum of the free energy.
This will probably get worse with increasing system size.

On the other hand we already noticed in the last chapter that
(5.9) is not viable as an effective action to start with, since it can-
not describe the quantum fluctuations around a classical solu-
tion. Therefore in the next section we will reconsider our ansatz
and perform measurements that provide information concerning
the effective kinetic term.

5.3 The effective kinetic term

Let us first describe briefly what we mean by an effective action
for CDT in the current context. Remember that one of our goals is
to establish what kind of effective geometric theory might emerge
from CDT in a large-distance limit. By emergence of a geometric
theory we will mean that there exists an effective action in terms
of a space-time metric that agrees in a semi-classical approxima-
tion with measurements of large-scale observables in CDT. The



classical solution to the effective action should determine expec-
tation values, while the quadratic expansion around its mini-
mum should agree with correlations of the first-order fluctua-
tions.

There are two kinds of obstructions preventing the Euclidean
Einstein—Hilbert action in its usual form to arise as an effective
action for CDT in the sense defined above. The first obstruction
has to do with the fixed time extent T between the boundaries,
which we already discussed in chapter 4. The consequence of
this constraint is that one should be able to gauge-fix the space-
time metric in the effective action to proper time form without
changing its equations of motion. In the case of the Euclidean
Einstein—-Hilbert action this means that we should consider the
ADM action with the lapse N set equal to one,

S[gab,N“] = SADM gabaN N = 1]

/ dt / ?2/g (Kb G Kea — R+ 24), (5.12)

where
aoc 1 ac a C a C
de:§(g g"* — g*lg") — g* gt (5.13)

is the Wheeler-DeWitt metric on the space of two-dimensional
metrics.

Due to the global time ¢ the new action (5.12) has a some-
what simpler interpretation than the full ADM action. It is for-
mally of the form of a point particle moving through the infinite-
dimensional superspace M of two-dimensional geometries with
metric given by the Wheeler-DeWitt metric G and subjected to a



potential

Ulg) = / d*z\/g(R — 2A). (5.14)

In this picture the second obstruction becomes clear once we
notice that the Wheeler-DeWitt metric is not an (infinite-dimen-
sional) Riemannian metric but a pseudo-Riemannian metric. As
a consequence the classical solutions are not local minima of the
action (5.12), but saddle points. The Wheeler-DeWitt metric G
is negative definite on the conformal directions in superspace,
meaning that we can lower the value of the action by adding to a
classical solution a perturbation given by a fluctuating conformal
factor. This fact is known as the conformal mode problem and has
caused a lot of headaches for researchers investigating Euclidean
approaches to quantum gravity (see for example [39, 55, 84]). In
our case we want to derive from the effective action a prediction
for the correlations in the fluctuations around classical solutions.
To do this we really need the action expanded to second order in
the fluctuations to be positive definite, which is not the case for
(5.12).

We therefore need a different ansatz for an effective action. It
is clear what would fix the problem: a positive definite metric
on M. Fortunately G is not the only ultra-local diffeomorphism-
invariant metric on M, there is a whole family parametrized by
A

1 . ad _be ab _c
ggdeZE(ganbd_g dgb)_)\g bg d. (515)

This metric, which we will refer to as the generalized Wheeler—
DeWitt metric, is positive definite in the regime A < 1/2. Using
G, instead of G in the gravitational action, values of X different



from 1 explicitly break general covariance, which at first seems
an unphysical generalization. However, a careful look at the CDT
ensemble shows that general covariance might not be manifest:
the foliation requirement on the three-dimensional triangulations
seems to introduce a preferred time slicing at the microscopic
level. Whether this preferred time slicing survives in a contin-
uum limit remains to be seen, but at present we cannot ignore
it. Therefore, we have no reason not to consider actions that
explicitly depend on the chosen time slicing.

Replacing G by G, in (5.12) we arrive at our final ansatz

Stt[gas N°] = 1 / dt / PG (K G Koy — Ulgl) . (5.16)

where the potential U|g] for the spatial metric g is allowed to have
higher-power curvature terms.

Actions of similar form with Lorentzian signature have been
introduced by Hotava [66, 67] as possible renormalizable exten-
sions of general relativity. Possible connections between such
anisotropic models and CDT have been previously put forward
both in the context of the spectral dimension of space-time [68]
and the phase diagram [9]. If (5.16) survives the non-trivial test
that we are about to present, we can view our results as evidence
strengthening these connections.

We will start by comparing the correlation functions of the
volume V (t) and the moduli 7;(t) semi-classically to the minisu-
perspace action we get from (5.16) using the homogeneous ansatz



(5.8),%

2 -2 »2
SV, 7] :n/dt <(1/2/\)“//+‘2/T1 0 +2AV> (5.17)

T3
VZ L2 L2
= n/dt <(1/2 ~ N5+ 2V% + 2AV> .
(5.18)

To do this we generalize the method from section 4.5 to include
the fluctuations of the moduli, i.e. we measure the correlation
matrix

@FOF ) = (FFOL W) = (O (), (5.19)

with f0 =V, f1 = 7, and f? = 7. Thisisa 3(T'—1) x 3(T—1) ma-
trix whose inverse should be related to the second-order deriva-
tive )
0°%S
Pi(t,t) = —2elr 5.20
i) = Sr@er @ 520

of the effective action evaluated at its classical solution.

We observe in the data that to high accuracy P;;(t,t’) van-
ishes for ¢ # j and the P;;(¢,t') have the structure of a second-
order time derivative, i.e. the first subdiagonal has values ap-
proximately —1/2 times those on the diagonal. According to
our ansatz (5.18) the diagonals Pi1(¢,t) and Psa(t,t) should be
proportional to 2V/(1 — |7|?)%. However, this turns out not to be
satisfied by the data, as is apparent from figure 5.6. This means

2The function |dr|? /72 is the Poincaré metric in the upper half-plane, while
4|d7|? /(1 — |7]?)? is its counterpart in the Poincaré disk.
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Figure 5.6: V/(1 — |7|%)? as a function of time (black), together with
the (rescaled) diagonals P11(t,t) (orange) and Paa(t,t) (red). From a
CDT simulation with V3 = 60000, ko = 2.5 and lo = 1; = 80.

that the minisuperspace action (5.18) does not properly describe
the fluctuations in the moduli.

Does this mean that our ansatz (5.16) is wrong? This is not
necessarily the case, since in the analysis above we put in the
non-trivial assumption that the “average” geometry is homoge-
neous. If we evaluate the action (5.16) to second order around
a non-homogeneous background metric, we might obtain a dif-
ferent kinetic term. Below we will derive the form of the kinetic
term for the spatial volume and the moduli in terms of a general
background geometry g,;(t). To be precise, we will determine
the functional G;;[g] such that the action (5.16) can be written as

T
Sefflgan) = n/o dt (ifiGij[gab(t)}f'j +- ) (5.21)



with the velocities f? not appearing elsewhere. We can then com-
pare the correlations (5.19) to the expectation values (G;[gas(t)])
in the CDT simulations. This analysis does not require the ge-
ometries to be close to a single background geometry, as long as
Gijlgap(t)] is peaked around its average (G;;[gas(t)]).

The matrix G;;[g] in (5.21) corresponds to a restriction of the
generalized Wheeler-DeWitt metric (5.15) on the tangent space
to the space of metrics at the metric gqp. It is the induced metric
on the subspace spanned by the gradients of f*,i.e. of V, 7y, and
75. To find this induced metric, notice that its inverse G [g] is
given by the inner products of the gradients of f?, namely,

i o 1 oft 4
G][ ] /d xféga ( )gade(Sgcd(I)’ 6-22)

where G é\bc 4 1s the inverse Wheeler-DeWitt metric

1 A
A .
— 4 \Yac a c) — abYc th = .
Gabed 2(9 9bd + Gadbe) — K Gabgea With p 1

(5.23)

The volume-volume part G% is easily evaluated, giving

1 oV oV 1 Vv

GOO d2 i ,
[] \/759(1 (Lb(‘dégcd 4%_)\

(5.24)

which does not depend on the curvature. The gradient of the
volume generates a global conformal transformation leaving the
moduli invariant and therefore the off-diagonal entries G"![g]
and G"?[g] vanish.

Some more work is required to calculate the moduli-moduli
part. First we have to investigate how the moduli parameter



changes under a metric perturbation dg.,. Recall from section
3.2 that we can express 7 in terms of inner products (a’,a’) of
harmonic forms. From the fact that under a metric perturbation
the harmonic form o' remains in the same cohomology class it
follows that?! da' is an exact differential form and therefore its
inner product with o/ vanishes. Hence, when perturbing the
inner product (af, a?) we can regard the o' to be invariant,

§{at, ad) —6/d2mfalg“bab
/d%f( ab ged g‘wgbd> @ abégcd. (5.25)

It follows from (5.4) that

oT 5{at,a?) §{a?,a?)
_ _ 5.26
Sgan@)  dgw(@)  dgan(@) 20
:——f(al s g% — atal — abal
+ 7 (a2 2 g* — 2a2a2) ). (5.27)

To evaluate this expression let us gauge-fix the spatial coordi-
nates to conformal gauge, as we did in section 3.2, in which the
background metric takes the form

gap(x) = 2@ g, (7). (5.28)

In these coordinates the harmonic forms are given simply by

21Warning: in this paragraph ¢ will refer to the variation, not the dual of the
exterior derivative.



o' = dz'. Plugging these into (5.27) we find
1 (57’1' A (57']'

1 _
NIt 20 722/d2xe "
a C

1
= 551-]- T2 Alg). (5.29)

Gilgl = [ %

In the case that g, is flat, ¢ is spatially constant and equal to
1/21og(V), hence Alg] = 1/V in the homogeneous case as ex-
pected from (5.18). However, when inhomogeneities are present
Alg] is strictly larger than 1/V.

We can express A[g] in a coordinate-independent way by notic-
ing that ¢ is related to the spatial curvature by R = 2A¢ where
A = —1/\/30.(\/99°°s") is the (positive) Laplacian associated
with g. It follows that ¢ = ¢y + A~1R/2 for some constant ¢
and A~!is the inverse Laplacian with the singular constant mode
projected out. The value for ¢, follows from evaluating

1= /de ge 2 :e*2¢°/d2m gexp(—AT'R), (5.30)

hence

J A2z /gexp(—2A'R) .
[ d%z gexp(—A—lR))2

Alg] = /d2m ge 1 = ( (5.31)

We conclude that for arbitrary background metric g, the rel-
evant part of the kinetic term is given by

’ 1 V21 44
Seff[gab]_K/O dt<(2_/\)V+2A[g] p +

(5.32)



To test this general ansatz we have to find a suitable discretiza-
tion A[Ty] of the curvature functional A[g] applicable to equi-
lateral triangulations T. There are basically two approaches to
obtain such a discretization. The first approach, which is the sim-
plest and the one that we pursue here, is to discretize A[g] using
the expression in terms of the conformal factor ¢. The discrete
harmonic embedding of a triangulation T into a parallelogram
in the Euclidean plane, which we discussed in section 3.2 and 5.1,
can be interpreted as a discrete version of the conformal gauge
fixing (5.28). Since the triangles all have equal volume with re-
spect to the spatial metric g,5, we can naturally assign a confor-
mal factor ¢ to a triangle t according to its volume with respect
to gqp- In this way we obtain the natural discretization

ATy = M, (5.33)
(¢ alt))

where the sum is over all triangles t and a(t) is the area of t in
the harmonic embedding. For a triangulation with N triangles
we have A[Ty] > 1/N with equality only attained by regular
triangulations. For example, the triangulation in figure 5.3 corre-
sponds to a value of A[Ty] ~ 1/96 ~ 4.9/470 which is 4.9 times
as high as for a regular triangulation of 470 triangles.

The second approach is to mimic the derivation of A[g] in
the discrete setting. Notice that A[g] quantifies how severely
the moduli are affected by a random metric deformation. More
precisely, A[g] equals the expected squared distance of the dis-
placement in moduli space caused by a random metric deforma-
tion normalized according to the Wheeler-DeWitt metric. Anal-
ogously, we can associate a number A’[T] to a triangulation T



recording how much the discrete moduli are affected by a ran-
dom local update of the triangulation. In appendix D we show
that this definition leads to an expression similar to (5.33) but
includes a term that takes into account the shape of the triangles
in the embedding. Numerical investigations have shown that
both definitions, A[T,] and A’[Ty], are roughly proportional, but
disagree on the precise overall factor. This is not a big problem
here, since a change in the overall factor only renormalizes the
couplings x and 1/2 — .

Taking into account these considerations, let us revisit the data
from our Monte Carlo simulations. We should not compare the
diagonals Py1(t,t) and Psa(t,t) of the inverse correlators of the
moduli to 2V/(1 — |7|*)? as in figure 5.6, but instead to

2 1

Al (= P 0
This we have done for a range of different parameters. In figure
5.7 we have plotted (in black) expression (5.34) as constructed
from the expectation values (A[T,]) and (7(¢)) for fixed coupling
ko = 2.5, 3-volume N3 = 60000, time extent T" = 19, and various
boundary lengths Iy = 5,40, 80,180. In red we have plotted the
diagonals Pi1(t,t) and Pao(t,t) divided by a constant ¢;, which
is determined by a best fit for all four plots simultaneously as
c1 =~ 0.75. Although the fit is not perfect, we see that qualita-
tively the shapes of the curves, which change significantly with
the boundary length, are well reflected in the inverse correlators.

The precise value of the proportionality constant c; is not very
interesting, since it is related to the dimensionful couplings in
certain lattice units. However, we can combine it with the pro-
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Figure 5.7: The rescaled inverse correlators Pi1(t,t)/c1 (light red)
and Pas(t,t)/c1 (dark red) together with a plot of 2/ (A[g)(1 — |7]?)?)
obtained from the measured expectation values. These are results from
simulations at 3-volume N3 = 60000, ko = 2.5, T' = 19, and bound-
ary lengths as indicated.

portionality constant cq that we deduced from the volume corre-
lators in section 4.5 to determine the value of the dimensionless
coupling A = 1/2 — ¢y/c1. From the data shown in figure 5.7 we
deduce a value A ~ 0.22. It turns out that the effective couplings
¢o and ¢y, and therefore A, depend only mildly on the 3-volume
N3 and the boundary conditions Iy and /;. Their dependence on
the coupling kg is shown in figure 5.8. We see that when we
increase ko towards the critical value k§ ~ 5.6, the parameter
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Figure 5.8: The measured values of (a) the effective couplings co and
crand (b) A = 1/2 — co/c1 as function of the coupling ko. All simula-
tions were performed at 3-volume N3 = 60000 and boundary lengths
lo = l1 = 60. The vertical dashed line corresponds to the critical
coupling ki ~ 5.6 and the horizontal dashed line to the conformal
value A = 1/2.

X approaches 1/2 from below.

What does it mean that the coupling A approaches 1/2? Re-
call from section 4.4 that the value of the coupling k affects the
number of 22-simplices in the system. Beyond the phase transi-
tion ko > kg the number of 22-simplices drops to the minimal
number allowed by the requirements on the triangulation. Since
consecutive spatial triangulations can only interact through the
22-simplices in between, we expect the coupling between the
geometries to decrease with increasing ko. This is certainly the
case for the spatial volumes, as is apparent from the plot of ¢, in
figure 5.8a. However, judging from the ko-dependence of the di-
mensionful ¢, the moduli do not seem to decouple. At least, they
decouple slower than the spatial volumes, judging only from the



dimensionless quantity A.

5.4 Conclusions

We have managed to fill in some of the gaps in our understand-
ing of the effective action (5.1) of CDT on the torus. Both the
correlations of the spatial volumes and the moduli are well de-
scribed by an effective action of the form

T
Sett[gan(t)] = / de

Co V2 C1 Tl2+7'22
0

TV I +> (5.35)

This is in agreement with the general ansatz (5.16) in which the
parameter A is related to the couplings cy and c¢; through the
relation A = 1/2 — ¢p/c;. The parameters ¢y and ¢; are nec-
essarily positive and therefore correspond to A < 1/2. Clearly
this excludes the special value A = 1 which corresponds to the
generally covariant case. A straightforward canonical analysis
of the action (5.16) reveals that for A\ # 1/2 the number of local
physical degrees of freedom is equal to one. This is quite different
from general relativity, which has no local physical degrees of
freedom.

Where does this leave us? Suppose that the continuum action
(5.16) correctly captures the observed dynamics of the space-time
geometry and that this remains true in the infinite-volume limit.
Then it seems that, as long as we are dealing with a system with
a preferred time foliation, there is no way of getting rid of the
spurious local degree of freedom, unless some new local sym-
metry emerges in the system. In the present set-up of the model



of CDT we see little room for such new symmetries. The only
concrete opportunity we see is when A becomes equal to 1/2, at
which point the kinetic term of pure trace degrees of freedom
disappears. According to figure 5.8b we approach such a point
when we tune the CDT coupling ky towards its critical value.

Let us try to understand why the moduli seem not to decouple
when approaching the phase transition. A possible explanation
for this comes from the fact that the moduli are topological de-
grees of freedom, which are absent in the spherical case. As we
will see in section 6.2, in CDT with spherical spatial topology
having a minimal number of 22-simplices does not put any re-
strictions on the spatial triangulations. However, in the case of
the torus, in order to arrive at a small number of 22-simplices, the
spatial tori have to contain short topologically non-trivial loops.
As a consequence the number of triangles that significantly con-
tribute to the moduli, i.e. the ones with large area in the harmonic
embedding, becomes small. It might well be that precisely these
triangles remain coupled by the few 22-simplices, while most of
the spatial volume sits in decoupled spatial baby universes.

On the other hand, we derived our ansatz for the correlations
of the moduli from the full effective action (5.16), in which X af-
fects not only topological degrees of freedom. To see whether
the difference between the conformal modes and the traceless
modes is also present locally, we will attempt to probe individual
components of the extrinsic curvature in chapter 6.

Let us end this chapter with an outlook on how we can go
beyond the kinetic term (5.35) in the effective minisuperspace
action. In particular, we would like to have an action depending
only on the spatial volume and the moduli that describes both



the average trajectories and the correlations. Once we find an
expression that relates the curvature functional A[g] to the spatial
volume and the moduli, the form of the kinetic term is fixed by
the correlations according to (5.35). The remaining challenge is to
establish a potential U(V, 7) for the spatial volume and moduli,
in such a way that the classical solutions agree with the average
trajectories that we described in section 5.2. A first hint towards
a suitable potential comes from our derivations in appendix C.
There we show that, in the case that A(V) scales “classically”,
A(V) x 1/V, a potential U(V, ) proportional to 1/V yields a
class of solutions containing all the general relativistic solutions
that we encountered in sections 4.3 and 5.2.



CHAPTER 6

Fixed boundaries in CDT

A major challenge faced by any approach to quantum gravity
is the identification of relevant observables. If the fundamental
theory possesses a diffeomorphism symmetry, the observables
are required to be diffeomorphism-invariant. Such observables
are in general hard to construct as they are necessarily non-local.
This is a fact that we are well aware of in the context of CDT,
although the situation is slightly better due to the presence of a
preferred time slicing. It allows us to construct quantities that
explicitly refer to this time slicing. As a consequence, we can
construct observables which are local in time but will still be
non-local in space. In chapters 4 and 5 we have studied pre-
cisely observables of this type, namely, the spatial volume and
the moduli parametrizing the shape of the spatial geometry at

Some of the results in this chapter have appeared in [32].



a certain fixed time. From their measurements we have learned
some non-trivial facts about the effective dynamics of the global
degrees of freedom associated to them.

To obtain observables that are local in space we should in
some way break the spatial diffeomorphism symmetry. One way
to achieve this is by fixing the geometry of one of the time slices,
say, at time ¢t = 0, in which case we can regard it as a non-
trivial initial boundary condition. If the two-dimensional ge-
ometry does not possess any symmetries, we can geometrically
distinguish its points (at least in principle) and attach observables
to them. In particular, we can fix a spatial coordinate system z* at
t = 0 and define an observable that measures some aspect of the
space-time geometry in the vicinity of a point with given coor-
dinates. A natural observable associated to a surface embedded
in a three-dimensional geometry is the extrinsic curvature tensor
Kay(z). Tt is this quantity that we will attempt to measure in our
CDT simulations. In the ADM formalism (see section 4.3) the
extrinsic curvature is related to the time derivative of the spatial
metric. This means that the correlations of the extrinsic curvature
can be directly related to the kinetic term for the spatial metric in
the effective action. We will make this correspondence precise in
section 6.1.

In order for a tensor object like the extrinsic curvature to make
sense in a discrete setting, it is necessary that the triangulation on
which it lives approximates a Riemannian manifold. This means
that in our CDT simulations we have to put in “nice” boundary
triangulations by hand. In section 6.3 we will consider spatial
topology of the torus for which we can construct boundary tri-
angulations simply from a regular triangular lattice. By contrast,



in section 6.2 we will be interested in smoothly curved bound-
ary geometries. Such triangulations can be constructed using
a method called Poisson—Delaunay triangulation, which is briefly
described in appendix E.

6.1 Extrinsic curvature in the continuum

In section 5.3 we put forward an ansatz for the effective action
for CDT inspired by the presence of a preferred time foliation,
namely,

T
Settlguss N] = / at / PG (KanGS" Kea — Ulg) . (6.1)
0

where the extrinsic curvature is given by

1. 1.
Kab = § (gab — VaNb — VbNa) = 5 (gab - (L:Ng)ab) ’ (62)

and G§¢b<d is the generalized Wheeler-DeWitt metric

aobc 1 ac a C a Ci
g3t = 5 (9™ 9" — g*'g") — Ag*'g*". (6.3)

In this chapter we will be concerned with CDT simulations with
fixed non-degenerate boundaries, therefore we consider bound-
ary conditions gq,(0) = ¢%, and g.(T) = g,.

Let us briefly summarize how we got to the ansatz (6.1). We
started by taking the Euclidean Einstein—-Hilbert action and re-
stricting its domain to the space-time geometries having a fixed
distance T" between the initial and final boundaries. As a conse-
quence of this restriction all these geometries possess a canonical



time slicing, compatible with the boundaries, given by the sur-
faces of constant distance to the initial boundary. In this time-
slicing the Einstein—Hilbert action becomes of the form of a point
particle moving through the infinite-dimensional superspace M
of two-dimensional metrics. However, the superspace M comes
equipped with a metric, the Wheeler-DeWitt metric, which is not
positive definite. To arrive at the action (6.1) we replaced this
metric with the more general, but still ultra-local, metric G§°¢
given in (6.3), which is positive definite for A < 1/2.

In sections 4.5 and 5.3 we observed that the correlations of
the fluctuations in the spatial volume and the moduli are most
sensitive to the kinetic term in (6.1). Let us discuss this relation
between the quantum fluctuations of observables and the effec-
tive kinetic term using the interpretation of (6.1) as the action of
a point particle in superspace. Consider the action

s = [ (3i0s0F -v@) 6

for the coordinates ¢’ of a point particle in a curved configuration
space with metric G;;(¢q) and potential U(q). When we fix ¢* at
time ¢t = 0 and ¢t = T there will be a unique classical solution
which we denote by ¢} (t). Now we write ¢'(t) = ¢§(t) + d¢‘(t)
and expand the action to second order in dq’,

T
Sla) = Slgo] + / At 54" (—04(Gi; (40)0r-) — D:d,U (a0)) 57 (6.5)

In a semi-classical treatment the expectation values of ¢* are given
by the classical solution g (t),

(q'(t)) = q5(t), (6.6)



and the correlation functions of the fluctuations follow from the
inverse of the operator appearing in (6.5),

(@' ()a" (1) — (¢"(O)a'(t)) = (34" (t)oq (1)) (6.7)
= (=01(Gij(20)0r) — 0:0;U(q0)) ™" (£,1).
It is not hard to see that this inverse operator treated as function
of ¢ is continuous at ¢’ but its first derivative jumps by an amount
equal to twice the inverse G (qo) of the metric G;;(qo). As a con-
sequence to leading order in (¢t — ¢’) we have
{(q"(t) = ¢'()(d’ (1) — ¢ (1)) = |t = |G (¢"(1)) + O(It = t'|*).
(6.8)
So by measuring the correlations of differences of the configura-
tion variables between one moment in time and a short time later
we can deduce the configuration space metric. In particular, if we
take t' = 0 we find

(@ (O (1)) = (¢ O (1) =17 (¢°(0) + O().  (6.9)
We see that close to the boundary the fluctuations are completely
determined by the kinetic term. We will use this fact throughout
the rest of this chapter to test the ansatz (6.1).

Let us apply this reasoning to the spatial metric g,. It is con-
venient at this point to assume that we have fixed a coordinate
system at ¢ = 0 and have propagated it such that the shift N¢
vanishes identically (at least close to the initial boundary). In this
way we can view the full spatial metric gq;(z) as configuration
variables and (6.9) becomes

AT ., Ox,')
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(6.10)




where G2, ., is the inverse supermetric

(6.11)

1 . A
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which is to be evaluated at t = 0.

In the case of vanishing shift, the extrinsic curvature Ko (z)
is simply given by one half the time derivative g, of the metric
at ¢ = 0. Therefore, according to (6.10) its correlation function
(Kap(x) K q(2")) diverges, which is simply a consequence of the
Heisenberg uncertainty principle. To obtain a sensible correla-
tion we introduce the reqularized extrinsic curvature Kab, given by
the time average of K, over a small fixed time interval At,

% YGab (E,At — Yab 1'70 1
Kap(z) = ( Q)At ( ):Kt

At
/ At Kop(z,1).  (6.12)
0

In terms of K, the relation (6.10) implies a correlation function
at the boundary given by

- - 1 §(z, )

(Ba) Reala!)) = g Ghea™ 7 + OAE). (619

In CDT we have a natural short-time cut-off At given by the
distance between the initial boundary and the spatial triangula-
tion at time ¢t = 1. With this At the regularized extrinsic curva-
ture K, should capture how the spatial geometry changes when
going from the boundary ¢ = 0 to the triangulation at ¢ = 1.
We can split K, into two parts, a pure trace K = g**K,, and
a traceless part Ko — 1 / anbK . The latter, which corresponds
to the traceless metric deformations, turns out to be very hard to
measure in the CDT configuration. The trace K on the other hand



corresponds to changes in the local volume and has a simple in-
terpretation in the triangulation. Therefore we will first see what
we can learn from studying the trace K of the extrinsic curvature
alone. In section 6.3 we will revisit the traceless deformations
by introducing an approximation, namely, that the regularized
extrinsic curvature K, is closely related to the real extrinsic cur-
vature at the boundary in the sense of piecewise linear manifolds.
It follows from (6.13) that the trace K (z) is correlated accord-
ing to
_ O(x,x")
AL -0V
but this is not a very interesting ansatz to test as it predicts a
position-independent ultra-local correlation. Moreover, it does
not allow us to determine the parameter A itself, since it appears
only in combination with the dimensionful coupling .

(K (x)K () (6.14)

It turns out that we can get more non-trivial information from
measuring the trace K in the special situation T — 0. We can
mimic this regime in CDT by reducing the number T of slices of
tetrahedra to one, i.e. we take two fixed triangulations and the
only freedom is in the way they are connected. We will study
this system in detail in the next section. First let us see what
happens to our ansatz in this limit. The main simplification is
that, as long as we keep the boundary conditions at ¢t = 0 and
t = T fixed, the potential U[g] becomes irrelevant in the action
(6.1) as T — 0. Therefore we end up with an action which is
precisely that of geodesics in superspace. To make this more pre-
cise let us eliminate the shift N*. We cannot simply set the shift
N?® to zero identically while fixing the metric on the boundary,
because that would force the coordinate systems on the initial



and final boundary to align. To make sure that we do not change
the equations of motion when setting N* = 0, we should not fix
the spatial metric at ¢ = T but only the spatial geometry. We
can do this by introducing a spatial diffeomorphism f at the final
boundary, i.e. we fix the initial metric to g°, and the final metric
to the pull-back (f*g')qp of g!,. By allowing both the metric gq(t)
and the diffeomorphism f to be varied in the action we can safely
put N* = 0, leading to the action

K T . .
Slowr- 1= [ dt [ @ovG 335 (615)
0
and  gay(0) = gap> gan(T) = (/79" ab-

We will be interested in the dynamics of f and therefore we would
like to eliminate g,; from this action. It is not hard to see that in
order to obtain S[f] to second order in f we can plug in for g,; its
classical solution, i.e. the geodesic connecting g%, and (f*g")ap.2
The action for f then becomes simply

K

SIf] = g7l f79'), (6.16)

where d(-, -) is the Gx-distance function in superspace.

If we take g}, identical to g2, and A < 1/2 the minima of (6.16)
are clearly given by the isometries of ¢%,. In the next section we
illustrate that this classical behaviour is qualitatively reproduced
in CDT.

Assuming that f fluctuates around the identity map, we can
write f(z%) = 2% + N%(x) in terms of a vector field N*, which

22The reason for this is that the fluctuations of g, around the geodesic do not
couple to the fluctuations in f.



for obvious reasons we call the shift vector field. Then (6.16)
becomes

SN = 7 / oG Ln )G (Lng")es (6.17)
which we can rewrite as
S[N“] :% / sz\/gj(;(d )abg " (AN ) o (6.18)
+ (1 = A)(VaN9)? — RabN“Nb),

where (dN)q, = VN, — VN, is the exterior derivative of N,
viewed as 1-form. We can interpret p = VN as the divergence
part and dN as the rotational part of the vector field, which to-
gether determine N®. In general both parts interact with each
other through the curvature term, unless we have a constant Ricci
curvature R,, = %R gap like in the case of the 2-sphere S2. In that
case we can write down an action just in terms of the divergence

pr
S[p] = T /d%fpu —\— fRA Hp, (6.19)

where A~! is the inverse Laplacian with the constant mode pro-

jected out.?

If we choose the time cut-off At for the regularized extrin-
sic curvature equal to T, the trace K is related to divergence
by K = p/(2T). Hence, we obtain from (6.19) the correlation

23By definition the constant mode of p is required to vanish,

Jd?z\/gp = [d2z\/GV.N* =0



function
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A more convenient form is obtained by expanding K in terms of
normalized eigenfunctions ¢; of the Laplacian, i.e. K = > K; b;

with [ d2z,/gp;¢; = 6;; and Ag; = i,

5i; by
Tr(l— N\ —R/2

(K(2)K(2')) = (6.20)

(KiK;) = (6.21)
We see that here, in contrast to the finite-T case in (6.14), we can
deduce information about A from the measurement of K because
of the presence of a curvature term. In the next section we will
compare (6.21) to measurements and obtain a preliminary depen-
dence of X on the couplings.

6.2 Single-slice configuration

Before we go into the details of the CDT simulations, let us in-
troduce a convenient graphical representation for the single-slice
configurations [13]. Such configurations consist of two spatial tri-
angulations which are connected by tetrahedra. We can represent
the spatial triangulations by their dual three-valent graphs. In
the case of spherical topology, which we will restrict to in this
section, these three-valent graphs are planar, i.e. we can embed
them in the plane (or in the sphere) without intersections. It
turns out that we can characterize a configuration of tetrahedra
connecting them by superimposing both graphs in a non-trivial



Figure 6.1: A slice of tetrahedra bounded by two 2D triangulations is
characterized by a superposition of two three-valent graphs.

way (see figure 6.1). More precisely, a single slice configuration
corresponds to a bicoloured graph containing three-valent red
vertices dual to 31-simplices, three-valent blue vertices dual to
13-simplices, and mixed four-valent vertices dual to 22-simplices.

Since we are keeping the spatial triangulations fixed the CDT
partition function (4.2) reduces to a sum over inequivalent su-
perpositions of the blue and red graphs. Notice also that the
number N, of vertices does not depend on the configuration and
the number N3 of tetrahedra is given up to an additive constant
by the number N3, of 22-simplices. Therefore the CDT partition
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Figure 6.2: The set of update moves used in the single-slice Monte
Carlo simulations.

function (4.2) for T = 1 reduces (up to an overall factor) to**

Zr=1[To, T1, k3] = Z e kalNaz, (6.22)
TeT
In terms of the graph representation, N, represents the number
of intersections of the blue and the red graph.

To evaluate expectation values we use the Monte Carlo meth-
ods described in 4.1. Since we are keeping the spatial triangula-
tions fixed, we only need one of the three types of local update
moves. This move is shown in figure 6.2 and amounts to pulling
a red or blue vertex across an edge of the opposite colour and
the reverse of this operation. The initial configuration we have to
put in by hand and for this we construct a configuration with a
minimal number of 22-simplices.” In such a minimal configura-
tion all but one of the 31-simplices point to the same vertex and

24We assume that either one of the boundary triangulations has a trivial auto-
morphism group or that we have fixed a labelling of the boundary vertices. In
both cases we do not need to worry about the symmetry factor Ct appearing in
(4.2).

2In CDT we put certain restrictions on the connectivity of the tetrahedra. In



similarly for the 13-simplices (see figure 6.3a). To complete such
a degenerate configuration one has to add four 22-simplices.

We expect the expectation value for the number Njy of 22-
simplices to decrease with increasing coupling ks, since this cou-
pling acts like a chemical potential. This is indeed the case as
can be seen in figure 6.3b. We obtained this figure by performing
simulations at different values of the coupling k3 and spherical
boundary triangulations consisting of 500 triangles. Clearly a
phase transition is present at k3 equal to k5 ~ 1.6. Larger val-
ues of k3 result in minimal configurations of the type mentioned
before. We will restrict our attention to the phase k3 < k3 where
it seems that 22-simplices are spread out rather uniformly among
the edges.

In section 6.1 we observed that in the case of identical bound-
ary geometries, the minimum of the effective action (6.16) occurs
when the boundaries align isometrically. To illustrate that some-
thing similar happens in CDT we have constructed, using the
methods outlined in appendix E, a triangulation with 300 trian-
gles approximating an ellipsoid (to be more precise, a prolate el-
lipsoid with eccentricity e = 0.7). We then performed simulations
using this triangulation at both boundaries Ty and T and with
coupling k3 = 1.2. To see how both triangulations align we have
colour-marked a couple of vertices in the initial triangulation (see
figure 6.4), two blue vertices at the tips of the ellipsoid and four

terms of the dual graphs these restrictions amount to the following (see [13]): 1)
The red and blue graph should intersect at least once; 2) the intersection of a blue
cell with a red cell should be connected; 3) the intersection of a blue edge with
a red cell should be connected and vice versa. From these restrictions one can
deduce that the minimal number of intersections in the case of spherical topology
is four.



No/edge
35
3.0
25
20
15
1.0
05

ks
05 10 15 20

(@ (b)

Figure 6.3: (1) A minimal single-slice configuration. (b) The expec-
tation value for the number Nao of 22-simplices per edge of the initial
boundary as a function of the coupling k3. Two typical configurations
on either side of the phase transition are depicted.

red vertices on the equator. Then we measured how often a trian-
gle in the final triangulation is connected through a 13-simplex to
one of these coloured vertices. The result is shown on the right-
hand side of figure 6.4, where we coloured the triangles accord-
ing to these measurements. We observe a clear preference of the
system to sit in a configuration in which the tips and the equators
of the triangulations are approximately aligned. This illustrates
nicely how the CDT partition function dynamically determines
the alignment of its spatial geometries.

In this sense CDT seems to implement a statistical version
of the best matching principle [24] in space-time. Let us briefly
discuss what we mean by this in the current context. A classi-
cal solution to the action (6.1) determines a path in the space of
two-dimensional geometries, i.e. the space of orbits of the spatial



diffeomorphism group in the superspace M of two-dimensional
metrics. Given such a path, to reconstruct the full space-time
geometry (in the gauge N* = 0) we need to lift it to a path
t — ge(t) in the superspace M itself. This can be done con-
sistently by demanding the lifted path to be perpendicular to the
gauge orbits with respect to the supermetric Gy. In other words,
given a metric g,5(t) at some time ¢ and a geometry at time ¢ + ¢,
we should choose spatial coordinates at time ¢ + 6t such that the
metric gq (¢ + 0t) is as close as possible to g, (t), as measured by
G». To see whether it is really the supermetric G, that effectively
determines the alignment in CDT we will perform a quantitative
analysis of the deviations from isometry. However, to do this we
switch to spherically symmetric boundary conditions, for which
we have the explicit ansatz (6.21).

The quantity we want to probe is K, the trace of the (regular-
ized) extrinsic curvature (6.12). If the metrics on the boundary
are close to each other, as we will assume here, K can also be
written in terms of the ratio of the volume forms,

R(z) = & (Vg(x’T) - 1) . (6.23)

@=7 g(x,0)

This expression allows for a rather straightforward discretiza-
tion. Given a vertex v in Ty, we can associate to it a volume
(in units of the volume of a triangle) in T equal to the number
ni3(v) of triangles in T; that are connected to v through a 13-
simplex. A corresponding volume in T is given by one third of
the degree nz(v) of v, i.e. the number of triangles attached to 0.26

26The factor of three is due to the fact that the volume of a triangle is shared by
three vertices.



Figure 6.4: Two spatial triangulations approximating an ellipsoid: we
have marked several vertices on the first and coloured the triangles of
the second according to how often they connect to them through 13-
simplices.

Putting At = 1 we therefore arrive at our discrete definition

77,13(”[})

K(v):=3 2 ()

-1 (6.24)

In a CDT simulation we can easily measure the expectation
value (K (v)) and the correlations (K (v)K (v')). This we have
done for triangulations Ty = T; consisting of 1600 triangles
approximating a round 2-sphere and various values of the cou-
pling k3. We find that the (K (v)) for all vertices v are distributed
closely around zero, however, at the level of individual vertices
there are systematic deviations from zero of the order 0.05. This
means that to large extent the expectation value (n;3(v)) for the



number of 13-simplices at a vertex v is determined by its degree
na(v), but that the further structure of the triangulation around v
also has a small but statistically significant influence. To correct
for these systematic deviations in the correlations, we will from
now on subtract from (K (v) K (v')) the small quantity (K (v)) (K (v'))

To test (6.21) we need to expand K (v) in terms of eigenmodes
¢; of the Laplacian on Ty. A natural discretization of the Lapla-
cian acting on real functions with support on the vertices is given
by

(AN©) = > (F©) = f(v), (6.25)

where the sum is over the vertices v’ adjacent to v. This Laplacian
is self-adjoint with respect to the inner product

(e = 32 p0) ), 626)

v

Numerically we can easily find the eigenvalues A; of A on T and
the corresponding normalized eigenmodes ¢;(v).” Recall that
we should exclude the constant eigenmode ¢, corresponding to
Ao = 0, as we are only interested in the non-constant modes. We
can now express the modes of K as

K; = (¢i, K),. (6.27)
First of all we find that to high accuracy the matrix (K;K;)
2

is diagonal, so we can restrict our attention to the values (K7).

?The  continuum  eigenvalues on  the unit sphere  are
0,2,2,2,6,6,6,6,6,12,12,.... Up to an overall factor the eigenvalues \;
on T closely approximate these, at least for small i.




According to the ansatz (6.21), if we plot \;/(K?) against \; we
should get a straight line. We have done this for three different
values of the coupling k3 in figure 6.5a showing the first 24 eigen-
values. At least for couplings k3 < 1.5 we observe a good linear
behaviour. According to (6.21) the effective coupling A is related
to the value £ at which the linear fit intersects the horizontal axis.
Using the fact that on a round 2-sphere the scalar curvature R
in the continuum coincides with the first couple of eigenvalues
)\1 = /\2 = /\3 we find

A=1- % (6.28)
The special value A = 1/2, at which point the metric G\ becomes
indefinite, occurs when £ = Ay, i.e. when the fluctuations in the
lowest modes diverge, (K7) — oo. The dependence of A on the
coupling k3 is shown in figure 6.5b.

Several remarks are in order. First of all, as far as the trace
of the extrinsic curvature is concerned, our measurements agree
with the ansatz that the system is effectively described by a gen-
eralized Wheeler—DeWitt kinetic term with parameter A\. We see
that the observed phase transition corresponds to A approaching
the value 1/2 at which G, becomes degenerate. Now we can also
understand the two phases from the effective action (6.16): in
the phase A\ < 1/2 the configuration fluctuates around isometric
identifications f, while for A > 1/2 the minimum is obtained by
maximizing the change in conformal factor. Qualitatively it is
clear that such a minimum can be achieved by a Dirac delta-like
volume distribution, which is what happens in our simulations
for ks > kj.

There are a number of drawbacks to this approach. Fore-
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Figure 6.5: (a) The autocorrelation (K?) of the Fourier modes K; com-
pared to the eigenvalues \; for different values of ks = 0.4, 0.8, 1.2 (the
top curve corresponds to ks = 0.4). Solid lines correspond to best linear
fits. (b) The parameter X extracted from best linear fits as function of
the coupling ks.

most, our determination of A rested upon the fact that the am-
plitude of the extrinsic curvature fluctuation is not completely
scale-invariant. The scale invariance is broken by the appearance
of the curvature of the 2-sphere. To determine X we use the devi-
ations at the global curvature scale, which is necessarily a small
energy scale. In figure 6.5a we determine )\ by fitting a straight
line to only the first few eigenmodes, and especially for small k3
the fits are hardly distinguishable from intersecting the origin,
leading to large error bars. Increasing the system size does not
significantly improve the results, because the curvature scale will
decrease accordingly.

A second drawback is that we cannot directly compare these
results to unconstrained CDT simulations. In particular, there is
no straightforward way to relate the single coupling ks we have



here to the two couplings k¢ and ks that we usually have. One
way to relate the systems is to look at the number of 22-simplices
per spacelike edge. In other words, we use the 1-to-1 map in
figure 6.3b. However, it turns out that this quantity depends
sensitively on the local structure of the boundary triangulations
we put in by hand.

In the next section we pursue another approach, which does
not suffer from these two problems, by attempting to verify the
local correlation (6.13) directly.

6.3 Regular torus boundary

In the following we will consider CDT configurations with more
than one time slice. We will take the time extent large enough
for the fluctuations at the initial boundary not to be influenced
any more by the presence of the final boundary. Our simulations
are performed with T' = 6 time slices, but we have observed that
the results we obtain are already qualitatively present with just
T=2.

We are interested in the regularized extrinsic curvature Kup
which measures the change in geometry when we go from the
initial boundary at ¢ = 0 to the first spatial triangulation at ¢ = 1.
We have seen that the trace K can be quite easily probed, since
it measures local volumes. The traceless degrees of freedom are
much harder to probe: basically one has to define some region
in the initial boundary, translate it to ¢ = 1 and then measure
how its shape has changed. We have so far not been able to
define sensible local observables that do this directly. However,



we do have an indirect probe of this change in geometry, namely,
through the extrinsic curvature at the boundary when we view
the triangulation as a piecewise linear manifold.

It is not hard to see that the extrinsic curvature of a two-dim-
ensional triangulation, embedded in three dimensions, is a dis-
tribution with support on its edges (see also [31]). More precisely,
suppose we choose Cartesian coordinates z*, 22 in the neighbour-
hood of an edge, such that the edge is given by n,z® = 0 with n®
a unit normal to the edge, then the extrinsic curvature is given by

Kap = (0 — m)0(naz)nans, (6.29)

where § is the exterior angle at which the planes meet in the
three-dimensional triangulation. In a CDT configuration the an-
gle 6 at an edge e is up to a constant proportional to the number
of 22-simplices n92(€) connecting to e (see figure 6.6a). As a con-
sequence, the extrinsic curvature tensor K, is determined by the
function naz(e) on the edges. Therefore, in the CDT model, the
ne2(e) are the natural quantities to study in order to learn about
the dynamics of K.

We would like to identify this K,; with the regularized extrin-
sic curvature K, from section 6.1, but it is clear that the numbers
of 22-simplices at every edge do not completely determine the
geometry at t = 1. However, we expect large-scale features of
the geometry to be reflected in these quantities. For example, a
geometry elongated in a certain direction will have on average
more 22-simplices at edges with normals pointing in that direc-
tion than at other edges. In the following we will assume that
the two extrinsic curvatures are indeed related to each other. We
have to keep in mind though that it is possible that the relation
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Figure 6.6: (1) The extrinsic curvatures at the indicated edges differ
by two units. (b) If we identify the opposite sides of this parallelogram
we obtain a regular triangulation of the torus. A constant mode on this
triangulation is one that assigns the same value to edges of the same
colour.

may involve a mixing of the trace and traceless parts of the two-
tensor. To illustrate this, notice that the extrinsic curvature cor-
responding to a 22-simplex signals an expansion in the direction
perpendicular to the edge to which it is attached. If we consider
what a 22-simplex means for the change in geometry when we
go from ¢t = 0 tot = 1, we see that in addition to the expansion
there is a contraction in the perpendicular direction, which is not
taken into account in K,; but does appear in Kap. A consequence
of this mixing is that the value of 1/2 — \ gets effectively rescaled,
since it measures the ratio of the autocorrelation of the trace and
traceless parts of the extrinsic curvature. With these considera-
tions in mind we will simply take (6.13) as ansatz for the discrete
extrinsic curvature K.



Figure 6.7: Illustration of the correlation C(e,e') for a fixed edge e
and couplings ko equal to 2.5, 4.5 and 5.2 respectively (the highest
peaks correspond to the autocorrelation C(e, e)).

The ansatz (6.13) predicts that the extrinsic curvatures only
correlate ultra-locally and the parameter A tells us how their cor-
relation depends on the relative orientation of the measurements.
Upon discretization the correlation cannot remain ultra-local: if
noz(e) would only correlate with itself we would never get a
non-trivial correlation between extrinsic curvatures in different
directions. In general, when discretizing a local continuum oper-
ator one always obtains errors proportional to higher-derivative
terms. However, these higher-derivative terms will scale with
the cut-off and therefore generically disappear in the continuum
limit. To get an idea of the non-locality of the correlations we
have measured

Cle,€¢') = (na2(e)naz(e’)) — (naz(e))(n2a(e)) (6.30)

for various choices of boundary triangulations. In figure 6.7 re-
sults are shown for simulations in which we took the boundaries
to be regular triangulated flat tori.



In general we find that C(e, ¢’) is non-zero only for edges €’
in a finite neighbourhood of e.2® The size of this neighbourhood
grows with increasing coupling & but is insensitive to the system
size. This means that in the infinite-volume limit, while keeping
ko fixed, only the ultra-local part survives. When the triangula-
tion approximates a flat geometry we can extract this ultra-local
part by measuring the correlation of the spatial averages of the
extrinsic curvature components. According to the ansatz (6.13),
we should find

< / d*z\/gKap(2) / d%’\/chd(x')> o G- (6.31)

To minimize the ambiguity of determining this spatial average
we take the boundary to be a regular triangulation of the torus
(see figure 6.6b). The 22-simplices contribute to the spatial av-
erage of K, according to the orientations of the edges they are
connected to. If we denote by nl,, n3, and n3, the numbers of 22-
simplices connected to the red, green and blue edges respectively
(see figure 6.6b), we have up to an overall factor

3 V3(,2 _ .3
/d2$\/§Kab x < \4f( % +n2§) 1 ! (711222 7122)3 )
Y2 (n3y —ndy) nyy+ 1(n3y +ndy)

(6.32)

2For edges e and e’ far apart C(e, e’) is not exactly zero but equal to some
small constant value C. This non-local correlation is an artefact of our simulation
set-up. For computational reasons we fix the total number of tetrahedra in the
triangulation. This restriction leads effectively to an autocorrelation of the total
number of 22-simplices in the first slice. We can compensate for this effect by
determining C and subtracting it from C(e, e’). Near the phase transition the
correlation distance becomes of the order of the system size making it hard to
determine Cy. In that case it is easier to determine and subtract the constant from
the inverse of C(e, €’).




This allows us to express (6.31) in terms of the correlations of nj,,

40+1
22 -1

(nbond,) ox 669 —1 —2u = 667 — (6.33)

We have used (6.33) to determine A for a system with bound-
ary triangulations consisting of 768 triangles and a fixed total
number of 15000 tetrahedra. The results for various values of
the coupling £, are shown in figure 6.8. The behaviour of A as
one approaches the phase transition is qualitatively similar to
what we observed in the single-slice simulations (figure 6.5b).
Close to the phase transition the system is dominated by fluc-
tuations in the conformal factor. These fluctuations affect all di-
rections equally and therefore lead to a correlation matrix which
is direction-independent. From examining equation (6.33), this
corresponds to the limit A — 1/2. One can also see this hap-
pening in figure 6.7: the colour asymmetry in the correlations
decreases for increasing ko, which is mainly due to the decrease
of the autocorrelation C(e,e). If we were able to make sensible
measurements at the phase transition, the corresponding plot
would show a correlation C'(e, e’) between the edges e and €’ that
depends only on the distance between e and e’ and not on their
relative orientation. Of course, we observe finite-size effects in
our system when we approach the phase transition and should
therefore not trust the measurements for kg 2 5.2.

6.4 Conclusions

In this chapter we have again put to the test the ansatz that the
geometries in CDT are effectively described by an action with
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Figure 6.8: Values for X determined from the correlations of the num-
bers of 22-simplices in different orientations at a reqular torus boundary
with 768 triangles.

a kinetic term given by the generalized Wheeler-DeWitt metric
Gx. We find for different configurations that the fluctuations of
the geometry near a fixed boundary are well described by G,
with appropriately chosen value A. This should not come as too
much of a surprise, since the form of the (generalized) Wheeler—
DeWitt supermetric is the most general local supermetric one can
form from the metric without derivatives. Its prediction for the
extrinsic curvature correlations (6.13) corresponds to the simplest
tensor operator that we can construct from the spatial metric.
Of course, curvature terms could be involved but they would
only produce corrections in regions where the spatial metric is
strongly curved. Such corrections could provide non-trivial in-
formation about the effective action, but numerically it is hard to



distinguish their effect from corrections due to the discretization.
We chose to restrict to spatial geometries with approximately
constant (zero or small) curvature to prevent such corrections
from interfering with the measurements. In any case, we have
learned in this chapter how to make contact between continuum
extrinsic curvatures and observables in CDT.

The values of X that we extract from the measurements put
non-trivial restrictions on the effective action. We cannot com-
pare directly the results from the single-slice configurations in
figure 6.5b to the results in figure 6.8 from the last section, be-
cause of the different couplings involved. However, we can com-
pare the latter to the values of A that we obtained in chapter 5
from the moduli correlations. The curves in figures 5.8b and
6.8 differ roughly by a factor of four in 1/2 — ), a discrepancy
which has remained after a careful check of all calculations. The
conclusion at this stage is that this must be due to the approx-
imations and non-trivial discretizations we had to make, some
of which are known to have a significant effect on the overall
normalization of 1/2 — A (see for instance appendix D).

Qualitatively, though, all three plots (figures 5.8b, 6.5b, 6.8)
lead to the same conclusion. As one approaches the phase transi-
tion in CDT, the strength of the kinetic term of the conformal fac-
tors decreases faster than that of the traceless modes of the spa-
tial metric. This leaves open the possibility that near the phase
transition an approximate spatial conformal symmetry appears,
which might bring back the number of local physical degrees of
freedom from one to zero, assuming that such a degree of free-
dom is indeed present. A hint in this direction comes from the
fact that beyond the phase transition, at least for spherical spatial



topology, the spatial triangulations completely decouple. In that
case we are left with a number of independent two-dimensional
dynamical triangulations, which we studied in chapters 2 and
3. These models are known to possess conformal properties and
their continuum limit is rather well understood. Whether any of
these properties survive when the coupling is lowered across the
critical point is at present unknown.



CHAPTER 7

Shape dynamics in 2+1
dimensions

Our attempts to find an effective description of the large-distance
limit of CDT have led us to consider actions with a symmetry
group different from general relativity. If the continuum actions
of the metric introduced in section 5.3 capture correctly the de-
grees of freedom of CDT, a more natural symmetry group to con-
sider is the group of foliation-preserving diffeomorphisms. In the
Lorentzian setting actions that break the refoliation symmetry of
general relativity are usually deemed unphysical, especially in
the light of recent tight bounds on variations in the speed of light
[50]. In this chapter, however, we will show that a reduced dif-
feomorphism symmetry is not necessarily in contradiction with

This chapter is based on [33].



general relativity, if an additional symmetry group is present to
maintain the correct number of physical degrees of freedom.

We will show that, without changing the classical content of
the theory, the refoliation symmetry in general relativity can be
traded for spatial conformal symmetry, at the expense of locality.
This is achieved by a model called shape dynamics, which was
introduced as a reformulation of general relativity in 3+1 dimen-
sions in [58]. Its development was inspired by Dirac’s work [44]
on the constant mean curvature (CMC) gauge, York’s method for
solving the initial value problem [90, 109, 110] and Machian ideas
developed by Barbour and collaborators [21, 25].

Let us outline the basic idea behind shape dynamics in d 4 1
dimensions. In the canonical framework of general relativity, dy-
namics takes place in the ADM phase space I'apym, in which a
point corresponds to a pair consisting of a d-dimensional metric
and its momentum density. The symmetries in the ADM for-
malism are given by the Hamiltonian constraints S(x), which
generate refoliations, and the diffeomorphism constraints H,(x),
which generate spatial diffeomorphisms. Space-time solutions
correspond to gauge orbits within the constraint surface in phase
space. A convenient way to identify the gauge orbits is by gauge
fixing. To do this we consider another set of constraints for which
the constraint surface intersects each of the gauge orbits exactly
once. The additional constraints turn all of the original first-class
constraints into second-class constraints and by solving these we
end up with the reduced phase space of general relativity. A
particularly useful and well-studied gauge for the Hamiltonian
constraint is the so-called constant mean curvature (CMC) gauge
C(z). This gauge-fixes all but one of the Hamiltonian constraints



Figure 7.1: The volume-preserving conformal constraint C(z) = 0 as
a gauge fixing for the refoliation symmetry generated by (all but one of)
the Hamiltonian constraints S(x).

S(z), therefore leaving only a global time evolution. In addition
to being a good gauge fixing the CMC constraint has the inter-
esting property that it generates volume-preserving conformal
transformations, which is illustrated in figure 7.1. Notice that
there is an apparent duality present in figure 7.1: we can view
the CMC constraints as gauge fixing for the refoliation symme-
tries, but just as well view the Hamiltonian constraints as gauge
fixing for the conformal symmetries. This duality has been made
precise in the case d = 3 in [58, 59] and the resulting dual the-
ory is referred to as shape dynamics.”® 1t is defined by a set of
first-class constraints on the ADM phase space: a global Hamil-
tonian Hgp, the volume-preserving conformal constraints C'(z),
together with the usual diffeomorphism constraints H,(x).

The explicit construction of the shape dynamics Hamiltonian,

2 For details and background on shape dynamics we refer to the PhD theses by
Gryb [60] and Gomes [57].



however, requires the general solution of a partial differential
equation, which is equivalent to partially solving the initial value
problem of general relativity using York’s method. This is a seri-
ous complication, which introduces nonlocalities into the Hamil-
tonian and obstructs many straightforward investigations. To
learn about shape dynamics it is therefore valuable to consider
exactly solvable non-trivial gravitational models. This provides
the main motivation for this chapter: we consider a non-trivial
model in which shape dynamics can be constructed explicitly
allowing us to study its generic features.

The probably best-known example of a non-trivial exactly solv-
able gravitational system is pure gravity on the torus in 2+1 di-
mensions [35, 36, 83, 85]. The technical reason for the simplifica-
tions in this model is two-fold. First, one is able to solve the initial
value problem of ADM gravity explicitly on the torus. This is
important for the construction of classical shape dynamics and
occurs only on the torus and the 2-sphere’ Pure gravity on
higher-genus surfaces is more intricate since we lack methods
to solve the initial value problem in general. Second, the phys-
ical, reduced phase space (after solving for initial data) is finite-
dimensional, which is a generic feature of pure gravity in 2+1
dimensions. This is important for quantization, because a finite-
dimensional system admits generic quantum theories, while non-
trivial quantum systems with infinitely many degrees of freedom
are sparse.

The plan for this chapter is as follows: we start with the ex-

30The sphere is a degenerate case, since it admits only one canonical pair of
degrees of freedom (the volume and the mean extrinsic curvature). This leaves
only the de Sitter solution which contains no interesting dynamics.



plicit construction of pure shape dynamics on the torus in section
7.1 and demonstrate its equivalence with general relativity using
the method of linking gauge theories. The trading of refoliation
invariance for local spatial conformal invariance turns all local
constraints into phase space functions that are linear in the mo-
menta, while the remaining shape dynamics Hamiltonian turns
out to formally coincide with the reduced phase space Hamilto-
nian, which at large CMC-volume becomes the conformal con-
straint that changes the total volume. In section 7.2 we consider
shape dynamics on a higher-genus surface, which does not ad-
mit straightforward solutions to the initial value problem. In
this sense the problem of nonlocality for higher genus is closer
in spirit to that encountered in higher dimensions. We attack
this problem by constructing a perturbation expansion and re-
cover a fully conformal theory in the large-volume regime. We
find that at large volume the generically nonlocal Hamiltonian
becomes the integral over a local density and turns again into
the conformal constraint that changes the total volume. We then
use the classical results to formally quantize shape dynamics on
the torus in section 7.3. Due to linearity of the local constraints,
one can implement them at the quantum level and thus formally
quantize the analogue of the Wheeler-DeWitt equation, with in-
finitely many degrees of freedom. In this construction we refrain
from giving a complete description of the Hilbert space, which
would require to solve additional measure-theoretic problems.



7.1 Equivalence of general relativity and
shape dynamics

In this section we establish the equivalence between general rel-
ativity and shape dynamics on the (2 + 1)-dimensional torus uni-
verse by explicitly constructing the linking theory relating the
two. For simplicity we assume a positive cosmological constant
A. We start with the general construction of the linking theory be-
fore focusing on the torus, which allows us, other than in higher
dimensions or even on a higher-genus surface, to explicitly work
out shape dynamics.

Our starting point is the ADM Hamiltonian on the usual ADM
phase space I' apas, expressed in terms of the metric gq5(x) and
its canonically conjugate momentum density 7% (z),

H = S(N) + H(),
S0 = [ &N (xGuear/Vlgl - Vigl (R -28)), (7.)

H(¢) = / d?2 7L gap-

Here Gubved = 1/2(Gacgvd + GadGve) — Gabged is the Wheeler-DeWitt
supermetric we have already encountered in section 5.3, and S
and H denote the ADM Hamiltonian and diffeomorphism con-
straints.

The central idea behind shape dynamics is to trade the local
Hamiltonian ADM constraints S(IN), which are quadratic in mo-
menta, for local constraints that are linear in momenta, because
linear constraints admit a geometric interpretation as generators



of transformations of the spatial metric. A priori there is an infi-

nite set of such constraints possible, all of the form T'[g; z) ., 7 (z),
where T'[g, ), denotes a local symmetric tensor constructed from
the metric and its derivatives. Arguably the simplest choice is

m(x) = gap(x)T(x), the generator of spatial conformal trans-

formations. However, we do not want to trade all Hamiltonian

constraints, but rather seek to retain one combination of the ADM

Hamiltonian constraints to generate classical dynamics. The sim-

plest choice to achieve this is to restrict oneself to those conformal

transformations that preserve the total spatial volume generated

by m(z) — (7)41/]g](x). This choice has the surprising feature

that one can prove that symmetry trading is always possible,

because the volume-preserving conformal transformations turn

out to generate York scaling.3! We do not know of any other gen-

erator that can be shown to always allow for symmetry trading,

but we also lack a uniqueness proof.

To perform this trading of symmetries we construct a linking
theory following the “best matching procedure” outlined in [24].
To best match with respect to conformal transformations that pre-
serve the total volume we consider the ADM phase space as a
subspace of a larger phase space I'c;t = I'apm x I'y, where I'y,
is the phase space of a scalar field ¢(z), whose canonically con-
jugate momentum density is denoted by 74 (z). The phase space
functions on I' 4 p s are naturally identified with those phase space
functions on T'.;; that are independent of (¢, 7). We can thus

31By York scaling we mean that the transverse parts of 7%® and 7 scale with
opposite conformal weights, which is important for having a unique solution
to the Lichnerowicz—York equation appearing in York’s method for solving the
initial value problem.



recover usual ADM gravity in this larger system by introducing
an additional first-class constraint

Qz) :=my(x) = 0 (7.2)

and add it smeared with a Lagrange multiplier p(z) to the ADM
Hamiltonian, which is now H = S(N) + H(§) + Q(p). Let us
now consider a canonical transformation from (gup, 7%, ¢, 74) to
(Gap, 11%°, ®,11,,) generated by the generating functional

F= /d2a: (gab(x)e%(m)ﬂab(x) + ¢(x)H¢(x)) . (7.3)

Here ¢ is defined in terms of ¢ by subtracting a spatial average,
which has a non-trivial dependence on the metric,

- 1

o(z) == ¢(x) — gl (e**) (7.4)

g
where we use the shorthands (f), = V! [ d%z+/[g[f and
V, = [d?z/|g]. Notice that we constructed ¢ such that the
conformal factor 2% preserves the total volume. The canonical
transformation of the elementary variables, which is generated
by (7.3), can be worked out explicitly,

yllh(x) - Gab(l‘) = 62&(T)yab(‘t>v .
) = T0) = e (1) 3 foll)g (@) ) (1),
o@) » @) = o),

mo() = Moa) = mp(@) =2 (n(@) - (M VIgl(a)),

(7.5)
using shorthand notation 7(z) = 7 (2)ga(x) and
(r) = V! [ A%z w(z). This transformation leads us to the con-



straints of the linking theory,

H = S(N)+H(E)+Qp),

{172¢

S(N) = [d*xN {ﬁ (W"’bgabndﬂ":d -1 (71' —(m)(1— cﬁé)\/H)Q + %71'2>
~ Vgl (Rlg] - 286 - 229 )],
HEE) = [dre (z0 = /gl (m) (1- %)) (Lee®y) (),
Qp) = [ dwp(a) (mo(x) =2 (n() = (m)/Igl()) )
(7.6)

where S(N), H(§) and Q(p) are obtained by applying (7.5) to (7.1)
and (7.2). One can check that after integrating by parts and using
Q@ = 0 the constraint H (&) turns into the usual form of the dif-
feomorphism constraint H(¢) = [ d?z (7% Lega, + m9Led). We
will use this form of the constraint below. The linking theory
thus contains the usual diffeomorphism constraint, a conformal
constraint that preserves the total 2-volume and a Hamiltonian
constraint that arises as a modification of the ADM refoliation
constraint.

7.1.1 Linking theory on the torus

We will now exploit some properties of two-dimensional metrics
on the torus, which we already encountered in previous chapters,
to simplify the constraints (7.6). We will follow [35, 36] where
possible. First of all, recall that all metrics on the torus are confor-
mally flat. The space of flat metrics modulo diffeomorphisms is
finite-dimensional and admits a convenient parametrization by
the Teichmiiller parameters 7; and 7.

To make this more explicit let us fix a global chart on the torus,
which allows us to uniquely identify any point with its coordi-



nates (x!,2%) € [0,1)2. In these coordinates we can decompose
an arbitrary metric gqp as

gab(z) = 2@ (£79) , (2), (7.7)

where A is a conformal factor, f a small diffeomorphism, i.e. a
diffeomorphism continuously connected to the identity, and g a
flat reference metric. We can make this decomposition unique by
requiring g to be of the form

le(l m ) 7.9)

2 2
To \T2 T{ + 73

where 7 = 7 + it denote the Teichmiiller parameters (as in
sections 3.1 and 4.3). There is a slight redundancy left in the de-
composition having to do with the fact that f is only determined
up to an isometry of g, i.e. up to translations in ! and z2. If we
require f to leave (0,0) invariant, we obtain a one-to-one map
between metrics on the torus and the data (), f, 7).

We can explicitly decompose the momentum density>?

1 _ _ _
7_(,ab — 672)\ (pab + §7T§ab + |§‘ (Dayb + DbYa o gachyc)> ,
(7.9)
in terms of a trace m, a vector field Y and a transverse traceless
tensor density (w.r.t. g), which we can explicitly parametrize by

Pt = 1 ((712 — T3)p2 — 2TiTop1 Top1 — 7'1p2> . (7.10)
2 Top1 — T1P2 D2

32All indices here are raised with the reference metric g, and D denotes the
covariant derivative with respect to g.



This decomposition is such that 7 is conjugate to 2A and p; is
conjugate to 7;.

Writing the linking theory constraints (7.6) in terms of A, f, 7,7, Y
and p we get

SN) = JaN |22 (4 (PY ) G ucial + (PY<) VD

=3~ (m/lgl1 - e2<®+*>>>2) 5 (2805 + ) + 28625+ |
= JdQJ‘ga (\/EAY{, + 162 D ( )+7T¢¢ a)
Q(ﬂ) = [ &ap() (mo(2) - 2 (m(@) — (M) /Gl(2)e @) ),

(7.11)
where we used the shorthand PY,;, = D,Y,+ DY, — Gap§°*D.Yy.

To complete the definition of a linking theory, we specify two
sets of gauge-fixing conditions,

¢(x) =0 forGRand my(z) =0 forSD, (7.12)

which we will now use to reconstruct general relativity and shape
dynamics respectively.

7.1.2 Recovering general relativity

To recover standard ADM gravity on the torus let us impose the
gauge-fixing condition ¢(zx) = 0 to the linking theory. To per-
form the phase space reduction from the extended phase space
to the ADM phase space, we need to fix the Lagrange multipliers
such that the gauge-fixing is propagated. Since the momentum
density 7, occurs only in the constraints @, we have to solve

0={Q(p), ¢(x)} = p(z) (7.13)



for the Lagrange multiplier p, which implies p = 0. The con-
straints () are gauge-fixed and drop out of the Hamiltonian,
which becomes independent of 7,. Hence, one can perform the
phase space reduction by setting ¢ = 0, p = 0 and 7, arbitrary™
in (7.6). The Hamiltonian on the ADM phase space thus reads

H=S(N)+ H(¢), (7.14)

where S(N) and H () are precisely the Hamiltonian and diffeo-
morphism constraint of general relativity in the ADM formula-
tion as given in (7.1). We note that we explicitly retained refolia-
tion invariance.

7.1.3 Recovering shape dynamics

To recover shape dynamics we employ the gauge-fixing condi-
tion my(z) = 0. We will see that the decomposed form (7.11)
of the constraints allows us to find the explicit shape dynamics
Hamiltonian through a phase space reduction (¢, 74) — (¢0,0).
To find this map we can use 74 = 0, so the () constraints become

Q) = [ dapta) (x@) - @Vgl@) 719

which implies that () is a covariant constant. Using this and
7y = 0, we find that the diffeomorphism constraint implies that

PYq(z) =0, (7.16)

33Had the constraints Q(p) not dropped out after gauge fixing p, we would
have had to solve @ = 0 for 74 to complete the phase space reduction.



which implies that the Hamiltonian constraint is independent of
Yo (). With these simplifications and plugging in the explicit
representations (7.8) and (7.10), we find

S(N) = [ay/JgIN (e GV E (3 + p3) — 57 (m)2 — 48) + 286+ V).
(7.17)
We see that the constraints S(N) would be solved if we were
able to choose 202 1 p2)
a($+x) _ T2(P1 D3 71
e 7<7T>2—4A' (7.18)
However, this is in general obstructed by the volume-preservation
condition

/ d2z+/]g]e2 N = V. (7.19)

This means that the constraints generating the refoliations are
not completely gauge-fixed by the condition 7y (z) = 0. It turns
out that among the infinitely many constraints S(/N') one remains
first class, which after phase space reduction becomes the shape
dynamics Hamiltonian Hgp. More concretely, there exists a lapse
Ny such that S(Ny) Poisson-commutes with 74, and satisfies the
lapse-fixing equation

{S(No), ms(x)} = F, (x) — 2 /g F,) = 0,
where Fiy = N( e 2SN (p? + p3) — |gle2 @V ()2 — 4A ) +VIgIAN.

(7.20)
If one imposes on Ny a normalization condition
[ d%z+/|g] [e2(4+) Ny = V, (7.20) has a unique solution. We want
to project out this first-class part S(Ny) from the full set of con-
straints S(z) to end up with a purely second-class set of con-
straints S(z) that we can solve. We can perform the projection in



different ways, but a particularly convenient way of doing this is
by defining

g(a:) = S(x) — S(Mo) \/ |§\(a:)62(q;(m)+”x)), (7.21)

which automatically satisfies S (No) = 0. Identifying Hsp = S(No),
we arrive at the modified Lichnerowicz—York equations
R 20,2 | 22
0=25(z) = \/@(6—2«#“) 2 (P12+ p3)
Aeﬂ@*ﬁﬂ2_4A+2%%
2

2A@+AD,
(7.22)

V:/de |g\62(‘£"’”\)7

which we need to solve for ¢? and Hgp. A solution is found by
taking ¢ + A to be spatially constant. More precisely, from the
second equation it follows that

A 1
d=-A+ V. (7.23)

Now Hgp can be easily determined from the first equation in
(7.22),

Hgp = ﬁ(p2 + p3) — v (<7r)2 — 4A) . (7.24)

2v T 2 ‘

Notice that to find Hsp = S(Np) we did not have to solve the
lapse-fixing equation explicitly. In this case we can solve (7.20)
straightforwardly using the fact that ¢ + \ is constant. The result
is simply Ny = 1. In general, however, the lapse-fixing equation



is quite complicated and we are lucky that we do not have to
solve it to derive the shape dynamics Hamiltonian (as we will
again see in section 7.2). As a constraint S = 0 is completely
equivalent to

S(a) — (S)V/]g](x) 2@ @) = g, (7.25)

which does not refer to a lapse at all.

The shape dynamics Hamiltonian Hgp (7.24) is exactly the
reduced phase space Hamiltonian constraint. The more familiar
Hamiltonian Hy, generating evolution in York time (7) (see e.g.
[35] section 3.3) is obtained by noting that the variable canoni-
cally conjugate to (r) is V. Therefore, by solving Hsp = 0, we

obtain
2 2
\/Pi + D5
Hyy =V =mg———=. 7.26
York 2 <7r>2 — A\ ( )

We can now perform explicitly the phase space reduction of
the linking theory and describe shape dynamics on the ADM
phase space through its total Hamiltonian and first-class con-
straints

H = NHgsp+ H(E)+C(p)

Hsp = 32(pi+pd)— % ((m)?—4A) 727)
H(¢) = [d2zn®Legap ’

Clp) = fdzxp(ﬂ—<7r>\/ﬂ>.

The gauge symmetries are spatial diffeomorphisms, conformal
transformations that preserve the total volume and global time
reparametrizations. Despite the different set of symmetries, the
equivalence with standard general relativity is obvious: the shape



dynamics Hamiltonian coincides on the reduced phase phase with
the CMC Hamiltonian, while the constraints C' provide the CMC
gauge-fixing conditions.

Although we know the shape dynamics Hamiltonian explic-
itly on the torus, it is instructive to observe that the shape dynam-
ics Hamiltonian constraint H can be expanded in powers of the
inverse volume, because it exhibits two properties that we can
investigate in more complicated models. This expansion is a sys-
tematic approximation to shape dynamics that is a good approx-
imation in an asymptotic large-volume regime, where V' — oo
while keeping the other degrees of freedom finite. In this regime
we find two important features of shape dynamics:

1. Asymptotic Locality: The leading order of the Hamilto-
nian, which becomes exact in the limit V' — oo, is
(m)2 —4A + O(V~2) =~ 0. As a constraint, this is equivalent
to

14 <<7T> - 2\/K) :/d2x (w(gc) —2VAy/ |g|(33)) ~ 0 for V — oo,
(7.28)
which is diffeomorphism-invariant as the integral over a
local density and by inspection invariant under conformal
transformations that preserve the total volume.

2. Full Conformal Invariance: Since the shape dynamics Hamil-
tonian constraint is asymptotically equivalent to
() — const. = 0, we can add it to the conformal constraints
C to obtain in the large-volume limit C'(z)+Hsp = 7(x)—cons:
which generates full conformal transformations, i.e., includ-
ing those that change the total spatial volume. This requires



us to interpret the shape dynamics Hamiltonian as a con-
straint, rather than a generator of physical dynamics.

Let us have a quick look at the 2-sphere. The linking theory
and phase space reduction can be performed following the same
steps as on the torus with two small modifications. Firstly, there
are no Teichmiiller parameters on the sphere, so there is only
one canonical pair of physical degrees of freedom (V' and (m)).
Secondly, the total spatial curvature does not vanish, but is equal
to 8. Shape dynamics on the sphere thus takes the form of (7.27),

except for the Hamiltonian, which is Hsp = —% ((m)? — 4A) — 8.

7.2 Higher-genus surfaces

On a higher-genus surface, we can still use the decomposition
analogous to (7.7) and (7.9), but the explicit construction of the
shape dynamics Hamiltonian constraint on the torus rested on
the explicit solvability of the modified Lichnerowicz-York equa-
tion (7.22). The Lichnerowicz—York equation on a higher-genus
surface (or in higher dimensions) is not explicitly solvable. We
thus restrict our construction of shape dynamics to an approxi-
mation scheme and consider an expansion that becomes exact in
the large-volume limit.>* Again, we follow [35, 36] when possi-
ble.

In genus g > 2 we can perform a decomposition analogous to

34Gee [23] for an analogous expansion.



(7.7) and (7.9),

) = O Ga(),

() = e (p(a) + Lg(@)n(a) + v/ [1(2)" (2)5 (@) PYoala))
(7.29)

where now we take the reference metric g to be of unit volume

[ d%z+/|g| = 1 and constant scalar curvature R. According to the

Gauss-Bonnet theorem, R is given by

R= —8m(g—1). (7.30)

Modulo diffeomorphisms the space of such metrics corresponds
to the genus-g Teichmiiller space, which has dimension 6g—6. No
simple explicit parametrization for g is known, so we will keep
the parametrization implicit.

We can again write the linking theory using the decomposi-
tion (7.29). The only difference compared to the constraints (7.11)
for the torus is the subtraction from S(V) of a spatial curvature
term.

When we impose the gauge fixing 74, = 0, we obtain the ana-
logue of (7.17),

2 _ _ _ab cd -
S(N) = fd2z/[q] N< 2<@+A)%_ Q2(d+N) (1) > A OA(G+N) —

(7.31)
Reusing our discussion for the torus, we construct the second-

class part Sof S according to (7.25),
S(x) = 5(x) — (5)V[gl(2) XD (7.32)

Identifying the remaining first-class constraint (S) with Hsp/V,
we obtain the modified Lichnerowicz—York equations for genus
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To simplify the notation let us define u = ¢ + A — ilnV and
p? = W. Then (7.33) can be written as

1
Vv

pge’m—%v <<7T>2 — 4N + 2HVSD> e 2Ap—R=0 and ()

(7.34)
In the following we will drop the subscript g and keep in mind
that averages (-) are taken with respect to g (except for (m)).

Equation (7.34) is nearly identical to the standard Lichnerowicz—
York equation in 2+1 dimensions. The only difference is that
we have a restriction on ;. To compensate for this we have an
additional constant Hgp to solve for. The existence of a unique
solution for ;1 and Hgp (as a function of gup, p®®, V and (7)) is a
direct consequence of the existence and uniqueness properties of
the usual Lichnerowicz—York equation.

The key simplification that allowed us to explicitly construct
shape dynamics on the torus is that there one can choose the
constant-curvature metric g, such that p? is spatially constant.
For genus 2 and higher the Lichnerowicz—York equation is much



harder to solve. However, we can already deduce some proper-
ties of Hsp by integrating expression (7.34),

Hgp = —%(w? —4A) - R+ %@26—2“). (7.35)

We have chosen our second-class constraints (7.32) in such a way
that the solution p will not depend on (7) (or A), and therefore
the same holds for the last term in (7.35). Hence, our choice is
special in that it produces a Hamiltonian quadratic in the mo-
mentum (7) conjugate to V.

7.2.1 Large-volume expansion

Although we cannot solve (7.34) explicitly, the modified Lichnerowi
York equation does allow for an interesting perturbative expan-
sion. Notice that the volume V' appears explicitly in (7.34) and
should be treated as a parameter when solving the equation. There-
fore we can try to find solutions y and Hgp expanded in powers
of 1/V and construct the shape dynamics in the infinite-volume
limit.* To do this we make the ansatz

o0 o0
="MV and Hsp= » HiV " (7.36)
k=0 k=—1

Looking carefully at (7.34) it follows that higher powers of V'
cannot occur. From the normalization (e?*) = 1 we get the re-
strictions () = 1 and (Q) = 0 for k£ > 0.

35This cannot be done easily in the reduced phase space approach, in which
also the volume itself has to be solved for in terms of g and the momenta.



The leading order of (7.34) is proportional to V and fixes H_; = -
At order V° the equation then reads

— QQHO - R + 2A lIl(QQ) = 0, (737)

which is clearly solved by Hy = —Rand Qy = 1. The Lichnerowicz—
York equation now becomes

%Hzlkg;[’ L+ Sp ) GRS 08) R+ A (143, §) =
(7.38)
If we define the polynomials Aj and By, as functions of € to €,
by36
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(7.39)
from (7.35) or from integrating (7.38) it follows that for k& > 1
Hy, = (p®A_1[9]). (7.40)

The order-V —* equation in (7.38) then allows us to solve {2, re-
cursively in terms of the Q;,1 <i < k, as

k
Q. =(A+R)! (—Ak1[ﬂ]p2 — ABj,_1[Q] + ZHsz;fz

(7.41)
where the operator A + R is negative definite and therefore has
a well-defined inverse.

In this way, we have obtained a general algorithm to solve the
modified Lichnerowicz-York equation order by order through

36The first few polynomials are Ag = 1, A = —Qy, A2 = —Q2 + Q%,
Az = —Q3 + 20109 — Q‘I’ and Bp =0, By = —Q%/2, By = Q%/?} — 010,



the recurrence relation (7.41) together with (7.40). We have calcu-
lated the first few Hj, explicitly, leading to a Hamiltonian

In general Hj, will be a function homogeneous in p? of order k.37

The expansion has features similar to a tree-level (Feynman
diagram) expansion with propagator (A + R)~! and source term
p?/V. To make this connection more explicit, let us view the
modified Lichnerowicz—York equation (7.34) as the Euler-Lagrange
equation of some action Sry. Such an action can be easily con-
structed,

Suylu H) = [ a%ey/G (ndp— R — (H = §) (2 = 1) = 1752,
(7.43)
where 1 is now viewed as an unrestricted function since the La-
grange multiplier

H = % (HSD - g((ﬂZ —4A) + R) (7.44)

37 As the Hy, are functions on the cotangent bundle to Teichmiiller space, one
might ask how natural they are from the perspective of Teichmdiller spaces. As a
partial answer we notice that H; = (p?) is related to the canonical Weil-Petersson
metric [100, 107], while Hy is closely related to its curvature [108].



enforces the constraint (¢?#) = 1 on variation. We can rewrite
(7.43) by singling out the quadratic part in y and H,

L _9. 1
Spy[u, H] = /sz\/ﬁ(u(A+R)u—2uH+R(§u3+ FTARED

HEu? +..) Le ™ 2) (7.45)
I . 5V p. .
The Feynman rules can be read off and we can find H (and there-
fore Hgp) by computing its tree-level one-point function. Notice
that the action (7.43) which we use to derive the Hamiltonian
is similar to that of two-dimensional Liouville gravity [56]. More
precisely, it is of the form of a Liouville action plus a perturbation
given by a source term proportional to p?/V.

Two remarks are in order. Firstly, we observe from (7.35) that
in the limit V' — oo the shape dynamics Hamiltonian again ap-
proaches a form that is equivalent to (7.28). The Hamiltonian
is thus asymptotically local and provides the volume-changing
generator of conformal transformations, so full conformal invari-
ance is asymptotically attained. Secondly, the first three terms
in the large-volume expansion (7.42) sum up to an expression
equivalent to the temporal gauge Hamiltonian S(N = 1), which
is local.

7.3 Dirac quantization in metric variables

To expose the difference between shape dynamics and general
relativity, we consider the Dirac quantization of pure gravity on
the torus in 2+1 dimensions in metric variables, usually referred



to as Wheeler-DeWitt quantization. For the sake of complete-
ness we first follow [35] and revisit the problems associated with
the nonlocality arising from the solution of the diffeomorphism
constraint in the Wheeler-DeWitt approach. Subsequently we
show how these problems are solved by trading local Hamilto-
nian constraints for local conformal constraints, which allows us
to perform a Dirac quantization program for shape dynamics.

7.3.1 Dirac quantization of general relativity on the
torus

Contrary to first-order variables, one cannot readily quantize gen-
eral relativity in metric variables even in 2+1 dimensions on the
torus and sphere. The reason is explained well in [35], which we
follow here. Using the standard decomposition of the metric and
momenta, we can solve the diffeomorphism constraints for the
transverse part of the momenta according to

-1
T--y(8+5) @R, 0
where k = 0 for the torus. To perform a Wheeler-DeWitt quanti-
zation, reference [35] chooses a polarization for which the config-
uration operators are given by functionals of the spatial metric
and formally considers a Schrodinger representation on wave
functions ¥[f, A; 7), which reduces to ¥[A; 7). Assuming that the
inner product is constructed from a divergence-free measure, we
can quantize the momenta by replacing 7 — — £ x and p** — —i5Z-
The diffeomorphism constraint on the torus still acts non-trivially




on the conformal factor, and its solution can be quantized as

Y;[7] = %A—l <e2*vi (6_2)‘;)\)) . (7.47)

This expression is plugged into the Hamiltonian and leads to
nonlocal terms in the Wheeler-DeWitt equation that are not prac-
tically manageable and lead to notorious difficulties in the Wheeler-
DeWitt approach [34].

7.3.2 Dirac quantization of shape dynamics on the
torus

We now follow essentially the same strategy as in the previous
subsection but for shape dynamics. We choose a polarization
where functionals of the metric are configuration variables and
formally consider a Schrodinger representation on functionals
Y[\, f;7), such that functionals of the metric are represented by
multiplication operators. We would like to specify a Hilbert space
by defining it as the space of square-integrable functionals with
respect to a measure DA D f d?7, but it is difficult to construct an
explicit measure D f on the diffeomorphism group, such that the
Hilbert space is separable and supports the diffeomorphism gen-
erators as essentially self-adjoint operators. We will thus refrain
from such a construction and rather assume that there exists a
measure D f such that the operators Uy, ¥ [A, f; T) 1= ¥ [fg A, foof;T)
are unitary. We will also assume that there is a measure DX such
that i [ d%zp(z) %(m) extends to an essentially self-adjoint opera-
tor for all smooth smearing functions p(z).



We seek a representation of the local constraints of shape dy-
namics, whose non-vanishing Poisson brackets are:

[H(E),C(p)} = C(Lep) and {H(&1), H(&)} = H(&1, &)).
(7.48)
We start with the local conformal constraint
7(z) — M J d®y7(y) = 0, which, taking into account the
aforementloned assumptions about the measure DA D f d?7, can
be readily quantized as

’ g |gle**™) b) o
2 (&( ) Vv /dzywy)> P\ f;7) =0, (7.49)

working in a chart where the components of g, are constant. The
solution to this constraint is that 1) depends only on the homoge-
neous mode of A(z). We can thus write the general solution to
the local conformal constraints as a wave function of ¢[f; V,7),
where V' denotes the spatial volume.

We now turn to the spatial diffeomorphism constraint. Expo-
nentiating the spatial diffeomorphism constraint to finite diffeo-
morphisms implies that for each small diffeomorphism fy there
is a unitary operator acting as the pull-back under a diffeomor-
phism,

U 2 [N, f;7) = 5N, foo fi7), (7.50)

where we assumed above that Uy, is unitary. The pull-back ac-
tion f;A on the conformal factor is the source of the nonlocal
terms that we encountered in the action of the diffeomorphisms
in the previous subsection. However, this action is trivial on
the space of solutions to the local conformal constraint, since



foV = V. We can thus easily impose the diffeomorphism con-
straint

UpLf;Vir) = ¢lfoo f;ViT) =9[f,V,7) (7.51)

for all diffeomorphisms f, which implies for solutions to the
local conformal constraint that ¢ [f; V, 7) is independent of f. We
thus find that the solution space to the local constraints of shape
dynamics consists of Schréodinger wave functions ¢(V, 7). We
would have ended up with an induced measure dp(V, 7) for these
functions had we specified an explicit measure at the beginning,
but due to the formal nature of our discussion, we do not have
such a result.

To proceed, we assume from now on that the wave functions
Y(V, ) are elements of the Hilbert space H used in reduced
phase space quantization [83]. We now consider the shape dy-
namics Hamiltonian Hsp = 73 (p} + p3) — V ((m)? — 4A), which
can be quantized on the factor #, that remains after solving the
linear constraints by replacing p; — —i52 and (1) — —i . This
leads to the quantum shape dynamics Hamiltonian

H=—73 (02 +02) + V2 (0% +4A). (7.52)

This is the covariant reduced phase space Hamiltonian [83]. We
thus confirmed the expectation of the last subsection that Dirac
quantization of shape dynamics should be equivalent to reduced
phase space quantization.



7.4 Conclusions

The true value of pure gravity on a torus in 2+1 dimensions is
that it is a non-trivial yet completely solvable model that exhibits
many of the features of more complicated gravitational systems.
It has thus established itself as a valuable testing ground for new
gravitational theories such as shape dynamics that one can use to
learn about the new theory. The main difficulty in constructing
shape dynamics is to obtain explicit expressions for the shape
dynamics Hamiltonian, which is generically nonlocal, on the full
ADM phase space, so we are mainly interested in obtaining an
explicit shape dynamics Hamiltonian.

The explicit (rather than formal) solvability of the initial value
problem on the torus (and 2-sphere) in CMC gauge is the techni-
cal reason for the explicit constructability of the shape dynamics
Hamiltonian on these topologies. We find that the shape dy-
namics Hamiltonian formally coincides with the reduced phase
space Hamiltonian and that this Hamiltonian is invariant under
diffeomorphisms and conformal transformations that preserve
the total volume. The difference between the two is that the
shape dynamics Hamiltonian is a function of the full ADM phase
space, which happens to functionally depend only on the image
of reduced phase space under the canonical embedding, while
the reduced phase space Hamiltonian is a phase space function
on reduced phase space itself.

Although we cannot construct the shape dynamics Hamilto-
nian on higher-genus Riemann surfaces explicitly, we can con-
struct it perturbatively, using an expansion that is suitable in a
large-volume regime. The leading orders of this expansion turn



out to coincide with the temporal gauge Hamiltonian.

The Hamiltonian is in general a nonlocal phase space func-
tion, but it becomes local in the large-volume limit. One finds
that the leading order in a large-volume expansion turns the Hamil-
tonian into the conformal constraint that changes the total vol-
ume, so full conformal invariance is attained in this limit.

Since all local constraints are linear in momenta, one can for-
mally quantize them as vector fields on configuration space as-
suming that there are measures which render them divergence-
free. Then gauge invariance implies that the wave function is
invariant under the flow generated by these vector fields, which
in turn implies that the wave function depends only on reduced
configuration space, which is finite-dimensional. The Hamilto-
nian depends only on operators that preserve the reduced phase
space, and thus Dirac quantization of the field theory is effec-
tively reduced to reduced phase space quantization.






CHAPTER 8
Conclusions and outlook

In this thesis, we have investigated the effective dynamics of
2d and 3d lattice gravity using a combination of analytical and
numerical methods. Measurements of various gauge-invariant
observables in chapters 2 to 6 have led both to non-trivial confir-
mations of anticipated results and to new insights into the large-
scale properties of the models.

The first observable we encountered was the shortest loop
length in chapter 2. Its distribution showed a very accurate scal-
ing with the two-volume in accordance with the predicted Haus-
dorff dimensions dj, = 4 for pure gravity and d;, = (3 + V/17)/2
for gravity coupled to matter with central charge ¢ = —2. Also,
the measured distribution of the moduli, which we introduced
as observables in chapter 3, were matched accurately to contin-
uum results. In this sense, two-dimensional dynamical triangu-
lations as an ideal testing ground for geometric observables has
lived up to its expectations. Some interesting questions remain



unanswered at present and might lead to further investigations.
Can we quantitatively explain the effect of matter fields on the
distribution of shortest loop lengths? What is the continuum
distribution of moduli in Liouville theory on higher-genus sur-
faces? How does the observable A[T], which we introduced in
section 5.3, scale with two-volume in dynamical triangulations?
More generally, can we understand better the fractal nature of the
two-dimensional triangulations in the harmonic embedding (see
figure 3.3)?

In chapters 4, 5 and 6 we studied a number of observables in
2+1 dimensions, with the main goal of understanding the semi-
classical effective dynamics of CDT. Contrary to the two-dim-
ensional models, we do not know what to expect of a poten-
tial continuum limit. An obvious starting point is to take other
approaches to quantum gravity in 2+1 dimensions as reference.
The classical theory of general relativity in 2+1 dimensions is
much simpler than its higher-dimensional counterpart due to the
absence of local degrees of freedom. As a consequence of the
topological nature, several attempts to quantize gravity in 2+1
dimensions have turned out, at least partially, successful (see
[35] for an overview and section 7.3 for an example of such an
attempt in the context of shape dynamics). These successes, and
the fact that CDT was introduced as a path integral quantiza-
tion of the Einstein—Hilbert action, led us to initially consider the
Einstein—Hilbert action as an ansatz for the effective description
of CDT. However, we soon encountered difficulties in compar-
ing the measurements of observables to this ansatz. In order to
make progress we had to be more open-minded concerning the
effective action and take seriously the preferred time foliation in



CDT. The measurements of the spatial volumes and the mod-
uli in chapters 4 and 5 allowed us to narrow down the form of
the effective action. We established the effective kinetic term for
the spatial volumes and the moduli, which turned out to be in
agreement with a kinetic term in the full effective action given by
the generalized Wheeler-DeWitt metric Gy in (5.15). In chapter 6
we demonstrated that such a kinetic term also describes well the
correlations of the extrinsic curvature at a fixed boundary.

These results seem to strengthen the connection between CDT
and Hofava-Lifshitz gravity already mentioned in the introduc-
tion. However, a direct comparison is non-trivial since we are
still in the Euclidean setting and our range of couplings A\ < 1/2
is unusual from the point of view of Hotava-Lifshitz gravity.

In chapter 1 we partly motivated the construction of large-
scale observables by emphasizing that they can help in the search
for a continuum limit. Throughout this thesis we have identi-
fied several such observables, but we have not yet seen a con-
crete realization of this idea. Instead, we have mainly focussed
on establishing effective descriptions of CDT models with fixed
system sizes. To obtain a continuum limit we should in some
way decrease the physical lattice spacing, both in the timelike
and spacelike direction. In the computer simulations this can be
done in principle by increasing the number N3 of tetrahedra (and
the time extent 7') and adjusting the CDT couplings such that
the dimensionless large-scale observables remain invariant. It is
unlikely that this will be possible in general with the small num-
ber of couplings that are currently available in the CDT action in
2+1 dimensions. Nonetheless, by way of an outlook, let us see
whether we can use the measurements we performed in chapter



5 to understand how the coupling ko should be adjusted with
increasing Ns.

A dimensionless quantity that can be directly extracted from
the correlation functions of the spatial volume V' () and the mod-
uli 7;(t) is®
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In section 5.3 we gathered evidence that this quantity in CDT is
well described by

fij(t) = 2(5 = X) (V()A(t)) 64, (8.2)

for some value of A, and A(t) is the curvature functional (5.31)
evaluated on the spatial metric. Keeping f;;(t) fixed, perhaps up
to rescaling of the time variable ¢, is equivalent to keeping the
product (3 — A) (V(t)A(t)) fixed. Recall that V(£)A(t) > 1lisa
measure of the deviation from flatness of the spatial geometry at
time ¢. A preliminary investigation has shown that, for fixed ko,
(V(t)A(t)) seems to grow with the spatial volume and therefore
with the system size N3. To keep f;;(t) fixed, 1 — A should de-
crease and we know that this can be achieved by increasing k.
This leads to the preliminary conclusion that, in order to preserve
the minisuperspace dynamics with increasing spatial lattice size,
the coupling ko should be increased towards the phase transition.
Notice that this is a necessary requirement; we have by no means
shown that it is sufficient.

38We write f;; () in this form to emphasize the direct relation to the correlation
functions. In line with the analysis in section 5.3 we could also have written f;; (¢)
in terms of the inverse correlators, which is more convenient from a numerical
point of view.



It would be interesting to understand whether this observa-
tion can be related to the conjectured scaling of A in Hofava—
Lifshitz gravity [67] (see [99, 102] for status reports). Also, the
analysis above can in principle be extended to CDT actions with
additional terms, like the Hofava-Lifshitz-like CDT action intro-
duced in [20].






APPENDIX A

Volume contained in baby
universes for c = —2

In this appendix we will show that the model of dynamical tri-
angulations coupled to conformal charge ¢ = —2 is not only
numerically convenient, but also allows some properties to be
investigated analytically. Here we will discuss baby universes
with neck size one and two, which were introduced in chapter
2. These baby universes are relevant in this chapter because they
contain precisely the triangles with zero area in the conformal
embedding in the Euclidean plane (see section 3.2). We will com-
pute the expected fractions (N, 1)/N and (N, 2)/N of triangles
contained in baby universes of neck size L = 1 and L = 2 re-
spectively, as N — oo. In terms of the dual 3-valent graphs we
will count the number of vertices contained in tadpole and self-
energy diagrams following the methods in [29, 41, 77].



The idea behind this computation is that for large N we can
treat subsystems in DT, like baby universes, in a grand canoni-
cal way, in the sense that these subsystems will feel a constant
cosmological constant ;.. The value of this constant is given by
the critical cosmological constant, i.e. the smallest value y for
which the grand canonical partition function Z(u) yields a finite
expected volume. In the case of ¢ = —2 it is given by u = log(8),
which follows from the asymptotics of the explicit expression for
the fixed-volume partition function (2.19),

1

2N =513

C(N)C (J;] + 1) : (A.1)

where C(n) represent the Catalan numbers

Cln) = (2”):(2”)! (A2)

n+1\n (n+ 1!’

The number Z; (N) of decorated triangulations with N trian-
gles and a boundary consisting of one edge is given by
N + 1)

Zy(N) = C(N)C (

5 (A.3)

for N odd, and Z;(N) = 0 for N even. Its generating function
Z1() is given by

Zi(p) = Y5y C(2k + 1)C(k + 1)e rFHD = Len (1 — yFy (=1, 1:2:64e721))
(A4)
in terms of the ordinary hypergeometric function o F.
In ¢ = —2 triangulations we have two types of dual edges,
those that are part of the spanning tree, which we will call dec-
orated edges and represent by fat lines, and those that are not,



which we will call undecorated edges and represent by thin lines.
If we denote the renormalized edges by an arrow, we can write
down a Dyson-like equation in which the blob represents Z; (1)
(see also [41]), namely,

| Fe o fe o
ke o

Hence we have for the decorated propagator Z*(u) and the
undecorated propagator Z. ()

Zi(p) = 1+2e7"Z1(0)Z;(n) (A.5)
Ze(p) = 1427 "Z1(u)(Z (1) + Ze(p)).- (A.6)

The solution is found to be

Z () = m and  Ze(p) = Z;(p)? = m
(A7)
The expectation values (n}) and (n.) for the number of triangles
per renormalized decorated and undecorated edge are
(1) = 2(ne) = — - log Z2 (1) = = log(1 — 2e~ Zy (). (A8)
e g \Ite du e du : .
Evaluating (A.8) at ;& = log(8) using Mathematica we find
(nf) =1/8 and (n}) = 1/4. In a renormalized triangulation with
Ny triangles we have exactly Ny — 1 decorated dual edges and
No/2 + 1 undecorated edges. If we denote by N, ; the number



of triangles contained in baby universes, including the triangle
attaching it to the dual edge, we have for large Ny

(Np.1) . 1 1
NO - <n€> + 2 <ne> - 17 (A‘g)
and hence B 5
(Noi) — (Np1) 1

N No+ (Ny1) 5 (A10
This is not exactly the number that we were looking for be-
cause the triangle attaching the baby universe to the dual edge is
technically not inside the baby universe. Hence, to obtain the ex-
pected volume (N, ;) contained in all baby universes we have to
subtract from (N, ;) the expected number o Ny of baby universes.
The expected number of baby universes per decorated dual edge
is

— &l plog(l =267 Zy () = (D (DT (3) - 1) /2= (225 - 1) /2,
(A.11)
and for an undecorated dual edge it is exactly twice this number.

Therefore we have
157

= —1. A12
7 32v/2 ( )
We conclude that
N, Np1)/Ny — 1 9 3
(Nou) _ WNo)/No=o Ly 9 3T 33919,
N 1+ (Np1)/Nog 5 5 42
(A.13)

From a Monte Carlo simulation of torus triangulations with
N = 25000 triangles we have established numerically
(Np1)/N = 0.13395 £ 0.00002.



Let us now turn to the case of baby universes with neck size
two. Above we normalized away self-energy diagrams that con-
sist of multiple tadpoles. Now we want to get rid of all self-
energy diagrams, which is actually slightly easier. We have to
consider two types of self-energies, Z3(p) for which the renor-
malized dual edge is decorated, and Z,(u) for an undecorated
renormalized dual edge.

Let Z;(N) be the number of decorated triangulations with N
triangles of a disk with boundary of two edges (of which we have
marked one edge). For N even we have

Z5(N) = C(N) jz:cw)c (];] _ k:) _ (V) (ZQV + 1)

(A.14)
and Z3(N) = 0 for N odd. Therefore its generating function is

o
Z3(u) = kZOC(Qk)C(k; +1)e 2 = By (i, Z; 3; 6462“> .
(A.15)
The undecorated renormalized dual edges also originate from
triangulations of a disk with a boundary of two edges. How-
ever, now the triangulation should be decorated with two dis-
joint trees which together span the dual graph and which are
rooted at the two boundary edges. Let Z3(NN) be the number
of such triangulations with NV triangles. We can find this number
by noticing that such a triangulation can be constructed from two
arbitrary trees and a pairwise gluing of the external lines of both
trees combined. However, we have to disregard the pairwise
gluings that do not result in a connected triangulation. Hence



we obtain

N
Zy(N) =Y C(k)C(N - k)C (JQV + 1)

=0

=

=Z1(N+1) - ZZ1(Z)Zl(N =1).
1=0

Its generating function becomes

2
1 11 _
Zo(p) = " Zy(u)—Z1(p)? = Zezu (1 —oF <—4, —;2;64e 2H>

4
(A.17)
Again we can calculate the expected numbers (n}) and (n.) of

triangles per renormalized edge at u = log(8), resulting in

d 3
N = ——logZ* = Al
(n2) g 8% =5, (A18)
d 512
= ——1 4 = - — ~ U.
(ne) 3108 22(0) = o (~ 0.9G8)19)

As a consequence the expected number (N, 5) of triangles con-
tained in baby universes with neck size two for large IV is given

by
(No2)  (ni)+5(ne) 212 — 3752

N 1+ (ng)+3(n.) = 675m2 —212

~ 0.46169248 .
(A.20)




This fraction is exactly the fraction of triangles that have zero
volume in a harmonic embedding of the torus in the Euclidean
plane. Again this value agrees with a Monte Carlo simulation of
torus triangulations with N = 25000 triangles which gave

(Ny.2)/N = 0.46167 + 0.00002 . (A.21)






APPENDIX B

Higher-genus moduli
measurements

The way we have set up the moduli measurements in section 3.2
allows for a rather straightforward generalization to surfaces of
genus h larger than 1.%° For such surfaces the complex structure
is characterized by the Teichmiiller space of complex dimension
3h — 3. Identifying explicitly 31 — 3 complex moduli parameters
is a difficult task and one which we will not pursue for gen-
eral genus. Instead, we will use a direct generalization of the
genus-1 moduli parameter 7 in the complex upper half-plane
H to matrices € in the h-dimensional Siegel upper half-plane
H}, known as period matrices [49]. The Siegel complex upper
half-plane Hj, consists of all symmetric complex h x h matri-
ces () with a positive-definite imaginary part. A period matrix

3 A method similar to the one described here has been previously employed in
a completely different context in [61].



corresponding to a surface is known to determine its complex
structure completely. For genus h < 2 we can identify Hj with
Teichmiiller space, but for h > 3 Teichmiiller space appears as
a non-trivial submanifold in H, (as is apparent from comparing
their dimensions).

In order to define the period matrix for a Riemannian mani-

fold we first have to choose a set of 2h closed curves ay, . .., ap, b1, . ..

that generate the fundamental group and satisfy
i(ai, aj) = ’L(bl, bj) =0 and i(ai, b7) = (Sij, (Bl)

where i(-, -) denotes the oriented intersection number. The space
of harmonic 1-forms is 2h-dimensional and it is possible to choose
a basis {«;, ;} dual to the curves a; and b; in the sense that

/aiﬁj:/biajzo and /aiaj:/biﬂjzaij. (B.2)

A complex basis of holomorphic 1-forms is given by
w; = oy + 1 *ay, (B.3)

where * is the Hodge dual. The period matrix (2 is then given by
2 = A7 B in terms of the matrices

Aij = / Wi and Bij = A Wi . (B4)
We can express these integrals in terms of the inner products
(as]ey), (i) B;) and (B;]5;) by using the Riemann bilinear rela-
tions [49], which state that any two closed 1-forms p and o satisfy

/z//// E5)



Therefore
Aij = 57;]‘ —|—Z/ ko = 51']' —|—Z'/*Oéi A ﬂj = 5ij — Z<Ozz|ﬁj> (B6)
and

B;; = z/ *xQU = i/aj A *a; = {0 ]ay). (B.7)
b

J

Another consequence of (B.5) is that

Jus o=l
kl/ﬁk/\*al/ak/\*ﬁ] /ﬁk/\*ﬁj/ak/\*az

h

> ailar) (BelB;) — (aul Br) (anlB)).

k=1

We can directly apply these formulae to DT piecewise linear
geometries by replacing «; and 3; by their discrete counterparts
and the inner product by the discrete one from (3.26). For genus
h =1 we used (B.8) to establish the normalization of the discrete
inner product leading to the expression for 2 = [7] in (3.24). For
genus h > 2 there is an overall ambiguity in the definition of
) because (B.8) is not exactly satisfied (up to an overall factor)
due to discretization artefacts. However, we expect (and have
confirmed numerically for genus 2) that for large random sur-
faces (B.8) is close to a multiple of the identity matrix with high
probability. In that case we can unambiguously normalize the
inner product and determine €.



The modular group SL(2, Z)/Z2, which acts on the upper half-
plane as in (3.9) generalizes to the action of the symplectic group
Sp(2h,Z)/Zs on the Siegel upper half-plane Hj;. Fundamental
domains can again be worked out but become increasingly cum-
bersome for larger genus (see e.g. [54]).

Finally, let us mention that our algorithm for generating ran-
dom DT surfaces coupled to ¢ = —2 conformal matter can be
extended straightforwardly to genus A > 2. The only missing
ingredient is a construction of a random unicellular map of genus
h. Here again we can use results from [38] where for any genus h
an explicit bijection is found between the set of unicellular maps
of genus h and a union of sets of unicellular maps of lower genus
with a particular number of distinguished vertices.



APPENDIX C

A bounded minisuperspace
action

We have seen in section 4.4 that, at least in the presence of time
reversal symmetry, the measured volume profiles agree qualita-
tively with classical solutions of the minisuperspace action

172 Vg
S[Vﬂ-i]:,ﬁ/dt< T{ + T3

———+ = 2AV | . C1
2V + A + ) 1)
By contrast, we observed in chapter 5 that the correlations in the
quantum fluctuations of the spatial volume and the moduli point
towards a minisuperspace action of the form*

e 2 | .2
SV, ] :I{/dt <pv+ Vi —sz +U(V)>, (C.2)
\% 2 15

“0We assume here that the prefactor A[g] appearing in (5.35) scales canonically
with volume and is independent of the moduli, i.e. A[g] oc V~1.



with an unknown potential function U (V') and p > 0. Obviously,
changing p from —1/2in (C.1) to p > 0 will have a large effect on
the classical solutions. However, in this appendix we will show
that any solution to (C.1) can be obtained from (C.2) with p > 0
provided that we choose an appropriate potential U (V). This
shows that an effective action of the form (C.2) is not necessar-
ily incompatible with our considerations concerning the volume
profiles in sections 4.3 and 4.4. Moreover, it leads to a natural
potential term that we may consider later in a more thorough
investigation of the effective action.

Let us for the moment assume that we have chosen boundary
conditions at ¢t = 0 and ¢t = 7" with non-zero spatial volume and
finite moduli.*! To find the classical solutions of (C.2) we first
solve the equations of motion for the moduli. Recall from section
4.3 that the momentum p = V /72 + 75 /72 defines a conserved
quantity and that the moduli evolution takes place on a geodesic
in the upper half-plane. Since p is proportional to the speed along
the geodesic, we have

/ dtm /

d(7( dt —— (C.3)
where d(-,-) is the hyperbolic distance in the upper half—plane
defined by the Poincaré metric. Using this relation, we can elim-
inate the moduli from the action (C.2), giving

S[V] = n/dt (,ovv + U(V)) + KW. (C4)
%0)

41 A more careful treatment is needed for degenerate boundary conditions, but
the results remain essentially the same.




Now suppose V;(t) is the solution to (C.1). Using this expression
one can show that V;(t) is also a solution to (C.2) if we choose

U(V) = —4pAV + % (C.5)

with the coupling o given by

d(r(0), 7(T))?
T 1 2"

(I deztzy)

We conclude that, as far as the classical solutions are con-
cerned, a change in p can be compensated by changing the strength
of a inverse-volume potential. However, this only holds at the
level of individual classical solutions. Given a set of solutions
to (C.2) as function of the boundary conditions, we can deduce
the value of p without knowledge of the potential U (V). The
simplest way to do this is by considering the limit 7" — 0, because
then the potential U (V') drops out of the equations of motion (see
also our discussion in section 6.1).

a=(1+2p) (C.6)






APPENDIX D

Moduli change under an
edge flip

In this appendix we will have a closer look at the discretization of
the functional Alg], introduced in section 5.3. In the continuum it
describes the expected change (squared) of the moduli 7;, as mea-
sured by the Poincaré metric, under a random metric deforma-
tion that is normalized with respect to the Wheeler-DeWitt met-
ric. A natural discretization is to define A’[T] to be proportional
to the expected change in the discrete moduli under a random
local update of the triangulation. To fix the proportionality con-
stant we demand that A’[T] evaluated on a regular triangulation
T with N triangles gives precisely A'[Ty] = 1/N. A convenient
random update move is the random edge flip, which we used in
our Monte Carlo simulations of 2d dynamical triangulations in
section 2.2. Let us see whether we can work out explicitly the
definition of A’[T] in terms of harmonic forms.



Figure D.1: Harmonic embedding before and after an edge flip.

Suppose we are given a triangulation T of the torus with N
triangles and harmonic 1-forms o' dual to a pair of generators
of the fundamental group. Let e be an edge of the triangulation
and denote by e the edge that appears after flipping e as in fig-
ure D.1. The harmonic 1-forms after flipping are denoted by a'.
With a slight abuse of notation, let us denote by o’ (€) the vector
connecting the initial and final vertex of ¢ in the old embedding
and likewise by @'(e) the vector connecting the initial and final
vertex of e in the new embedding. Then it can be shown that the
new inner product (a’, @’) can be expressed in terms of the old
one as

(@', a’) = (a*,a?) + a'(e)a’ (e) — a'(e)a’ (e). (D.1)

Hence, the change in the inner product can be deduced from the
geometries before and after the flip of the quadrilateral of which
e and ¢’ are the diagonals.

It follows from the derivation in section 3.2 that the flat met-
ric of the embedding space, which is characterized by the dis-



crete modular parameter 7, is determined by the inverse g;; of
g7 = (a', a?). Let us assume that the change §.¢% = (&%, a’)—(a, o
in the inverse metric under the edge flip is small compared to g/,
which will definitely be the case for N — oc. Then we can write
the quadratic displacement in moduli space using the inverse
Wheeler—DeWitt metric projected onto the traceless modes

|62 1. .. (1 1 Xl
= *56 K i i ild; — =3;iG; 68 . D.2
p 2 g 2(9 k91 + Yir9ik) 29]91@ g (D.2)

Using expression (D.1) we obtain

O _ L (e)ale)+a(@)a(@)? - (ale}a(@)(a(@)ale)), (DI)

2
TS 4

where the dot product refers to the metric g;;. This expression is
exact in the large-V limit, but not manageable in practice since
we need to know the geometry of the quadrilateral after the edge
flip. Therefore we apply an approximation: we replace & in (D.3)
by . Roughly speaking, this corresponds to neglecting the change
in position of the vertices in the embedding and only taking into
account the fact that the sum in the inner product is over a differ-
ent set of edges. To show that this is a reasonable approximation
we took a random triangulation with NV = 800 triangles and
computed for all possible edge flips the exact distance d(7,7’)
between the moduli 7 and 7’ before and after the flip. In figure
D.2a we have plotted these values together with the predictions
from (D.3) with and without the approximation &' = a'. We
observe that the approximation introduces a systematic but small
over-estimation.

The combined area a. of the two triangles sharing the edge e



[8eT| /T2 A'[To]

0.04 0.01

0.02 0.005

d(r,7') o
0.02 0.04 0 0.015 0.03

(@ (b)

Figure D.2: (a) For each edge e the predicted change |6.|/T2 of the
moduli is plotted according to (D.3) with (light) and without (dark) the
approximation & = o'. On the horizontal axis is the exact distance
d(r, ") between the moduli T and T’ before and after the edge flip. (b)
Measurements of the new A'[To) compared to the original A[To] in an
ensemble of dynamical triangulations with N = 5000 triangles. The
fit corresponds to A'[To] = 0.38A[Ty).

is given by

0. = Vel a@) (@@ ale) — @@ a@P. (D4

Therefore in the approximation o = &' we can write

|5:_72-| ~ 4a? + i(a(e)a(e) —a(e)-a(e)? (D.5)
2

The expected change of the moduli under a random edge flip
is obtained simply by taking the average of (D.3) over all 3N/2



edges e,

|67]2 2 5 1 B N
T Z {4% + Z(a(e).a(e) —a(@)-a(e)?. (D.6)

To complete our definition for A’'[Ty] we have to find the cor-
rect normalization of (D.6) by evaluating it on a regular trian-

gulation with N triangles. A straightforward calculation gives
|67|% /73 = 64/(9N?) and therefore we define A’[To] by

2
A = NI = 53 [of + f5lo(0)al) (o))

) (D.7)
This definition is a bit more complicated than the original A[T)]
we used in section 5.3, due to the presence of the second term and
the sum being over the edges instead of the triangles. The second
term tells us that among the triangles with a particular area the
ones that are far from equilateral have the most influence on the
moduli.

We have tested the relation between A’[Ty] and A[Ty] for an
ensemble of dynamical triangulations with N = 5000 triangles,
whose results are shown in figure D.2b. Up to statistical fluc-
tuations we find a relation A'[To] =~ 0.384[Ty]. We conclude
from this analysis that the discretization of A in terms of a sum
over squares of areas is quite robust up to overall normalization.
Luckily the normalization does not affect any results from section
5.3 other than a possible rescaling of 1/2 — A.

“We disregard the fact that some edges are not allowed to be flipped depend-
ing on the chosen ensemble of triangulations.






APPENDIX E

Poisson Delaunay
triangulations

Our treatment of CDT with fixed boundaries requires a method
of producing two-dimensional triangulations approximating a
Riemannian manifold. To approximate a flat torus we can sim-
ply start with a regular triangular lattice which we periodically
identify to obtain a triangulated torus. However, constructing by
hand triangulations approximating a curved Riemannian mani-
fold is non-trivial. To accomplish this we use a random lattice
technique known as Poisson Delaunay triangulation [28, 48, 69,
89].

Let us describe first the algorithm applied to a domain in the
Euclidean plane. By a Poisson process, we sprinkle the preferred
number of points into the domain with a probability density p.
Then we construct the corresponding so-called Delaunay trian-
gulation having these points as vertices. A Delaunay triangula-



Figure E.1: How to construct a Poisson Delaunay triangulation of the
sphere: 1. sprinkle vertices into the sphere, 2. construct the convex hull
of the vertices in R®, 3. replace the triangles by equilateral ones.

tion is a triangulation that satisfies for each triangle the condi-
tion that its circumscribed circle encircles no vertices other than
its own. Such a triangulation always exists and for vertices in
generic positions is unique [89]. In order to get a purely combi-
natorial manifold as required in CDT we simply throw away the
information about the edge lengths and regard every triangle as
being equilateral.

The procedure can in principle be generalized directly to two-
dimensional Riemannian manifolds. The sprinkling process is
now performed with respect to a probability density proportional
to the volume form. This density and therefore the number of
vertices must be large enough to ensure existence [81]. Moreover,
in order to obtain a good approximation we have to make sure
the average distance between nearby vertices is much smaller
than the curvature scale of the manifold.

Figure E.1 illustrates the Poisson Delaunay triangulation of a
constant-curvature two-sphere. Constructing the Delaunay tri-
angulation is particularly simple in this case because it is equiva-



lent to finding the convex hull of the vertices in R? (i.e. the shape
we would get by wrapping the vertices in plastic wrap, say).

We can use this Delaunay triangulation procedure also to pro-
duce triangulations of surfaces which are conformally related to
the sphere (and by the uniformization theorem any metric on
the sphere is). To see this, notice that the Delaunay conditions
on the triangulation only depend on ratios of distances between
nearby points. This means that the Delaunay triangulation is
insensitive to conformal transformations that vary little at the
discretization scale. The information about the volume form (or
the conformal factor) only appears in the sprinkling density p.
In particular, to construct a Poisson Delaunay triangulation of an
ellipsoid we only need to determine a function p : S* — R such
that ds? = p2dQ? is isometric to that ellipsoid.* Then we can use
this density to sprinkle points into 5.

In practice, to increase the quality of the triangulations, we
impose a requirement on the minimal distance between vertices
during the sprinkling process. Of course, in case of a non-constant
density p we should take this minimal distance to be proportional
to p~1/2 to maintain the conformal properties.

#3Using the relation between the conformal latitude and the latitude 6 of the
sphere, which is well-known by cartographers, we can find p. No expression
for p in closed form is known to us, but expanded in the eccentricity ¢ we have
p(0) =1—2sin?0e — %(9 + 23 cos(26)) sin2 0 * + O(€9).
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Samenvatting

Bijna honderd jaar geleden introduceerde Einstein de algemene
relativiteitstheorie van de zwaartekracht. Deze theorie kan gezien
worden als vervanging van de gravitatiewet van Newton, die
een instantane aantrekkingskracht beschrijft tussen twee punt-
massa’s. In de algemene relativiteitstheorie is er geen sprake
meer van directe interactie tussen massa’s op afstand. In plaats
daarvan wordt de zwaartekracht beschreven door middel van
een interactie met het zwaartekrachtsveld, op soortgelijke wijze
als het elektromagnetische veld de aantrekking tussen geladen
deeltjes beschrijft. Anders dan het elektromagnetische veld kan
het zwaartekrachtsveld opgevat worden als een fundamentele
eigenschap van de ruimtetijd; het beschrijft namelijk haar geo-
metrie. Massa veroorzaakt kromming van de ruimtetijd en deze
beinvloedt de banen van deeltjes die zich door de ruimtetijd be-
wegen.

Om dit te illustreren beschouwen we een versimpeld model
van de algemene relativiteitstheorie waarin we de tijd en één
van de ruimtelijke dimensies buiten beschouwing laten. In fi-
guur la zien we een voorbeeld van een tweedimensionale ruimte



(a) (b)

Figuur 1: (a) De baan van een deeltje wordt beinvloed door de krom-
ming van de ruimte. (b) Het tweespletenexperiment met een aantal
willekeurige banen van de bron naar een punt op het scherm.

met in het midden een gebied met kromming, bijvoorbeeld ver-
oorzaakt door een tweedimensionale massaverdeling. Merk op
dat we de derde dimensie hier enkel gebruiken om de krom-
ming te illustreren, maar dat deze verder geen fysische beteke-
nis heeft. De zwarte lijnen tonen mogelijke banen van deeltjes
die door de ruimte bewegen. De buitenste banen voeren door
nagenoeg vlakke ruimte en beschrijven daarom rechte lijnen, zo-
als we verwachten van deeltjes waar geen krachten op werken.
In gekromde ruimte beweegt een deeltje over een zogenaamde
geodeet, de natuurlijke generalisatie van een rechte lijn in een
gekromde ruimte. We zien in figuur 1a dat de geodeten door de
kromming kunnen worden afgebogen, alsof er een aantrekkings-
kracht werkt op de deeltjes. Echter, er is geen sprake van een
kracht in de gebruikelijke zin. De precieze banen van de deeltjes
worden enkel bepaald door de geometrie van de ruimte.

Hoe de ruimtetijd wordt gekromd onder invloed van een mas-



saverdeling wordt beschreven door de Einsteinvergelijkingen. Deze
vergelijkingen leggen echter niet de precieze geometrie van de
ruimtetijd vast. Net als het elektromagnetische veld interne vrij-
heidsgraden kent in de vorm van elektromagnetische golven, zo
heeft ook het zwaartekrachtsveld interne vrijheidsgraden. Deze
vrijheidsgraden zorgen ervoor dat zelfs in het vacuiim, dat wil
zeggen in afwezigheid van materie en andere krachten, de zwaar-
tekracht een niet-triviale dynamica kent. De dynamica van de
zwaartekracht, oftewel van de geometrie van de ruimtetijd, vormt
een belangrijk onderwerp in dit proefschrift. Dit kan zich mani-
festeren in zogenaamde zwaartekrachtsgolven, maar ook in een
tijdsevolutie van globale vorm van de ruimte.

De algemene relativiteitstheorie is een zogenaamde klassieke
theorie. Dit wil zeggen dat zij niet geformuleerd is in het raam-
werk van de kwantummechanica. De ontwikkeling van de kwan-
tummechanica bracht ongeveer honderd jaar geleden, misschien
nog wel meer dan de relativiteitstheorie, een revolutie teweeg
binnen de theoretische natuurkunde. Men ontdekte dat licht zich
in bepaalde situaties beter laat beschrijven in termen van deeltjes,
terwijl elektronen en protonen zich kunnen gedragen als gol-
ven. Een experiment dat duidelijk het golfkarakter van deeltjes
laat zien is het tweespletenexperiment in figuur 1b (we komen
straks terug op de getoonde paden). Deeltjes die door een dub-
bele spleet geschoten worden belanden op het achterliggende
scherm met een waarschijnlijkheidsverdeling die een interferen-
tiepatroon vertoont. De kwantummechanica levert een wiskun-
dige beschrijving van deze golf-deeltje-dualiteit.

In dit proefschrift maken we gebruik van het padintegraalfor-
malisme, een formulering van de kwantummechanica geintroduceer



door Feynman. In dit formalisme draagt elke mogelijke evolutie
van een systeem bij aan de waarschijnlijkheidsverdeling van de
uitkomst van een meting. We kunnen dit illustreren aan de hand
van het bovengenoemde tweespletenexperiment. Om de kans
te bepalen dat een deeltje op een bepaalde plaats op het scherm
terecht komt, beschouwen we alle mogelijke paden van de bron
naar dat punt, waarvan we er enkele hebben weergegeven in fi-
guur 1b. Aan elke baan kunnen we een complex getal toekennen
in termen van de zogenaamde klassieke actie van het deeltje. De
som van al deze getallen zegt iets over de kans dat het deeltje op
het betreffende punt terecht komt. Door deze berekening voor
verschillende eindpunten te herhalen kan het waargenomen in-
terferentiepatroon verklaard worden.

De kwantummechanica kan niet alleen toegepast worden op
individuele deeltjes, maar ook op hele velden zoals het elektro-
magnetische veld. In het padintegraalformalisme sommeren we
niet meer over alle mogelijke paden van een deeltje, maar over
alle mogelijke configuraties van een veld in de ruimtetijd. Het
resultaat is de kwantumuveldentheorie die een groot gedeelte van
de materie en krachten in ons heelal nauwkeurig beschrijft, zoals
samengevat in het standaard model van de elementaire deeltjes.
Echter, er is één grote afwezige in het standaard model en dat is
de zwaartekracht.

Tot op heden is het natuurkundigen nog niet gelukt om een
welgedefinieerde kwantumveldentheorie van de zwaartekracht
op te stellen. Het ontbreken van een theorie van de kwantum-
zwaartekracht is geen probleem als het gaat om het verklaren van
huidige experimenten. Bij experimenten in deeltjesversnellers,
zoals de LHC bij CERN, kan de zwaartekracht compleet ver-



waarloosd worden, omdat de andere fundamentele krachten vele
malen sterker zijn. In systemen waar de zwaartekracht wel een
belangrijke rol speelt, zoals in het geval van planeetbanen, zijn
doorgaans kwantumeffecten verwaarloosbaar en volstaat de (klas-
sieke) algemene relativiteitstheorie. Daarentegen is het niet uit-
gesloten dat in de toekomst experimenten zullen worden ont-
wikkeld die vatbaar zijn voor kwantumeffecten van de zwaarte-
kracht. Bovendien hebben we een kwantumtheorie van de zwaar-
tekracht nodig om de natuurkunde in de buurt van singularitei-
ten in de ruimtetijd beter te begrijpen, zoals in het vroege heelal
en in het binnenste van zwarte gaten.

De standaard methode om uitkomsten van observaties te be-
rekenen in de kwantumveldentheorie is door middel van sto-
ringsrekening of perturbatietheorie. Hierbij worden alleen veld-
configuraties meegenomen in de padintegraal die in een kleine
omgeving liggen van een klassieke configuratie (meestal het vacutin
Ondanks de inperking van het aantal configuraties levert de padin-
tegraal doorgaans oneindigheden op. Dit is gedeeltelijk te wijten
aan de onzekerheidsrelatie van de kwantummechanica: hoe kleiner
de lengteschaal waarop we een configuratie bestuderen, des te
wilder worden de waargenomen kwantumfluctuaties. Om de
kwantumfluctuaties in te perken, en daarmee tot eindige ant-
woorden te komen, kunnen we een regularisatie in de vorm van
een minimale lengteschaal introduceren in de padintegraal. Ver-
volgens kan men proberen de regularisatie te verwijderen en de
oneindigheden die weer tevoorschijn komen op te vangen door
middel van renormalisatie van koppelingsconstanten. Dergelijke
renormalisatie blijkt mogelijk te zijn voor alle velden in het stan-
daard model, maar niet zonder meer voor het zwaartekrachts-



veld.

In dit proefschrift benaderen we de kwantumzwaartekracht
zonder gebruik te maken van de perturbatietheorie, oftewel we
bestuderen niet-perturbatieve kwantumzwaartekracht. Dit bete-
kent dat we in principe alle configuraties van het zwaartekrachts-
veld in de ruimtetijd moeten meenemen in de padintegraal. Aan-
gezien het zwaartekrachtsveld de geometrie beschrijft van de ruim-
tetijd, komt dit neer op een sommatie over alle mogelijke geo-
metrieén. Net als in de perturbatieve kwantumveldentheorie is
een regularisatie noodzakelijk om zinnige antwoorden uit bere-
keningen te krijgen. Een manier om kwantumfluctuaties in de
geometrie op kleine lengteschalen te beperken is door de ruimte-
tijd op te bouwen uit elementaire bouwstenen. Het model dat we
in dit proefschrift beschouwen, genaamd dynamische triangulatie,
heeft als bouwstenen gelijkzijdige simplices. Dit zijn gelijkzijdige
driehoeken, tetraéders of 4-simplices, afthankelijk van het aantal
dimensies waarin we werken (zie figuur 1.1 in de introductie).
In twee dimensies betekent dit dat we de gladde ruimte, zoals
afgebeeld in figuur la, vervangen door een triangulatie opge-
bouwd uit gelijkzijdige driehoeken met een vaste afmeting. Met
een vaste hoeveelheid driehoeken kan slechts een eindig aantal
geometrieén gebouwd worden en daarmee zijn we in principe
verlost van de oneindigheden in de bijbehorende padintegraal.
Vervolgens kunnen we onderzoeken wat er gebeurt als we een
steeds groter aantal driechoeken nemen met een steeds kleinere
afmeting.

In twee dimensies hebben we de beschikking over een aan-
tal analytische methoden om de padintegraal over geometrieén
te lijf te gaan. Deze kunnen echter niet in elke situatie toege-



past worden en in meer dan twee dimensies zijn er nauwelijks
analytische methoden beschikbaar. Gelukkig leent dynamische
triangulatie zich bij uitstek voor numerieke simulaties. Na een
zogenaamde Wick-rotatie, die de tijd transformeert in een extra
ruimtelijke dimensie, kunnen we het kwantummechanische sys-
teem opvatten als een thermisch systeem. Dit geeft ons de mo-
gelijkheid om methoden uit de statistische thermodynamica toe
te passen op de padintegraal over geometrieén. Met behulp van
Monte-Carlo-simulaties kunnen we bijvoorbeeld willekeurige tri-
angulaties genereren die representatief zijn voor de complete ver-
zameling van geometrieén in de padintegraal. Door herhaalde-
lijk een meting van een zekere observabele te verrichten op een
willekeurige triangulatie en vervolgens deze metingen te midde-
len, krijgen we een goede benadering van de exacte waarde zoals
gedefinieerd door de padintegraal.

De voornaamste uitdaging bij deze methode is het identifice-
ren van goede observabelen. In dit geval komt een observabele
overeen met een algoritme dat op consistente wijze aan een tri-
angulatie een waarde toekent. Een eenvoudig voorbeeld van een
observabele is het totale volume van de ruimte, dat proportioneel
is aan het totaal aantal simplices in de triangulatie. Een belang-
rijk doel van ons onderzoek was het identificeren van nieuwe
observabelen waarmee we de globale dynamica van het model
kunnen onderzoeken. Deze dynamica kunnen we vergelijken
met de klassieke algemene relativiteitstheorie om vast te stellen
of ons model daadwerkelijk de zwaartekracht beschrijft.

In hoofdstukken 2 en 3 hebben we dynamische triangulaties
in twee dimensies bestudeerd. Hierbij hebben we ons beperkt
tot triangulaties met de topologie van de torus, oftewel trian-



Figuur 2: Enkele triangulaties die voorkomen in de padintegraal over
tweedimensionale geometrieén op de torus.

gulaties zonder rand en precies één gat, zoals in figuur 2. Een
interessante observabele voor dergelijke triangulaties wordt ge-
geven door de lengte van het kortste gesloten pad dat het gat
van de torus omcirkelt (zie de rechterzijde van figuur 2.5). In
hoofdstuk 2 hebben we met behulp van Monte-Carlo-simulaties
de verwachtingswaarde en kansverdeling van deze padlengtes
bepaald. Daarmee hebben we een vermoeden getest omtrent de
verdeling van babyuniversa, oftewel van lokale uitstulpingen in
de geometrie.

Een andere observabele, die een belangrijke rol speelt in het
gepresenteerde onderzoek, hebben we geleend uit de theorie van
Riemann-oppervlakken. Een bijzondere eigenschap van geome-
trie in twee dimensies is dat zij zich expliciet laat decomponeren
in een hoekgetrouwe geometrie en een lokale schaalfactor. Een
hoekgetrouwe (of conforme) geometrie op een ruimte bevat in-
formatie over de hoeken waarmee lijnstukken elkaar snijden maar
niet over de lengtes. De ruimte van geometrieén op de torus is
oneindigdimensionaal, terwijl de ruimte van hoekgetrouwe geo-
metrieén slechts tweedimensionaal is en geparametriseerd wordt



door een complexe parameter, die de modulus wordt genoemd. In
hoofdstuk 3 hebben we een algoritme beschreven om een modu-
lus toe te kennen aan een willekeurige triangulatie van de torus.
In simulaties hebben wij de kansverdeling van de modulus in de
padintegraal bepaald en overeenstemming gevonden met analy-
tische resultaten.

In hoofdstukken 4, 5 en 6 hebben we een model bestudeerd in
drie dimensies, waarbij de bouwstenen bestaan uit gelijkzijdige
tetraéders. Dit model, genaamd causale dynamische triangulatie
(CDT), is een aanpassing van de dynamische triangulatie waarbij
één van de dimensies aangemerkt is als de tijd. Op deze ma-
nier kunnen we de geometrie van de driedimensionale ruimte-
tijd beschouwen als een tijdsevolutie van een tweedimensionale
ruimtelijke geometrie. In hoofdstukken 4 en 5 hebben we met
behulp van simulaties de tijdsevolutie van het volume van de
ruimte en de hierboven beschreven modulus bestudeerd. Hierbij
zijn we tot de conclusie gekomen dat een directe vergelijking
met de algemene relativiteteitstheorie niet zonder meer moge-
lijk is. In plaats daarvan hebben we aan de hand van de simu-
latiedata een effectief model opgesteld. Dit model toont over-
eenkomsten met een alternatieve beschrijving van de zwaarte-
kracht, genaamd Hovava—Lifshitzgravitatie. In hoofdstuk 6 hebben
we een zeker aspect van het effectieve model nader onderzocht
door middel van metingen van kwantumfluctuaties in de geo-
metrie van de ruimtetijd dichtbij haar rand.

Tenslotte hebben we in hoofdstuk 7 de algemene relativiteits-
theorie in drie dimensies aan een nadere inspectie onderworpen.
De canonieke formulering van de relativiteitstheorie beschrijft de
ruimtetijd in termen van een tijdsevolutie van de tweedimensio-



nale geometrie. Het blijkt dat met een zorgvuldig gekozen tijd-
variabele deze tijdsevolutie hergeformuleerd kan worden puur
in termen van hoekgetrouwe geometrie. Dit heeft als voordeel
dat het oneindigdimensionale systeem in drie dimensies geredu-
ceerd wordt tot een eindigdimensionaal systeem. Bovendien lijkt
de algemene relativiteitstheorie in deze vorm beter aan te sluiten
bij het hierboven beschreven model van causale dynamische tri-
angulatie.
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