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Introduction

I Given some quantum gravity path-integral, how do we
determine its effective dynamics?

I Ultimately the only correct way is by studying microscopic
observables with a continuum interpretation!

I True for any approach, however in CDT one is constantly
reminded of this: measurement ⇔ algorithm that assigns
numbers to CDT configurations ⇔ observable.

I Succes story in CDT: spatial volumes as observables.

I Notoriously difficult to go beyond this, but necessary since we
believe that the true degrees of freedom in gravity have to do with
the shape of space.
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Challenges
I Construct observables that measure macroscopic shape in a

meaningful way.
I This is perhaps the hardest part. In fact: whole journals are

dedicated to shape recognition in medical imaging, computer
graphics, etc. However the random geometries in CDT are much
wilder.

I Construct a class of possible effective actions and work out for each
one exactly what correlations in the measurements it predicts.

I Determine the boundary conditions for the path integral that
maximize the information contained in the correlations.

I Try to match correlations to the effective actions (analytically or
numerically).

I will show how to overcome these challenges for a particular observable
in the case of CDT in 2+1 dimensions on the torus.
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I Introduction to CDT in 2+1 dimensions
I Previous results for spherical topology

I Effective actions for CDT
I Conformal mode problem
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I Introduce moduli as observables
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I Comparison with ansatz
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CDT in 2+1 dimensions

I Causal Dynamical Triangulation is a regularization of the Euclidean
path integral over geometries

Z =

∫
Dg

Diff
e−SEH [g ] → ZCDT =

∑
triangulationsT

1

CT
e−SCDT [T ].

I Triangulations T are built from equilateral
tetrahedra. The sum is over inequivalent
ways of putting them together.

I “Causal” in CDT means that we only
allow triangulations that are foliated by 2D
triangulations with constant topology.

I The Euclidean Einstein–Hilbert action
S [g ] = −κ

∫
d3x
√

g(R − 2Λ) evaluated on
the piecewise linear geometry leads to

SCDT [T ] = k3N3 − k0N0.
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Monte Carlo simulations
I The fixed volume partition function reads

Z (N3) =
∑

T

1

CT
e−k0N0 .

I The expectation value of an observable
O : T → O(T ) is given by

〈O〉N3 =
1

Z

∑
T

O(T )

CT
e−k0N0 .

I We use Monte Carlo methods to approximate these:

〈O〉N3 ≈
1

n

n∑
i=1

O(Ti ),

where the {Ti} is a large set of random triangulations generated by
applying a large number of random update moves satisfying a
detailed balance condition.



Monte Carlo simulations
I The fixed volume partition function reads

Z (N3) =
∑

T

1

CT
e−k0N0 .

I The expectation value of an observable
O : T → O(T ) is given by

〈O〉N3 =
1

Z

∑
T

O(T )

CT
e−k0N0 .

I We use Monte Carlo methods to approximate these:

〈O〉N3 ≈
1

n

n∑
i=1

O(Ti ),

where the {Ti} is a large set of random triangulations generated by
applying a large number of random update moves satisfying a
detailed balance condition.



Monte Carlo simulations
I The fixed volume partition function reads

Z (N3) =
∑

T

1

CT
e−k0N0 .

I The expectation value of an observable
O : T → O(T ) is given by

〈O〉N3 =
1

Z

∑
T

O(T )

CT
e−k0N0 .

I We use Monte Carlo methods to approximate these:

〈O〉N3 ≈
1

n

n∑
i=1

O(Ti ),

where the {Ti} is a large set of random triangulations generated by
applying a large number of random update moves satisfying a
detailed balance condition.



Effective actions for CDT

I Given a set of observables fi : {CDT triangulations} → R,
i = 1, . . . , k , measuring large scale geometry, we can write

ZCDT (N3) =
∑

T

1

CT
e−k0N0 =

∫
df1

∫
df2 · · ·

∫
dfk e−Seff [fi ], (1)

where Seff [fi ] = − log
(∑

T
δ(fi−fi (T ))

CT
e−k0N0

)
.

I What does the effective action look like around its minimum as
N3 →∞?

I Main question: if we could take the observables fi to be a complete
set describing “the continuum geometry”, would Seff have anything
to do with the Einstein-Hilbert action?

I We can learn about Seff [fi ] by measuring expectation values 〈fi 〉 and
correlations 〈fi fj〉.

I Simplest set of observables in CDT: {V (t)}t , spatial volume V (t) at
time t.
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Spherical topology
I Take the topology to be S1 × S2

(periodic boundary conditions).

I 〈V (t)〉 ∝ cos2(
√

c1t) plus minimal
“stalk”. [AJL, hep-th/0011276]

I Classical solution to

Seff [V ] = c0

∫
dt

(
V̇ 2

V
− 2c1V

)
.

I Also correlations 〈V (t)V (t ′)〉 well-described by this action for
suitable values c0, c1 > 0.

I Euclidean Einstein–Hilbert action
∫

d3x
√

g(−R + 2Λ) evaluated on
spherical cosmology ds2 = dt2 + V (t)dΩ2 gives

SEH = −κ
∫

dt

(
V̇ 2

V
− 2ΛV

)
(2)

I They differ by an overall minus sign! Seff is bounded below (for
fixed 3-volume), SEH is not.
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Conformal mode problem

I Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.

I Metric in proper-time form, ds2 = dt2 + gab(t, x)dxadxb. Then

SEH = κ

∫
dt

∫
d2x
√

g

(
1

4
ġabGabcd ġcd − R + 2Λ

)
(3)

where Gabcd is the Wheeler-DeWitt metric,

Gabcd =
1

2

(
g ac g bd + g ad g bc

)
− g abg cd . (4)

I Indefinite metric! Positive definite on traceless directions, negative
definite on trace/conformal directions in superspace.

I CDT is a (well-defined) statistical system, therefore it better be
described by a bounded effective action, e.g. in

ZCDT (N3) =

∫
dV (1)

∫
dV (2) · · ·

∫
dV (T )e−Seff [V (t)]. (5)
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I The foliation in CDT has consequences for the effective dynamics in
two (related) ways.

I First of all: geometries in CDT
have fixed distance between initial
and final boundary (unlike GR).

I We should restrict Seff [g ] to an
analogous subclass of continuum
geometries {g}. The natural choice
is to take those for which the
metric can be written in 2+1 split
with lapse N = 1:

ds2 = dt2 + (dxa + Nadt)(dxb + Nbdt)gab(t)

I As a consequence we cannot expect a “Hamiltonian constraint”
δS/δN = 0 as one of the effective equations of motion.

I The preferred time-slicing leads a priori to a local scalar degree of
freedom: the conformal factor.



I The foliation in CDT has consequences for the effective dynamics in
two (related) ways.

I First of all: geometries in CDT
have fixed distance between initial
and final boundary (unlike GR).

I We should restrict Seff [g ] to an
analogous subclass of continuum
geometries {g}. The natural choice
is to take those for which the
metric can be written in 2+1 split
with lapse N = 1:

t=0

t=T

ds2 = dt2 + (dxa + Nadt)(dxb + Nbdt)gab(t)

I As a consequence we cannot expect a “Hamiltonian constraint”
δS/δN = 0 as one of the effective equations of motion.

I The preferred time-slicing leads a priori to a local scalar degree of
freedom: the conformal factor.



I The foliation in CDT has consequences for the effective dynamics in
two (related) ways.

I First of all: geometries in CDT
have fixed distance between initial
and final boundary (unlike GR).

I We should restrict Seff [g ] to an
analogous subclass of continuum
geometries {g}. The natural choice
is to take those for which the
metric can be written in 2+1 split
with lapse N = 1:

t=0

t=T

ds2 = dt2 + (dxa + Nadt)(dxb + Nbdt)gab(t)

I As a consequence we cannot expect a “Hamiltonian constraint”
δS/δN = 0 as one of the effective equations of motion.

I The preferred time-slicing leads a priori to a local scalar degree of
freedom: the conformal factor.



I The foliation in CDT has consequences for the effective dynamics in
two (related) ways.

I First of all: geometries in CDT
have fixed distance between initial
and final boundary (unlike GR).

I We should restrict Seff [g ] to an
analogous subclass of continuum
geometries {g}. The natural choice
is to take those for which the
metric can be written in 2+1 split
with lapse N = 1:

t=0

t=T

ds2 = dt2 + (dxa + Nadt)(dxb + Nbdt)gab(t)

I As a consequence we cannot expect a “Hamiltonian constraint”
δS/δN = 0 as one of the effective equations of motion.

I The preferred time-slicing leads a priori to a local scalar degree of
freedom: the conformal factor.



I The foliation in CDT has consequences for the effective dynamics in
two (related) ways.

I First of all: geometries in CDT
have fixed distance between initial
and final boundary (unlike GR).

I We should restrict Seff [g ] to an
analogous subclass of continuum
geometries {g}. The natural choice
is to take those for which the
metric can be written in 2+1 split
with lapse N = 1:

t=0

t=T

ds2 = dt2 + (dxa + Nadt)(dxb + Nbdt)gab(t)

I As a consequence we cannot expect a “Hamiltonian constraint”
δS/δN = 0 as one of the effective equations of motion.

I The preferred time-slicing leads a priori to a local scalar degree of
freedom: the conformal factor.



I The second consequence is that we should restrict the symmetry
group of Seff [g ] to foliation preserving diffeomorphisms ⊂ Diff .

I The Einstein–Hilbert action (with N = 1 and Na = 0)

SEH = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd ġab + R − 2Λ)

generalizes naturally to

Sansatz = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd
λ ġab − U[g ]),

in which the most general ultralocal supermetric is

Gabcd
λ =

1

2

(
g ac g bd + g ad g bc

)
− λg abg cd .

I Gλ is positive definite for λ < 1/2; λ = 1 in EH.

I We have ended up with an ansatz in the realm of Euclidean
(projectable) Hǒrava–Lifshitz gravity.
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(projectable) Hǒrava–Lifshitz gravity.



I The second consequence is that we should restrict the symmetry
group of Seff [g ] to foliation preserving diffeomorphisms ⊂ Diff .

I The Einstein–Hilbert action (with N = 1 and Na = 0)

SEH = κ

∫ T

0

dt

∫
d2x
√
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CDT with spatial topology of the torus
I To test the kinetic term in

Sansatz = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd
λ ġab − U[g ]),

we need some observable that measures traceless degrees of freedom
in the spatial metric.

I Torus topology! The torus has a
two-parameter family of conformal
shapes, parametrized by the moduli
τ = τ1 + iτ2.

I What can we learn about the
effective action by measuring V (t),
τ1(t) and τ2(t)?

I But, first of all, how do we measure
τ in CDT?
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g(ġabGabcd
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Measurement of τ in the continuum
I Any metric gab on the torus is conformally flat and up to

diffeomorphisms the flat unit-volume metrics are given by

ĝab(τ, x) =
1

τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
.

I How do we find the “periodic” coordinates x1, x2 ∈ [0, 1) such that
ds2 = Ω2(x)ĝabdxadxb?

I The 1-forms α1 = dx1 and α2 = dx2 are
special: they form a basis of the space of
harmonic forms, i.e. dαi = δαi = 0 or
∆αi = 0 with

∆ = dδ + δd (Hodge Laplacian)

d exterior derivative, δ its adjoint w.r.t.
standard inner-product 〈φ, ψ〉 =

∫
φ ∧ ∗ψ.

I Given generators γj , the αi are uniquely determined by
∫
γj
αi = δi

j .

I τ = − 〈α
1,α2〉

〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.
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Measurement of τ for torus triangulations

I Recipe: [Ambjørn, Barkley, TB, arXiv:1110.4649]

I Determine pair of curves γj that generate fundamental group.
I Find the 2-dimensional kernel of ∆.
I Determine basis αj such that

∫
γj
αi = δi

j .

I Compute τ = − 〈α1,α2〉
〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.

I We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.

I Once we have these ingredients we can construct discrete conformal
maps:
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Discrete differential forms

I In 2d triangulations we have

I Vertices: 0-simplices denoted by i ,

I Edges: 1-simplices denoted by (ij),

I Triangles: 2-simplices denoted by (ijk).

i

jk

HijLHkiL

HjkL

HijkL

I A discrete p-form φ assigns a real number φσ to each (oriented)
p-simplex σ.

I Exterior derivative on 1-forms: (dφ)(ijk) = φ(ij) + φ(jk) + φ(ki)

I Divergence on 1-forms: (δφ)j =
∑

edges (ij) φ(ij)

I More generally: (dψ)(σp+1) =
∑
σp∈σp+1

(−1)σpψ(σp).

I δ adjoint of d w.r.t. 〈φ, ψ〉 =
∑
σ φ(σ)ψ(σ).

I ∆ = dδ + δd becomes a matrix of which we can determine the
nullspace ∆α = 0 (⇔ dα = 0 and δα = 0)
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Boundary conditions
I Periodic time T 2 × S1: contrary to the spherical case we do not

observe symmetry breaking in time, i.e. no “stalk” appears with
minimal spatial volume. Expectation values seem time-independent.

I Several ways to make it non-trivial: insert sources for spatial volume,
twisted boundary conditions, . . .

I Can also take fixed boundaries. In particular: we can take the tori to
degenerate to ring-shaped singularities at the boundaries. What we
get is the Hopf foliation of S3:

Hopf Link
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I The initial and final (degenerate) geometry correspond to moduli
τ = 0 and τ = i∞ respectively.

I A CDT configuration determines a sequence of moduli in the
upper-half plane. Map to Poincaré disk for convenience:

τ̃ =
τ − i

τ + i

I We can measure expectation values 〈τ̃i (t)〉 and correlations
〈τ̃i (t)τ̃j (t ′)〉 in addition to the spatial volume 〈V (t)〉 and
〈V (t)V (t ′)〉.



Data
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I Plenty of data, but where to start?

I The “cusp” on the diagonal of the correlators tells us about the
effective kinetic term!
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Comparison to ansatz
I Evaluating

Sansatz = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd
λ ġab − U[g ]),

on homogeneous cosmology ds2 = dt2 + V (t)ĝab(τ)dxadxb gives

S [V , τ ] = κ

∫
dt
(

(
1

2
− λ)

V̇ 2

V
+

V

2

τ̇ 2
1 + τ̇ 2

2

τ 2
2

− U(V , τ)
)
.

I We can do better: this prefactor is related to the change of τ under
a normalized metric deformation δgab w.r.t. Gλ.

S [V , τ ] = κ

∫
dt
(

(
1

2
− λ)

V̇ 2

V
+

1

2A[g ]

τ̇ 2
1 + τ̇ 2

2

τ 2
2

− U(V , τ)
)
.

with

A[g ] =
δij

4τ 2
2

∫
d2x
√

g
δτi

δgab
Gλabcd

δτj

δgcd
.
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I Writing the metric in conformal gauge ds2 = Ω(x)2ĝabdxadxb we
find

A[g ] =
δij

4τ 2
2

∫
d2x
√

g
δτi

δgab
Gλabcd

δτj

δgcd

=

∫
d2x

√
ĝ Ω(x)−2

=

∫
d2x
√

g exp(2∆−1R)(∫
d2x
√

g exp(∆−1R)
)2 ≥

1

V

I A natural discretization of A[g ] to triangulations T is
A[T ] =

∑
σ∈T area(σ)2, where area(σ) is the area of the triangle σ

in the conformal embedding of T in the plane.

VA[T ] = 1 VA[T ] ≈ 1.9 VA[T ] ≈ 4.9
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I Measure 〈A[g(t)]〉 in CDT configurations: plots for k0 = 2.5,
V = 60000 and different singularity lengths l0.
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I We can perform this analysis for various
couplings k0.

I As k0 → k∗0 the correlation in V (t) of
consecutive slices drops to zero compared
to correlation in shape τ .
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I Similar results have been obtained from studying local metric
fluctuations near fixed boundaries in CDT. [TB, arXiv:1110.5158]

I Indication that spatial conformal symmetry is implemented at/near
the phase transition. Relation to Shape Dynamics in 2+1
dimensions? [TB, T. Koslowski, arXiv:1107.1287]

The weak coupling between consecutive spatial geometries may
ensure that the conformal properties of 2d gravity are maintained.
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Summary

I In general connecting a microscopic model of gravity to its effective
dynamics in the continuum limit through observables involves a large
number of non-trivial steps.

I I have attempted to perform these steps explicitly for the special
case of moduli in CDT in 2+1 dimensions on the torus.

I In the presence of a preferred time-foliation direct probes of the
effective kinetic term are available. In particular λ in the modified
WdW metric can be deduced from measurements.

I CDT and Hǒrava–Lifshitz gravity seem to be living in the same
theory space and indeed our data is well-described by a kinetic term
of the type appearing in HL.
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Outlook

I Construct full effective action S [V (t), τ(t)]. What is U[V , τ ] and
how does A[g ] scale with V ?

I Conformal invariance at the phase transition. Connection to Shape
Dynamics? Analytical tools available (from 2d gravity)?

I Discrete differential geometry seems to be the natural toolbox to
construct observables in higher dimensional CDT and other discrete
approaches, e.g. Quantum Regge, spin foams, colored tensor models.

I Having large scale observables can help with renormalization/coarse
graining. Outcome of measurements should be invariant under
coarse graining.

Thanks for your attention!
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