A

O
Effective dynamics of CDT in 241 dimensions
b
Timothy Budd
(BN
Institute for Theoretical Physics, Utrecht University >
A
December 14, 2011 L 4 W

Quantum gravity seminar
Perimeter Institute




Introduction

» Given some quantum gravity path-integral, how do we
determine its effective dynamics?




Introduction

» Given some quantum gravity path-integral, how do we
determine its effective dynamics?

» Ultimately the only correct way is by studying microscopic
observables with a continuum interpretation!




Introduction

» Given some quantum gravity path-integral, how do we
determine its effective dynamics?

» Ultimately the only correct way is by studying microscopic
observables with a continuum interpretation!

» True for any approach, however in CDT one is constantly
reminded of this: measurement < algorithm that assigns
numbers to CDT configurations < observable.




Introduction

» Given some quantum gravity path-integral, how do we
determine its effective dynamics?

» Ultimately the only correct way is by studying microscopic
observables with a continuum interpretation!

» True for any approach, however in CDT one is constantly
reminded of this: measurement < algorithm that assigns
numbers to CDT configurations < observable.

> Succes story in CDT: spatial volumes as observables.



Introduction

» Given some quantum gravity path-integral, how do we
determine its effective dynamics?

» Ultimately the only correct way is by studying microscopic
observables with a continuum interpretation!

» True for any approach, however in CDT one is constantly
reminded of this: measurement < algorithm that assigns
numbers to CDT configurations < observable.

> Succes story in CDT: spatial volumes as observables.

» Notoriously difficult to go beyond this, but necessary since we
believe that the true degrees of freedom in gravity have to do with
the shape of space.
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dedicated to shape recognition in medical imaging, computer
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Challenges

» Construct observables that measure macroscopic shape in a
meaningful way.
> This is perhaps the hardest part. In fact: whole journals are
dedicated to shape recognition in medical imaging, computer
graphics, etc. However the random geometries in CDT are much
wilder. ‘

» Construct a class of possible effective actions and work out for each
one exactly what correlations in the measurements it predicts.

> Determine the boundary conditions for the path integral that
maximize the information contained in the correlations.

» Try to match correlations to the effective actions (analytically or
numerically).

| will show how to overcome these challenges for a particular observable
in the case of CDT in 2+1 dimensions on the torus.



Outline

» Introduction to CDT in 2+1 dimensions
> Previous results for spherical topology
» Effective actions for CDT

» Conformal mode problem
» Alternative ansatz a la Ho¥ava—Lifshitz
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Moduli in CDT with torus topology
> Introduce moduli as observables
» Boundary conditions
» Comparison with ansatz
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Summary and outlook
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CDT in 241 dimensions

» Causal Dynamical Triangulation is a regularization of the Euclidean
path integral over geometries

_ [ Pg _sulel _ L sl
Z — e EHIE — ZCDT— Z C—Te coT .

| Diff ) )
triangulations T
» Triangulations T are built from equilateral
tetrahedra. The sum is over inequivalent
ways of putting them together.

» “Causal” in CDT means that we only
allow triangulations that are foliated by 2D
triangulations with constant topology.

» The Euclidean Einstein—Hilbert action
Slgl = =k [ d*x,/8(R — 2A) evaluated on
the piecewise linear geometry leads to

SCDT[T] = ksN3 — ko Np.
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Monte Carlo simulations
» The fixed volume partition function reads
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T T

-

» The expectation value of an observable
O: T — O(T) is given by

Om=F X . PR
T

» We use Monte Carlo methods to approximate these:

O~ 7+ > 0(T),
i=1

where the {T;} is a large set of random triangulations generated by
applying a large number of random update moves satisfying a
detailed balance condition.
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> Given a set of observables f; : {CDT triangulations} — R,
i=1,...,k, measuring large scale geometry, we can write

1
Zcpr(Ns) :ZC—Te*kO’VO :/dﬂ/df2~~/dfke*55”[ﬁ], (1)
T

where Ser[fi] = — log (ET 7‘5('(’}2(T))e_k0’\’0).

» What does the effective action look like around its minimum as
N3 — oo?

» Main question: if we could take the observables f; to be a complete
set describing “the continuum geometry”, would S have anything
to do with the Einstein-Hilbert action?

» We can learn about S.¢[f;] by measuring expectation values (f;) and
correlations (f;f;).

> Simplest set of observables in CDT: {V/(t)}:, spatial volume V/(t) at
time t.
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Spherical topology

>

v

Take the topology to be S* x S2
(periodic boundary conditions). <v>

(V(t)) o cos?(/c1t) plus minimal
“stalk”. [AJL, hep-th/0011276]

Classical solution to
\'/2
Sef,r[\/] = Co/dt 7 -2V ].

Also correlations (V(t)V/(t')) well-described by this action for
suitable values ¢y, ¢; > 0.

Euclidean Einstein—Hilbert action [ d3x,/g(—R + 2A) evaluated on
spherical cosmology ds? = dt? + V/(t)dQ? gives

SeH = 7I€\/dt <VV2 — 2/\\/) (2)

They differ by an overall minus sign! Se is bounded below (for
fixed 3-volume), Sgpy is not.
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» Euclidean EH action in 241D (and 341D) is unbounded from below.
» Metric in proper-time form, ds? = dt? + gap(t, x)dx?dx?. Then

1
Sen =k / dt / d’x\/g (4gabgabcdgcd - R+ 2/\) (3)

where G2b<d is the Wheeler-DeWitt metric,

gabcd: ( ac _bd ad bc) _ yab cd. (4)

g8 +878 g 8

N -

> Indefinite metric! Positive definite on traceless directions, negative
definite on trace/conformal directions in superspace.

» CDT is a (well-defined) statistical system, therefore it better be
described by a bounded effective action, e.g. in

Zepr(N3) :/dV(1)/dV(2)---/dV(T)e—Seff[V(fﬂ. (5)
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» The foliation in CDT has consequences for the effective dynamics in
two (related) ways.

» First of all: geometries in CDT
have fixed distance between initial
and final boundary (unlike GR).

» We should restrict Seq[g] to an
analogous subclass of continuum
geometries {g}. The natural choice
is to take those for which the
metric can be written in 241 split
with lapse N = 1:

ds? = dt? + (dx? + N?dt)(dx® + NPdt)g.u(t)

» As a consequence we cannot expect a “Hamiltonian constraint”
d5/6N = 0 as one of the effective equations of motion.

» The preferred time-slicing leads a priori to a local scalar degree of
freedom: the conformal factor.
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The second consequence is that we should restrict the symmetry
group of Ser[g] to foliation preserving diffeomorphisms C Diff.

The Einstein—Hilbert action (with N =1 and N? = 0)

-
Sen = K:/ di‘/ dzx\/g(gabgab“’gab +R— 2/\)
0

generalizes naturally to

-
Sansatz = 5/ dt/dzx\/g(gabgib(:dgab - U[g])a
0

in which the most general ultralocal supermetric is

(gacgbd +gadgbc) _ )\gabgcd.

N~

gibcd _

Gy is positive definite for A < 1/2; A =1 in EH.

We have ended up with an ansatz in the realm of Euclidean
(projectable) Hotava-Lifshitz gravity.
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0

we need some observable that measures traceless degrees of freedom
in the spatial metric.

» Torus topology! The torus has a —
two-parameter family of conformal
shapes, parametrized by the moduli
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CDT with spatial topology of the torus

» To test the kinetic term in

5ansatz - ’i/ dt/ d2X\/_(gabgadegab - U[g])

we need some observable that measures traceless degrees of freedom
in the spatial metric.

» Torus topology! The torus has a —
two-parameter family of conformal

w |
shapes, parametrized by the moduli

\
o \‘
. \
T=T1+ i1 ﬁ T

» What can we learn about the

effective action by measuring V/(t 5
r1(t) and 72(1)? - .

» But, first of all, how do we measure “
T in CDT?

TN
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Measurement of 7 in the continuum

>

v

Any metric gap on the torus is conformally flat and up to
diffeomorphisms the flat unit-volume metrics are given by

()= L (1 7

8ab\T> X) = m\n T2HTE)
How do we find the “periodic” coordinates x*,x? € [0,1) such that
ds? = Q2(x)gapdx?dx??

The 1-forms o' = dx! and a? = dx? are ;
special: they form a basis of the space of T
harmonic forms, i.e. da/ = §a/ =0 or
Ao’ = 0 with

A =dd+ dd (Hodge Laplacian) 05

d exterior derivative, d its adjoint w.r.t. ‘ ‘
standard inner-product (¢, ¢) = [ ¢ Axtp. *  ° o !

Given generators 7;, the o' are uniquely determined by I, o =6l
]
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Measurement of 7 for torus triangulations

> Recipe: [Ambjgrn, Barkley, TB, arXiv:1110.4649]

> Determine pair of curves ~; that generate fundamental group.
» Find the 2-dimensional kernel of A.
> Determine basis o such that [ o' = 4;.

i

1 2 2
- Compwe = () + 22— ()
» We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.

» Once we have these ingredients we can construct discrete conformal
maps:
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Discrete differential forms

v

In 2d triangulations we have

k(o
(ijk)

(ki) (i)

» Edges: 1-simplices denoted by (i), i

> Vertices: 0-simplices denoted by i,

> Triangles: 2-simplices denoted by (ijk).

v

A discrete p-form ¢ assigns a real number ¢, to each (oriented)
p-simplex o.

v

Exterior derivative on 1-forms: (do) i) = ¢(ij) + (k) + (ki)
Divergence on 1-forms: (60); = > _cqges (i) P(i)

More generally: (dv))(0p+1) =32, c,,.,(=1)7"%(0p).

d adjoint of d w.r.t. (¢,9) = d(o)(o).

A = dd + dd becomes a matrix of which we can determine the
nullspace Aa =0 (& da =0 and da = 0)

v

v

v

v
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» The initial and final (degenerate) geometry correspond to moduli
7 =0 and 7 = ico respectively.

» A CDT configuration determines a sequence of moduli in the
upper-half plane. Map to Poincaré disk for convenience:

PR

T+

k!
Il

» We can measure expectation values (7;(t)) and correlations
(7i(t)7;(t")) in addition to the spatial volume (V/(t)) and

V(e v(t')).
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» Plenty of data, but where to start?

» The “cusp” on the diagonal of the correlators tells us about the

effective kinetic term!



Comparison to ansatz

» Evaluating
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Comparison to ansatz

» Evaluating

ansatz — ’i/ dt/d2Xf gabgab dgab - U[g])

on homogeneous cosmology ds? = dt? + V/(t)g.,(7)dx?dx® gives

S[V, 7] :n/dt((l—)\) vz, VoA ”2 - u(v. 7).

2 7'2

Depends sensitively on the flatness.

» We can do better: this prefactor is related to the change of 7 under
a normalized metric deformation dg,, w.r.t. Gy.

1 1 7473
V. 7] = — L2 _y(v )
st = [ae((h 0¥ g Uvn))
with 5 5
A APx /G G, L
[g] / ade(Sgcd



» Writing the metric in conformal gauge ds? = Q(x)?g.pdx?dx? we
find
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» Writing the metric in conformal gauge ds? = Q(x)?g.pdx?dx? we
find

Y 5 0T 0T}
A[g] 4t 2 /d f gade(Sgd
:/dzx\/gQ(x)_2

[ d?x,/g exp(2A7LR)

= s>
(] d®>x\/g exp(A~1R))

1
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» Writing the metric in conformal gauge ds? = Q(x)?g.pdx?dx? we
find

O0Ti 5 0T

i
A — ] d2
[g] 47_22 / X\/gégab gabcd 6gcd

— [ @xvEaw)
[ d’x/gexp(2A7'R) 21
([ dx gexp(A—lF\’))2 Vv
» A natural discretization of A[g] to triangulations T is

A[T] =X, crarea(c)?, where area(c) is the area of the triangle o
in the conformal embedding of T in the plane.
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» Measure (A[g(t)]) in CDT configurations: plots for kg = 2.5,
V = 60000 and different singularity lengths /.
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» Now we can start comparing! Semi-classically the correlation matrix
(AT;(t)ATj(t')) is proportional to the inverse of 62Ses/d7i(t)d7;(t').
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» Measure (A[g(t)]) in CDT configurations: plots for ko = 2.5,
V = 60000 and different singularity lengths .
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» Now we can start comparing! Semi-classically the correlation matrix
(AT;(t)ATj(t')) is proportional to the inverse of 62Ses/d7i(t)d7;(t').

> Determine the relative prefactor 2(3 — \)A[g] of V2 and 72 in

SV, 7] :n/dt((;—)\)\\//—i-zAl[g]h;EB —u(v.n).

» Fit to measured A[g] gives \ ~ 0.18.
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» Similar results have been obtained from studying local metric
fluctuations near fixed boundaries in CDT. [TB, arXiv:1110.5158]
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We can perform this analysis for various " -
couplings kp. o3
As ko — ki the correlation in V/(t) of "
consecutive slices drops to zero compared
to correlation in shape 7. o

Similar results have been obtained from studying local metric
fluctuations near fixed boundaries in CDT. [TB, arXiv:1110.5158]

Indication that spatial conformal symmetry is implemented at/near
the phase transition. Relation to Shape Dynamics in 2+1
dimensions? [TB, T. Koslowski, arXiv:1107.1287]

The weak coupling between consecutive spatial geometries may
ensure that the conformal properties of 2d gravity are maintained.
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Summary

» In general connecting a microscopic model of gravity to its effective
dynamics in the continuum limit through observables involves a large
number of non-trivial steps.

» | have attempted to perform these steps explicitly for the special
case of moduli in CDT in 241 dimensions on the torus.

> In the presence of a preferred time-foliation direct probes of the
effective kinetic term are available. In particular A in the modified
WdW metric can be deduced from measurements.

» CDT and Hotava-Lifshitz gravity seem to be living in the same
theory space and indeed our data is well-described by a kinetic term
of the type appearing in HL.
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» Construct full effective action S[V/(t), 7(t)]. What is U[V/, 7] and
how does A[g] scale with V?

» Conformal invariance at the phase transition. Connection to Shape
Dynamics? Analytical tools available (from 2d gravity)?

> Discrete differential geometry seems to be the natural toolbox to
construct observables in higher dimensional CDT and other discrete
approaches, e.g. Quantum Regge, spin foams, colored tensor models.

» Having large scale observables can help with renormalization/coarse
graining. Outcome of measurements should be invariant under
coarse graining.

Thanks for your attention!



