Effective dynamics of CDT in 2+1 dimensions

Timothy Budd

 \triangleright

Institute for Theoretical Physics, Utrecht University

December 14, 2011 Quantum gravity seminar Perimeter Institute

Given some quantum gravity path-integral, how do we determine its effective dynamics?

- Given some quantum gravity path-integral, how do we determine its effective dynamics?
- Ultimately the only correct way is by studying microscopic observables with a continuum interpretation!

- Given some quantum gravity path-integral, how do we determine its effective dynamics?
- Ultimately the only correct way is by studying microscopic observables with a continuum interpretation!
- ► True for any approach, however in CDT one is constantly reminded of this: measurement ⇔ algorithm that assigns numbers to CDT configurations ⇔ observable.

- Given some quantum gravity path-integral, how do we determine its effective dynamics?
- Ultimately the only correct way is by studying microscopic observables with a continuum interpretation!
- ► True for any approach, however in CDT one is constantly reminded of this: measurement ⇔ algorithm that assigns numbers to CDT configurations ⇔ observable.

Succes story in CDT: spatial volumes as observables.

- Given some quantum gravity path-integral, how do we determine its effective dynamics?
- Ultimately the only correct way is by studying microscopic observables with a continuum interpretation!
- ► True for any approach, however in CDT one is constantly reminded of this: measurement ⇔ algorithm that assigns numbers to CDT configurations ⇔ observable.

- Succes story in CDT: spatial volumes as observables.
- Notoriously difficult to go beyond this, but necessary since we believe that the true degrees of freedom in gravity have to do with the shape of space.

- Construct observables that measure macroscopic shape in a meaningful way.
 - This is perhaps the hardest part. In fact: whole journals are dedicated to shape recognition in medical imaging, computer graphics, etc. However the random geometries in CDT are much wilder.

- Construct observables that measure macroscopic shape in a meaningful way.
 - This is perhaps the hardest part. In fact: whole journals are dedicated to shape recognition in medical imaging, computer graphics, etc. However the random geometries in CDT are much wilder.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Construct a class of possible effective actions and work out for each one exactly what correlations in the measurements it predicts.

- Construct observables that measure macroscopic shape in a meaningful way.
 - This is perhaps the hardest part. In fact: whole journals are dedicated to shape recognition in medical imaging, computer graphics, etc. However the random geometries in CDT are much wilder.

- ロ ト - 4 回 ト - 4 □ - 4

- Construct a class of possible effective actions and work out for each one exactly what correlations in the measurements it predicts.
- Determine the boundary conditions for the path integral that maximize the information contained in the correlations.

- Construct observables that measure macroscopic shape in a meaningful way.
 - This is perhaps the hardest part. In fact: whole journals are dedicated to shape recognition in medical imaging, computer graphics, etc. However the random geometries in CDT are much wilder.

- Construct a class of possible effective actions and work out for each one exactly what correlations in the measurements it predicts.
- Determine the boundary conditions for the path integral that maximize the information contained in the correlations.
- Try to match correlations to the effective actions (analytically or numerically).

- Construct observables that measure macroscopic shape in a meaningful way.
 - This is perhaps the hardest part. In fact: whole journals are dedicated to shape recognition in medical imaging, computer graphics, etc. However the random geometries in CDT are much wilder.

- Construct a class of possible effective actions and work out for each one exactly what correlations in the measurements it predicts.
- Determine the boundary conditions for the path integral that maximize the information contained in the correlations.
- Try to match correlations to the effective actions (analytically or numerically).

I will show how to overcome these challenges for a particular observable in the case of CDT in 2+1 dimensions on the torus.

Outline

▶ Introduction to CDT in 2+1 dimensions

- Previous results for spherical topology
- Effective actions for CDT
 - Conformal mode problem
 - Alternative ansatz a la Hořava–Lifshitz

- Moduli in CDT with torus topology
 - Introduce moduli as observables
 - Boundary conditions
 - Comparison with ansatz
- Summary and outlook

 Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries

$$Z = \int \frac{\mathcal{D}g}{Diff} e^{-S_{EH}[g]} \quad \rightarrow \quad Z_{CDT} = \sum_{\text{triangulations } T} \frac{1}{C_T} e^{-S_{CDT}[T]}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries

$$Z = \int \frac{\mathcal{D}g}{Diff} e^{-S_{EH}[g]} \quad \rightarrow \quad Z_{CDT} = \sum_{\text{triangulations } T} \frac{1}{C_T} e^{-S_{CDT}[T]}.$$

 Triangulations T are built from equilateral tetrahedra. The sum is over inequivalent ways of putting them together.

 Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries

$$Z = \int \frac{\mathcal{D}g}{Diff} e^{-S_{EH}[g]} \quad \rightarrow \quad Z_{CDT} = \sum_{\text{triangulations } T} \frac{1}{C_T} e^{-S_{CDT}[T]}.$$

- Triangulations T are built from equilateral tetrahedra. The sum is over inequivalent ways of putting them together.
- "Causal" in CDT means that we only allow triangulations that are foliated by 2D triangulations with constant topology.

 Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries

$$Z = \int \frac{\mathcal{D}g}{Diff} e^{-S_{EH}[g]} \quad \rightarrow \quad Z_{CDT} = \sum_{\text{triangulations } T} \frac{1}{C_T} e^{-S_{CDT}[T]}.$$

- Triangulations T are built from equilateral tetrahedra. The sum is over inequivalent ways of putting them together.
- "Causal" in CDT means that we only allow triangulations that are foliated by 2D triangulations with constant topology.
- ► The Euclidean Einstein–Hilbert action $S[g] = -\kappa \int d^3x \sqrt{g}(R - 2\Lambda)$ evaluated on the piecewise linear geometry leads to

$$S_{CDT}[T] = k_3 N_3 - k_0 N_0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Monte Carlo simulations

The fixed volume partition function reads

$$Z(N_3)=\sum_{\mathcal{T}}\frac{1}{C_{\mathcal{T}}}e^{-k_0N_0}.$$

Monte Carlo simulations

The fixed volume partition function reads

$$Z(N_3)=\sum_{T}\frac{1}{C_T}e^{-k_0N_0}.$$

$$\langle \mathcal{O} \rangle_{N_3} = \frac{1}{Z} \sum_T \frac{\mathcal{O}(T)}{C_T} e^{-k_0 N_0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monte Carlo simulations

The fixed volume partition function reads

$$Z(N_3) = \sum_{T} \frac{1}{C_T} e^{-k_0 N_0}.$$

$$\langle \mathcal{O} \rangle_{N_3} = \frac{1}{Z} \sum_T \frac{\mathcal{O}(T)}{C_T} e^{-k_0 N_0}.$$

▶ We use Monte Carlo methods to approximate these:

$$\langle \mathcal{O} \rangle_{N_3} \approx \frac{1}{n} \sum_{i=1}^n \mathcal{O}(T_i),$$

where the $\{T_i\}$ is a large set of random triangulations generated by applying a large number of random update moves satisfying a detailed balance condition.

Effective actions for CDT

▶ Given a set of observables f_i : {CDT triangulations} → ℝ, i = 1,..., k, measuring large scale geometry, we can write

$$Z_{CDT}(N_3) = \sum_{T} \frac{1}{C_T} e^{-k_0 N_0} = \int df_1 \int df_2 \cdots \int df_k e^{-S_{eff}[f_i]}, \quad (1)$$

where
$$S_{eff}[f_i] = -\log\left(\sum_T \frac{\delta(f_i - f_i(T))}{C_T} e^{-k_0 N_0}\right).$$

Effective actions for CDT

▶ Given a set of observables f_i : {CDT triangulations} → ℝ, i = 1,..., k, measuring large scale geometry, we can write

$$Z_{CDT}(N_3) = \sum_{T} \frac{1}{C_T} e^{-k_0 N_0} = \int df_1 \int df_2 \cdots \int df_k e^{-S_{eff}[f_i]}, \quad (1)$$

where
$$S_{eff}[f_i] = -\log\left(\sum_T \frac{\delta(f_i - f_i(T))}{C_T} e^{-k_0 N_0}\right).$$

▶ What does the effective action look like around its minimum as $N_3 \rightarrow \infty$?

Main question: if we could take the observables f_i to be a complete set describing "the continuum geometry", would S_{eff} have anything to do with the Einstein-Hilbert action?

Effective actions for CDT

▶ Given a set of observables f_i : {CDT triangulations} → ℝ, i = 1,..., k, measuring large scale geometry, we can write

$$Z_{CDT}(N_3) = \sum_{T} \frac{1}{C_T} e^{-k_0 N_0} = \int df_1 \int df_2 \cdots \int df_k e^{-S_{eff}[f_i]}, \quad (1)$$

where
$$S_{eff}[f_i] = -\log\left(\sum_T \frac{\delta(f_i - f_i(T))}{C_T} e^{-k_0 N_0}\right).$$

▶ What does the effective action look like around its minimum as $N_3 \rightarrow \infty$?

- ▶ Main question: if we could take the observables f_i to be a complete set describing "the continuum geometry", would S_{eff} have anything to do with the Einstein-Hilbert action?
- We can learn about S_{eff}[f_i] by measuring expectation values ⟨f_i⟩ and correlations ⟨f_if_j⟩.
- Simplest set of observables in CDT: {V(t)}_t, spatial volume V(t) at time t.

 Take the topology to be S¹ × S² (periodic boundary conditions).

- Take the topology to be S¹ × S² (periodic boundary conditions).
- $\langle V(t) \rangle \propto \cos^2(\sqrt{c_1}t)$ plus minimal "stalk". [AJL, hep-th/0011276]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Take the topology to be S¹ × S² (periodic boundary conditions).
- ► $\langle V(t) \rangle \propto \cos^2(\sqrt{c_1}t)$ plus minimal "stalk". [AJL, hep-th/0011276]
- Classical solution to

$$S_{eff}[V] = c_0 \int dt \left(\frac{\dot{V}^2}{V} - 2c_1 V\right)$$

► Also correlations (V(t)V(t')) well-described by this action for suitable values c₀, c₁ > 0.

- Take the topology to be S¹ × S² (periodic boundary conditions).
- ► $\langle V(t) \rangle \propto \cos^2(\sqrt{c_1}t)$ plus minimal "stalk". [AJL, hep-th/0011276]
- Classical solution to

$$S_{eff}[V] = c_0 \int dt \left(\frac{\dot{V}^2}{V} - 2c_1 V\right)$$

- ► Also correlations (V(t)V(t')) well-described by this action for suitable values c₀, c₁ > 0.
- ► Euclidean Einstein–Hilbert action $\int d^3x \sqrt{g}(-R+2\Lambda)$ evaluated on spherical cosmology $ds^2 = dt^2 + V(t)d\Omega^2$ gives

$$S_{EH} = -\kappa \int dt \left(\frac{\dot{V}^2}{V} - 2\Lambda V \right)$$
 (2)

- Take the topology to be S¹ × S² (periodic boundary conditions).
- ► $\langle V(t) \rangle \propto \cos^2(\sqrt{c_1}t)$ plus minimal "stalk". [AJL, hep-th/0011276]
- Classical solution to

$$S_{eff}[V] = c_0 \int dt \left(\frac{\dot{V}^2}{V} - 2c_1 V\right)$$

- ► Also correlations (V(t)V(t')) well-described by this action for suitable values c₀, c₁ > 0.
- ► Euclidean Einstein–Hilbert action $\int d^3x \sqrt{g}(-R+2\Lambda)$ evaluated on spherical cosmology $ds^2 = dt^2 + V(t)d\Omega^2$ gives

$$S_{EH} = -\kappa \int dt \left(\frac{\dot{V}^2}{V} - 2\Lambda V \right)$$
⁽²⁾

► They differ by an overall minus sign! S_{eff} is bounded below (for fixed 3-volume), S_{EH} is not.

• Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.

- ▶ Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.
- Metric in proper-time form, $ds^2 = dt^2 + g_{ab}(t, x)dx^a dx^b$. Then

$$S_{EH} = \kappa \int dt \int d^2 x \sqrt{g} \left(\frac{1}{4} \dot{g}_{ab} \mathcal{G}^{abcd} \dot{g}_{cd} - R + 2\Lambda \right)$$
(3)

where \mathcal{G}^{abcd} is the Wheeler-DeWitt metric,

$$\mathcal{G}^{abcd} = \frac{1}{2} \left(g^{ac} g^{bd} + g^{ad} g^{bc} \right) - g^{ab} g^{cd}. \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.
- Metric in proper-time form, $ds^2 = dt^2 + g_{ab}(t, x)dx^a dx^b$. Then

$$S_{EH} = \kappa \int dt \int d^2 x \sqrt{g} \left(\frac{1}{4} \dot{g}_{ab} \mathcal{G}^{abcd} \dot{g}_{cd} - R + 2\Lambda \right)$$
(3)

where \mathcal{G}^{abcd} is the Wheeler-DeWitt metric,

$$\mathcal{G}^{abcd} = \frac{1}{2} \left(g^{ac} g^{bd} + g^{ad} g^{bc} \right) - g^{ab} g^{cd}. \tag{4}$$

Indefinite metric! Positive definite on traceless directions, negative definite on trace/conformal directions in superspace.

- ▶ Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.
- Metric in proper-time form, $ds^2 = dt^2 + g_{ab}(t, x)dx^a dx^b$. Then

$$S_{EH} = \kappa \int dt \int d^2 x \sqrt{g} \left(\frac{1}{4} \dot{g}_{ab} \mathcal{G}^{abcd} \dot{g}_{cd} - R + 2\Lambda \right)$$
(3)

where \mathcal{G}^{abcd} is the Wheeler-DeWitt metric,

$$\mathcal{G}^{abcd} = \frac{1}{2} \left(g^{ac} g^{bd} + g^{ad} g^{bc} \right) - g^{ab} g^{cd}. \tag{4}$$

- Indefinite metric! Positive definite on traceless directions, negative definite on trace/conformal directions in superspace.
- CDT is a (well-defined) statistical system, therefore it better be described by a bounded effective action, e.g. in

$$Z_{CDT}(N_3) = \int dV(1) \int dV(2) \cdots \int dV(T) e^{-S_{eff}[V(t)]}.$$
 (5)

 The foliation in CDT has consequences for the effective dynamics in two (related) ways.

- The foliation in CDT has consequences for the effective dynamics in two (related) ways.
- First of all: geometries in CDT have fixed distance between initial and final boundary (unlike GR).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The foliation in CDT has consequences for the effective dynamics in two (related) ways.
- First of all: geometries in CDT have fixed distance between initial and final boundary (unlike GR).
- ► We should restrict S_{eff}[g] to an analogous subclass of continuum geometries {g}. The natural choice is to take those for which the metric can be written in 2+1 split with lapse N = 1:

$$ds^2 = dt^2 + (dx^a + N^a dt)(dx^b + N^b dt)g_{ab}(t)$$

- The foliation in CDT has consequences for the effective dynamics in two (related) ways.
- First of all: geometries in CDT have fixed distance between initial and final boundary (unlike GR).
- ► We should restrict S_{eff}[g] to an analogous subclass of continuum geometries {g}. The natural choice is to take those for which the metric can be written in 2+1 split with lapse N = 1:

$$ds^{2} = dt^{2} + (dx^{a} + N^{a}dt)(dx^{b} + N^{b}dt)g_{ab}(t)$$

As a consequence we cannot expect a "Hamiltonian constraint" $\delta S/\delta N = 0$ as one of the effective equations of motion.

- The foliation in CDT has consequences for the effective dynamics in two (related) ways.
- First of all: geometries in CDT have fixed distance between initial and final boundary (unlike GR).
- ► We should restrict S_{eff}[g] to an analogous subclass of continuum geometries {g}. The natural choice is to take those for which the metric can be written in 2+1 split with lapse N = 1:

$$ds^{2} = dt^{2} + (dx^{a} + N^{a}dt)(dx^{b} + N^{b}dt)g_{ab}(t)$$

- As a consequence we cannot expect a "Hamiltonian constraint" $\delta S/\delta N = 0$ as one of the effective equations of motion.
- The preferred time-slicing leads a priori to a local scalar degree of freedom: the conformal factor.
The second consequence is that we should restrict the symmetry group of S_{eff}[g] to foliation preserving diffeomorphisms ⊂ Diff.

・ロト・日本・モト・モート ヨー うへで

- The second consequence is that we should restrict the symmetry group of S_{eff}[g] to foliation preserving diffeomorphisms ⊂ Diff.
- The Einstein–Hilbert action (with N = 1 and $N^a = 0$)

$$S_{EH} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}^{abcd} \dot{g}_{ab} + R - 2\Lambda)$$

generalizes naturally to

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}_{\lambda}^{abcd} \dot{g}_{ab} - U[g]),$$

in which the most general ultralocal supermetric is

$$\mathcal{G}_{\lambda}^{abcd} = rac{1}{2} \left(g^{ac} g^{bd} + g^{ad} g^{bc}
ight) - \lambda g^{ab} g^{cd}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The second consequence is that we should restrict the symmetry group of S_{eff}[g] to foliation preserving diffeomorphisms ⊂ Diff.
- The Einstein–Hilbert action (with N = 1 and $N^a = 0$)

$$S_{EH} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}^{abcd} \dot{g}_{ab} + R - 2\Lambda)$$

generalizes naturally to

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}_{\lambda}^{abcd} \dot{g}_{ab} - U[g]),$$

in which the most general ultralocal supermetric is

$$\mathcal{G}_{\lambda}^{abcd}=rac{1}{2}\left(g^{ac}g^{bd}+g^{ad}g^{bc}
ight)-\lambda g^{ab}g^{cd}$$
 .

• \mathcal{G}_{λ} is positive definite for $\lambda < 1/2$; $\lambda = 1$ in EH.

- The second consequence is that we should restrict the symmetry group of S_{eff}[g] to foliation preserving diffeomorphisms ⊂ Diff.
- The Einstein–Hilbert action (with N = 1 and $N^a = 0$)

$$S_{EH} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}^{abcd} \dot{g}_{ab} + R - 2\Lambda)$$

generalizes naturally to

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}_{\lambda}^{abcd} \dot{g}_{ab} - U[g]),$$

in which the most general ultralocal supermetric is

$$\mathcal{G}_{\lambda}^{abcd} = rac{1}{2} \left(g^{ac} g^{bd} + g^{ad} g^{bc}
ight) - \lambda g^{ab} g^{cd}.$$

- \mathcal{G}_{λ} is positive definite for $\lambda < 1/2$; $\lambda = 1$ in EH.
- We have ended up with an ansatz in the realm of Euclidean (projectable) Hořava–Lifshitz gravity.

CDT with spatial topology of the torus

► To test the kinetic term in

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}^{abcd}_\lambda \dot{g}_{ab} - U[g]),$$

we need some observable that measures traceless degrees of freedom in the spatial metric.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CDT with spatial topology of the torus

To test the kinetic term in

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}^{abcd}_\lambda \dot{g}_{ab} - U[g]),$$

we need some observable that measures traceless degrees of freedom in the spatial metric.

 Torus topology! The torus has a two-parameter family of conformal shapes, parametrized by the moduli τ = τ₁ + iτ₂.

CDT with spatial topology of the torus

To test the kinetic term in

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}^{abcd}_\lambda \dot{g}_{ab} - U[g]),$$

we need some observable that measures traceless degrees of freedom in the spatial metric.

- Torus topology! The torus has a two-parameter family of conformal shapes, parametrized by the moduli τ = τ₁ + iτ₂.
- What can we learn about the effective action by measuring V(t), τ₁(t) and τ₂(t)?
- But, first of all, how do we measure *τ* in CDT?

Any metric g_{ab} on the torus is conformally flat and up to diffeomorphisms the flat unit-volume metrics are given by

$$\hat{g}_{ab}(au, au)=rac{1}{ au_2}egin{pmatrix} 1& au_1\ au_1& au_1^2+ au_2^2\end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Any metric g_{ab} on the torus is conformally flat and up to diffeomorphisms the flat unit-volume metrics are given by

$$\hat{g}_{ab}(au, extbf{x}) = rac{1}{ au_2} egin{pmatrix} 1 & au_1 \ au_1 & au_1^2 + au_2^2 \end{pmatrix} \, .$$

► How do we find the "periodic" coordinates $x^1, x^2 \in [0, 1)$ such that $ds^2 = \Omega^2(x)\hat{g}_{ab}dx^adx^b$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Any metric g_{ab} on the torus is conformally flat and up to diffeomorphisms the flat unit-volume metrics are given by

$$\hat{g}_{ab}(au, extbf{x}) = rac{1}{ au_2} egin{pmatrix} 1 & au_1 \ au_1 & au_1^2 + au_2^2 \end{pmatrix}.$$

► How do we find the "periodic" coordinates $x^1, x^2 \in [0, 1)$ such that $ds^2 = \Omega^2(x)\hat{g}_{ab}dx^adx^b$?

The 1-forms α¹ = dx¹ and α² = dx² are special: they form a basis of the space of harmonic forms, i.e. dαⁱ = δαⁱ = 0 or Δαⁱ = 0 with

 $\Delta = d\delta + \delta d \quad (\text{Hodge Laplacian})$

d exterior derivative, δ its adjoint w.r.t. standard inner-product $\langle \phi, \psi \rangle = \int \phi \wedge *\psi$.

Any metric g_{ab} on the torus is conformally flat and up to diffeomorphisms the flat unit-volume metrics are given by

$$\hat{g}_{ab}(au, extbf{x}) = rac{1}{ au_2} egin{pmatrix} 1 & au_1 \ au_1 & au_1^2 + au_2^2 \end{pmatrix}.$$

- ► How do we find the "periodic" coordinates $x^1, x^2 \in [0, 1)$ such that $ds^2 = \Omega^2(x)\hat{g}_{ab}dx^adx^b$?
- The 1-forms α¹ = dx¹ and α² = dx² are special: they form a basis of the space of harmonic forms, i.e. dαⁱ = δαⁱ = 0 or Δαⁱ = 0 with

 $\Delta = d\delta + \delta d \quad (\text{Hodge Laplacian})$

d exterior derivative, δ its adjoint w.r.t. standard inner-product $\langle \phi, \psi \rangle = \int \phi \wedge *\psi$.

• Given generators γ_j , the α^i are uniquely determined by $\int_{\gamma_i} \alpha^i = \delta_j^i$.

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

Any metric g_{ab} on the torus is conformally flat and up to diffeomorphisms the flat unit-volume metrics are given by

$$\hat{g}_{ab}(au, extbf{x}) = rac{1}{ au_2} egin{pmatrix} 1 & au_1 \ au_1 & au_1^2 + au_2^2 \end{pmatrix}.$$

- ► How do we find the "periodic" coordinates $x^1, x^2 \in [0, 1)$ such that $ds^2 = \Omega^2(x)\hat{g}_{ab}dx^adx^b$?
- The 1-forms α¹ = dx¹ and α² = dx² are special: they form a basis of the space of harmonic forms, i.e. dαⁱ = δαⁱ = 0 or Δαⁱ = 0 with

 $\Delta = d\delta + \delta d \quad (\text{Hodge Laplacian})$

d exterior derivative, δ its adjoint w.r.t. standard inner-product $\langle \phi, \psi \rangle = \int \phi \wedge *\psi$.

• Given generators γ_j , the α^i are uniquely determined by $\int_{\gamma_i} \alpha^i = \delta_j^i$.

$$\bullet \ \tau = -\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle} + i \sqrt{\frac{\langle \alpha^1, \alpha^1 \rangle}{\langle \alpha^2, \alpha^2 \rangle} - \left(\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle}\right)^2}.$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Measurement of τ for torus triangulations

Recipe:

[Ambjørn, Barkley, TB, arXiv:1110.4649]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Determine pair of curves γ_j that generate fundamental group.
- Find the 2-dimensional kernel of Δ .
- Determine basis α_j such that $\int_{\gamma_i} \alpha^i = \delta^i_j$.

• Compute
$$\tau = -\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle} + i \sqrt{\frac{\langle \alpha^1, \alpha^1 \rangle}{\langle \alpha^2, \alpha^2 \rangle} - \left(\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle}\right)^2}.$$

Measurement of τ for torus triangulations

Recipe:

[Ambjørn, Barkley, TB, arXiv:1110.4649]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Determine pair of curves γ_j that generate fundamental group.
- Find the 2-dimensional kernel of Δ .
- Determine basis α_j such that $\int_{\gamma_i} \alpha^i = \delta_j^i$.

• Compute
$$\tau = -\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle} + i \sqrt{\frac{\langle \alpha^1, \alpha^1 \rangle}{\langle \alpha^2, \alpha^2 \rangle} - \left(\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle}\right)^2}.$$

We need discrete differential forms! We will borrow them from the theory of simplicial complexes.

Measurement of τ for torus triangulations

Recipe:

[Ambjørn, Barkley, TB, arXiv:1110.4649]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Determine pair of curves γ_j that generate fundamental group.
- Find the 2-dimensional kernel of Δ .
- Determine basis α_j such that $\int_{\gamma_i} \alpha^i = \delta^i_j$.

• Compute
$$\tau = -\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle} + i \sqrt{\frac{\langle \alpha^1, \alpha^1 \rangle}{\langle \alpha^2, \alpha^2 \rangle} - \left(\frac{\langle \alpha^1, \alpha^2 \rangle}{\langle \alpha^2, \alpha^2 \rangle}\right)^2}.$$

- We need discrete differential forms! We will borrow them from the theory of simplicial complexes.
- Once we have these ingredients we can construct discrete conformal maps:

- In 2d triangulations we have
 - Vertices: 0-simplices denoted by i,
 - Edges: 1-simplices denoted by (ij),
 - ▶ Triangles: 2-simplices denoted by (*ijk*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- In 2d triangulations we have
 - Vertices: 0-simplices denoted by i,
 - Edges: 1-simplices denoted by (ij),
 - Triangles: 2-simplices denoted by (ijk).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A discrete *p*-form φ assigns a real number φ_σ to each (oriented) *p*-simplex σ.

- In 2d triangulations we have
 - Vertices: 0-simplices denoted by i,
 - Edges: 1-simplices denoted by (ij),
 - Triangles: 2-simplices denoted by (ijk).

- A discrete *p*-form φ assigns a real number φ_σ to each (oriented) *p*-simplex σ.
- Exterior derivative on 1-forms: $(d\phi)_{(ijk)} = \phi_{(ij)} + \phi_{(jk)} + \phi_{(ki)}$
- Divergence on 1-forms: $(\delta \phi)_j = \sum_{\text{edges } (ij)} \phi_{(ij)}$

- In 2d triangulations we have
 - Vertices: 0-simplices denoted by i,
 - Edges: 1-simplices denoted by (ij),
 - Triangles: 2-simplices denoted by (ijk).

- A discrete *p*-form φ assigns a real number φ_σ to each (oriented) *p*-simplex σ.
- Exterior derivative on 1-forms: $(d\phi)_{(ijk)} = \phi_{(ij)} + \phi_{(jk)} + \phi_{(ki)}$
- Divergence on 1-forms: $(\delta \phi)_j = \sum_{\text{edges } (ij)} \phi_{(ij)}$
- More generally: $(d\psi)(\sigma_{p+1}) = \sum_{\sigma_p \in \sigma_{p+1}} (-1)^{\sigma_p} \psi(\sigma_p).$
- δ adjoint of d w.r.t. $\langle \phi, \psi \rangle = \sum_{\sigma} \phi(\sigma) \psi(\sigma)$.

- In 2d triangulations we have
 - Vertices: 0-simplices denoted by i,
 - Edges: 1-simplices denoted by (ij),
 - Triangles: 2-simplices denoted by (ijk).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A discrete *p*-form φ assigns a real number φ_σ to each (oriented) *p*-simplex σ.
- Exterior derivative on 1-forms: $(d\phi)_{(ijk)} = \phi_{(ij)} + \phi_{(jk)} + \phi_{(ki)}$
- Divergence on 1-forms: $(\delta \phi)_j = \sum_{\text{edges } (ij)} \phi_{(ij)}$
- More generally: $(d\psi)(\sigma_{p+1}) = \sum_{\sigma_p \in \sigma_{p+1}} (-1)^{\sigma_p} \psi(\sigma_p).$
- δ adjoint of d w.r.t. $\langle \phi, \psi \rangle = \sum_{\sigma} \phi(\sigma) \psi(\sigma)$.
- Δ = dδ + δd becomes a matrix of which we can determine the nullspace Δα = 0 (⇔ dα = 0 and δα = 0)

Periodic time T² × S¹: contrary to the spherical case we do not observe symmetry breaking in time, i.e. no "stalk" appears with minimal spatial volume. Expectation values seem time-independent.

・ロト・日本・モート モー うへで

- Periodic time T² × S¹: contrary to the spherical case we do not observe symmetry breaking in time, i.e. no "stalk" appears with minimal spatial volume. Expectation values seem time-independent.
- Several ways to make it non-trivial: insert sources for spatial volume, twisted boundary conditions, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Periodic time T² × S¹: contrary to the spherical case we do not observe symmetry breaking in time, i.e. no "stalk" appears with minimal spatial volume. Expectation values seem time-independent.
- Several ways to make it non-trivial: insert sources for spatial volume, twisted boundary conditions, ...
- Can also take fixed boundaries. In particular: we can take the tori to degenerate to ring-shaped singularities at the boundaries. What we get is the Hopf foliation of S³:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Periodic time T² × S¹: contrary to the spherical case we do not observe symmetry breaking in time, i.e. no "stalk" appears with minimal spatial volume. Expectation values seem time-independent.
- Several ways to make it non-trivial: insert sources for spatial volume, twisted boundary conditions, ...
- Can also take fixed boundaries. In particular: we can take the tori to degenerate to ring-shaped singularities at the boundaries. What we get is the Hopf foliation of S³:

- ▶ Periodic time T² × S¹: contrary to the spherical case we do not observe symmetry breaking in time, i.e. no "stalk" appears with minimal spatial volume. Expectation values seem time-independent.
- Several ways to make it non-trivial: insert sources for spatial volume, twisted boundary conditions, ...
- Can also take fixed boundaries. In particular: we can take the tori to degenerate to ring-shaped singularities at the boundaries. What we get is the Hopf foliation of S³:

- ▶ Periodic time T² × S¹: contrary to the spherical case we do not observe symmetry breaking in time, i.e. no "stalk" appears with minimal spatial volume. Expectation values seem time-independent.
- Several ways to make it non-trivial: insert sources for spatial volume, twisted boundary conditions, ...
- Can also take fixed boundaries. In particular: we can take the tori to degenerate to ring-shaped singularities at the boundaries. What we get is the Hopf foliation of S³:

- The initial and final (degenerate) geometry correspond to moduli τ = 0 and τ = i∞ respectively.
- A CDT configuration determines a sequence of moduli in the upper-half plane. Map to Poincaré disk for convenience:

• We can measure expectation values $\langle \tilde{\tau}_i(t) \rangle$ and correlations $\langle \tilde{\tau}_i(t) \tilde{\tau}_j(t') \rangle$ in addition to the spatial volume $\langle V(t) \rangle$ and $\langle V(t) V(t') \rangle$.

Data

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Plenty of data, but where to start?

Data

- Plenty of data, but where to start?
- The "cusp" on the diagonal of the correlators tells us about the effective kinetic term!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Comparison to ansatz

Evaluating

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}_{\lambda}^{abcd} \dot{g}_{ab} - U[g]),$$

on homogeneous cosmology $ds^2 = dt^2 + V(t) \hat{g}_{ab}(\tau) dx^a dx^b$ gives

$$S[V,\tau] = \kappa \int dt \Big((\frac{1}{2} - \lambda) \frac{\dot{V}^2}{V} + \frac{V}{2} \frac{\dot{\tau}_1^2 + \dot{\tau}_2^2}{\tau_2^2} - U(V,\tau) \Big).$$

・ロト・日本・モト・モート ヨー うへで

Comparison to ansatz

Evaluating

$$S_{ansatz} = \kappa \int_0^T dt \int d^2 x \sqrt{g} (\dot{g}_{ab} \mathcal{G}_\lambda^{abcd} \dot{g}_{ab} - U[g]),$$

on homogeneous cosmology $ds^2 = dt^2 + V(t)\hat{g}_{ab}(\tau)dx^adx^b$ gives

$$S[V,\tau] = \kappa \int dt \Big((\frac{1}{2} - \lambda) \frac{\dot{V}^2}{V} + \underbrace{\frac{V}{2}}_{T_1} \frac{\dot{\tau}_1^2 + \dot{\tau}_2^2}{\tau_2^2} - U(V,\tau) \Big).$$

Depends sensitively on the flatness.

•

▶ We can do better: this prefactor is related to the change of τ under a normalized metric deformation δg_{ab} w.r.t. \mathcal{G}_{λ} .

$$S[V,\tau] = \kappa \int dt \Big(\Big(\frac{1}{2} - \lambda\Big) \frac{\dot{V}^2}{V} + \frac{1}{2A[g]} \frac{\dot{\tau}_1^2 + \dot{\tau}_2^2}{\tau_2^2} - U(V,\tau) \Big).$$

with

$$A[g] = \frac{\delta_{ij}}{4\tau_2^2} \int d^2 x \sqrt{g} \frac{\delta \tau_i}{\delta g_{ab}} \mathcal{G}^{\lambda}_{abcd} \frac{\delta \tau_j}{\delta g_{cd}}$$

• Writing the metric in conformal gauge $ds^2 = \Omega(x)^2 \hat{g}_{ab} dx^a dx^b$ we find

$$A[g] = \frac{\delta_{ij}}{4\tau_2^2} \int d^2 x \sqrt{g} \frac{\delta \tau_i}{\delta g_{ab}} \mathcal{G}^{\lambda}_{abcd} \frac{\delta \tau_j}{\delta g_{cd}}$$
$$= \int d^2 x \sqrt{\hat{g}} \,\Omega(x)^{-2}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Writing the metric in conformal gauge $ds^2 = \Omega(x)^2 \hat{g}_{ab} dx^a dx^b$ we find

$$\begin{aligned} A[g] &= \frac{\delta_{ij}}{4\tau_2^2} \int d^2 x \sqrt{g} \frac{\delta \tau_i}{\delta g_{ab}} \mathcal{G}_{abcd}^{\lambda} \frac{\delta \tau_j}{\delta g_{cd}} \\ &= \int d^2 x \sqrt{\hat{g}} \,\Omega(x)^{-2} \\ &= \frac{\int d^2 x \sqrt{g} \exp(2\Delta^{-1}R)}{\left(\int d^2 x \sqrt{g} \exp(\Delta^{-1}R)\right)^2} \geq \frac{1}{V} \end{aligned}$$

・ロト・日本・モト・モート ヨー うへで

• Writing the metric in conformal gauge $ds^2 = \Omega(x)^2 \hat{g}_{ab} dx^a dx^b$ we find

$$\begin{aligned} A[g] &= \frac{\delta_{ij}}{4\tau_2^2} \int d^2 x \sqrt{g} \frac{\delta \tau_i}{\delta g_{ab}} \mathcal{G}_{abcd}^{\lambda} \frac{\delta \tau_j}{\delta g_{cd}} \\ &= \int d^2 x \sqrt{\hat{g}} \,\Omega(x)^{-2} \\ &= \frac{\int d^2 x \sqrt{g} \exp(2\Delta^{-1}R)}{\left(\int d^2 x \sqrt{g} \exp(\Delta^{-1}R)\right)^2} \geq \frac{1}{V} \end{aligned}$$

A natural discretization of A[g] to triangulations T is A[T] = ∑_{σ∈T} area(σ)², where area(σ) is the area of the triangle σ in the conformal embedding of T in the plane.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Measure $\langle A[g(t)] \rangle$ in CDT configurations: plots for $k_0 = 2.5$, V = 60000 and different singularity lengths l_0 .

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

• Measure $\langle A[g(t)] \rangle$ in CDT configurations: plots for $k_0 = 2.5$, V = 60000 and different singularity lengths l_0 .

▶ Now we can start comparing! Semi-classically the correlation matrix $\langle \Delta \tau_i(t) \Delta \tau_j(t') \rangle$ is proportional to the inverse of $\delta^2 S_{eff} / \delta \tau_i(t) \delta \tau_j(t')$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
► Measure (A[g(t)]) in CDT configurations: plots for k₀ = 2.5, V = 60000 and different singularity lengths l₀.

Now we can start comparing! Semi-classically the correlation matrix $\langle \Delta \tau_i(t) \Delta \tau_j(t') \rangle$ is proportional to the inverse of $\delta^2 S_{eff} / \delta \tau_i(t) \delta \tau_j(t')$.

• Determine the relative prefactor $2(\frac{1}{2} - \lambda)A[g]$ of \dot{V}^2 and $\dot{\tau}_i^2$ in

$$S[V,\tau] = \kappa \int dt \left((\frac{1}{2} - \lambda) \frac{\dot{V}^2}{V} + \frac{1}{2A[g]} \frac{\dot{\tau}_1^2 + \dot{\tau}_2^2}{\tau_2^2} - U(V,\tau) \right)$$

► Measure (A[g(t)]) in CDT configurations: plots for k₀ = 2.5, V = 60000 and different singularity lengths l₀.

Now we can start comparing! Semi-classically the correlation matrix $\langle \Delta \tau_i(t) \Delta \tau_j(t') \rangle$ is proportional to the inverse of $\delta^2 S_{eff} / \delta \tau_i(t) \delta \tau_j(t')$.

• Determine the relative prefactor $2(\frac{1}{2} - \lambda)A[g]$ of \dot{V}^2 and $\dot{\tau}_i^2$ in

$$S[V,\tau] = \kappa \int dt \Big((\frac{1}{2} - \lambda) \frac{\dot{V}^2}{V} + \frac{1}{2A[g]} \frac{\dot{\tau}_1^2 + \dot{\tau}_2^2}{\tau_2^2} - U(V,\tau) \Big).$$

• Fit to measured A[g] gives $\lambda \approx 0.18$.

 We can perform this analysis for various couplings k₀.

・ロト ・個ト ・モト ・モト

æ

- We can perform this analysis for various couplings k₀.
- As k₀ → k₀^{*} the correlation in V(t) of consecutive slices drops to zero compared to correlation in shape τ.

(日)、

э

- We can perform this analysis for various couplings k₀.
- As k₀ → k₀^{*} the correlation in V(t) of consecutive slices drops to zero compared to correlation in shape τ.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

 Similar results have been obtained from studying local metric fluctuations near fixed boundaries in CDT. [TB, arXiv:1110.5158]

- We can perform this analysis for various couplings k₀.
- As k₀ → k₀^{*} the correlation in V(t) of consecutive slices drops to zero compared to correlation in shape τ.

- Similar results have been obtained from studying local metric fluctuations near fixed boundaries in CDT. [TB, arXiv:1110.5158]
- Indication that spatial conformal symmetry is implemented at/near the phase transition. Relation to Shape Dynamics in 2+1 dimensions? [TB, T. Koslowski, arXiv:1107.1287] The weak coupling between consecutive spatial geometries may ensure that the conformal properties of 2d gravity are maintained.

In general connecting a microscopic model of gravity to its effective dynamics in the continuum limit through observables involves a large number of non-trivial steps.

In general connecting a microscopic model of gravity to its effective dynamics in the continuum limit through observables involves a large number of non-trivial steps.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► I have attempted to perform these steps explicitly for the special case of moduli in CDT in 2+1 dimensions on the torus.

- In general connecting a microscopic model of gravity to its effective dynamics in the continuum limit through observables involves a large number of non-trivial steps.
- ► I have attempted to perform these steps explicitly for the special case of moduli in CDT in 2+1 dimensions on the torus.
- In the presence of a preferred time-foliation direct probes of the effective kinetic term are available. In particular λ in the modified WdW metric can be deduced from measurements.

- In general connecting a microscopic model of gravity to its effective dynamics in the continuum limit through observables involves a large number of non-trivial steps.
- ► I have attempted to perform these steps explicitly for the special case of moduli in CDT in 2+1 dimensions on the torus.
- ► In the presence of a preferred time-foliation direct probes of the effective kinetic term are available. In particular λ in the modified WdW metric can be deduced from measurements.
- CDT and Hořava–Lifshitz gravity seem to be living in the same theory space and indeed our data is well-described by a kinetic term of the type appearing in HL.

Construct full effective action S[V(t), τ(t)]. What is U[V, τ] and how does A[g] scale with V?

- Construct full effective action S[V(t), τ(t)]. What is U[V, τ] and how does A[g] scale with V?
- Conformal invariance at the phase transition. Connection to Shape Dynamics? Analytical tools available (from 2d gravity)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Construct full effective action S[V(t), τ(t)]. What is U[V, τ] and how does A[g] scale with V?
- Conformal invariance at the phase transition. Connection to Shape Dynamics? Analytical tools available (from 2d gravity)?
- Discrete differential geometry seems to be the natural toolbox to construct observables in higher dimensional CDT and other discrete approaches, e.g. Quantum Regge, spin foams, colored tensor models.

- Construct full effective action S[V(t), τ(t)]. What is U[V, τ] and how does A[g] scale with V?
- Conformal invariance at the phase transition. Connection to Shape Dynamics? Analytical tools available (from 2d gravity)?
- Discrete differential geometry seems to be the natural toolbox to construct observables in higher dimensional CDT and other discrete approaches, e.g. Quantum Regge, spin foams, colored tensor models.
- Having large scale observables can help with renormalization/coarse graining. Outcome of measurements should be invariant under coarse graining.

- Construct full effective action S[V(t), τ(t)]. What is U[V, τ] and how does A[g] scale with V?
- Conformal invariance at the phase transition. Connection to Shape Dynamics? Analytical tools available (from 2d gravity)?
- Discrete differential geometry seems to be the natural toolbox to construct observables in higher dimensional CDT and other discrete approaches, e.g. Quantum Regge, spin foams, colored tensor models.
- Having large scale observables can help with renormalization/coarse graining. Outcome of measurements should be invariant under coarse graining.

Thanks for your attention!