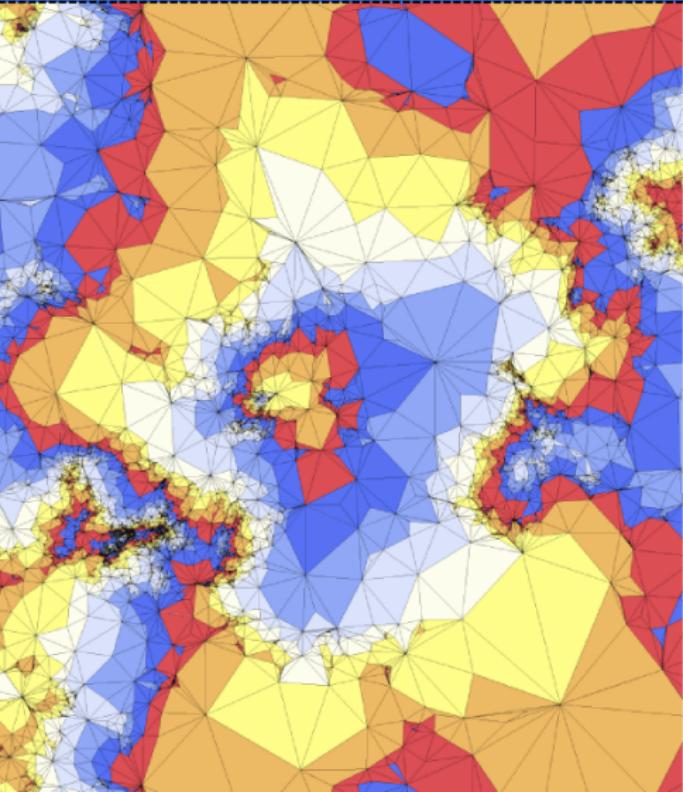
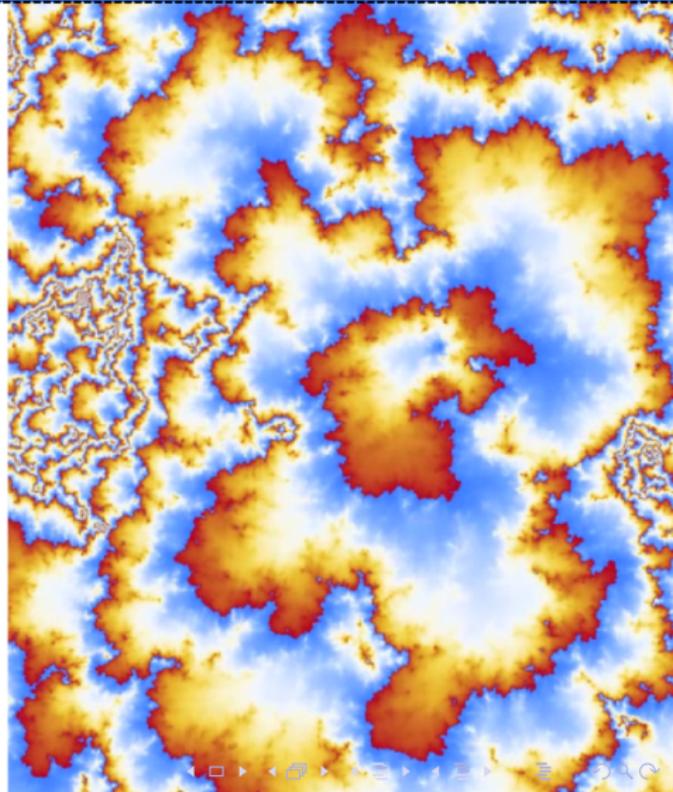


Relating discrete and continuum 2d quantum gravity

Timothy Budd

Niels Bohr Institute, Copenhagen. budd@nbi.dk, <http://www.nbi.dk/~budd/>



2D quantum gravity

- ▶ Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$Z = \int [\mathcal{D}g][\mathcal{D}X] \exp(-\lambda V[g] - S_m[g, X]),$$

possibly coupled to some matter fields X with action $S_m[g, X]$.

2D quantum gravity

- ▶ Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$Z = \int [\mathcal{D}g][\mathcal{D}X] \exp(-\lambda V[g] - S_m[g, X]),$$

possibly coupled to some matter fields X with action $S_m[g, X]$.

- ▶ Roughly two strategies to make sense of this path-integral:

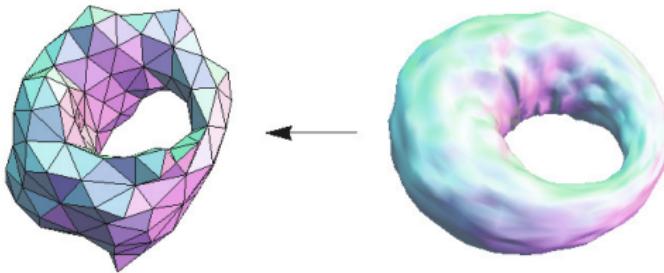
2D quantum gravity

- ▶ Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$Z = \int [Dg][DX] \exp(-\lambda V[g] - S_m[g, X]),$$

possibly coupled to some matter fields X with action $S_m[g, X]$.

- ▶ Roughly two strategies to make sense of this path-integral:
 - ▶ Combinatorially: $Z = \sum_T e^{-\lambda N_T} Z_m(T)$



2D quantum gravity

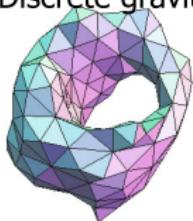
- ▶ Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$Z = \int [Dg][DX] \exp(-\lambda V[g] - S_m[g, X]),$$

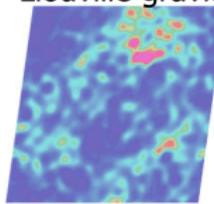
possibly coupled to some matter fields X with action $S_m[g, X]$.

- ▶ Roughly two strategies to make sense of this path-integral:
 - ▶ Combinatorially: $Z = \sum_T e^{-\lambda N_T} Z_m(T)$
 - ▶ Liouville path integral: gauge fix $g_{ab} = e^{\gamma\phi} \hat{g}_{ab}(\tau)$.

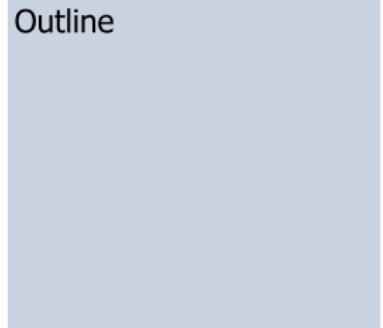
Discrete gravity



Liouville gravity



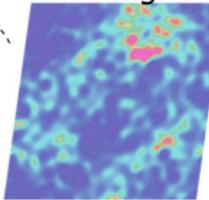
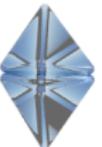
Outline



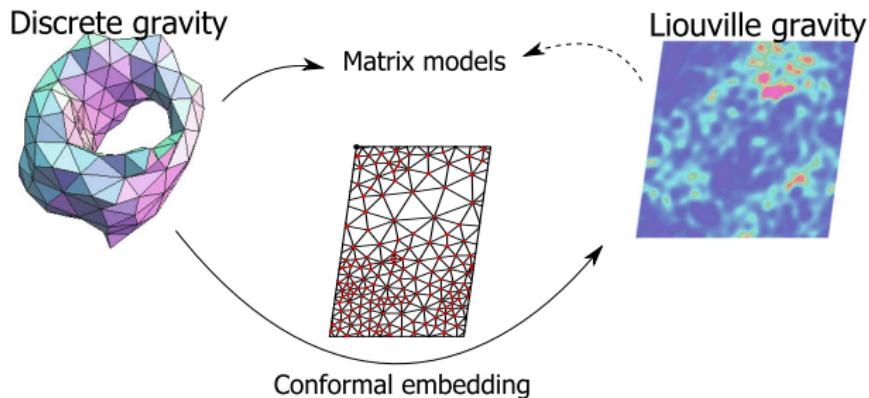
Discrete gravity

Matrix models

Liouville gravity

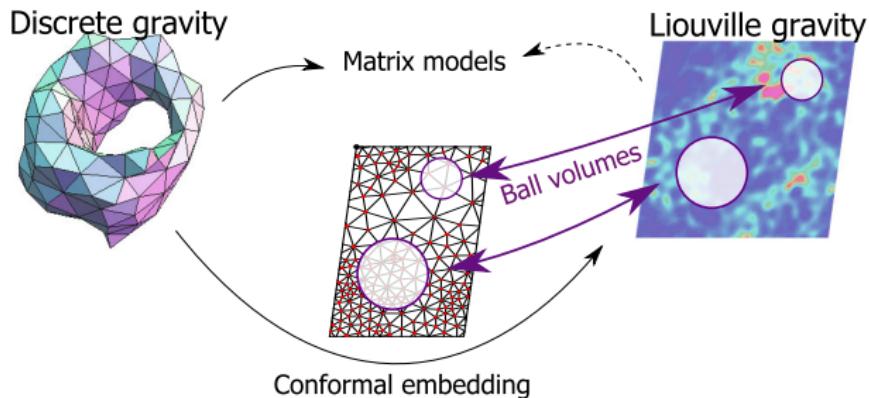


Outline



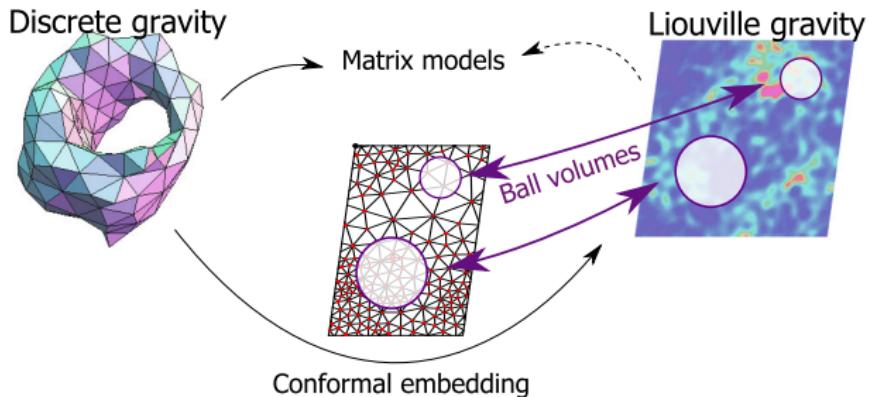
Outline

1. Conformal embedding



Outline

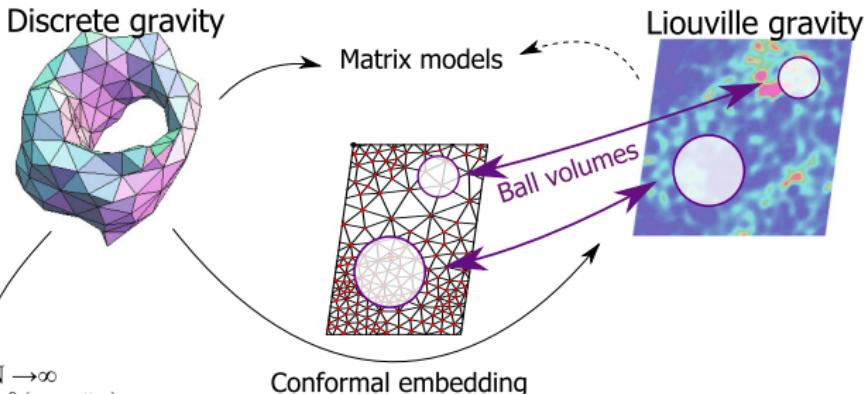
1. Conformal embedding
2. Ball volumes



Hausdorff dimension

Outline

1. Conformal embedding
2. Ball volumes
3. Hausdorff dimension



Hausdorff dimension

Brownian map
 $d_h = 4$

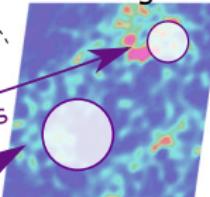
Outline

1. Conformal embedding
2. Ball volumes
3. Hausdorff dimension
- in DT

Discrete gravity

Matrix models

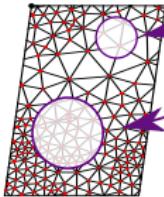
Liouville gravity



$N \rightarrow \infty$
 $c=0$ (no matter)

$N \rightarrow \infty$
 $c \neq 0$

Conformal embedding



Ball volumes

Hausdorff dimension

Brownian map

$$d_h = 4$$

Numerically

$$d_h (c=-2) = 3.56$$

?

Outline

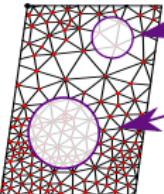
1. Conformal embedding
2. Ball volumes
3. Hausdorff dimension
- in DT

Discrete gravity

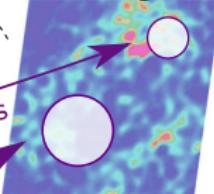


Matrix models

Liouville gravity



Ball volumes



Conformal embedding

$N \rightarrow \infty$
 $c=0$ (no matter)

$N \rightarrow \infty$
 $c \neq 0$

Liouville metric?
 $-\infty < c < 1$

Hausdorff dimension

Brownian map
 $d_h = 4$

Numerically
 $d_h (c=-2) = 3.56$

Watabiki's formula:
$$d_h = 2 \frac{\sqrt{49-c} + \sqrt{25-c}}{\sqrt{25-c} + \sqrt{1-c}}$$

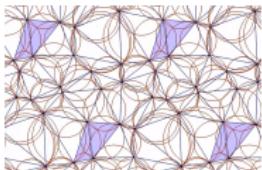
Check numerically for
a Gaussian free field.

Outline

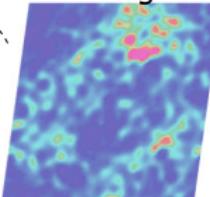
1. Conformal embedding
2. Ball volumes
3. Hausdorff dimension
 - in DT
 - in Liouville

Discrete gravity

Matrix models



Liouville gravity



$N \rightarrow \infty$
 $c=0$ (no matter)

$N \rightarrow \infty$
 $c \neq 0$

Circle patterns

Liouville metric?
 $-\infty < c < 1$

Hausdorff dimension

Brownian map
 $d_h = 4$

Numerically
 $d_h (c=-2) = 3.56$

?

Watabiki's formula:
$$d_h = 2 \frac{\sqrt{49-c} + \sqrt{25-c}}{\sqrt{25-c} + \sqrt{1-c}}$$

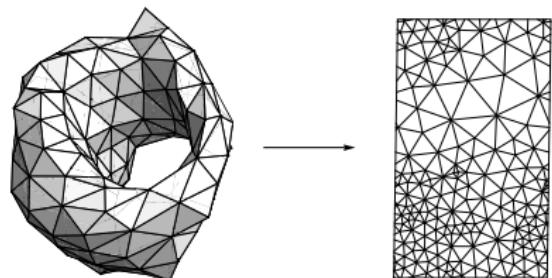
Check numerically for
a Gaussian free field.

Outline

1. Conformal embedding
2. Ball volumes
3. Hausdorff dimension
 - in DT
 - in Liouville
4. Circle patterns

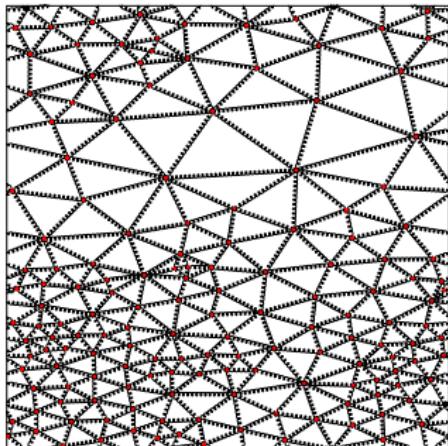
Mapping a triangulation to the plane

- Given a triangulation of the torus, there is a natural way to associate a harmonic embedding in \mathbb{R}^2 and a Teichmüller parameter τ .



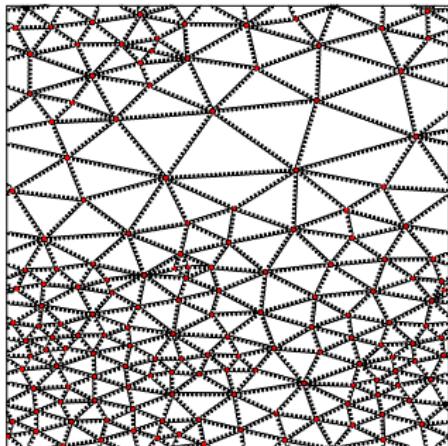
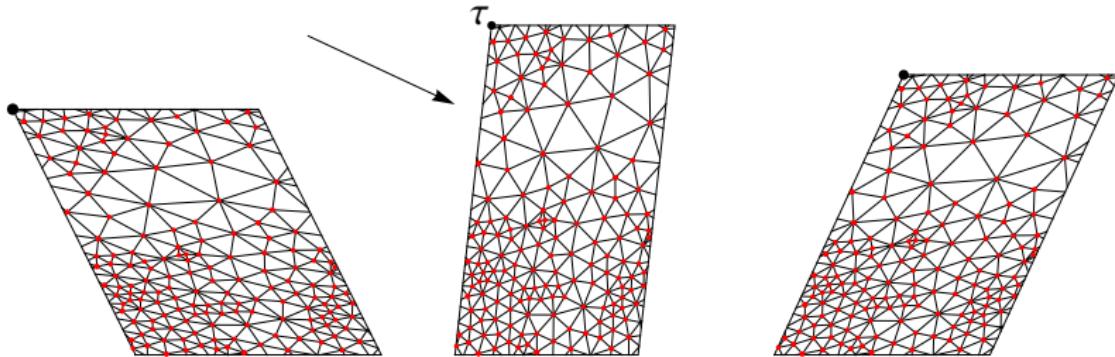
Mapping a triangulation to the plane

- ▶ Given a triangulation of the torus, there is a natural way to associate a harmonic embedding in \mathbb{R}^2 and a Teichmüller parameter τ .
- ▶ Replace edges by ideal springs and find equilibrium.

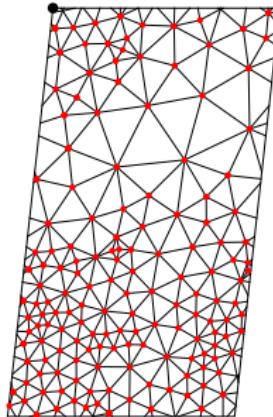


Mapping a triangulation to the plane

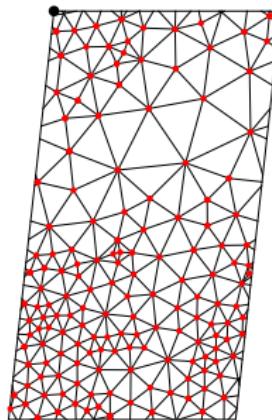
- ▶ Given a triangulation of the torus, there is a natural way to associate a harmonic embedding in \mathbb{R}^2 and a Teichmüller parameter τ .
- ▶ Replace edges by ideal springs and find equilibrium.
- ▶ Find linear transformation that minimizes energy while fixing the volume.

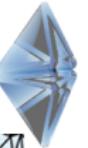


- ▶ Two pieces of information:
modulus τ and periodic discrete
measure on \mathbb{R}^2 .

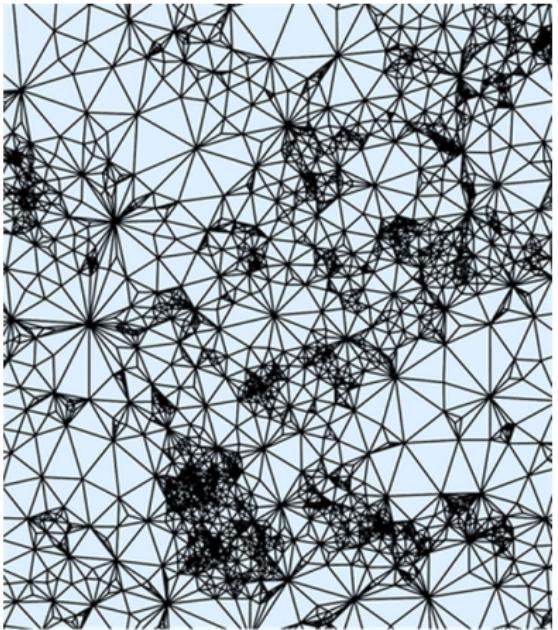


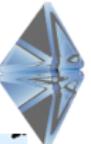
- ▶ Two pieces of information: modulus τ and periodic discrete measure on \mathbb{R}^2 .
- ▶ Distribution of τ agrees numerically with non-critical string theory result. [\[Ambjørn, TB, Barkley, '12\]](#)



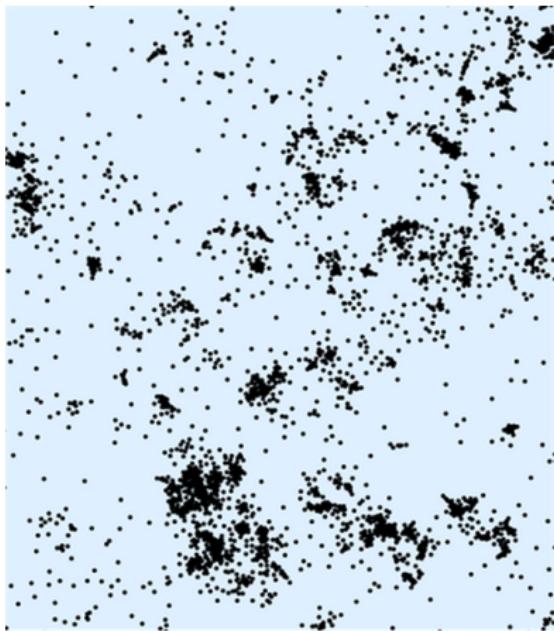


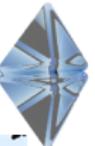
- ▶ Two pieces of information: modulus τ and periodic discrete measure on \mathbb{R}^2 .
- ▶ Distribution of τ agrees numerically with non-critical string theory result. [Ambjørn, TB, Barkley, '12]
- ▶ Concentrate on discrete measure.



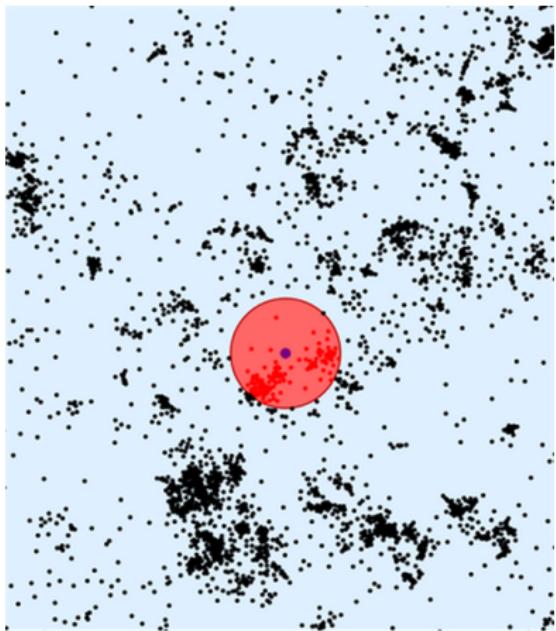


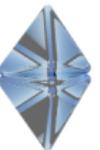
- ▶ Two pieces of information: modulus τ and periodic discrete measure on \mathbb{R}^2 .
- ▶ Distribution of τ agrees numerically with non-critical string theory result. [Ambjørn, TB, Barkley, '12]
- ▶ Concentrate on discrete measure.
- ▶ What is the distance ϵ_n to the n 'th nearest neighbour of a randomly chosen vertex?



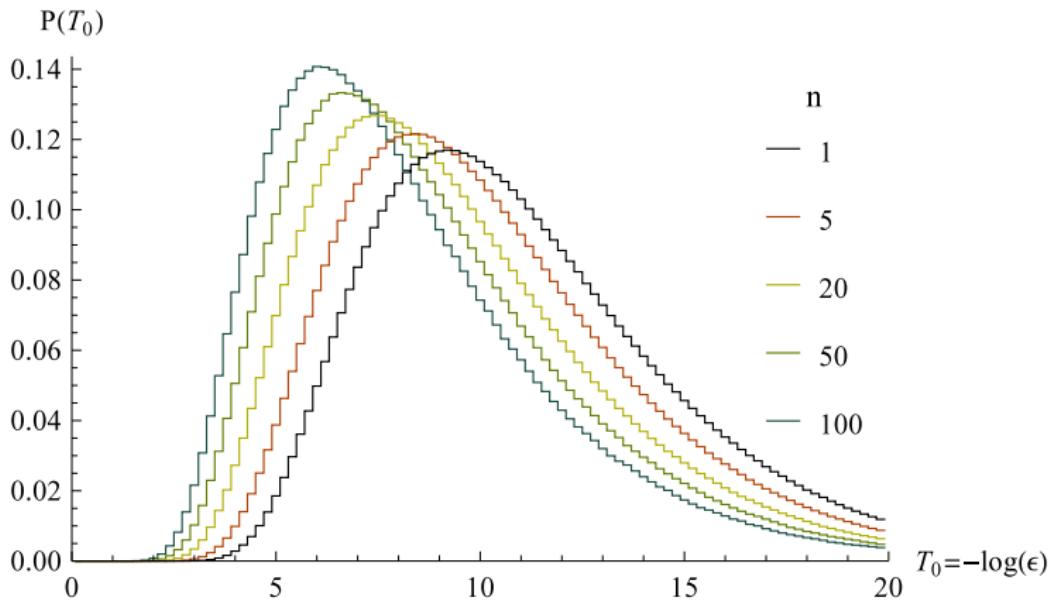


- ▶ Two pieces of information: modulus τ and periodic discrete measure on \mathbb{R}^2 .
- ▶ Distribution of τ agrees numerically with non-critical string theory result. [Ambjørn, TB, Barkley, '12]
- ▶ Concentrate on discrete measure.
- ▶ What is the distance ϵ_n to the n 'th nearest neighbour of a randomly chosen vertex?
- ▶ ϵ_n can be interpreted as the radius of a Euclidean disk with “quantum volume” $\delta = n/N$.



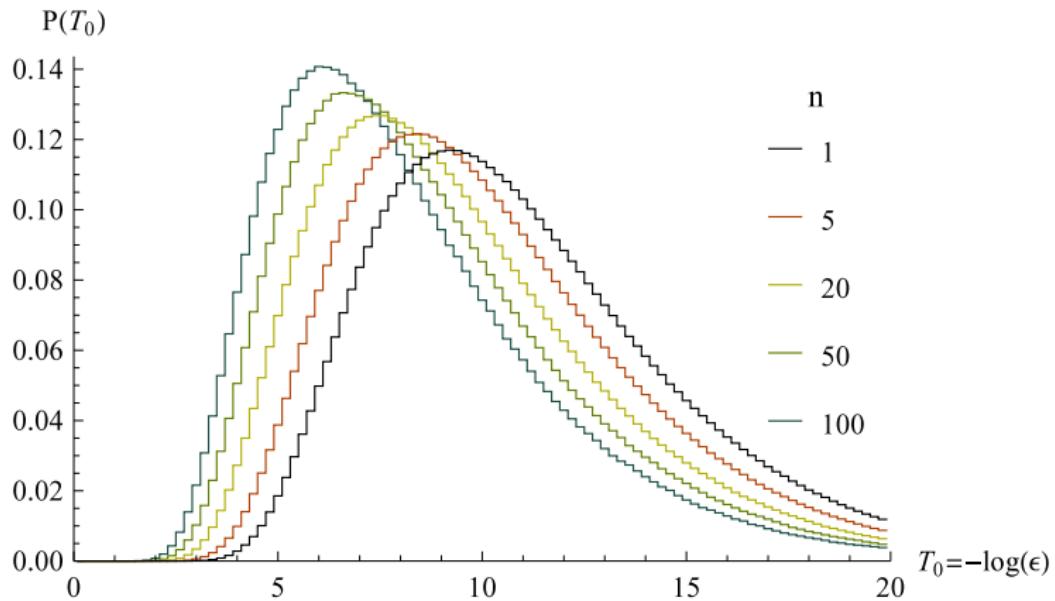


- ▶ Can measure the distribution $P_{N,n}(T_0 = -\log(\epsilon))$ in Dynamical Triangulations. See plot for $N = 400k$ and $c = -2$ and $n = 1, \dots, 100$.

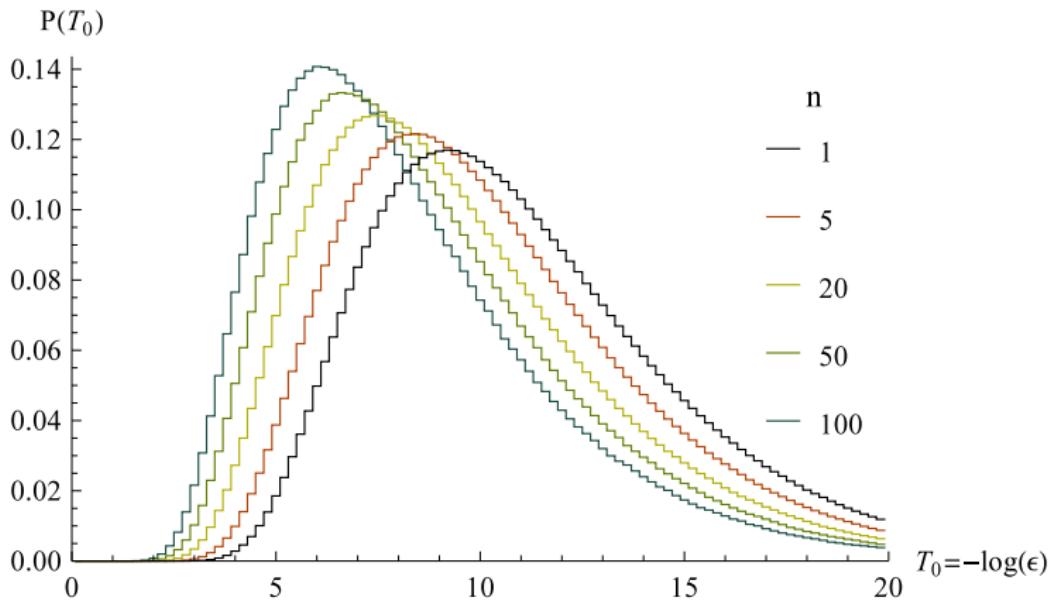




- ▶ Can measure the distribution $P_{N,n}(T_0 = -\log(\epsilon))$ in Dynamical Triangulations. See plot for $N = 400k$ and $c = -2$ and $n = 1, \dots, 100$.
- ▶ Inverse Gaussian: $P(T_0) \sim \frac{A}{\sqrt{2\pi T^3}} e^{-\frac{(A-BT)^2}{2T}}$, $T = T_0 + \delta T$.



- ▶ Can measure the distribution $P_{N,n}(T_0 = -\log(\epsilon))$ in Dynamical Triangulations. See plot for $N = 400k$ and $c = -2$ and $n = 1, \dots, 100$.
- ▶ Inverse Gaussian: $P(T_0) \sim \frac{A}{\sqrt{2\pi T^3}} e^{-\frac{(A-BT)^2}{2T}}$, $T = T_0 + \delta T$.
- ▶ As we will see, Liouville theory explains why.



Quantum Liouville gravity

[David, '88] [Distler, Kawai, '89]

- ▶ Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov string in c dimensions,

$$Z = \int [Dg][DX] \exp \left(-\lambda V[g] - \int d^2x \sqrt{g} g^{ab} \partial_a X^i \partial_b X^j \delta_{ij} \right), \quad X \in \mathbb{R}^c.$$

Quantum Liouville gravity

[David, '88] [Distler, Kawai, '89]

- ▶ Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov string in c dimensions,

$$Z = \int [\mathcal{D}g][\mathcal{D}X] \exp \left(-\lambda V[g] - \int d^2x \sqrt{g} g^{ab} \partial_a X^i \partial_b X^j \delta_{ij} \right), \quad X \in \mathbb{R}^c.$$

- ▶ Write g in conformal gauge $g_{ab} = e^{\gamma\phi} \hat{g}_{ab}(\tau)$ with Liouville field ϕ and Teichmüller parameter τ .

Quantum Liouville gravity

[David, '88] [Distler, Kawai, '89]

- ▶ Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov string in c dimensions,

$$Z = \int [\mathcal{D}g][\mathcal{D}X] \exp \left(-\lambda V[g] - \int d^2x \sqrt{g} g^{ab} \partial_a X^i \partial_b X^j \delta_{ij} \right), \quad X \in \mathbb{R}^c.$$

- ▶ Write g in conformal gauge $g_{ab} = e^{\gamma\phi} \hat{g}_{ab}(\tau)$ with Liouville field ϕ and Teichmüller parameter τ .
- ▶ Conformal bootstrap: assuming Z to be of the form

$$Z = \int d\tau [\mathcal{D}_{\hat{g}}\phi][\mathcal{D}_{\hat{g}}X] \exp (-S_L[\hat{g}, \phi] - S_m[X, \hat{g}])$$

with the Liouville action

$$S_L[\hat{g}, \phi] = \frac{1}{4\pi} \int d^2x \sqrt{\hat{g}} (\hat{g}^{ab} \partial_a \phi \partial_b \phi + Q \hat{R} \phi + \mu e^{\gamma\phi})$$

and requiring invariance w.r.t. \hat{g}_{ab} fixes the constants Q and γ :

$$Q = \frac{2}{\gamma} + \frac{\gamma}{2} = \sqrt{\frac{25-c}{6}}$$

- If we ignore τ -integral and set $\hat{g}_{ab} = \delta_{ab}$ flat and $\mu = 0$,

$$Z = \int [D\phi] \exp \left(-\frac{1}{4\pi} \int d^2x \partial^a \phi \partial_a \phi \right),$$

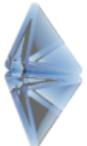
i.e. simple Gaussian Free Field (GFF)!

- ▶ If we ignore τ -integral and set $\hat{g}_{ab} = \delta_{ab}$ flat and $\mu = 0$,

$$Z = \int [D\phi] \exp \left(-\frac{1}{4\pi} \int d^2x \partial^a \phi \partial_a \phi \right),$$

i.e. simple Gaussian Free Field (GFF)!

- ▶ Does this Z really describe the quantum geometry of 2d gravity coupled to matter with any central charge $c < 1$?



- ▶ If we ignore τ -integral and set $\hat{g}_{ab} = \delta_{ab}$ flat and $\mu = 0$,

$$Z = \int [\mathcal{D}\phi] \exp \left(-\frac{1}{4\pi} \int d^2x \partial^a \phi \partial_a \phi \right),$$

i.e. simple Gaussian Free Field (GFF)!

- ▶ Does this Z really describe the quantum geometry of 2d gravity coupled to matter with any central charge $c < 1$?
- ▶ In other words: given a diffeomorphism invariant observable $\mathcal{O}[g_{ab}]$, can we make sense out of the expectation value

$$\langle \mathcal{O} \rangle_Z = \frac{1}{Z} \int [\mathcal{D}\phi] \mathcal{O}[e^{\gamma\phi} \delta_{ab}] \exp \left(-\frac{1}{4\pi} \int d^2x \partial^a \phi \partial_a \phi \right)$$

and does it agree with DT?

- ▶ If we ignore τ -integral and set $\hat{g}_{ab} = \delta_{ab}$ flat and $\mu = 0$,

$$Z = \int [\mathcal{D}\phi] \exp \left(-\frac{1}{4\pi} \int d^2x \partial^a \phi \partial_a \phi \right),$$

i.e. simple Gaussian Free Field (GFF)!

- ▶ Does this Z really describe the quantum geometry of 2d gravity coupled to matter with any central charge $c < 1$?
- ▶ In other words: given a diffeomorphism invariant observable $\mathcal{O}[g_{ab}]$, can we make sense out of the expectation value

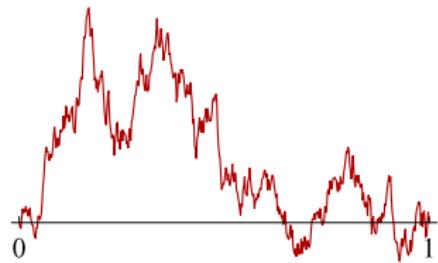
$$\langle \mathcal{O} \rangle_Z = \frac{1}{Z} \int [\mathcal{D}\phi] \mathcal{O}[e^{\gamma\phi} \delta_{ab}] \exp \left(-\frac{1}{4\pi} \int d^2x \partial^a \phi \partial_a \phi \right)$$

and does it agree with DT?

- ▶ Care required: $e^{\gamma\phi} \delta_{ab}$ is almost surely not a Riemannian metric!
Need to take into account the fractal properties of the geometry and regularize appropriately.

Gaussian free field basics

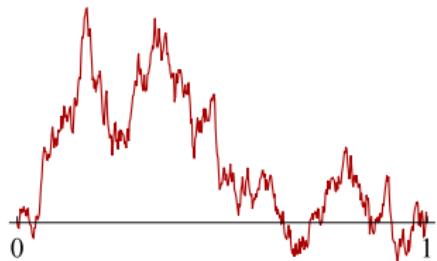
- ▶ Gaussian free field in 1d is a.s. a continuous function: Brownian motion.



Gaussian free field basics

- ▶ Gaussian free field in 1d is a.s. a continuous function: Brownian motion.
- ▶ In 2d (on a domain D) the covariance is given by

$$\langle \phi(x)\phi(y) \rangle = G(x,y) = -\log|x-y| + \tilde{G}(x,y).$$

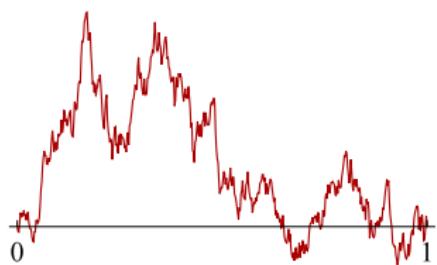
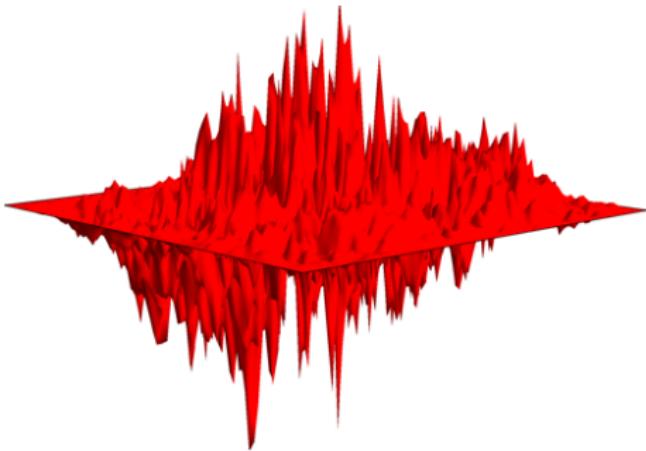


Gaussian free field basics

- ▶ Gaussian free field in 1d is a.s. a continuous function: Brownian motion.
- ▶ In 2d (on a domain D) the covariance is given by

$$\langle \phi(x)\phi(y) \rangle = G(x,y) = -\log|x-y| + \tilde{G}(x,y).$$

- ▶ $\phi(x)$ has infinite variance. It is not a function, but a distribution.

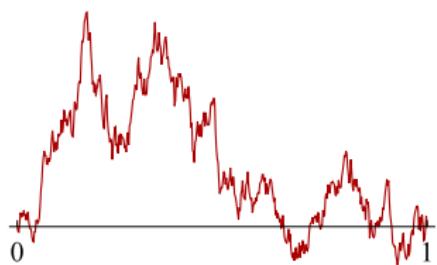
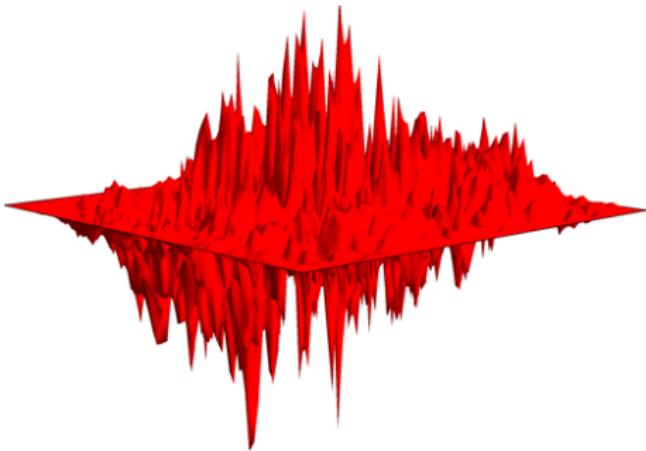


Gaussian free field basics

- ▶ Gaussian free field in 1d is a.s. a continuous function: Brownian motion.
- ▶ In 2d (on a domain D) the covariance is given by

$$\langle \phi(x)\phi(y) \rangle = G(x,y) = -\log|x-y| + \tilde{G}(x,y).$$

- ▶ $\phi(x)$ has infinite variance. It is not a function, but a distribution.
- ▶ How do we make sense of the measure $e^{\gamma\phi}$?



Regularization [Sheffield, Duplantier]

- ▶ The integral $(f, \phi) = \int d^2x f(x)\phi(x)$ has finite variance.
- ▶ In particular, for circle average $\phi_\epsilon(x) := \frac{1}{2\pi} \int_0^{2\pi} d\theta \phi(x + \epsilon e^{i\theta})$,

$$\langle \phi_\epsilon(x)^2 \rangle = -\log \epsilon - \tilde{G}(x, x).$$

Regularization [Sheffield, Duplantier]

- ▶ The integral $(f, \phi) = \int d^2x f(x)\phi(x)$ has finite variance.
- ▶ In particular, for circle average $\phi_\epsilon(x) := \frac{1}{2\pi} \int_0^{2\pi} d\theta \phi(x + \epsilon e^{i\theta})$,

$$\langle \phi_\epsilon(x)^2 \rangle = -\log \epsilon - \tilde{G}(x, x).$$

- ▶ Therefore,

$$\langle e^{\gamma \phi_\epsilon(x)} \rangle = e^{\langle (\gamma \phi_\epsilon)^2 \rangle / 2} = \left(\frac{\tilde{G}(x, x)}{\epsilon} \right)^{\gamma^2 / 2}.$$

Regularization [Sheffield, Duplantier]

- ▶ The integral $(f, \phi) = \int d^2x f(x)\phi(x)$ has finite variance.
- ▶ In particular, for circle average $\phi_\epsilon(x) := \frac{1}{2\pi} \int_0^{2\pi} d\theta \phi(x + \epsilon e^{i\theta})$,

$$\langle \phi_\epsilon(x)^2 \rangle = -\log \epsilon - \tilde{G}(x, x).$$

- ▶ Therefore,

$$\langle e^{\gamma \phi_\epsilon(x)} \rangle = e^{\langle (\gamma \phi_\epsilon)^2 \rangle / 2} = \left(\frac{\tilde{G}(x, x)}{\epsilon} \right)^{\gamma^2 / 2}.$$

- ▶ Define regularized measure $d\mu_\epsilon = \epsilon^{\gamma^2 / 2} e^{\gamma \phi_\epsilon(x)} d^2x$.
- ▶ $d\mu_\epsilon$ converges almost surely to a well-defined random measure $d\mu_\gamma$ as $\epsilon \rightarrow 0$. [Sheffield, Duplantier]

Regularization [Sheffield, Duplantier]

- ▶ The integral $(f, \phi) = \int d^2x f(x)\phi(x)$ has finite variance.
- ▶ In particular, for circle average $\phi_\epsilon(x) := \frac{1}{2\pi} \int_0^{2\pi} d\theta \phi(x + \epsilon e^{i\theta})$,

$$\langle \phi_\epsilon(x)^2 \rangle = -\log \epsilon - \tilde{G}(x, x).$$

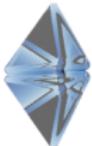
- ▶ Therefore,

$$\langle e^{\gamma \phi_\epsilon(x)} \rangle = e^{\langle (\gamma \phi_\epsilon)^2 \rangle / 2} = \left(\frac{\tilde{G}(x, x)}{\epsilon} \right)^{\gamma^2 / 2}.$$

- ▶ Define regularized measure $d\mu_\epsilon = \epsilon^{\gamma^2 / 2} e^{\gamma \phi_\epsilon(x)} d^2x$.
- ▶ $d\mu_\epsilon$ converges almost surely to a well-defined random measure $d\mu_\gamma$ as $\epsilon \rightarrow 0$. [Sheffield, Duplantier]
- ▶ Alternatively, one can use a momentum cut-off. Given an orthonormal basis $\Delta_E f_i = \lambda_i f_i$,

$$\phi_p := \sum_{\lambda_i \leq p^2} (f_i, \phi) f_i, \quad d\mu_p = p^{-\gamma^2 / 2} e^{\gamma \phi_p(x)} d^2x$$

On the lattice

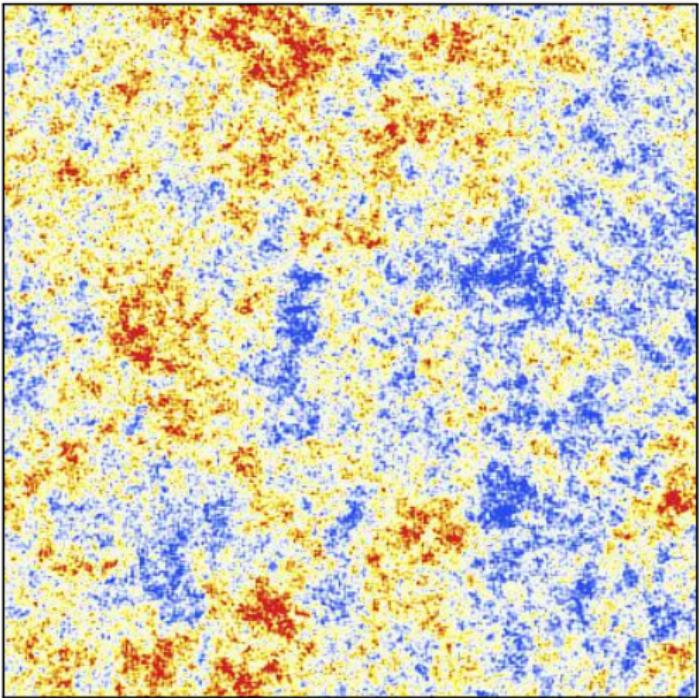


- We can easily put a Gaussian free field on a lattice, say, $L \times L$ with periodic boundary conditions.

```
RandomField[L_] :=  
  Re@Fourier[RandomVariate[NormalDistribution[], {L, L, 2}].{1, i}  
  Table[If[i == j == 1, 0,  $\left(\frac{2}{\pi} \sin[\pi (i-1)/L]^2 + \frac{2}{\pi} \sin[\pi (j-1)/L]^2\right)^{-1/2}$ ],  
  {i, L}, {j, L}]];
```

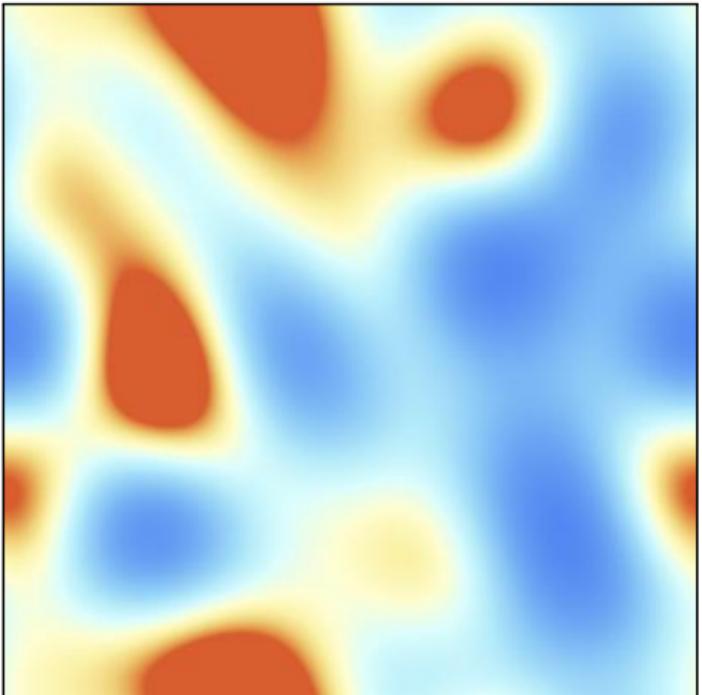
On the lattice

- ▶ $L \times L$ with periodic boundary conditions.



On the lattice

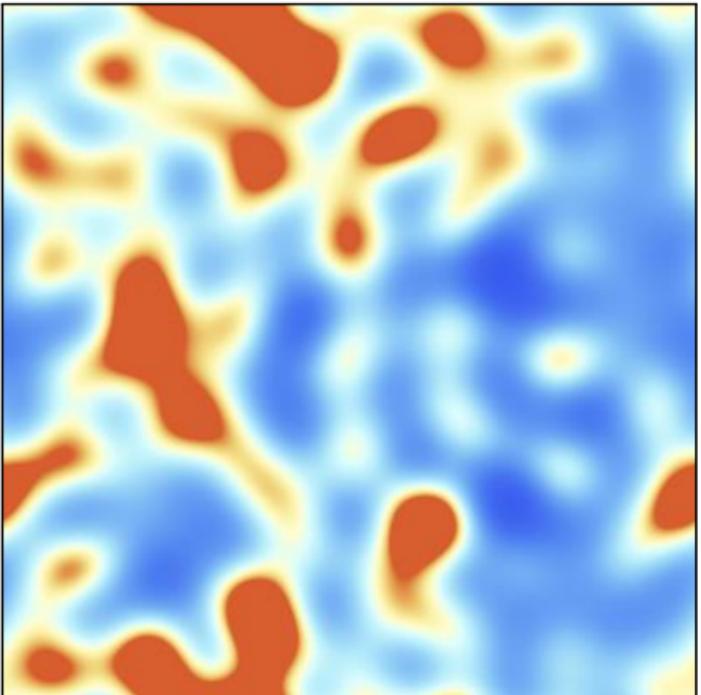
- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider
 $d\mu_p = p^{-\gamma^2/2} e^{\gamma\phi_p(x)} d^2x$
with $p \ll L$.



$$\gamma = 0.6, p = 10$$

On the lattice

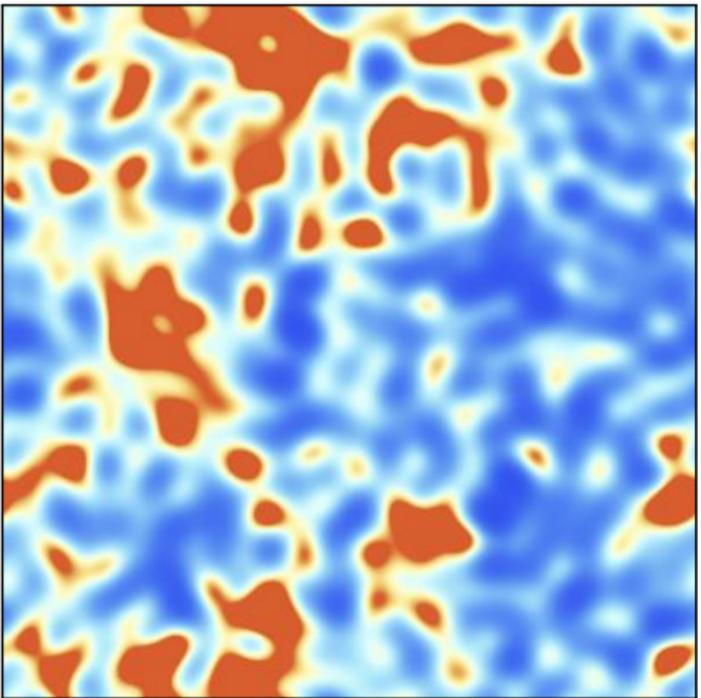
- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider
 $d\mu_p = p^{-\gamma^2/2} e^{\gamma\phi_p(x)} d^2x$
with $p \ll L$.



$$\gamma = 0.6, p = 20$$

On the lattice

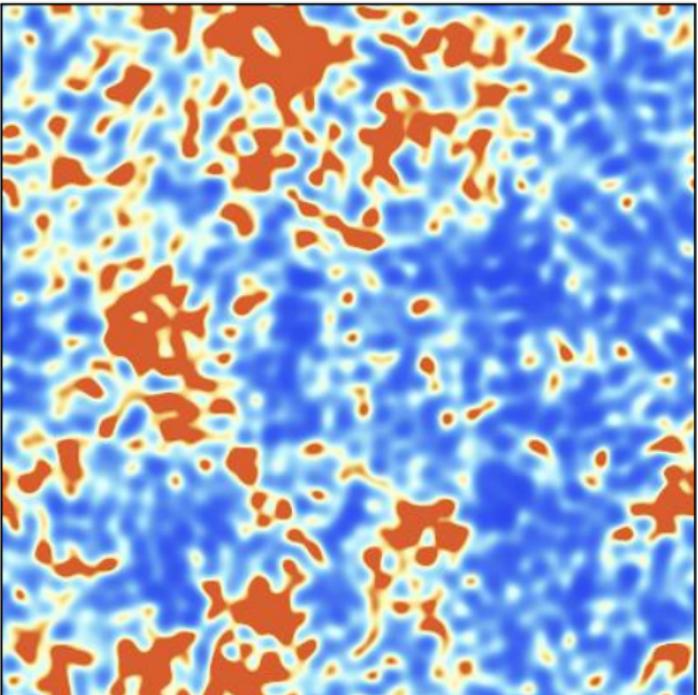
- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider
 $d\mu_p = p^{-\gamma^2/2} e^{\gamma\phi_p(x)} d^2x$
with $p \ll L$.



$$\gamma = 0.6, p = 40$$

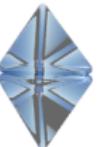
On the lattice

- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider
 $d\mu_p = p^{-\gamma^2/2} e^{\gamma\phi_p(x)} d^2x$
with $p \ll L$.

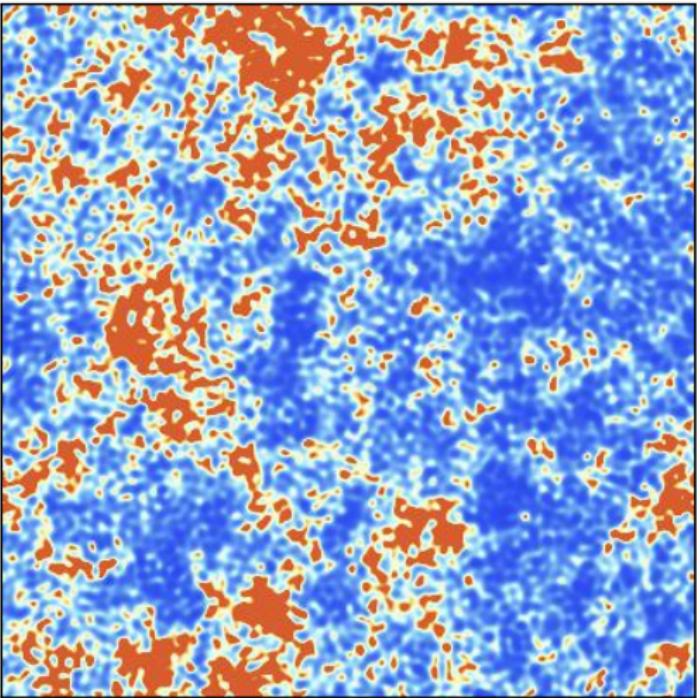


$$\gamma = 0.6, p = 80$$

On the lattice

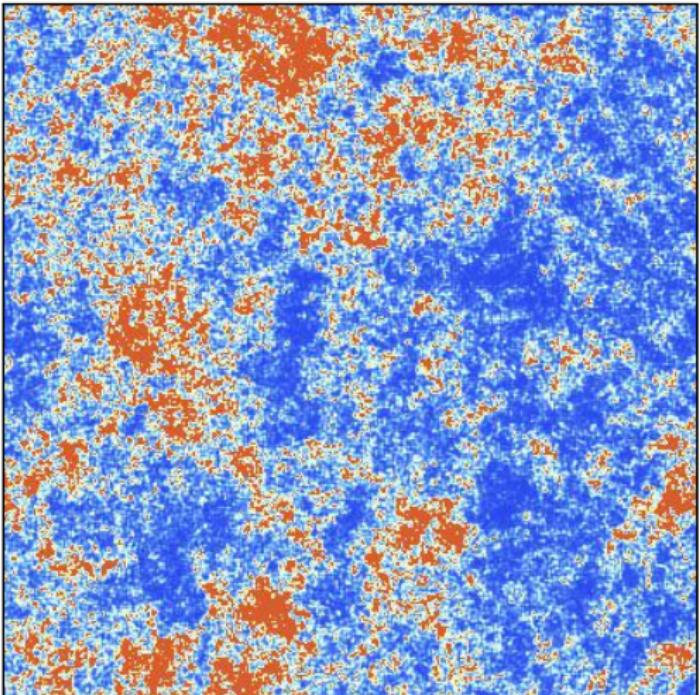


- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider
 $d\mu_p = p^{-\gamma^2/2} e^{\gamma\phi_p(x)} d^2x$
with $p \ll L$.



On the lattice

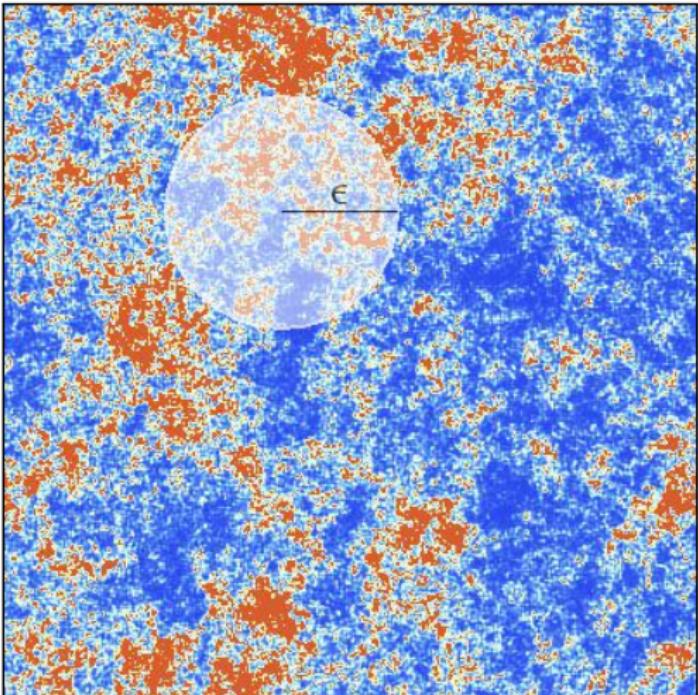
- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider
$$d\mu_p = p^{-\gamma^2/2} e^{\gamma \phi_p(x)} d^2x$$
with $p \ll L$.



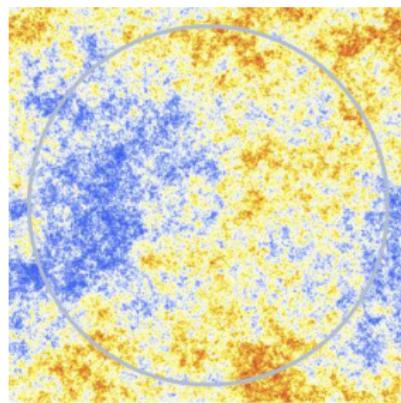
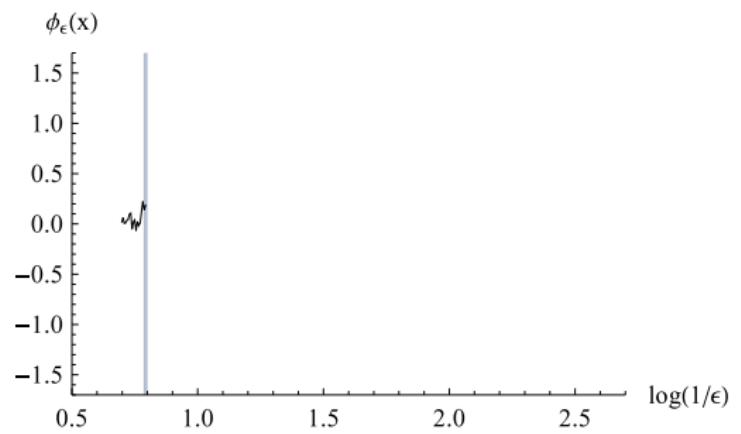
$\gamma = 0.6, p = 320$

On the lattice

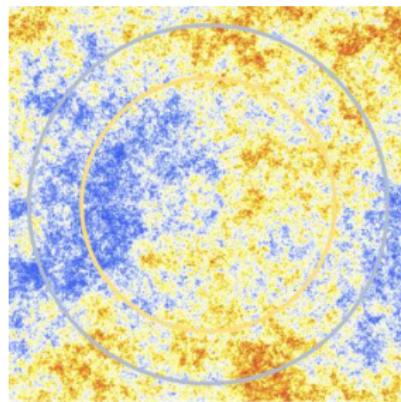
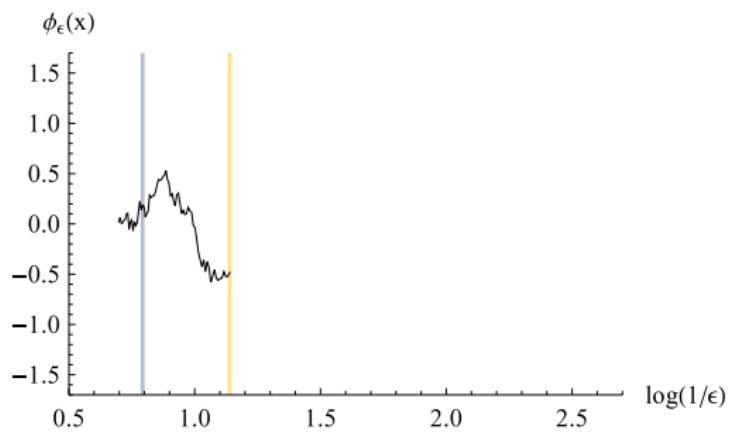
- ▶ $L \times L$ with periodic boundary conditions.
- ▶ Consider $d\mu_p = p^{-\gamma^2/2} e^{\gamma \phi_p(x)} d^2x$ with $p \ll L$.
- ▶ Can we understand the relation between $\delta = \mu(B_\epsilon(x))$ and ϵ ?



- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .

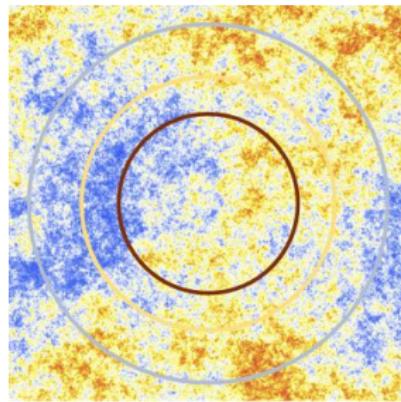
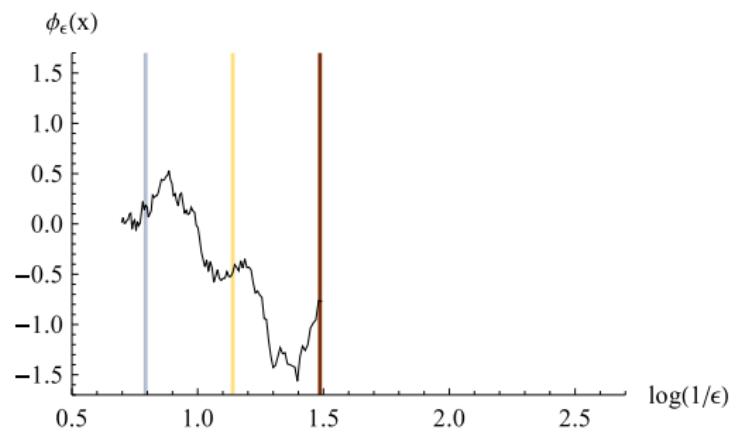


- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .

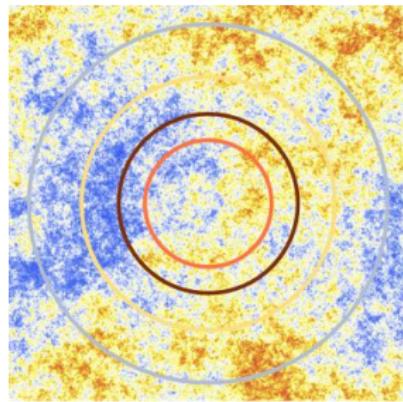
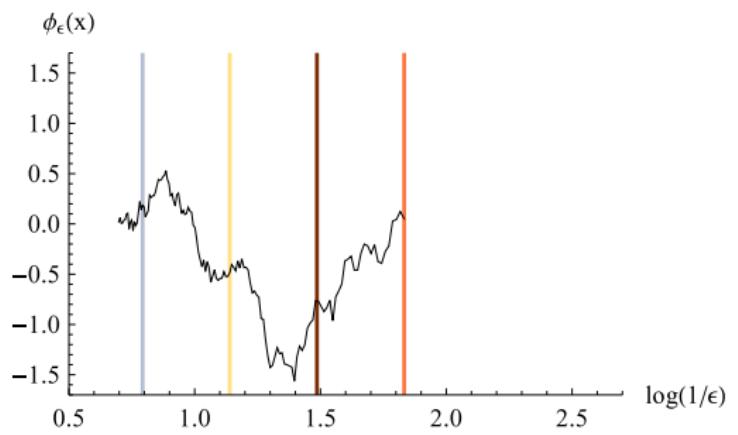




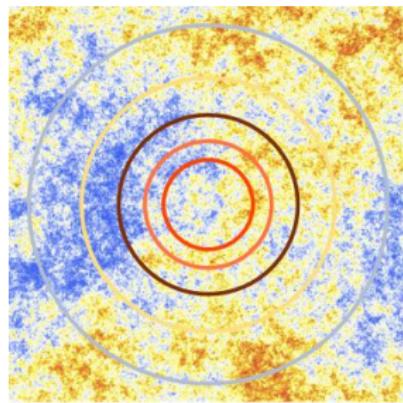
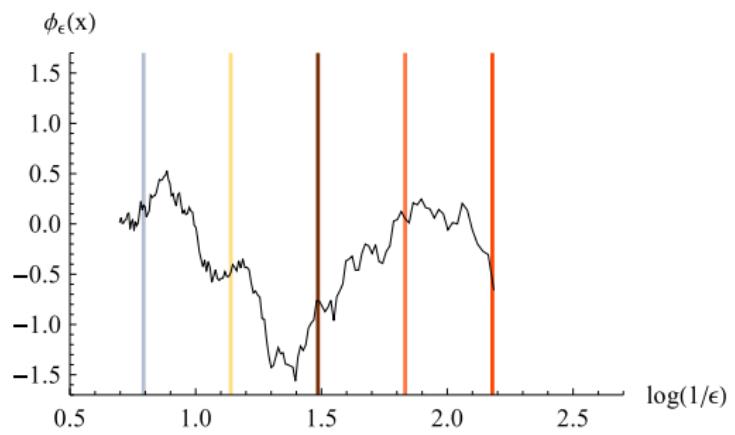
- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .



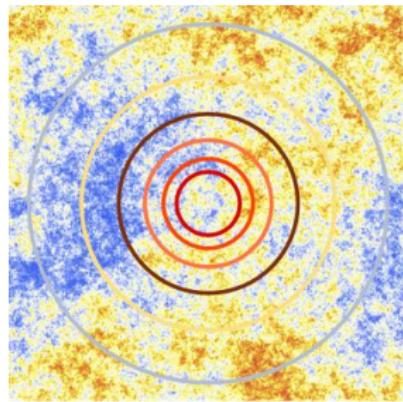
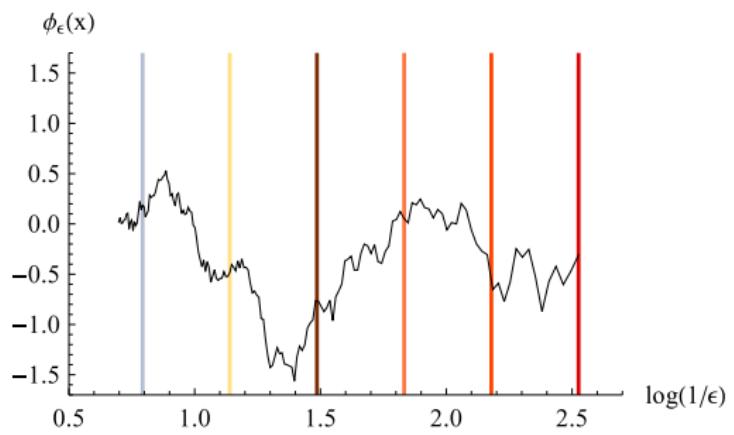
- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .



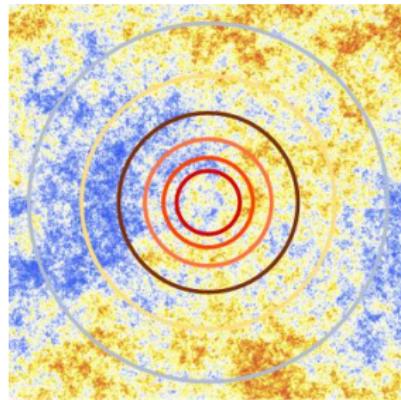
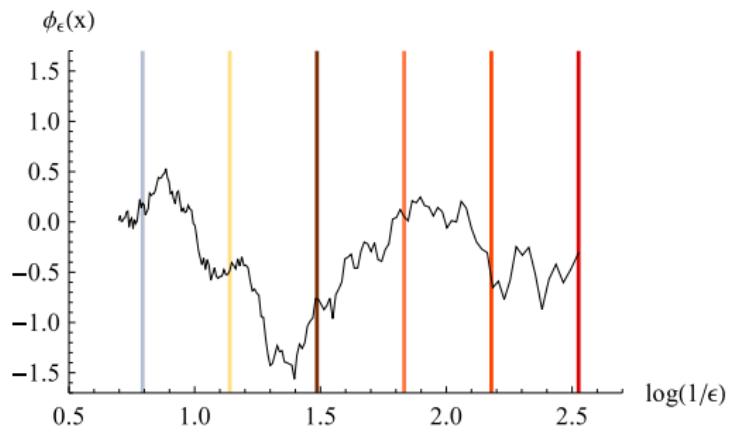
- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .



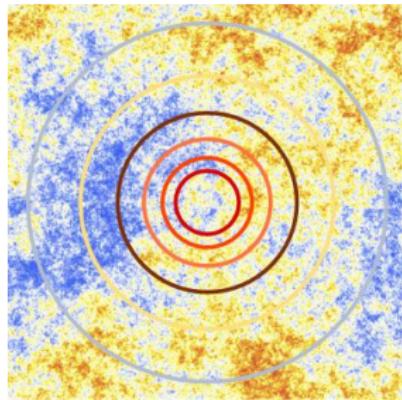
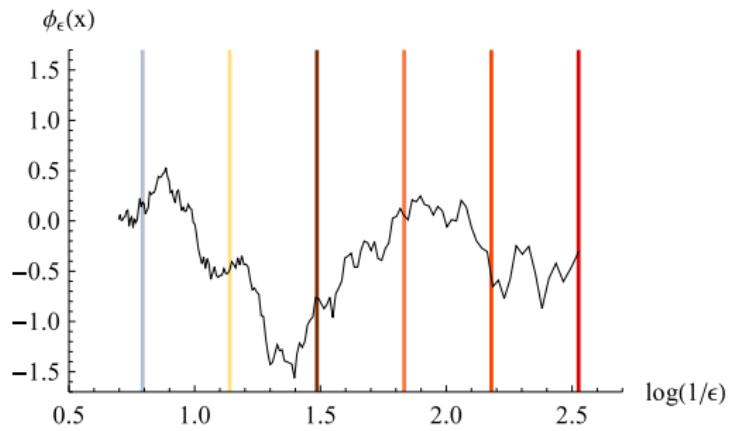
- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .
- ▶ $\langle \phi_\epsilon(x) \phi_{\epsilon'}(x) \rangle = -\log \frac{\max(\epsilon, \epsilon')}{\epsilon_0} = \min(t, t'), \quad t = -\log\left(\frac{\epsilon}{\epsilon_0}\right)$



- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .
- ▶ $\langle \phi_\epsilon(x) \phi_{\epsilon'}(x) \rangle = -\log \frac{\max(\epsilon, \epsilon')}{\epsilon_0} = \min(t, t')$, $t = -\log(\frac{\epsilon}{\epsilon_0})$
- ▶ Therefore $\phi_{\epsilon_0 e^{-t}}$ is simply a Brownian motion! [Sheffield, Duplantier]

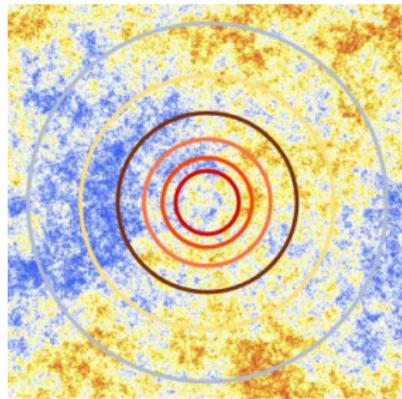
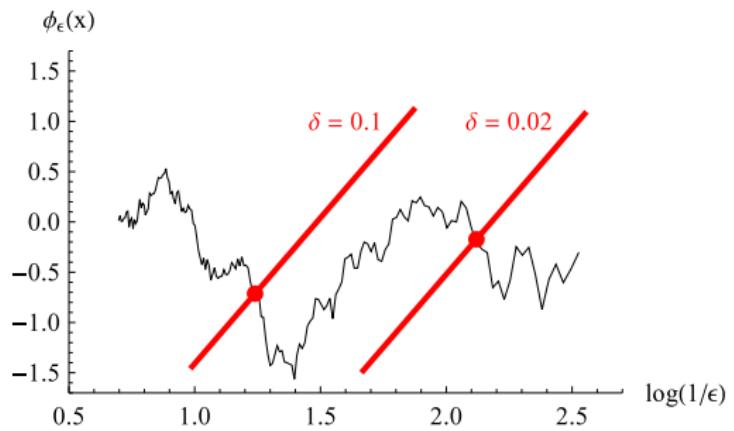


- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .
- ▶ $\langle \phi_\epsilon(x) \phi_{\epsilon'}(x) \rangle = -\log \frac{\max(\epsilon, \epsilon')}{\epsilon_0} = \min(t, t')$, $t = -\log(\frac{\epsilon}{\epsilon_0})$
- ▶ Therefore $\phi_{\epsilon_0 e^{-t}}$ is simply a Brownian motion! [Sheffield, Duplantier]
- ▶ The volume in a ball is approximated by $\mu(B_\epsilon(x)) \approx \pi \epsilon^2 \mu_\epsilon(x)$.
[Sheffield, Duplantier]



- ▶ Look at the circle average $\phi_\epsilon(x)$ as function of ϵ .
- ▶ $\langle \phi_\epsilon(x) \phi_{\epsilon'}(x) \rangle = -\log \frac{\max(\epsilon, \epsilon')}{\epsilon_0} = \min(t, t')$, $t = -\log(\frac{\epsilon}{\epsilon_0})$
- ▶ Therefore $\phi_{\epsilon_0 e^{-t}}$ is simply a Brownian motion! [Sheffield, Duplantier]
- ▶ The volume in a ball is approximated by $\mu(B_\epsilon(x)) \approx \pi \epsilon^2 \mu_\epsilon(x)$.
[Sheffield, Duplantier]
- ▶ Hence $\epsilon(\delta)$ is found by solving

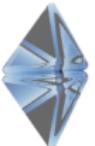
$$\delta = \pi \epsilon^2 \epsilon^{\gamma^2/2} e^{\gamma \phi_\epsilon(x)} = \pi \epsilon^{\gamma Q} e^{\gamma \phi_\epsilon(x)}$$



- ▶ $\epsilon(\delta) = \epsilon_0 e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A := \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$.

- ▶ $\epsilon(\delta) = \epsilon_0 e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A := \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$.
- ▶ Its distribution is given by an Inverse Gaussian distribution,

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - QT)^2\right]. \quad (1)$$



- ▶ $\epsilon(\delta) = \epsilon_0 e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A := \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$.
- ▶ Its distribution is given by an Inverse Gaussian distribution,

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - QT)^2\right]. \quad (1)$$

- ▶ It follows that

$$\langle \epsilon(\delta)^{2\Delta_0-2} \rangle = \int dT e^{-(2\Delta_0-2)T} P_\delta(T) \propto \delta^{\frac{1}{\gamma}(\sqrt{Q^2+4\Delta_0-4}-Q)} = \delta^{\Delta-1}$$

where Δ satisfies the famous KPZ relation [Knizhnik, Polyakov, Zamolodchikov, '88][Duplantier, Sheffield, '10]

$$\Delta_0 = \frac{\gamma^2}{4} \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta,$$

which relates the conformal weight Δ_0 of an operator in CFT to its scaling dimension Δ when coupled to quantum gravity.

- ▶ $\epsilon(\delta) = \epsilon_0 e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A := \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$.
- ▶ Its distribution is given by an Inverse Gaussian distribution,

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - QT)^2\right]. \quad (1)$$

- ▶ It follows that

$$\langle \epsilon(\delta)^{2\Delta_0-2} \rangle = \int dT e^{-(2\Delta_0-2)T} P_\delta(T) \propto \delta^{\frac{1}{\gamma}(\sqrt{Q^2+4\Delta_0-4}-Q)} = \delta^{\Delta-1}$$

where Δ satisfies the famous KPZ relation [Knizhnik, Polyakov, Zamolodchikov, '88][Duplantier, Sheffield, '10]

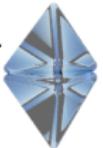
$$\Delta_0 = \frac{\gamma^2}{4} \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta,$$

which relates the conformal weight Δ_0 of an operator in CFT to its scaling dimension Δ when coupled to quantum gravity.

- ▶ If (1) holds in DT, then KPZ follows!

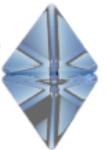
- ▶ Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - QT)^2\right].$$



- ▶ Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp \left[-\frac{1}{2T} (A - (Q - \gamma)T)^2 \right].$$



- ▶ Detail: should not choose x uniformly, but w.r.t. Liouville measure.

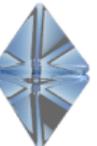
$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

- ▶ $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.

- ▶ Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

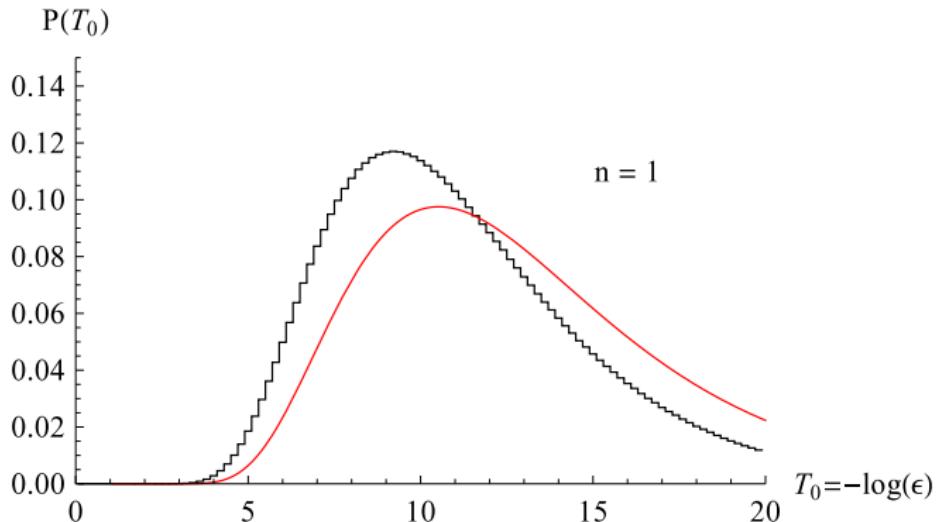
- ▶ $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- ▶ $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}, \gamma_{c=0} = \sqrt{8/3}$.

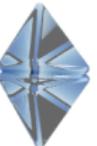


- Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

- $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}$, $\gamma_{c=0} = \sqrt{8/3}$.
- One free fit parameter $A = -\log(n)/\gamma + A_0$. Below $A_0 = 8.6$.

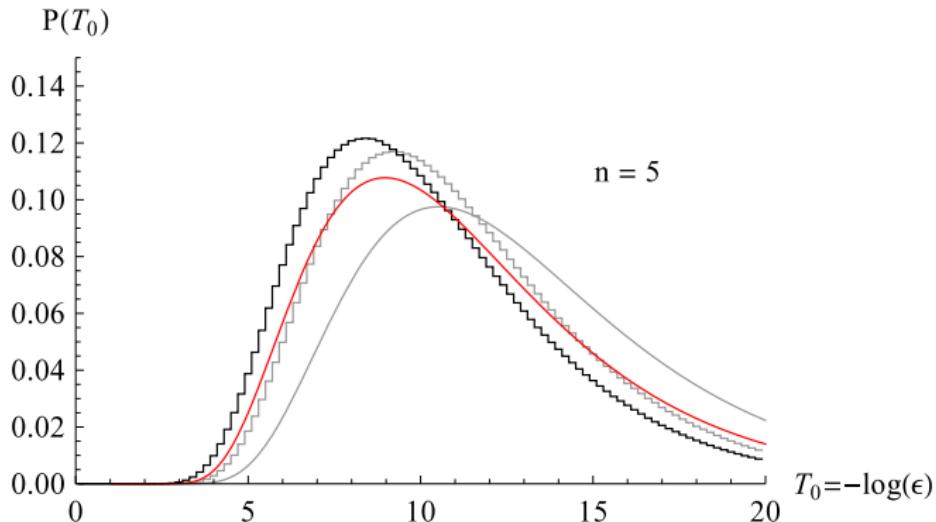


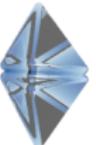


- Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

- $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}$, $\gamma_{c=0} = \sqrt{8/3}$.
- One free fit parameter $A = -\log(n)/\gamma + A_0$. Below $A_0 = 8.6$.

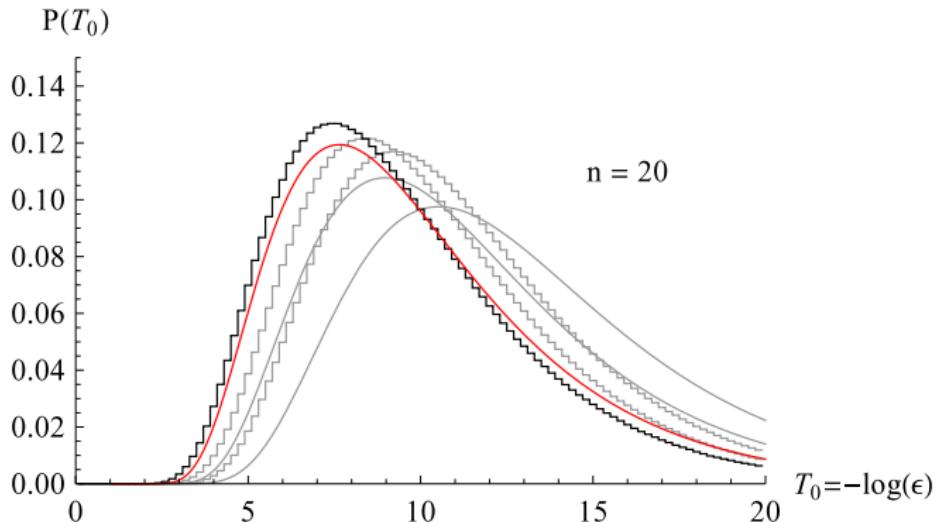




- Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

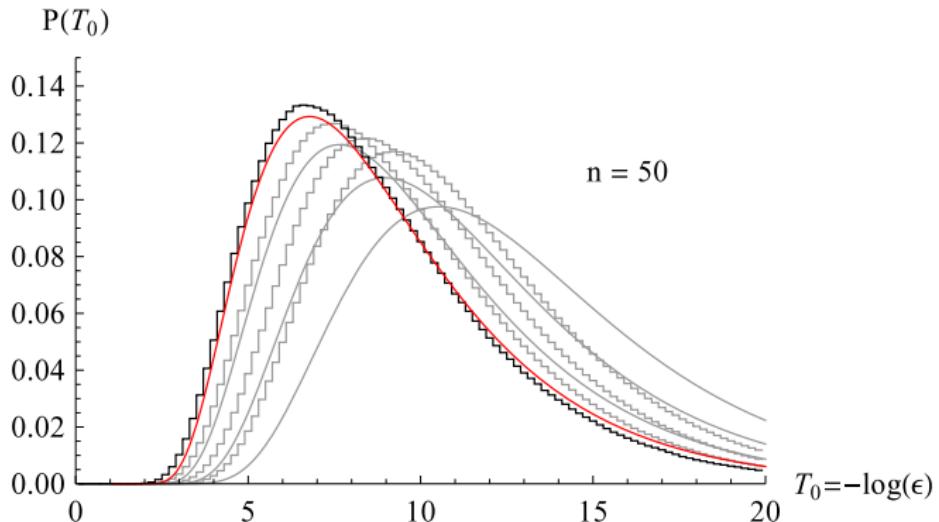
- $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}$, $\gamma_{c=0} = \sqrt{8/3}$.
- One free fit parameter $A = -\log(n)/\gamma + A_0$. Below $A_0 = 8.6$.



- Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

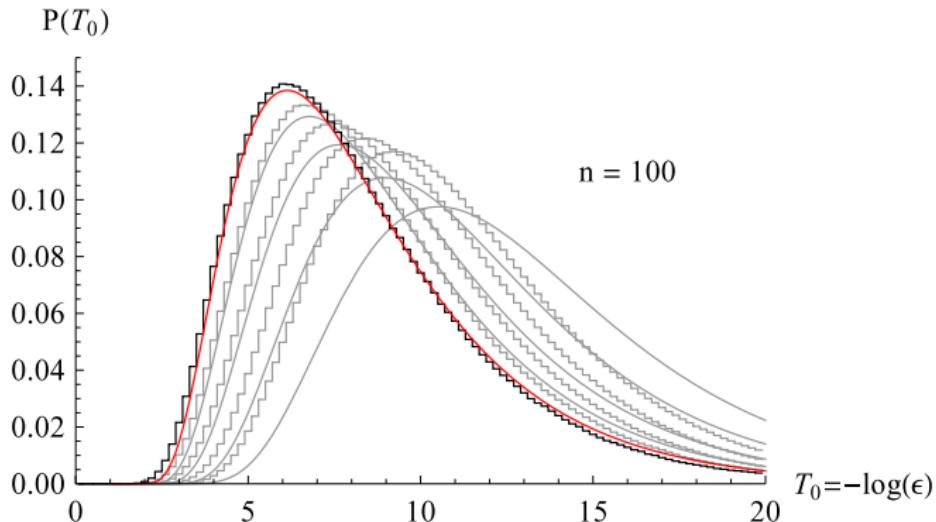
- $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}$, $\gamma_{c=0} = \sqrt{8/3}$.
- One free fit parameter $A = -\log(n)/\gamma + A_0$. Below $A_0 = 8.6$.



- Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

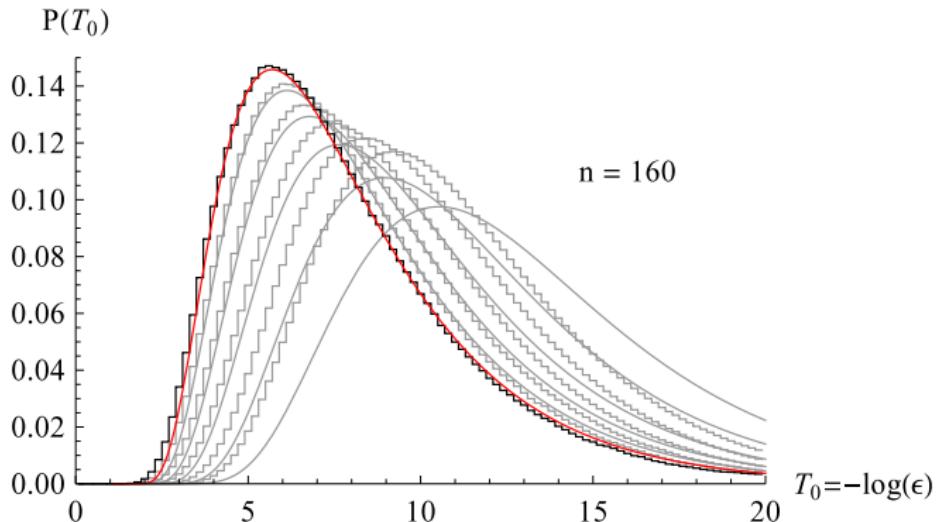
- $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}$, $\gamma_{c=0} = \sqrt{8/3}$.
- One free fit parameter $A = -\log(n)/\gamma + A_0$. Below $A_0 = 8.6$.



- Detail: should not choose x uniformly, but w.r.t. Liouville measure.

$$P_\delta(T) = \frac{A}{\sqrt{2\pi T^3}} \exp\left[-\frac{1}{2T}(A - (Q - \gamma)T)^2\right].$$

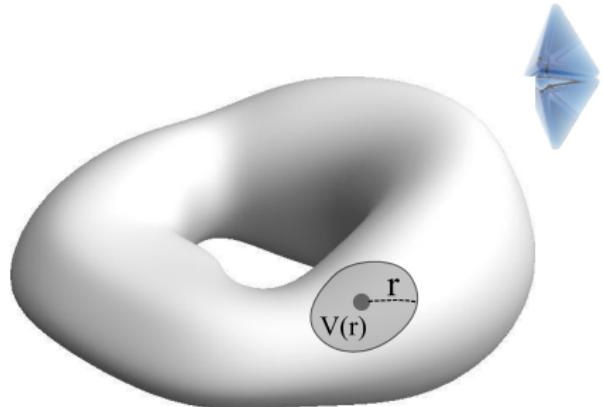
- $A = \frac{\log(\pi/\delta)}{\gamma} + Q \log \epsilon_0$, $T = -\log(\epsilon/\epsilon_0) = T_0 + \delta T$, $e^{\delta T} := \epsilon_0 \approx 0.35$.
- $\gamma = \frac{\sqrt{25-c} - \sqrt{1-c}}{\sqrt{6}} \Rightarrow \gamma_{c=-2} = \sqrt{2}$, $\gamma_{c=0} = \sqrt{8/3}$.
- One free fit parameter $A = -\log(n)/\gamma + A_0$. Below $A_0 = 8.6$.



Hausdorff dimension

- ▶ The Hausdorff dimension d_h measures the relative scaling of geodesic distance and volume.

$$V(r) \sim r^{d_h}, \quad d_h = \lim_{r \rightarrow 0} \frac{\log V(r)}{\log r}$$



Hausdorff dimension

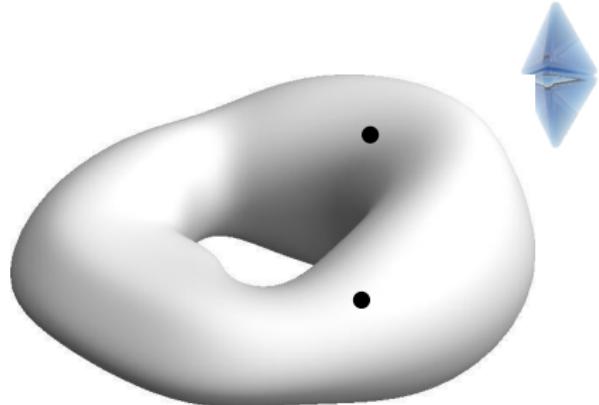
- ▶ The Hausdorff dimension d_h measures the relative scaling of geodesic distance and volume.

$$V(r) \sim r^{d_h}, \quad d_h = \lim_{r \rightarrow 0} \frac{\log V(r)}{\log r}$$

- ▶ In terms of 2-point function

$$G(r) = \int d^2x \int d^2y \sqrt{g(x)} \sqrt{g(y)} \delta(d_g(x, y) - r),$$

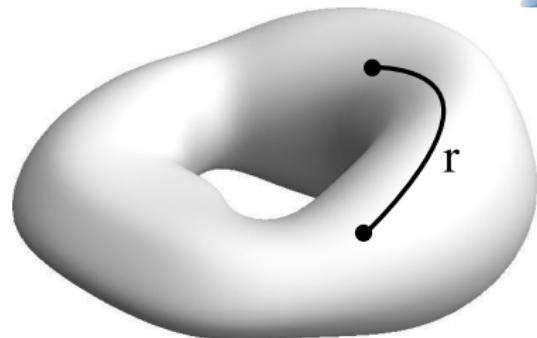
$$G(r) \sim r^{d_h-1}, \quad d_h - 1 = \lim_{r \rightarrow 0} \frac{\log G(r)}{\log r}$$



Hausdorff dimension

- ▶ The Hausdorff dimension d_h measures the relative scaling of geodesic distance and volume.

$$V(r) \sim r^{d_h}, \quad d_h = \lim_{r \rightarrow 0} \frac{\log V(r)}{\log r}$$



- ▶ In terms of 2-point function

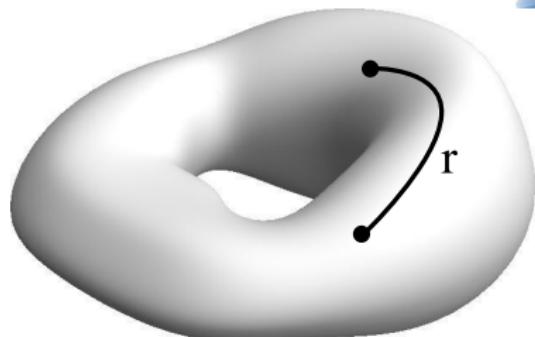
$$G(r) = \int d^2x \int d^2y \sqrt{g(x)} \sqrt{g(y)} \delta(d_g(x, y) - r),$$

$$G(r) \sim r^{d_h-1}, \quad d_h - 1 = \lim_{r \rightarrow 0} \frac{\log G(r)}{\log r}$$

Hausdorff dimension

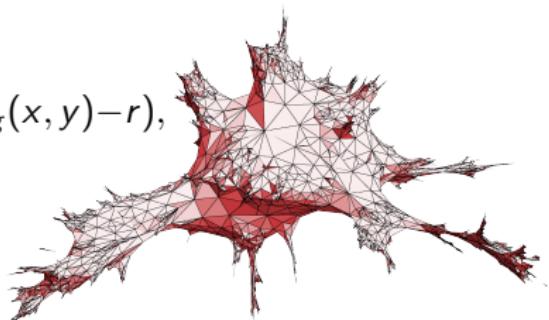
- ▶ The Hausdorff dimension d_h measures the relative scaling of geodesic distance and volume.

$$V(r) \sim r^{d_h}, \quad d_h = \lim_{r \rightarrow 0} \frac{\log V(r)}{\log r}$$



- ▶ In terms of 2-point function

$$G(r) = \int d^2x \int d^2y \sqrt{g(x)} \sqrt{g(y)} \delta(d_g(x, y) - r),$$



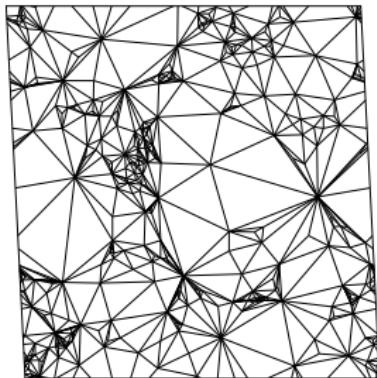
$$G(r) \sim r^{d_h-1}, \quad d_h-1 = \lim_{r \rightarrow 0} \frac{\log G(r)}{\log r}$$

- ▶ For Riemannian surfaces $d_h = 2$ but in random metrics we may find $d_h > 2$. In fact, a typical geometry in pure 2d quantum gravity has $d_h = 4$.

Hausdorff dimension from shortest cycles

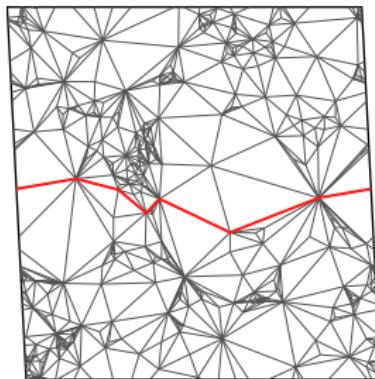
[Ambjørn, TB, '13]

- ▶ A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_h}}$.



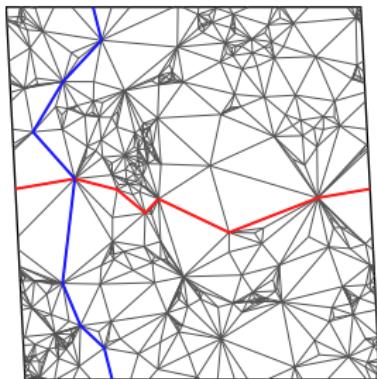
Hausdorff dimension from shortest cycles [Ambjørn, TB, '13]

- ▶ A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_h}}$.
- ▶ Look for such loops in triangulations appearing in DT (where $V = N$).

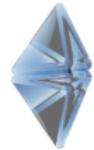


Hausdorff dimension from shortest cycles [Ambjørn, TB, '13]

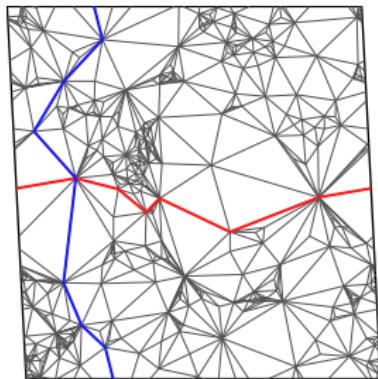
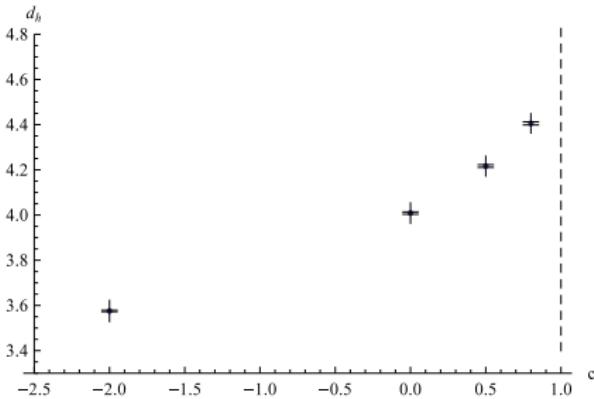
- ▶ A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_h}}$.
- ▶ Look for such loops in triangulations appearing in DT (where $V = N$). Also measure second shortest loops, which are a bit longer.



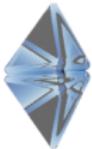
Hausdorff dimension from shortest cycles



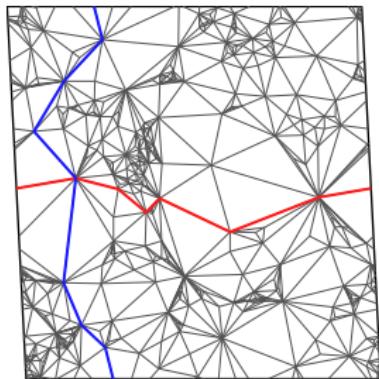
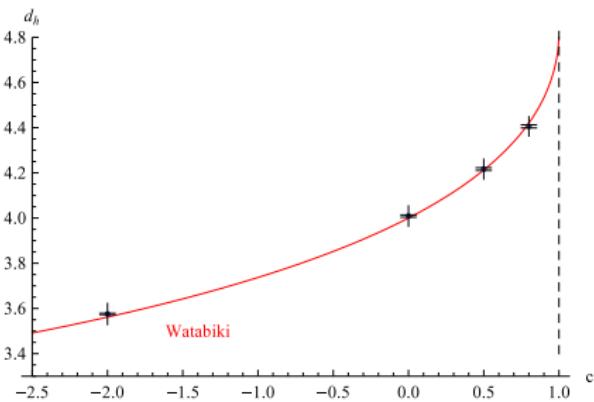
- ▶ A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_h}}$.
- ▶ Look for such loops in triangulations appearing in DT (where $V = N$). Also measure second shortest loops, which are a bit longer.

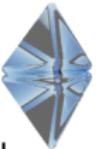


Hausdorff dimension from shortest cycles [Ambjørn, TB, '13]



- ▶ A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_h}}$.
- ▶ Look for such loops in triangulations appearing in DT (where $V = N$). Also measure second shortest loops, which are a bit longer.
- ▶ Data agrees well with Watabiki's formula: $d_h = 2 \frac{\sqrt{49-c} + \sqrt{25-c}}{\sqrt{25-c} + \sqrt{1-c}}$





- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.

- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.
- ▶ Where does Watabiki's formula come from?

- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.
- ▶ Where does Watabiki's formula come from? KPZ relation in Liouville gravity! [\[Watabiki, '93\]](#)

- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.
- ▶ Where does Watabiki's formula come from? KPZ relation in Liouville gravity! [\[Watabiki, '93\]](#)
- ▶ It was argued that geodesic distance is related to the (non-primary) operator $\Phi_1[g] = \int d^2x \sqrt{g} [\Delta_g \delta(x - x_0)]_{x=x_0}$ which has conformal dimension $\Delta_0 = 2$, i.e. $\Phi_1[\lambda g_{ab}] = \lambda^{-\Delta_0/2} \Phi_1[g_{ab}]$.

- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.
- ▶ Where does Watabiki's formula come from? KPZ relation in Liouville gravity! [\[Watabiki, '93\]](#)
- ▶ It was argued that geodesic distance is related to the (non-primary) operator $\Phi_1[g] = \int d^2x \sqrt{g} [\Delta_g \delta(x - x_0)]_{x=x_0}$ which has conformal dimension $\Delta_0 = 2$, i.e. $\Phi_1[\lambda g_{ab}] = \lambda^{-\Delta_0/2} \Phi_1[g_{ab}]$.
- ▶ $\Delta_0 = 2 \Rightarrow \Delta = \frac{2}{d_h}, \quad d_h = 2 \frac{\sqrt{49-c} + \sqrt{25-c}}{\sqrt{25-c} + \sqrt{1-c}}$

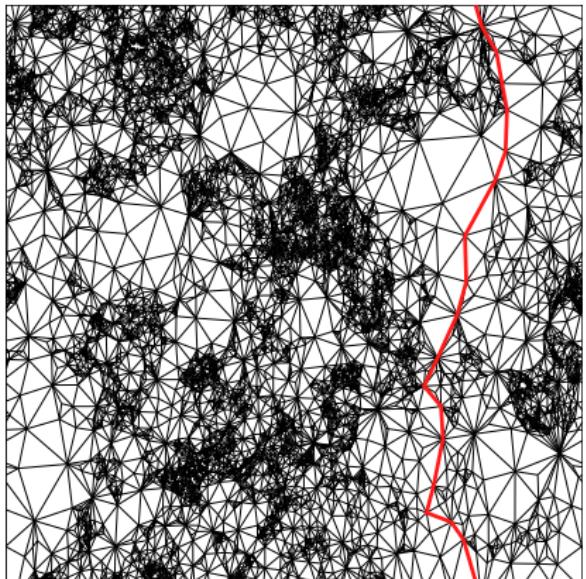


- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.
- ▶ Where does Watabiki's formula come from? KPZ relation in Liouville gravity! [\[Watabiki, '93\]](#)
- ▶ It was argued that geodesic distance is related to the (non-primary) operator $\Phi_1[g] = \int d^2x \sqrt{g} [\Delta_g \delta(x - x_0)]_{x=x_0}$ which has conformal dimension $\Delta_0 = 2$, i.e. $\Phi_1[\lambda g_{ab}] = \lambda^{-\Delta_0/2} \Phi_1[g_{ab}]$.
- ▶ $\Delta_0 = 2 \Rightarrow \Delta = \frac{2}{d_h}, \quad d_h = 2 \frac{\sqrt{49-c} + \sqrt{25-c}}{\sqrt{25-c} + \sqrt{1-c}}$
- ▶ Two questions:
 - ▶ How to construct a metric out of a Liouville field?
 - ▶ Is geodesic distance indeed related to an operator with conformal dimension $\Delta_0 = 2$?

- ▶ Currently little hope of deriving $d_h(c)$ for $c \neq 0$ using combinatorial methods.
- ▶ Where does Watabiki's formula come from? KPZ relation in Liouville gravity! [\[Watabiki, '93\]](#)
- ▶ It was argued that geodesic distance is related to the (non-primary) operator $\Phi_1[g] = \int d^2x \sqrt{g} [\Delta_g \delta(x - x_0)]_{x=x_0}$ which has conformal dimension $\Delta_0 = 2$, i.e. $\Phi_1[\lambda g_{ab}] = \lambda^{-\Delta_0/2} \Phi_1[g_{ab}]$.
- ▶ $\Delta_0 = 2 \Rightarrow \Delta = \frac{2}{d_h}, \quad d_h = 2 \frac{\sqrt{49-c} + \sqrt{25-c}}{\sqrt{25-c} + \sqrt{1-c}}$
- ▶ Two questions:
 - ▶ How to construct a metric out of a Liouville field?
 - ▶ Is geodesic distance indeed related to an operator with conformal dimension $\Delta_0 = 2$?
- ▶ Try numerically!

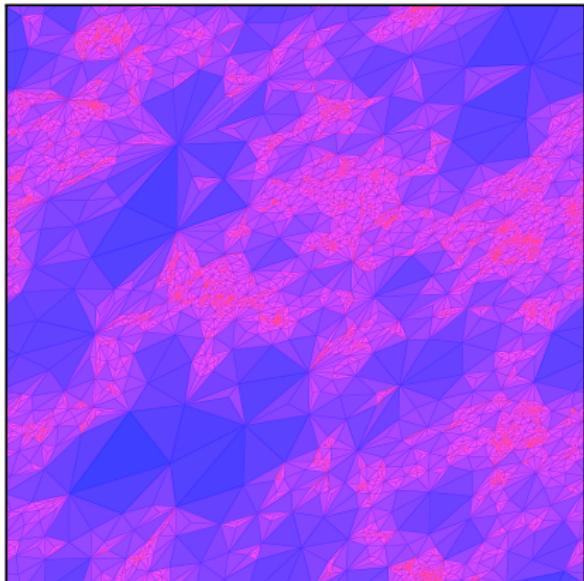
Triangulations versus Liouville

- ▶ The harmonic embedding of a random triangulation represents roughly a piecewise constant field ϕ^δ : $e^{\gamma\phi^\delta(x)}|_{x \in \Delta} = 1/(N a_\Delta)$

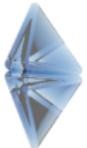


Triangulations versus Liouville

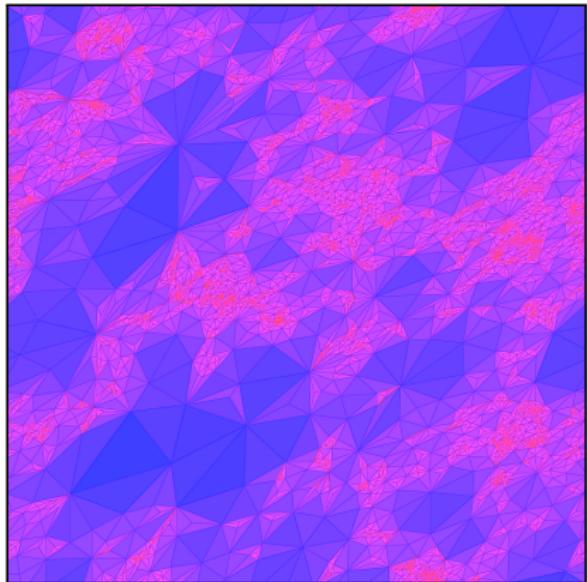
- ▶ The harmonic embedding of a random triangulation represents roughly a piecewise constant field ϕ^δ : $e^{\gamma\phi^\delta(x)}|_{x \in \Delta} = 1/(N a_\Delta)$



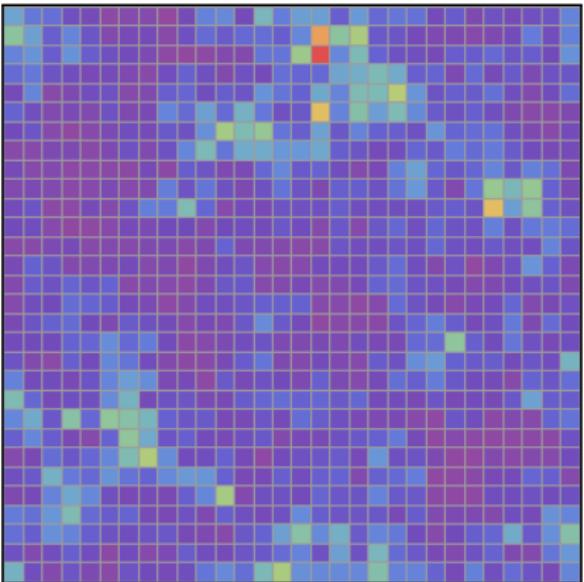
Triangulations versus Liouville



- ▶ The harmonic embedding of a random triangulation represents roughly a piecewise constant field ϕ^δ : $e^{\gamma\phi^\delta(x)}|_{x \in \Delta} = 1/(N a_\Delta)$

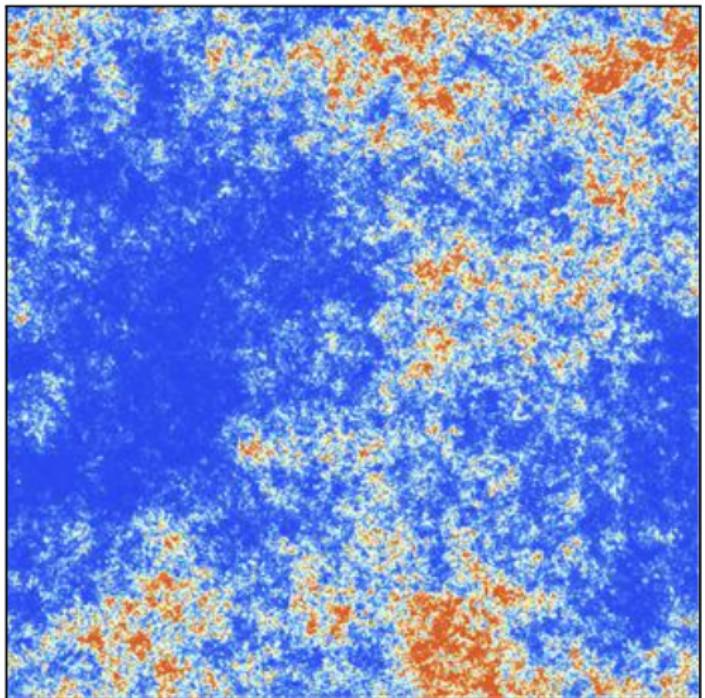


Covariant: lattice sites contain equal volume



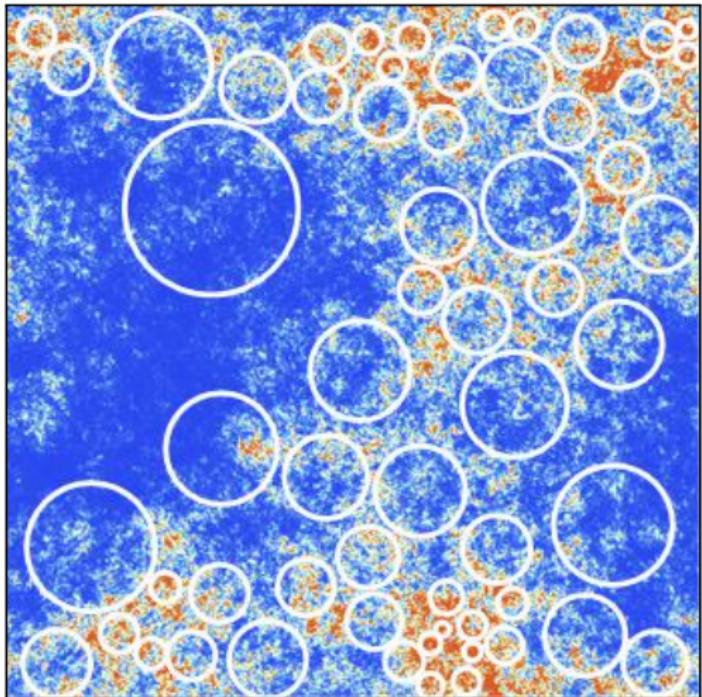
Non-covariant: lattice site contains volume $\propto e^{\gamma\phi}$

- ▶ Mimic a covariant cutoff.



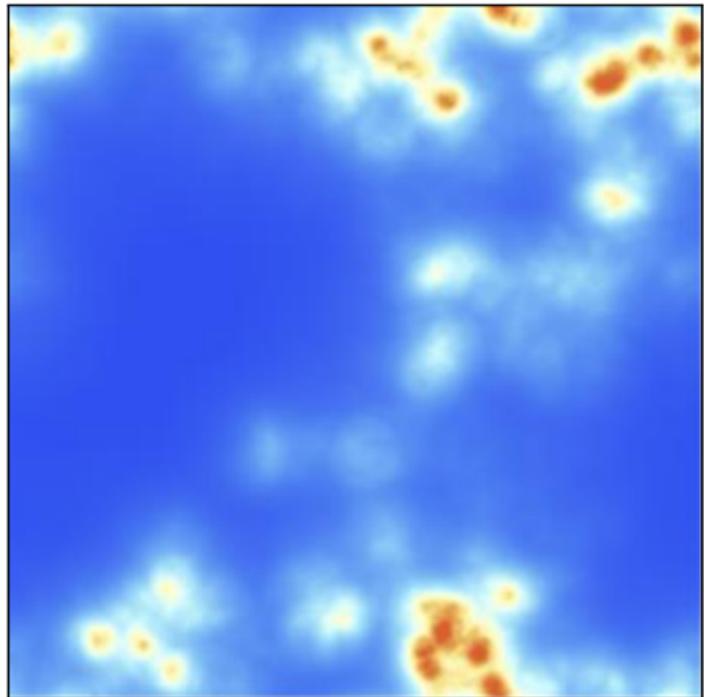
$$\gamma = 0.6$$

- ▶ Mimic a covariant cutoff.
- ▶ For $\delta > 0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu(B_{\epsilon(\delta)}) = \delta$.
- ▶ Replace the measure with the average measure over the ball.



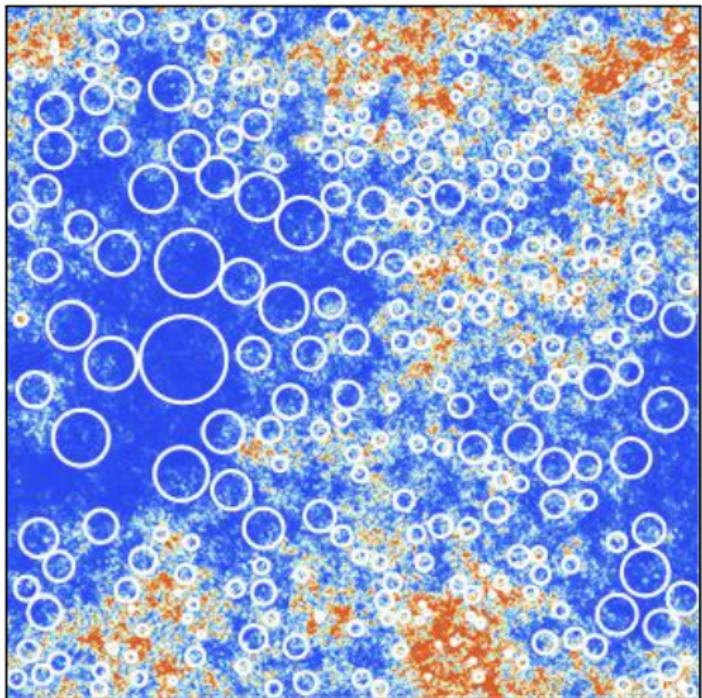
$$\gamma = 0.6, \delta = 0.01$$

- ▶ Mimic a covariant cutoff.
- ▶ For $\delta > 0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu(B_{\epsilon(\delta)}) = \delta$.
- ▶ Replace the measure with the average measure over the ball.
- ▶ Define $e^{\gamma\phi^\delta(x)} := \frac{\delta}{\pi\epsilon(\delta)^2}$.



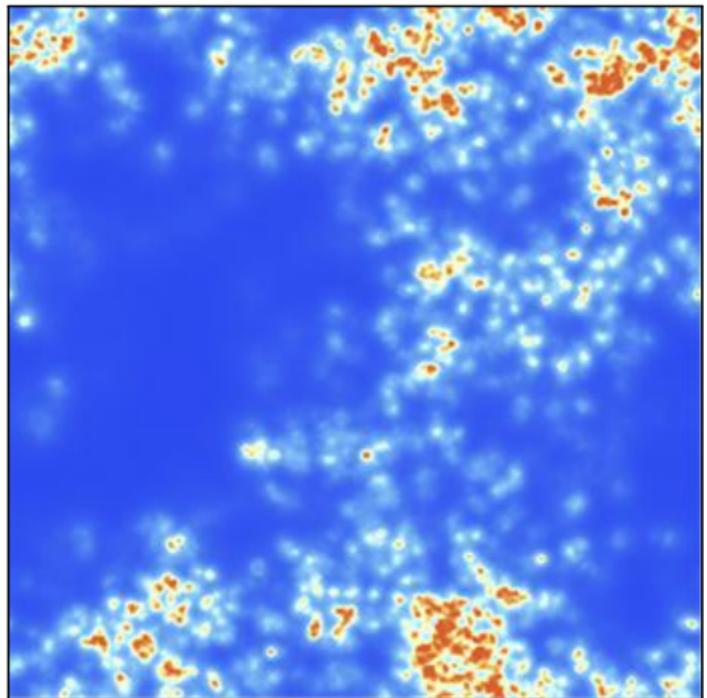
$$\gamma = 0.6, \delta = 0.01$$

- ▶ Mimic a covariant cutoff.
- ▶ For $\delta > 0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu(B_{\epsilon(\delta)}) = \delta$.
- ▶ Replace the measure with the average measure over the ball.
- ▶ Define $e^{\gamma\phi^\delta(x)} := \frac{\delta}{\pi\epsilon(\delta)^2}$.



$$\gamma = 0.6, \delta = 0.0005$$

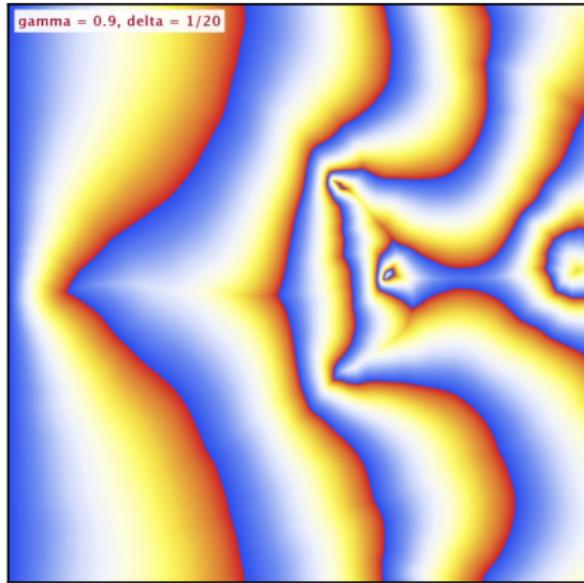
- ▶ Mimic a covariant cutoff.
- ▶ For $\delta > 0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu(B_{\epsilon(\delta)}) = \delta$.
- ▶ Replace the measure with the average measure over the ball.
- ▶ Define $e^{\gamma\phi^\delta(x)} := \frac{\delta}{\pi\epsilon(\delta)^2}$.
- ▶ Compare to DT:
 $\delta \sim 1/N$



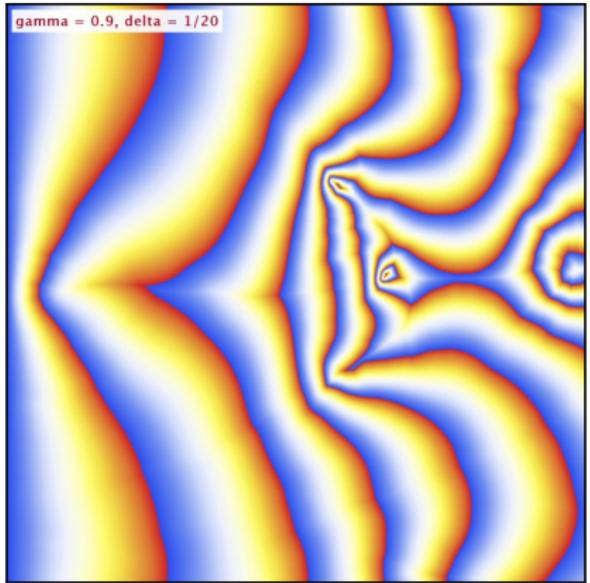
$$\gamma = 0.6, \delta = 0.0005$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf_{\Gamma} \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



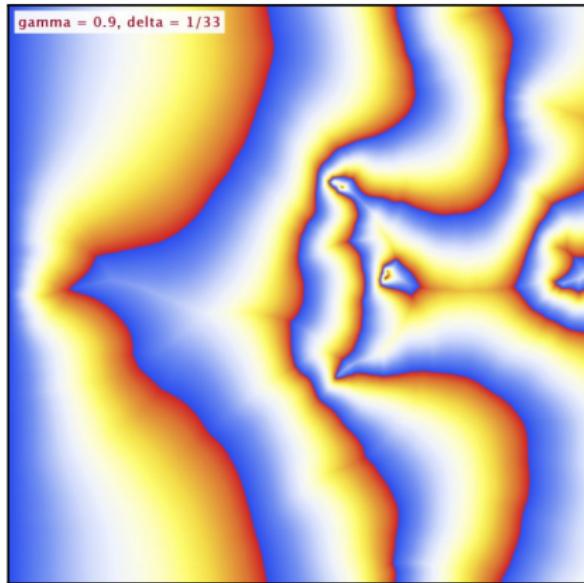
$$d_\delta(x, \{x_1 = 0\})$$



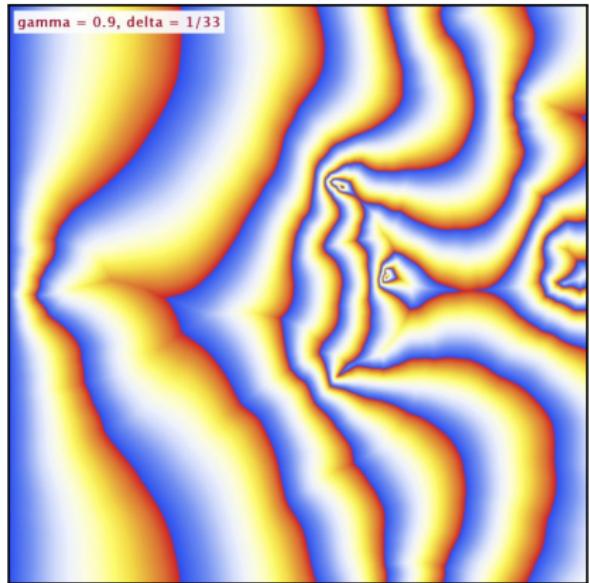
$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



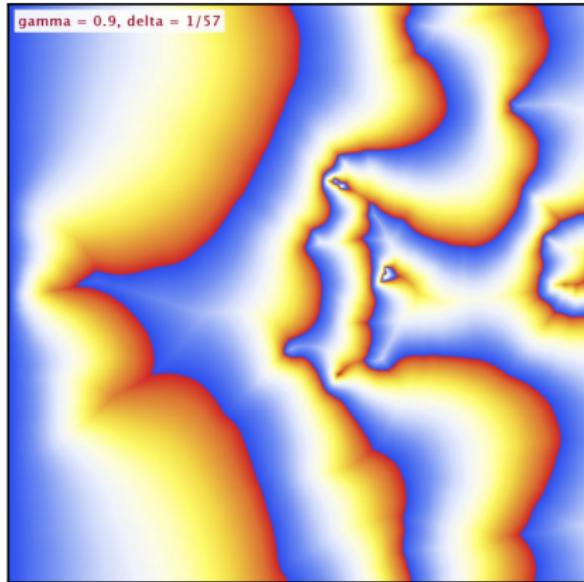
$d_\delta(x, \{x_1 = 0\})$



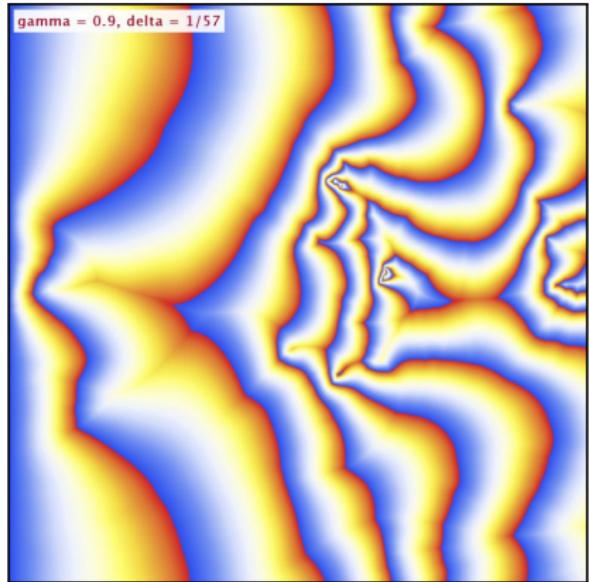
$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), d_h \approx 2.70$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf_{\Gamma} \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



$$d_\delta(x, \{x_1 = 0\})$$

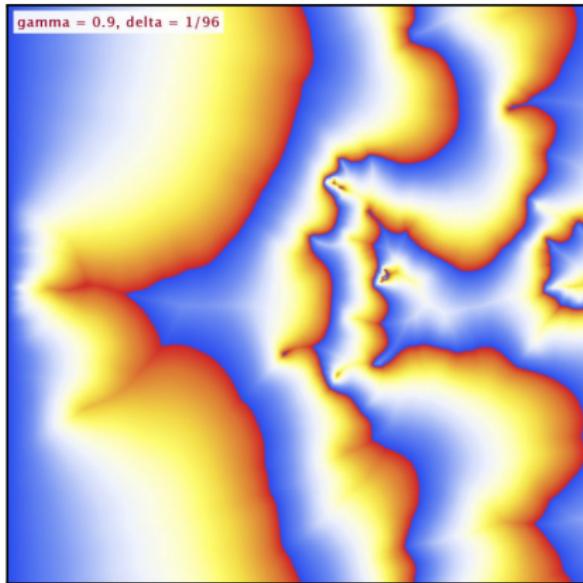


$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

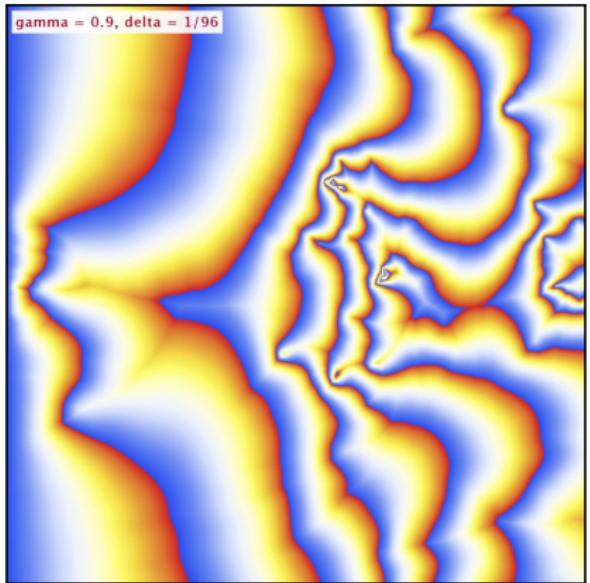
Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$



$$d_\delta(x, y) = \inf_{\Gamma} \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$

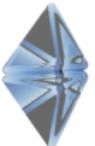


$$d_\delta(x, \{x_1 = 0\})$$

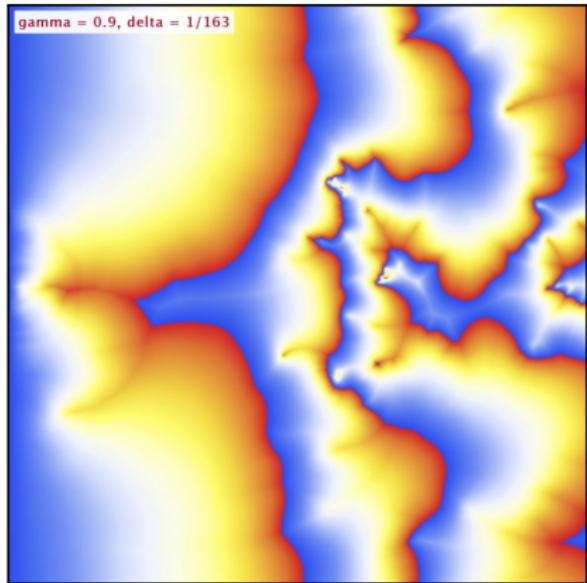


$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

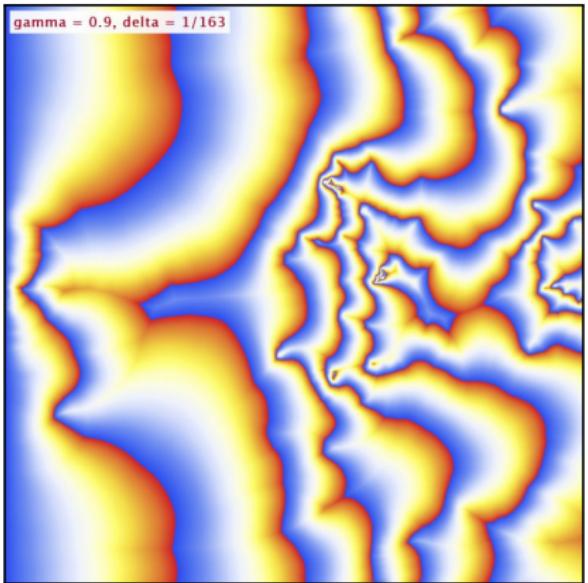
Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$



$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



$d_\delta(x, \{x_1 = 0\})$

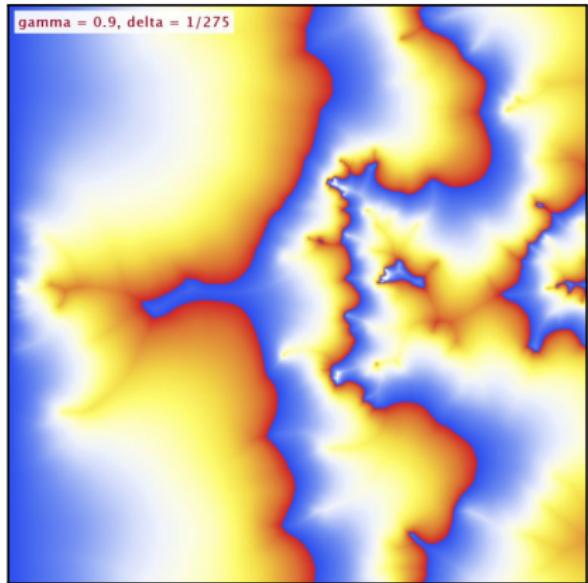


$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), d_h \approx 2.70$

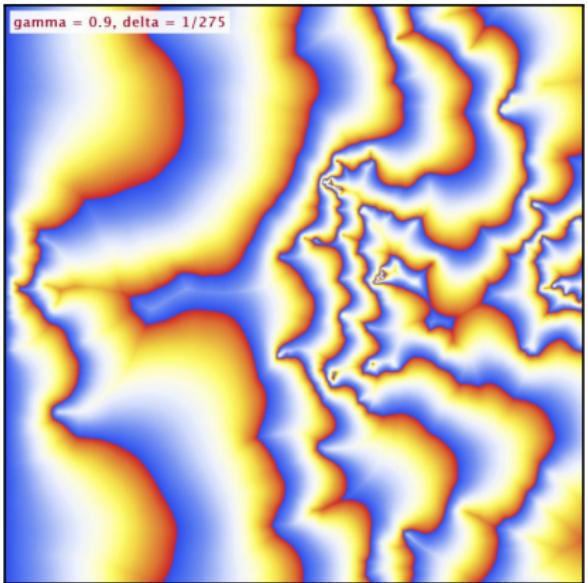
Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$



$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



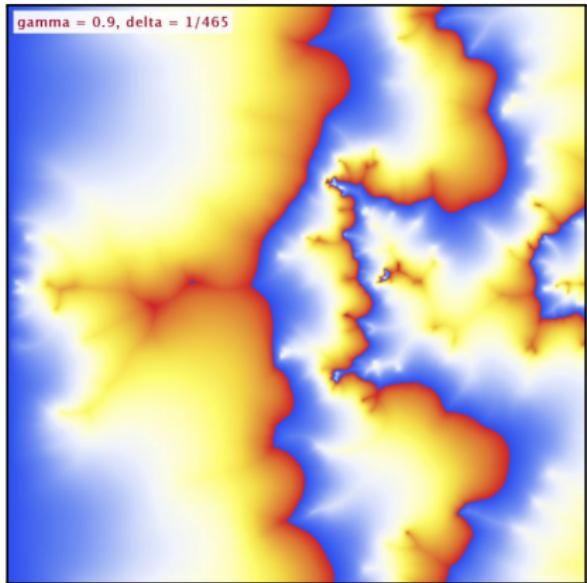
$$d_\delta(x, \{x_1 = 0\})$$



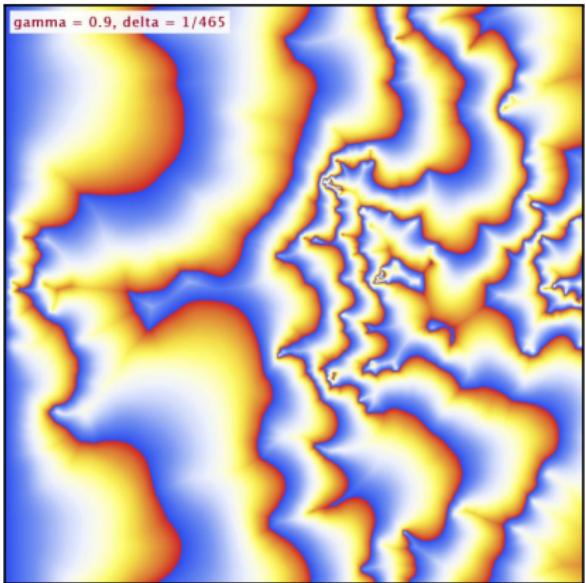
$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



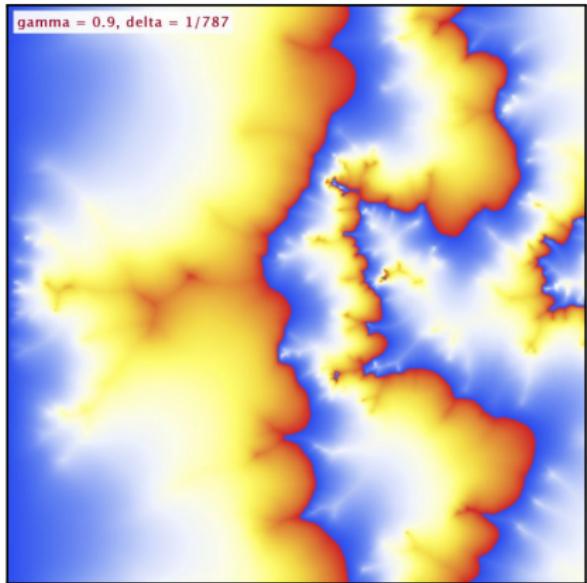
$$d_\delta(x, \{x_1 = 0\})$$



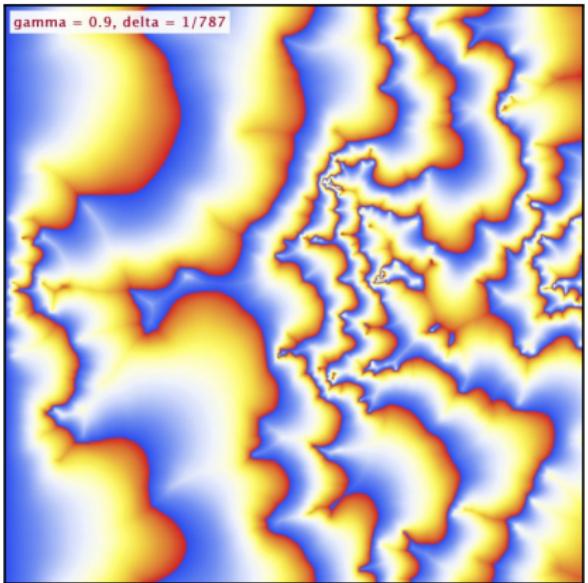
$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$

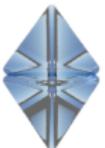


$$d_\delta(x, \{x_1 = 0\})$$

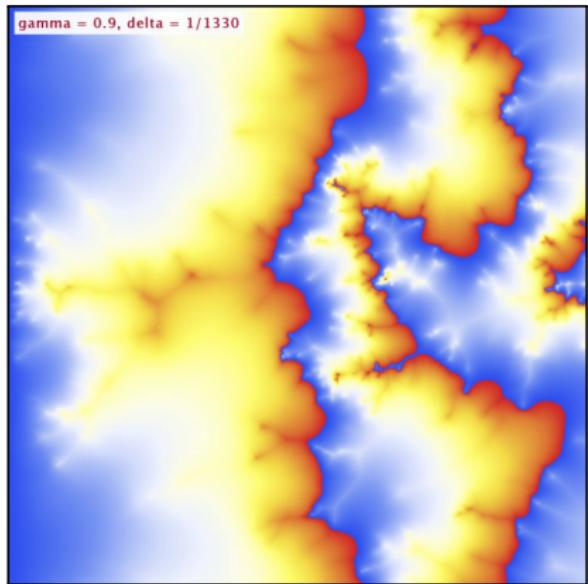


$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

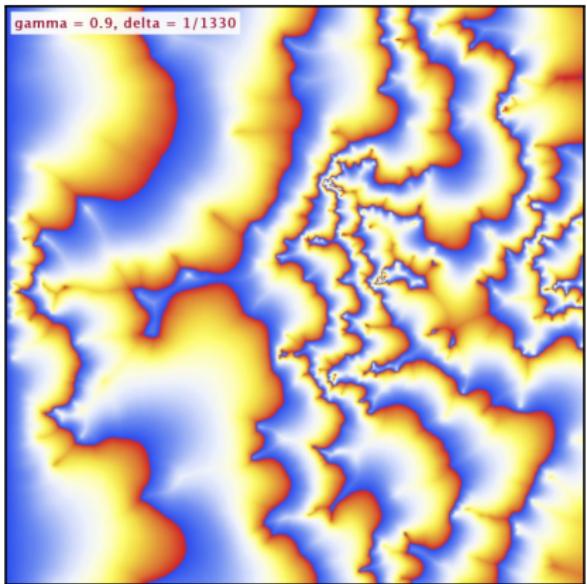
Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta}\delta_{ab}$



$$d_\delta(x, y) = \inf_{\Gamma} \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2}\phi^\delta(x(s))} \right\}$$



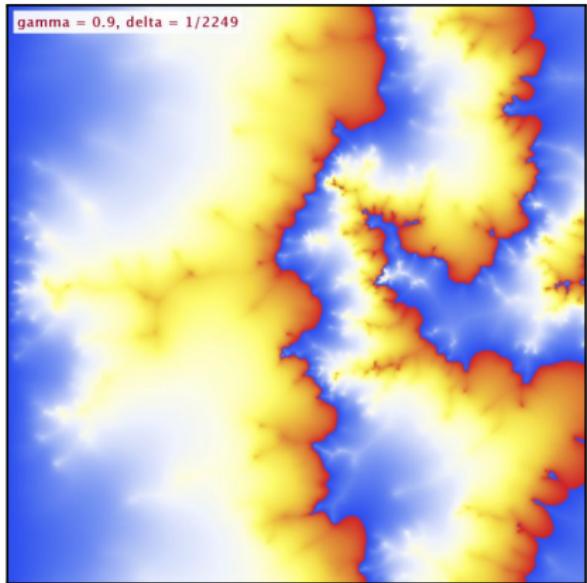
$$d_\delta(x, \{x_1 = 0\})$$



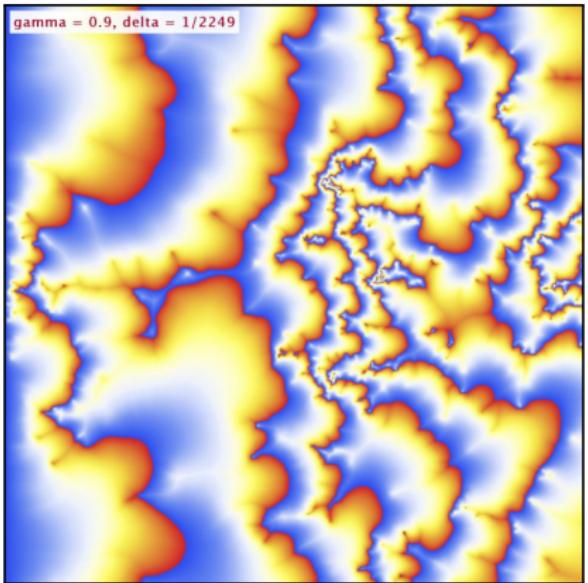
$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



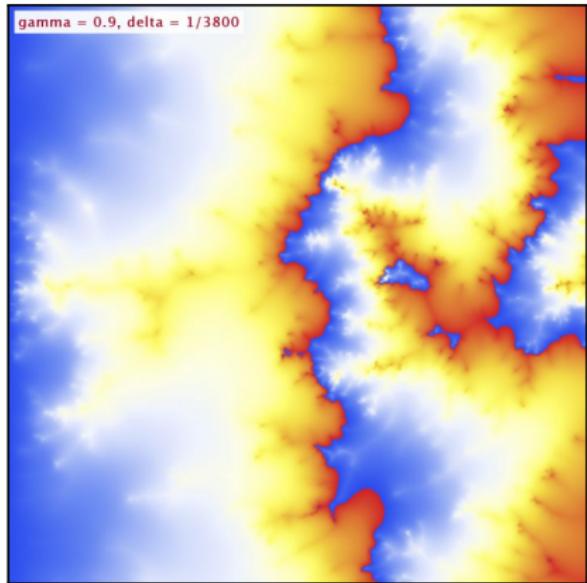
$$d_\delta(x, \{x_1 = 0\})$$



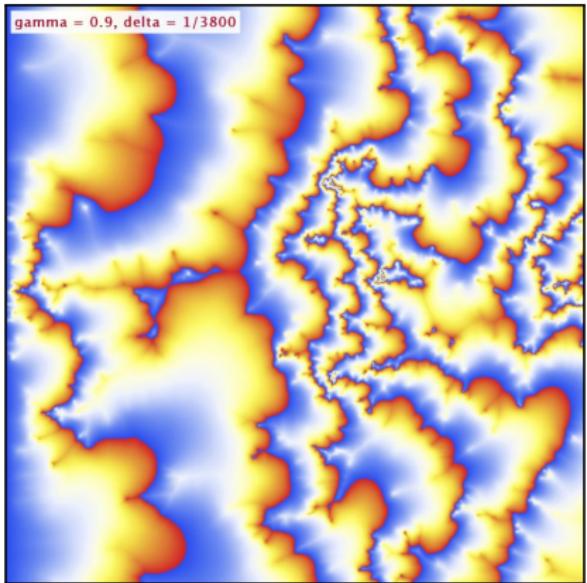
$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$



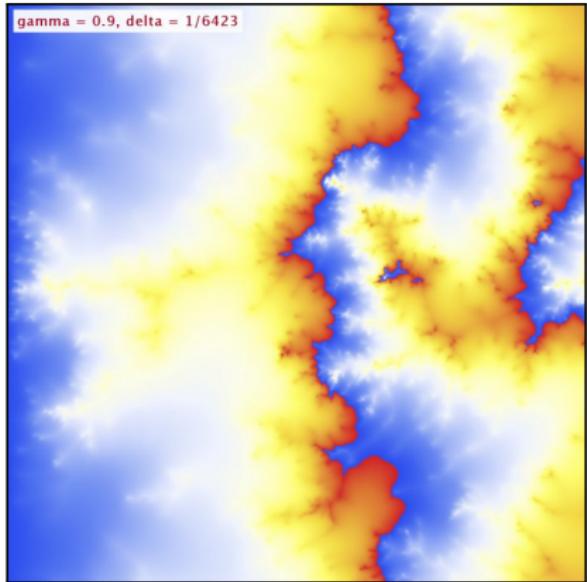
$$d_\delta(x, \{x_1 = 0\})$$



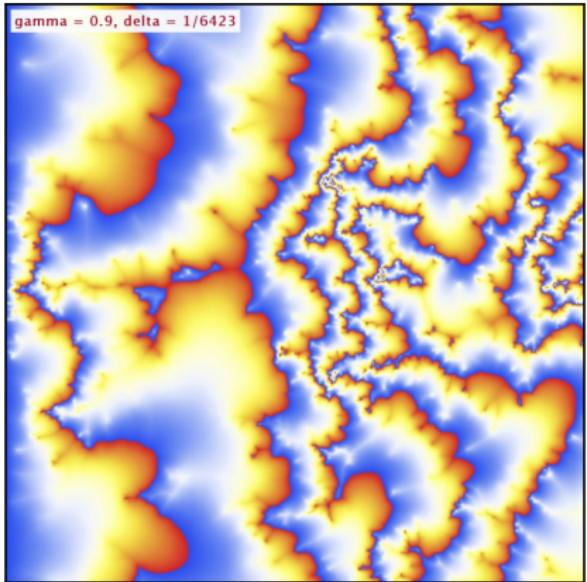
$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

Measure distance w.r.t. $g_{ab} = e^{\gamma\phi^\delta} \delta_{ab}$

$$d_\delta(x, y) = \inf \left\{ \int_{\Gamma} ds e^{\frac{\gamma}{2} \phi^\delta(x(s))} \right\}$$

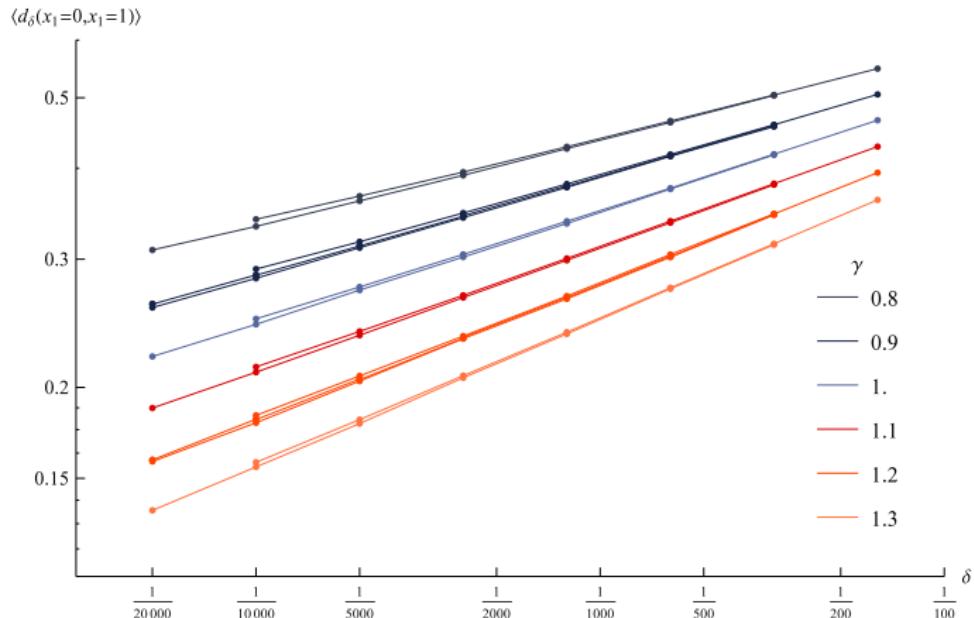


$$d_\delta(x, \{x_1 = 0\})$$

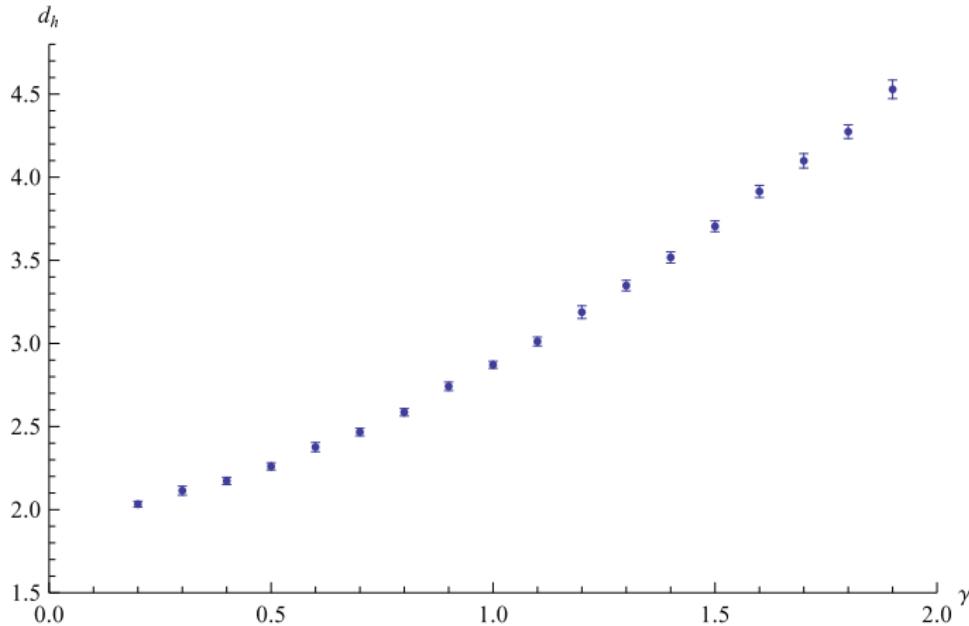


$$\delta^{\frac{1}{d_h} - \frac{1}{2}} d_\delta(x, \{x_1 = 0\}), \quad d_h \approx 2.70$$

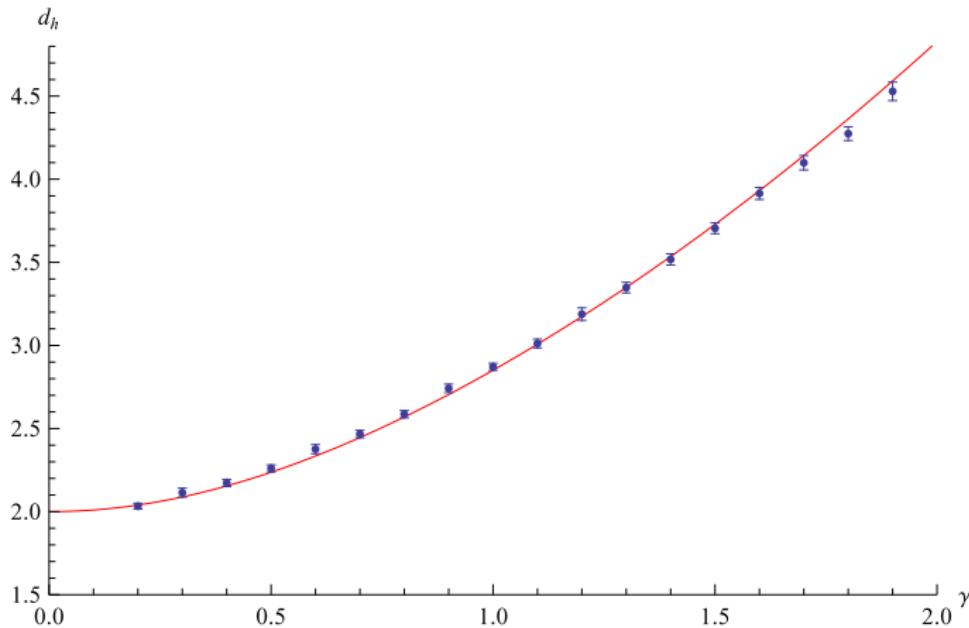
- ▶ To extract $d_h(\gamma)$, measure the expectation value $\langle d_\delta(\{x_1 = 0\}, \{x_1 = 1\}) \rangle$ of the distance between left and right border as function of δ .



- The slopes of the curves, $\langle d_\delta(\{x_1 = 0\}, \{x_1 = 1\}) \rangle \propto \delta^{\frac{1}{2} - \frac{1}{d_h}}$, lead to the following estimate of the Hausdorff dimension.



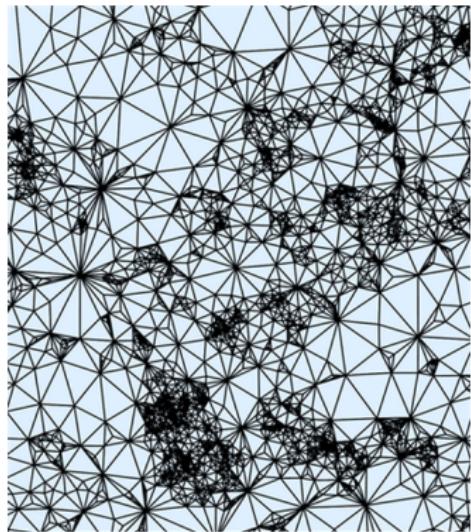
- ▶ The slopes of the curves, $\langle d_\delta(\{x_1 = 0\}, \{x_1 = 1\}) \rangle \propto \delta^{\frac{1}{2} - \frac{1}{d_h}}$, lead to the following estimate of the Hausdorff dimension.
- ▶ Compare with Watabiki's formula, $d_h = 1 + \frac{\gamma^2}{4} + \sqrt{1 + \frac{3}{2}\gamma^2 + \frac{1}{16}\gamma^4}$.



Circle patterns

[David, Eynard, '13]

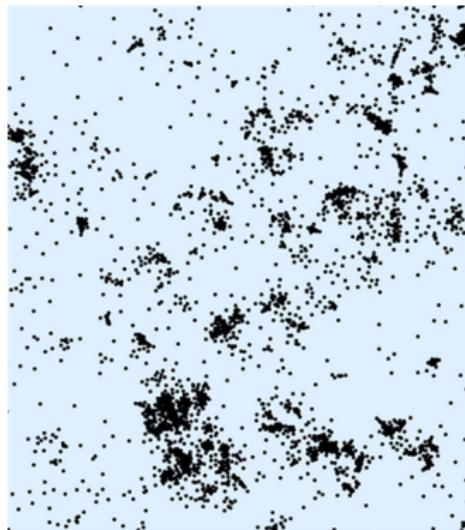
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.



Circle patterns

[David, Eynard, '13]

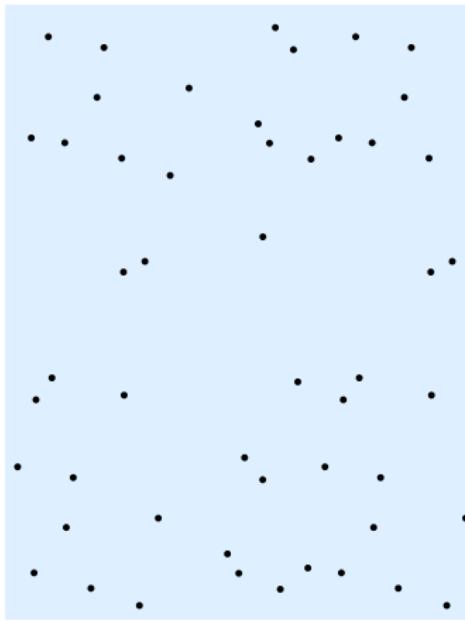
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !



Circle patterns

[David, Eynard, '13]

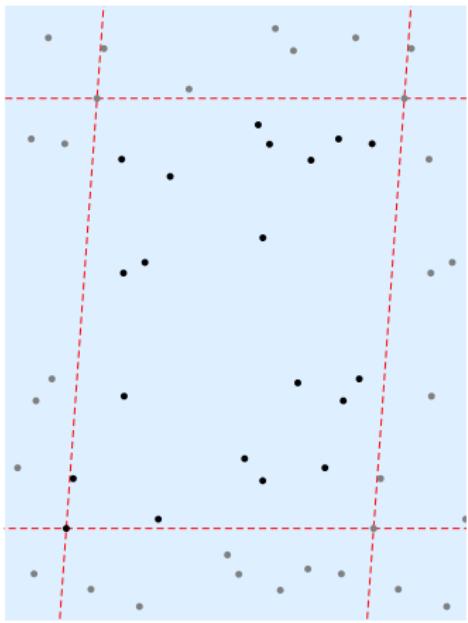
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?



Circle patterns

[David, Eynard, '13]

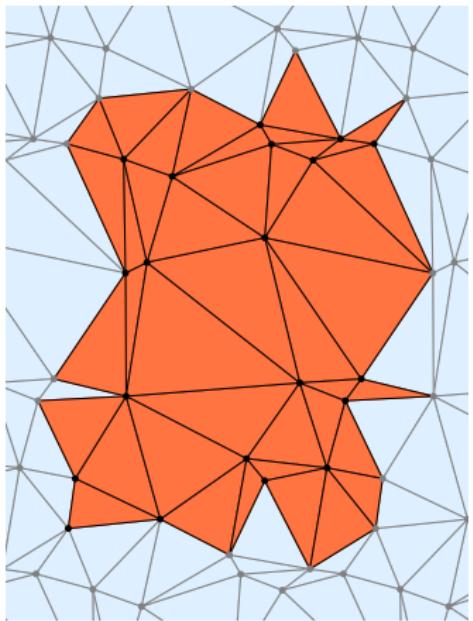
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?



Circle patterns

[David, Eynard, '13]

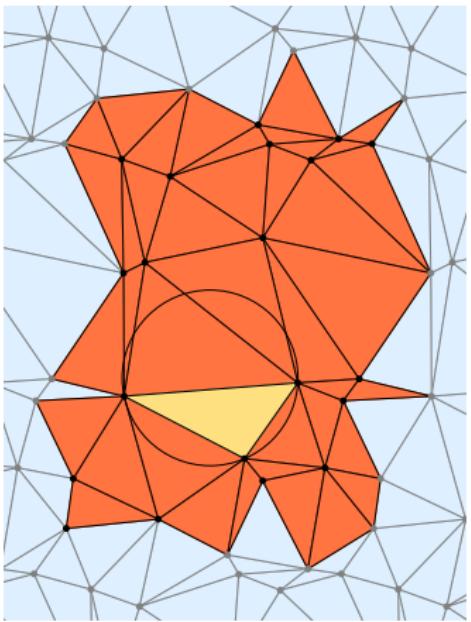
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?
- ▶ Natural candidate: Delaunay triangulation!



Circle patterns

[David, Eynard, '13]

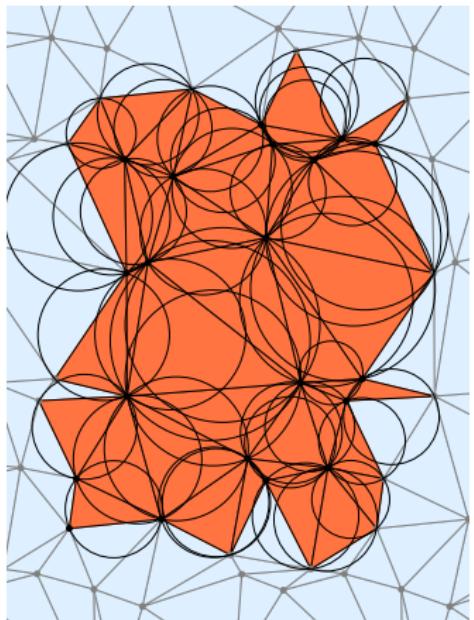
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?
- ▶ Natural candidate: Delaunay triangulation!



Circle patterns

[David, Eynard, '13]

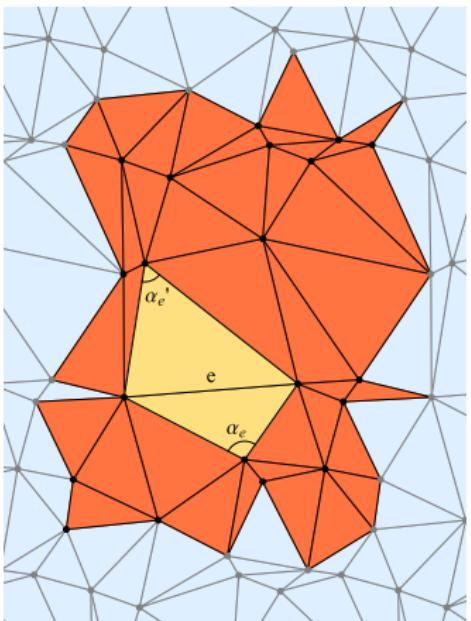
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?
- ▶ Natural candidate: Delaunay triangulation!



Circle patterns

[David, Eynard, '13]

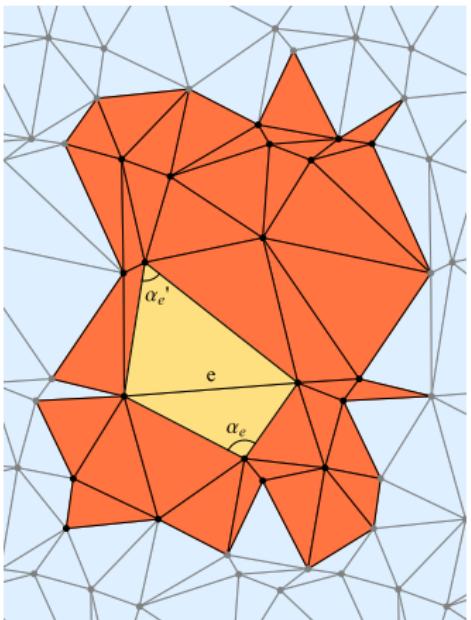
- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?
- ▶ Natural candidate: Delaunay triangulation!
- ▶ Condition: $\theta_e = \pi - \alpha_e - \alpha'_e \geq 0$



Circle patterns

[David, Eynard, '13]

- ▶ The discrete harmonic embedding defines a map $\mathcal{E} : \{\text{triangulations}\} \rightarrow \{\text{points} \subset \mathbb{R}^2\}$.
- ▶ The image of \mathcal{E} is quite non-trivial. It would be nicer to have a bijective \mathcal{E} !
- ▶ What then should \mathcal{E}^{-1} be?
- ▶ Natural candidate: Delaunay triangulation!
- ▶ Condition: $\theta_e = \pi - \alpha_e - \alpha'_e \geq 0$
- ▶ Circle pattern theorem [Rivin, '94]: the embedding of the abstract triangulation is uniquely determined by the values $\{\theta_e\}$.

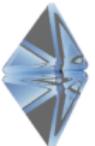
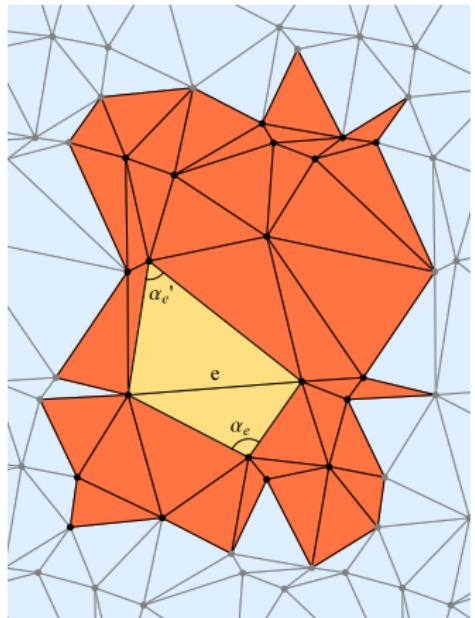


- ▶ To be precise, there exists a bijection

$$\mathcal{E} : \{(\text{triangulations with } n \text{ vertices}, \{\theta_e\}_e)\} \rightarrow \{n \text{ points } \subset \mathbb{R}^2\}$$

- ▶ Conditions on θ_e

- ▶ Delaunay condition $0 \leq \theta < \pi$.

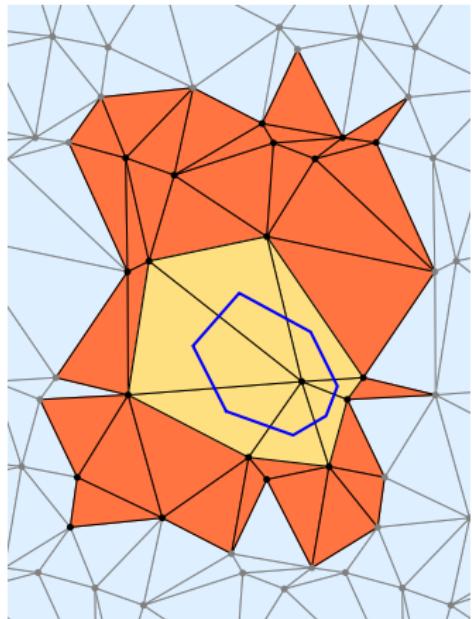


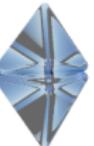
- ▶ To be precise, there exists a bijection

$$\mathcal{E} : \{(\text{triangulations with } n \text{ vertices}, \{\theta_e\}_e)\} \rightarrow \{n \text{ points } \subset \mathbb{R}^2\}$$

- ▶ Conditions on θ_e
 - ▶ Delaunay condition $0 \leq \theta < \pi$.
 - ▶ For a dual path γ encircling a vertex

$$\sum_{e \in \gamma} \theta_e = 2\pi$$





- ▶ To be precise, there exists a bijection

$$\mathcal{E} : \{(\text{triangulations with } n \text{ vertices}, \{\theta_e\}_e)\} \rightarrow \{n \text{ points } \subset \mathbb{R}^2\}$$

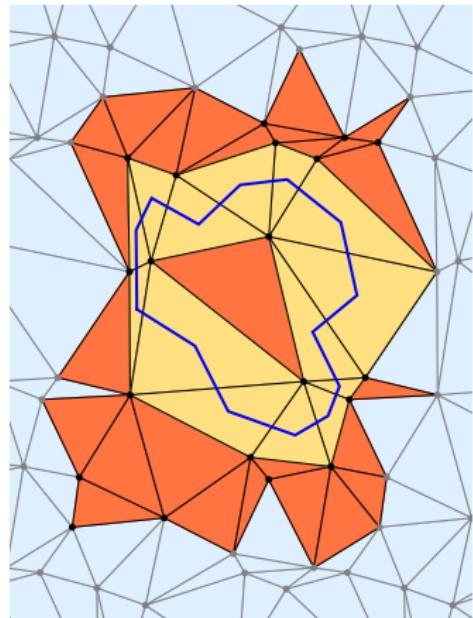
- ▶ Conditions on θ_e

- ▶ Delaunay condition $0 \leq \theta < \pi$.
- ▶ For a dual path γ encircling a vertex

$$\sum_{e \in \gamma} \theta_e = 2\pi$$

- ▶ For other simple closed paths γ

$$\sum_{e \in \gamma} \theta_e > 2\pi$$



- ▶ To be precise, there exists a bijection

$$\mathcal{E} : \{(\text{triangulations with } n \text{ vertices}, \{\theta_e\}_e)\} \rightarrow \{n \text{ points } \subset \mathbb{R}^2\}$$

- ▶ Conditions on θ_e
 - ▶ Delaunay condition $0 \leq \theta < \pi$.
 - ▶ For a dual path γ encircling a vertex

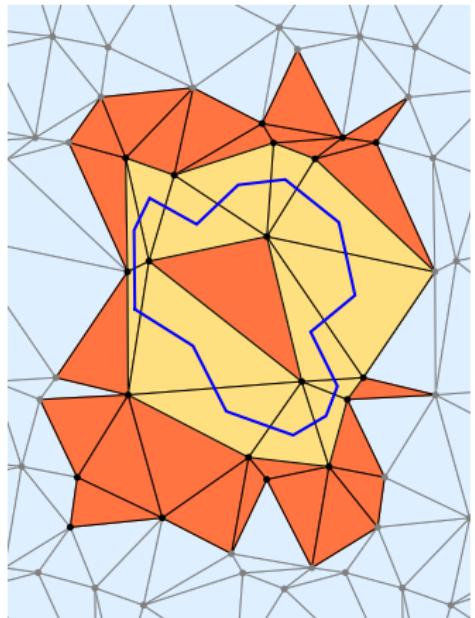
$$\sum_{e \in \gamma} \theta_e = 2\pi$$

- ▶ For other simple closed paths γ

$$\sum_{e \in \gamma} \theta_e > 2\pi$$

- ▶ Proposal [David, Eynard, '13]: replace DT partition function

$$Z_{g,n} = \sum_T \frac{1}{|\text{Aut}(T)|}$$



- ▶ To be precise, there exists a bijection

$$\mathcal{E} : \{(\text{triangulations with } n \text{ vertices}, \{\theta_e\}_e)\} \rightarrow \{n \text{ points } \subset \mathbb{R}^2\}$$



- ▶ Conditions on θ_e
 - ▶ Delaunay condition $0 \leq \theta < \pi$.
 - ▶ For a dual path γ encircling a vertex

$$\sum_{e \in \gamma} \theta_e = 2\pi$$

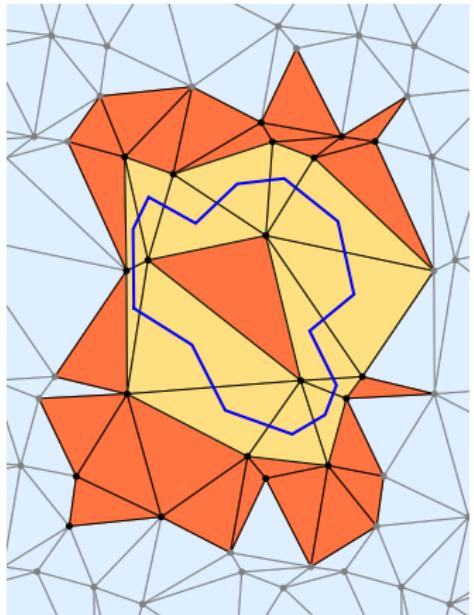
- ▶ For other simple closed paths γ

$$\sum_{e \in \gamma} \theta_e > 2\pi$$

- ▶ Proposal [David, Eynard, '13]: replace DT partition function

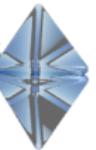
$$Z_{g,n} = \sum_T \frac{1}{|\text{Aut}(T)|} \text{Vol}_\theta(T)$$

$$\text{Vol}_\theta(T) = \iint \prod_e d\theta_e \delta(\text{conditions})$$

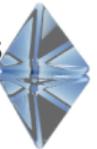




- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.

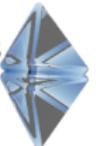


- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.
- ▶ But $Z_{g,n}$ is also a partition function for discrete measures in the plane. Is it a discretization of Liouville gravity?



- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.
- ▶ But $Z_{g,n}$ is also a partition function for discrete measures in the plane. Is it a discretization of Liouville gravity?
- ▶ Can we find the n -dependence of $Z_{g,n}$? Write generating function

$$Z_g(x) = \sum_{n=0}^{\infty} Z(g, n) \pi^{-2(3g-3+n)} x^n$$



- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.
- ▶ But $Z_{g,n}$ is also a partition function for discrete measures in the plane. Is it a discretization of Liouville gravity?
- ▶ Can we find the n -dependence of $Z_{g,n}$? Write generating function

$$Z_g(x) = \sum_{n=0}^{\infty} Z(g, n) \pi^{-2(3g-3+n)} x^n$$

- ▶ Using Mathematica one finds

$$Z_0(x) = \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{48} + \frac{61x^6}{4320} + \frac{197x^7}{17280} + \dots$$

$$Z_1(x) = \frac{x}{12} + \frac{x^2}{16} + \frac{7x^3}{108} + \dots$$



- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.
- ▶ But $Z_{g,n}$ is also a partition function for discrete measures in the plane. Is it a discretization of Liouville gravity?
- ▶ Can we find the n -dependence of $Z_{g,n}$? Write generating function

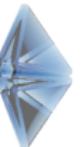
$$Z_g(x) = \sum_{n=0}^{\infty} Z(g, n) \pi^{-2(3g-3+n)} x^n$$

- ▶ Using Mathematica one finds

$$Z_0(x) = \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{48} + \frac{61x^6}{4320} + \frac{197x^7}{17280} + \dots$$

$$Z_1(x) = \frac{x}{12} + \frac{x^2}{16} + \frac{7x^3}{108} + \dots$$

- ▶ The coefficients are exactly the Weil-Petersson volumes of the moduli spaces $\mathcal{M}_{g,n}$ of Riemann surfaces of genus g with n punctures! [\[Penner\]](#) [\[Zograf\]](#) [\[Mirzakhani\]](#)...



- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.
- ▶ But $Z_{g,n}$ is also a partition function for discrete measures in the plane. Is it a discretization of Liouville gravity?
- ▶ Can we find the n -dependence of $Z_{g,n}$? Write generating function

$$Z_g(x) = \sum_{n=0}^{\infty} Z(g, n) \pi^{-2(3g-3+n)} x^n$$

- ▶ Using Mathematica one finds

$$Z_0(x) = \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{48} + \frac{61x^6}{4320} + \frac{197x^7}{17280} + \dots \quad \sqrt{Z_0''(x)} J_1\left(2\sqrt{Z_0''(x)}\right) = x$$

$$Z_1(x) = \frac{x}{12} + \frac{x^2}{16} + \frac{7x^3}{108} + \dots \quad Z_1(x) = \frac{1}{12} \log(Z_0'''(x))$$

- ▶ The coefficients are exactly the Weil-Petersson volumes of the moduli spaces $\mathcal{M}_{g,n}$ of Riemann surfaces of genus g with n punctures! [\[Penner\]](#) [\[Zograf\]](#) [\[Mirzakhani\]](#)...

- ▶ The weight $\text{Vol}_\theta(T)$ is not expected to change the universality class of DT. Hence $Z_{g,n}$ should describe pure 2d gravity.
- ▶ But $Z_{g,n}$ is also a partition function for discrete measures in the plane. Is it a discretization of Liouville gravity?
- ▶ Can we find the n -dependence of $Z_{g,n}$? Write generating function

$$Z_g(x) = \sum_{n=0}^{\infty} Z(g, n) \pi^{-2(3g-3+n)} x^n$$

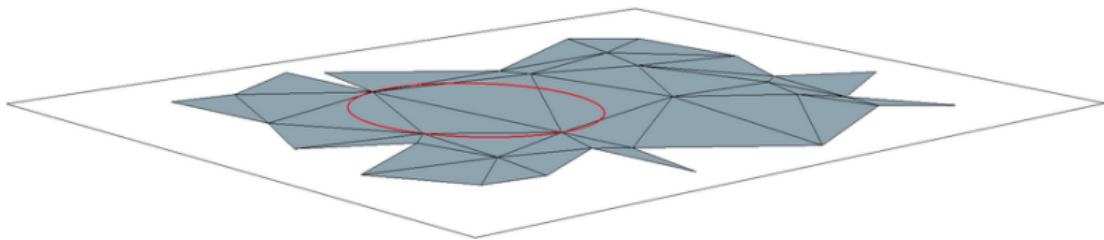
- ▶ Using Mathematica one finds

$$Z_0(x) = \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{48} + \frac{61x^6}{4320} + \frac{197x^7}{17280} + \dots \quad \sqrt{Z_0''(x)} J_1\left(2\sqrt{Z_0''(x)}\right) = x$$

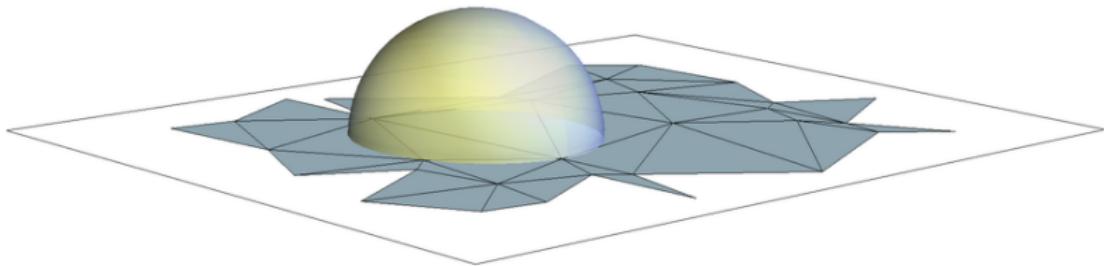
$$Z_1(x) = \frac{x}{12} + \frac{x^2}{16} + \frac{7x^3}{108} + \dots \quad Z_1(x) = \frac{1}{12} \log(Z_0'''(x))$$

- ▶ The coefficients are exactly the Weil-Petersson volumes of the moduli spaces $\mathcal{M}_{g,n}$ of Riemann surfaces of genus g with n punctures! [\[Penner\]](#) [\[Zograf\]](#) [\[Mirzakhani\]](#)...
- ▶ If true: $Z(g, n) \propto n^{-\frac{7}{2} + \frac{5}{2}g} C^n (1 + \mathcal{O}(n^{-1}))$, $C \approx 15.6$

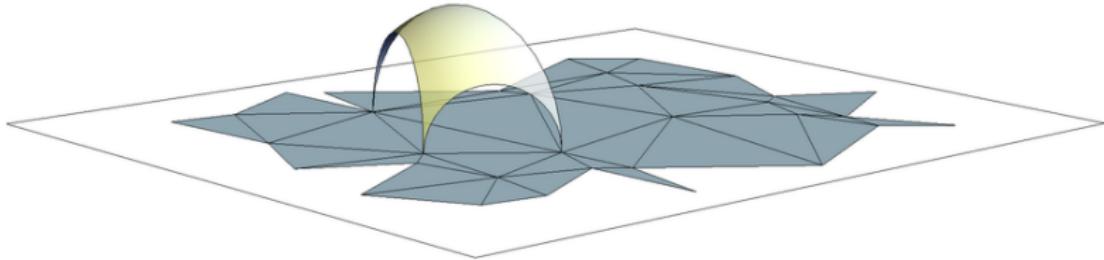
- ▶ Where are the punctured Riemann surfaces?



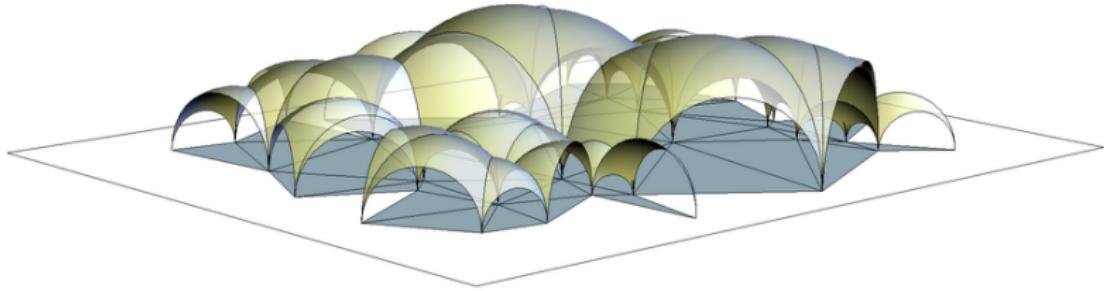
- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !



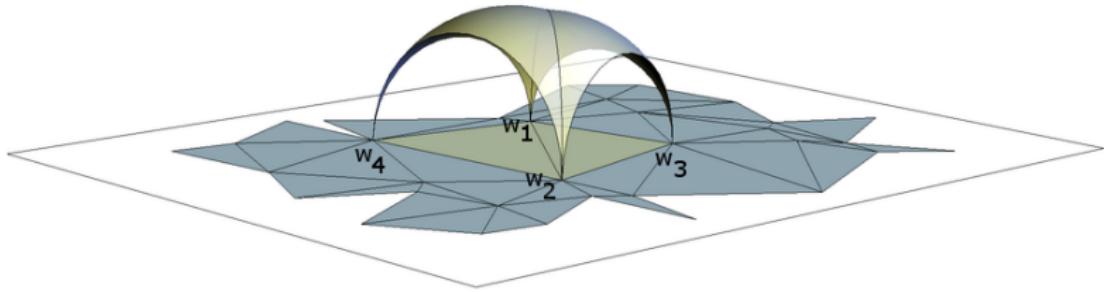
- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !



- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !
- ▶ The convex hull of the vertices in \mathbb{H}_3 is a surface with constant curvature -1 .

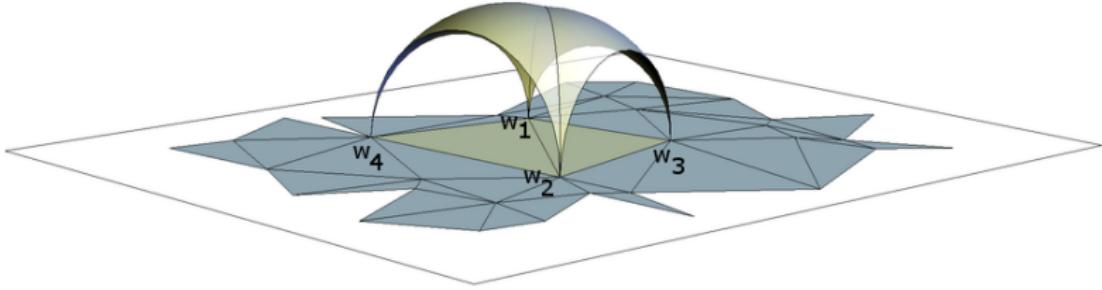


- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !
- ▶ The convex hull of the vertices in \mathbb{H}_3 is a surface with constant curvature -1 .
- ▶ The angle θ_e is the “bending angle” of the surface at edge e .



- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !
- ▶ The convex hull of the vertices in \mathbb{H}_3 is a surface with constant curvature -1 .
- ▶ The angle θ_e is the “bending angle” of the surface at edge e .
- ▶ Canonically conjugate to “shear coordinates” z_e ,

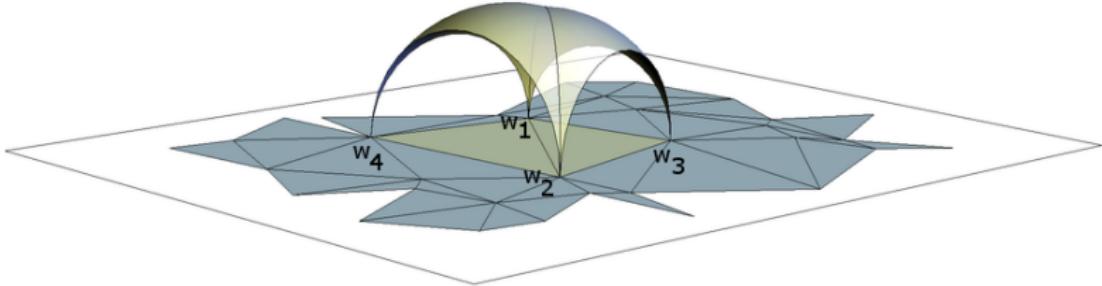
$$\text{cr}(e) = \frac{(w_1 - w_3)(w_2 - w_4)}{(w_2 - w_3)(w_1 - w_4)} = -\exp(z_e + i\theta_e)$$



- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !
- ▶ The convex hull of the vertices in \mathbb{H}_3 is a surface with constant curvature -1 .
- ▶ The angle θ_e is the “bending angle” of the surface at edge e .
- ▶ Canonically conjugate to “shear coordinates” z_e ,

$$\text{cr}(e) = \frac{(w_1 - w_3)(w_2 - w_4)}{(w_2 - w_3)(w_1 - w_4)} = -\exp(z_e + i\theta_e)$$

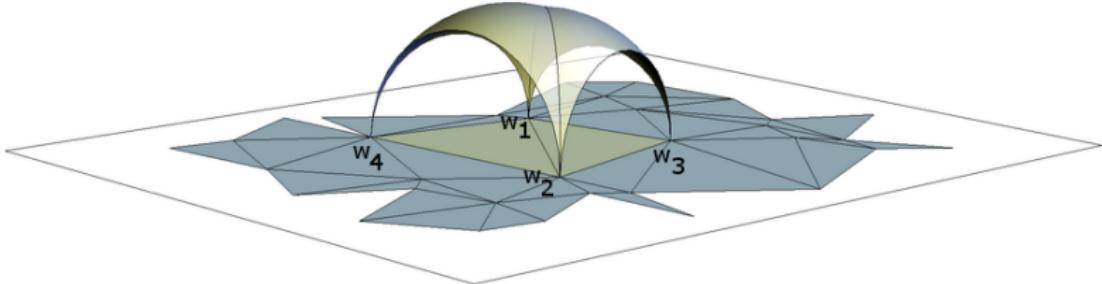
- ▶ Weil-Petersson volume form: $\omega_{\text{WP}} = \prod_e dz_e|_{\text{constraints}}$



- ▶ Where are the punctured Riemann surfaces?
- ▶ View the Euclidean plane as the boundary of hyperbolic space \mathbb{H}_3 !
- ▶ The convex hull of the vertices in \mathbb{H}_3 is a surface with constant curvature -1 .
- ▶ The angle θ_e is the “bending angle” of the surface at edge e .
- ▶ Canonically conjugate to “shear coordinates” z_e ,

$$\text{cr}(e) = \frac{(w_1 - w_3)(w_2 - w_4)}{(w_2 - w_3)(w_1 - w_4)} = -\exp(z_e + i\theta_e)$$

- ▶ Weil-Petersson volume form: $\omega_{\text{WP}} = \prod_e dz_e|_{\text{constraints}}$
- ▶ Somehow the Delaunay conditions select a fundamental domain in Teichmüller space.

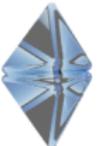


- ▶ Like in DT, we can perform Monte Carlo simulations of

$$Z_{g,n} = \sum_T \frac{1}{|\text{Aut}(T)|} \text{Vol}_\theta(T)$$

- ▶ Like in DT, we can perform Monte Carlo simulations of

$$Z_{g,n} = \sum_T \frac{1}{|\text{Aut}(T)|} \text{Vol}_\theta(T)$$



- ▶ Expectation values of observables are averages over Moduli space of punctured Riemann surfaces w.r.t. the Weil-Petersson volume form.

- ▶ Like in DT, we can perform Monte Carlo simulations of

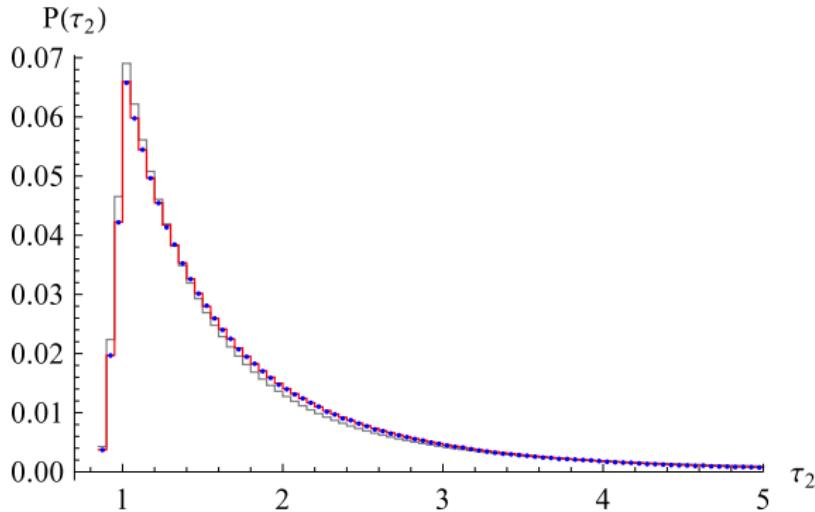
$$Z_{g,n} = \sum_T \frac{1}{|\text{Aut}(T)|} \text{Vol}_\theta(T)$$

- ▶ Expectation values of observables are averages over Moduli space of punctured Riemann surfaces w.r.t. the Weil-Petersson volume form.
- ▶ In many cases only few vertices are needed for good numerical results.

- ▶ Like in DT, we can perform Monte Carlo simulations of

$$Z_{g,n} = \sum_T \frac{1}{|\text{Aut}(T)|} \text{Vol}_\theta(T)$$

- ▶ Expectation values of observables are averages over Moduli space of punctured Riemann surfaces w.r.t. the Weil-Petersson volume form.
- ▶ In many cases only few vertices are needed for good numerical results.
- ▶ Example: distribution of the modulus τ for genus 1 with 25 vertices.



Summary & outlook

- ▶ Summary
 - ▶ By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.

- ▶ Outlook

Summary & outlook

► Summary

- By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.
- Conversely, one can assign a geometric interpretation to a Liouville measure by implementing a covariant cut-off. This is used to measure the Hausdorff dimension, which agrees well with Watabiki's formula.

► Outlook

Summary & outlook

► Summary

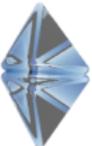
- By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.
- Conversely, one can assign a geometric interpretation to a Liouville measure by implementing a covariant cut-off. This is used to measure the Hausdorff dimension, which agrees well with Watabiki's formula.
- Circle patterns give a more precise conformal mapping between triangulations and discrete measures and reveal a close connection with the well-studied Weil-Petersson geometry of Riemann surfaces.

► Outlook

Summary & outlook

- ▶ Summary
 - ▶ By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.
 - ▶ Conversely, one can assign a geometric interpretation to a Liouville measure by implementing a covariant cut-off. This is used to measure the Hausdorff dimension, which agrees well with Watabiki's formula.
 - ▶ Circle patterns give a more precise conformal mapping between triangulations and discrete measures and reveal a close connection with the well-studied Weil-Petersson geometry of Riemann surfaces.
- ▶ Outlook
 - ▶ Make sense of the derivation of Watabiki's Hausdorff dimension.

Summary & outlook

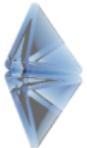


- ▶ Summary
 - ▶ By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.
 - ▶ Conversely, one can assign a geometric interpretation to a Liouville measure by implementing a covariant cut-off. This is used to measure the Hausdorff dimension, which agrees well with Watabiki's formula.
 - ▶ Circle patterns give a more precise conformal mapping between triangulations and discrete measures and reveal a close connection with the well-studied Weil-Petersson geometry of Riemann surfaces.
- ▶ Outlook
 - ▶ Make sense of the derivation of Watabiki's Hausdorff dimension.
 - ▶ Until now we have only looked at Gaussian Free Fields instead of real Liouville fields. Can we understand conformal correlation functions?

Summary & outlook

- ▶ Summary
 - ▶ By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.
 - ▶ Conversely, one can assign a geometric interpretation to a Liouville measure by implementing a covariant cut-off. This is used to measure the Hausdorff dimension, which agrees well with Watabiki's formula.
 - ▶ Circle patterns give a more precise conformal mapping between triangulations and discrete measures and reveal a close connection with the well-studied Weil-Petersson geometry of Riemann surfaces.
- ▶ Outlook
 - ▶ Make sense of the derivation of Watabiki's Hausdorff dimension.
 - ▶ Until now we have only looked at Gaussian Free Fields instead of real Liouville fields. Can we understand conformal correlation functions?
 - ▶ What can one compute analytically using circle patterns? Various Weil-Petersson volumes have been calculated in the mathematical literature, but to what observable do they correspond?

Summary & outlook



- ▶ Summary
 - ▶ By a discrete conformal mapping one can assign a discrete measure to a random triangulation. This random measure is shown numerically to share properties with the measure in Quantum Liouville gravity.
 - ▶ Conversely, one can assign a geometric interpretation to a Liouville measure by implementing a covariant cut-off. This is used to measure the Hausdorff dimension, which agrees well with Watabiki's formula.
 - ▶ Circle patterns give a more precise conformal mapping between triangulations and discrete measures and reveal a close connection with the well-studied Weil-Petersson geometry of Riemann surfaces.
- ▶ Outlook
 - ▶ Make sense of the derivation of Watabiki's Hausdorff dimension.
 - ▶ Until now we have only looked at Gaussian Free Fields instead of real Liouville fields. Can we understand conformal correlation functions?
 - ▶ What can one compute analytically using circle patterns? Various Weil-Petersson volumes have been calculated in the mathematical literature, but to what observable do they correspond?

Thanks! Questions? Slides available at <http://www.nbi.dk/~budd/>