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2D quantum gravity

I Formally 2d gravity is a statistical system of random metrics on a
surface of fixed topology with partition function

Z =

∫
[Dg ][DX ] exp(−λV [g ]− Sm[g ,X ]) ,

possibly coupled to some matter fields X with action Sm[g ,X ].

I Roughly two strategies to make sense of this path-integral:

I Combinatorially: Z =
∑

T e−λNTZm(T )

I Liouville path integral: gauge fix gab = eγφĝab(τ).
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Mapping a triangulation to the plane
I Given a triangulation of the

torus, there is a natural way to
associate a harmonic
embedding in R2 and a
Teichmüller parameter τ .

I Replace edges by ideal springs
and find equilibrium.

I Find linear transformation that
minimizes energy while fixing
the volume.

Τ
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I Two pieces of information:
modulus τ and periodic discrete
measure on R2.

I Distribution of τ agrees
numerically with non-critical
string theory result. [Ambjørn, TB,

Barkley, ’12]

I Concentrate on discrete
measure.

I What is the distance εn to the
n’th nearest neighbour of a
randomly chosen vertex?

I εn can be interpreted as the
radius of a Euclidean disk with
“quantum volume” δ = n/N.
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I Can measure the distribution PN,n(T0 = −log(ε)) in Dynamical
Triangulations. See plot for N = 400k and c = −2 and
n = 1, . . . , 100.

I Inverse Gaussian: P(T0) ∼ A√
2πT 3

e
−(A−BT )2

2T , T = T0 + δT .

I As we will see, Liouville theory explains why.



I Can measure the distribution PN,n(T0 = −log(ε)) in Dynamical
Triangulations. See plot for N = 400k and c = −2 and
n = 1, . . . , 100.

I Inverse Gaussian: P(T0) ∼ A√
2πT 3

e
−(A−BT )2

2T , T = T0 + δT .

I As we will see, Liouville theory explains why.



I Can measure the distribution PN,n(T0 = −log(ε)) in Dynamical
Triangulations. See plot for N = 400k and c = −2 and
n = 1, . . . , 100.

I Inverse Gaussian: P(T0) ∼ A√
2πT 3

e
−(A−BT )2

2T , T = T0 + δT .

I As we will see, Liouville theory explains why.



Quantum Liouville gravity [David, ’88] [Distler, Kawai, ’89]

I Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov
string in c dimensions,

Z =

∫
[Dg ][DX ] exp

(
−λV [g ]−

∫
d2x
√
gg ab∂aX

i∂bX
jδij

)
, X ∈ Rc .

I Write g in conformal gauge gab = eγφĝab(τ) with Liouville field φ
and Teichmüller parameter τ .

I Conformal bootstrap: assuming Z to be of the form

Z =

∫
dτ [Dĝφ][DĝX ] exp (−SL[ĝ , φ]− Sm[X , ĝ ])

with the Liouville action

SL[ĝ , φ] =
1

4π

∫
d2x

√
ĝ(ĝ ab∂aφ∂bφ+ QR̂φ+ µeγφ)

and requiring invariance w.r.t. ĝab fixes the constants Q and γ:

Q =
2

γ
+
γ

2
=

√
25− c

6
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I If we ignore τ -integral and set ĝab = δab flat and µ = 0,

Z =

∫
[Dφ] exp

(
− 1

4π

∫
d2x ∂aφ∂aφ

)
,

i.e. simple Gaussian Free Field (GFF)!

I Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge c < 1?

I In other words: given a diffeomorphism invariant observable O[gab],
can we make sense out of the expectation value

〈O〉Z =
1

Z

∫
[Dφ]O[eγφδab] exp

(
− 1

4π

∫
d2x ∂aφ∂aφ

)
and does it agree with DT?

I Care required: eγφδab is almost surely not a Riemannian metric!
Need to take into account the fractal properties of the geometry and
regularize appropriately.
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Z =

∫
[Dφ] exp

(
− 1

4π

∫
d2x ∂aφ∂aφ

)
,

i.e. simple Gaussian Free Field (GFF)!

I Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge c < 1?

I In other words: given a diffeomorphism invariant observable O[gab],
can we make sense out of the expectation value

〈O〉Z =
1

Z

∫
[Dφ]O[eγφδab] exp

(
− 1

4π

∫
d2x ∂aφ∂aφ

)
and does it agree with DT?

I Care required: eγφδab is almost surely not a Riemannian metric!
Need to take into account the fractal properties of the geometry and
regularize appropriately.



I If we ignore τ -integral and set ĝab = δab flat and µ = 0,
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Gaussian free field basics
I Gaussian free field in 1d is a.s. a continuous function: Brownian

motion.

I In 2d (on a domain D) the covariance is given by

〈φ(x)φ(y)〉 = G (x , y) = − log |x − y |+ G̃ (x , y).

I φ(x) has infinite variance. It is not a function, but a distribution.

I How do we make sense of the measure eγφ?
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Regularization [Sheffield, Duplantier]

I The integral (f , φ) =
∫
d2x f (x)φ(x) has finite variance.

I In particular, for circle average φε(x) := 1
2π

∫ 2π

0
dθ φ(x + εe iθ),

〈φε(x)2〉 = − log ε− G̃ (x , x).

I Therefore,

〈eγφε(x)〉 = e〈(γφε)2〉/2 =

(
G̃ (x , x)

ε

)γ2/2

.

I Define regularized measure dµε = εγ
2/2eγφε(x)d2x .

I dµε converges almost surely to a well-defined random measure dµγ
as ε→ 0. [Sheffield, Duplantier]

I Alternatively, one can use a momentum cut-off. Given an
orthonormal basis ∆E fi = λi fi ,

φp :=
∑
λi≤p2

(fi , φ)fi , dµp = p−γ
2/2eγφp(x)d2x
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On the lattice

I We can easily put a Gaussian free field on a lattice, say, L× L with
periodic boundary conditions.

I L× L with periodic
boundary conditions.

I Consider
dµp = p−γ

2/2eγφp(x)d2x
with p � L.

I Can we understand the
relation between
δ = µ(Bε(x)) and ε?
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I Look at the circle average φε(x) as function of ε.

I 〈φε(x)φε′(x)〉 = − log max(ε,ε′)
ε0

= min(t, t ′), t = − log( εε0
)

I Therefore φε0e−t is simply a Brownian motion! [Sheffield, Duplantier]

I The volume in a ball is approximated by µ(Bε(x)) ≈ πε2µε(x).
[Sheffield, Duplantier]

I Hence ε(δ) is found by solving

δ = πε2εγ
2/2eγφε(x) = πεγQeγφε(x)
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I ε(δ) = ε0e
−T , where T is the first time a Brownian motion with

drift Q reaches level A := log(π/δ)
γ + Q log ε0.

I Its distribution is given by an Inverse Gaussian distribution,

Pδ(T ) =
A√

2πT 3
exp

[
− 1

2T
(A− QT )2

]
. (1)

I It follows that〈
ε(δ)2∆0−2

〉
=

∫
dT e−(2∆0−2)TPδ(T ) ∝ δ

1
γ (
√

Q2+4∆0−4−Q) = δ∆−1

where ∆ satisfies the famous KPZ relation [Knizhnik, Polyakov,

Zamolodchikov, ’88][Duplantier, Sheffield, ’10]

∆0 =
γ2

4
∆2 +

(
1− γ2

4

)
∆,

which relates the conformal weight ∆0 of an operator in CFT to its
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I Detail: should not choose x uniformly, but w.r.t. Liouville measure.

Pδ(T ) =
A√

2πT 3
exp
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− 1

2T
(A− QT )2

]
.

I A = log(π/δ)
γ +Q log ε0, T = − log(ε/ε0)=T0 + δT , eδT := ε0 ≈ 0.35.

I γ =
√

25−c−
√

1−c√
6

⇒ γc=−2 =
√

2, γc=0 =
√

8/3.

I One free fit parameter A = − log(n)/γ + A0. Below A0 = 8.6.
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Hausdorff dimension

I The Hausdorff dimension dh
measures the relative scaling of
geodesic distance and volume.

V (r) ∼ rdh , dh = lim
r→0

logV (r)

log r

I In terms of 2-point function

G (r) =

∫
d2x

∫
d2y

√
g(x)

√
g(y) δ(dg (x , y)−r),

G (r) ∼ rdh−1, dh−1 = lim
r→0

logG (r)

log r

I For Riemannian surfaces dh = 2 but in random metrics we may find
dh > 2. In fact, a typical geometry in pure 2d quantum gravity has
dh = 4.
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Hausdorff dimension from shortest cycles [Ambjørn, TB, ’13]

I A shortest non-contractible loop is automatically a geodesic and
therefore we expect its length to scale with the volume V as

L ∼ V
1
dh .

I Look for such loops in triangulations appearing in DT (where
V = N).

Also measure second shortest loops, which are a bit longer.

I Data agrees well with Watabiki’s formula: dh = 2
√

49−c+
√

25−c√
25−c+

√
1−c
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I Currently little hope of deriving dh(c) for c 6= 0 using combinatorial
methods.

I Where does Watabiki’s formula come from?

KPZ relation in
Liouville gravity! [Watabiki, ’93]

I It was argued that geodesic distance is related to the (non-primary)
operator Φ1[g ] =

∫
d2x
√
g [∆gδ(x − x0)]x=x0 which has conformal

dimension ∆0 = 2, i.e. Φ1[λgab] = λ−∆0/2Φ1[gab].

I ∆0 = 2 ⇒ ∆ = 2
dh
, dh = 2

√
49−c+

√
25−c√

25−c+
√

1−c
I Two questions:

I How to construct a metric out of a Liouville field?
I Is geodesic distance indeed related to an operator with conformal

dimension ∆0 = 2?

I Try numerically!
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Triangulations versus Liouville

I The harmonic embedding of a random triangulation represents

roughly a piecewise constant field φδ: eγφ
δ(x)|x∈4 = 1/(N a4)

Covariant: lattice sites contain equal
volume

Non-covariant: lattice site contains
volume ∝ eγφ
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I Mimic a covariant
cutoff.

I For δ > 0, find the ball
Bε(δ)(x) around x with
volume µ(Bε(δ)) = δ.

I Replace the measure
with the average
measure over the ball.

I Define eγφ
δ(x) := δ

πε(δ)2 .

I Compare to DT:
δ ∼ 1/N

γ = 0.6
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Measure distance w.r.t. gab = eγφ
δ

δab

dδ(x , y) = inf
Γ

{∫
Γ

ds e
γ
2 φ

δ(x(s))

}

dδ(x , {x1 = 0}) δ
1
dh
− 1

2 dδ(x , {x1 = 0}), dh ≈ 2.70
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I To extract dh(γ), measure the expectation value
〈dδ({x1 = 0}, {x1 = 1})〉 of the distance between left and right
border as function of δ.



I The slopes of the curves, 〈dδ({x1 = 0}, {x1 = 1})〉 ∝ δ
1
2−

1
dh , lead to

the following estimate of the Hausdorff dimension.

I Compare with Watabiki’s formula, dh = 1 + γ2
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Circle patterns [David, Eynard, ’13]

I The discrete harmonic embedding
defines a map
E : {triangulations} → {points ⊂ R2}.

I The image of E is quite non-trivial. It
would be nicer to have a bijective E!

I What then should E−1 be?

I Natural candidate: Delaunay
triangulation!

I Condition: θe = π − αe − α′e ≥ 0

I Circle pattern theorem [Rivin, ’94]: the
embedding of the abstract
triangulation is uniquely determined by
the values {θe}.
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I To be precise, there exists a bijection

E : {(triangulations with n vertices, {θe}e)} → {n points ⊂ R2}

I Conditions on θe
I Delaunay condition 0 ≤ θ < π.

I For a dual path γ encircling a vertex∑
e∈γ

θe = 2π

I For other simple closed paths γ∑
e∈γ

θe > 2π

I Proposal [David, Eynard, ’13]: replace DT
partition function

Zg ,n =
∑
T

1

|Aut(T )|

Volθ(T )

Volθ(T ) =

∫ ∫ ∏
e

dθe δ(conditions)



I To be precise, there exists a bijection

E : {(triangulations with n vertices, {θe}e)} → {n points ⊂ R2}

I Conditions on θe
I Delaunay condition 0 ≤ θ < π.
I For a dual path γ encircling a vertex∑

e∈γ

θe = 2π

I For other simple closed paths γ∑
e∈γ

θe > 2π

I Proposal [David, Eynard, ’13]: replace DT
partition function

Zg ,n =
∑
T

1

|Aut(T )|

Volθ(T )

Volθ(T ) =

∫ ∫ ∏
e

dθe δ(conditions)



I To be precise, there exists a bijection

E : {(triangulations with n vertices, {θe}e)} → {n points ⊂ R2}

I Conditions on θe
I Delaunay condition 0 ≤ θ < π.
I For a dual path γ encircling a vertex∑

e∈γ

θe = 2π

I For other simple closed paths γ∑
e∈γ

θe > 2π

I Proposal [David, Eynard, ’13]: replace DT
partition function

Zg ,n =
∑
T

1

|Aut(T )|

Volθ(T )

Volθ(T ) =

∫ ∫ ∏
e

dθe δ(conditions)



I To be precise, there exists a bijection

E : {(triangulations with n vertices, {θe}e)} → {n points ⊂ R2}

I Conditions on θe
I Delaunay condition 0 ≤ θ < π.
I For a dual path γ encircling a vertex∑

e∈γ

θe = 2π

I For other simple closed paths γ∑
e∈γ

θe > 2π

I Proposal [David, Eynard, ’13]: replace DT
partition function

Zg ,n =
∑
T

1

|Aut(T )|

Volθ(T )

Volθ(T ) =

∫ ∫ ∏
e

dθe δ(conditions)



I To be precise, there exists a bijection

E : {(triangulations with n vertices, {θe}e)} → {n points ⊂ R2}

I Conditions on θe
I Delaunay condition 0 ≤ θ < π.
I For a dual path γ encircling a vertex∑

e∈γ

θe = 2π

I For other simple closed paths γ∑
e∈γ

θe > 2π

I Proposal [David, Eynard, ’13]: replace DT
partition function

Zg ,n =
∑
T

1

|Aut(T )|
Volθ(T )

Volθ(T ) =

∫ ∫ ∏
e

dθe δ(conditions)



I The weight Volθ(T ) is not expected to change the universality class
of DT. Hence Zg ,n should describe pure 2d gravity.

I But Zg ,n is also a partition function for discrete measures in the
plane. Is it a discretization of Liouville gravity?

I Can we find the n-dependence of Zg ,n? Write generating function

Zg (x) =
∞∑
n=0

Z (g , n)π−2(3g−3+n)xn

I Using Mathematica one finds

Z0(x) =
x3

6
+

x4

24
+

x5

48
+

61x6

4320
+

197x7

17280
+ . . .

√
Z ′′0 (x)J1

(
2
√
Z ′′0 (x)

)
=x

Z1(x) =
x

12
+

x2

16
+

7x3

108
+ . . .

Z1(x) =
1

12
log(Z ′′′0 (x))

I The coefficients are exactly the Weil-Petersson volumes of the
moduli spaces Mg ,n of Riemann surfaces of genus g with n
punctures! [Penner][Zograf][Mirzakhani]. . .

I If true: Z (g , n) ∝ n−
7
2 + 5

2 gC n(1 +O(n−1)), C ≈ 15.6
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I Where are the punctured Riemann surfaces?

I View the Euclidean plane as the boundary of hyperbolic space H3!
I The convex hull of the vertices in H3 is a surface with constant

curvature −1.
I The angle θe is the “bending angle” of the surface at edge e.
I Canonically conjugate to “shear coordinates” ze ,

cr(e) =
(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)
= − exp(ze + iθe)

I Weil-Petersson volume form: ωWP =
∏

e dze |constraints
I Somehow the Delaunay conditions select a fundamental domain in

Teichmüller space.
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I Like in DT, we can perform Monte Carlo simulations of

Zg ,n =
∑
T

1

|Aut(T )|
Volθ(T )

I Expectation values of observables are averages over Moduli space of
punctured Riemann surfaces w.r.t. the Weil-Petersson volume form.

I In many cases only few vertices are needed for good numerical
results.

I Example: distribution of the modulus τ for genus 1 with 25 vertices.
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Summary & outlook
I Summary

I By a discrete conformal mapping one can assign a discrete measure
to a random triangulation. This random measure is shown
numerically to share properties with the measure in Quantum
Liouville gravity.

I Conversely, one can assign a geometric interpretation to a Liouville
measure by implementing a covariant cut-off. This is used to
measure the Hausdorff dimension, which agrees well with Watabiki’s
formula.

I Circle patterns give a more precise conformal mapping between
triangulations and discrete measures and reveal a close connection
with the well-studied Weil-Petersson geometry of Riemann surfaces.

I Outlook

I Make sense of the derivation of Watabiki’s Hausdorff dimension.
I Until now we have only looked at Gaussian Free Fields instead of real

Liouville fields. Can we understand conformal correlation functions?
I What can one compute analytically using circle patterns? Various

Weil-Petersson volumes have been calculated in the mathematical
literature, but to what observable do they correspond?

Thanks! Questions? Slides available at http://www.nbi.dk/~budd/

http://www.nbi.dk/~budd/
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