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2D quantum gravity

» Formally 2d gravity is a statistical system of random metrics on a
surface of fixed topology with partition function

z- / [Dg][DX] exp(~AVIg] — Snle. X))

possibly coupled to some matter fields X with action S,,[g, X].
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2D quantum gravity

» Formally 2d gravity is a statistical system of random metrics on a
surface of fixed topology with partition function

z- / [Dg][DX] exp(~AVIg] — Snle. X))

possibly coupled to some matter fields X with action S,,[g, X].

» Roughly two strategies to make sense of this path-integral:
» Combinatorially: Z =Y e *"7Z,(T)
> Liouville path integral: gauge fix g = €"?8as(7).
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Haugdorff dimension 1. Conformal embedding
Brownian map 2. Ball volumes
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N >

N —w c#0

o0 (oo matter) Conformal embedding

Outline

Haugdorff dimension 1. Conformal embedding

Brownian map Numerically 2. Ball volumes
dn =4 dh (c=-2)=3.56 3. Hausdorff dimension
-in DT
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N -
c#0 Liouville metric?

-0 <c<l

N —owo
¢=0 (no matter)

Conformal embedding

Outline

Haugdorff dimension

Watabiki's formula: 1. Conformal embedding

Brownian map Numerically dy —=2¥8—crvas—c 2, Ball volumes
dn =4 dh (c=-2)=3.56 “ <"V © 3. Hausdorff dimension
Check numerically for o
a Gaussian free field. -in DT

- in Liouville
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Liouville metric?

-0 <c<l

¢=0 (no matter)

QOutline
Haugdorff dimension

Watabiki's formula: 1. Conformal embedding

Brownian map

Numerically dy —=2¥8—crvas—c 2, Ball volumes
dh=4 dh (c=-2)=3.56 VB—ctvl-c

Check numerically for 3+ Hausdorff dimension
a Gaussian free field. - |_n D_T .
- in Liouville
4. Circle patterns



Mapping a triangulation to the plane

» Given a triangulation of the
torus, there is a natural way to
associate a harmonic
embedding in R? and a
Teichmdiller parameter 7.
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» Given a triangulation of the
torus, there is a natural way to
associate a harmonic
embedding in R? and a
Teichmdiller parameter 7.

» Replace edges by ideal springs
and find equilibrium.
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Mapping a triangulation to the plane

» Given a triangulation of the

torus, there is a natural way to

associate a harmonic

embedding in R? and a

Teichmdiller parameter 7.

» Replace edges by ideal springs

and find equilibrium.

» Find linear transformation that

minimizes energy while fixing

the volume.
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» Two pieces of information:
modulus 7 and periodic discrete
measure on R
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» Two pieces of information:
modulus 7 and periodic discrete
measure on R

» Distribution of 7 agrees
numerically with non-critical
string theory result. [Ambjgrn, TB,
Barkley, '12]
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Two pieces of information:
modulus 7 and periodic discrete
measure on R?.

Distribution of 7 agrees
numerically with non-critical
string theory result. [Ambjgrn, TB,
Barkley, '12]

Concentrate on discrete
measure.

What is the distance ¢, to the
n'th nearest neighbour of a
randomly chosen vertex?




Two pieces of information:
modulus 7 and periodic discrete
measure on R?.

Distribution of 7 agrees
numerically with non-critical
string theory result. [Ambjgrn, TB,
Barkley, '12]

Concentrate on discrete
measure.

What is the distance ¢, to the
n'th nearest neighbour of a
randomly chosen vertex?

€n can be interpreted as the
radius of a Euclidean disk with
“quantum volume” § = n/N.




» Can measure the distribution Py ,(To = —log(e)) in Dynamical
Triangulations. See plot for N = 400k and ¢ = —2 and
n=1,...,100.

P(To)
0.14}

1 To=—log(e)
20 7 ®



» Can measure the distribution Py ,(To = —/log(e)) in Dynamical £ ;‘
Triangulations. See plot for N = 400k and ¢ = —2 and e
n=1,...,100.

A —(A—BT)?

> Inverse Gaussian: P(To) ~ ~==e™ 27, T=To+dT.
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» Can measure the distribution Py ,(To = —log(e)) in Dynamical
Triangulations. See plot for N = 400k and ¢ = —2 and
n=1,...,100.

(A 2
» Inverse Gaussian: P(Tp) ~ ﬁe Ot T = To+6T.

» As we will see, Liouville theory explains why.

P(To)
0.14}

1 To=—log(e)
20 7 ®



Quantum Liouville gravity [David, '88] [Distler, Kawai, '89]

» Consider 2d gravity coupled to c¢ scalar fields, i.e. the Polyakov
string in ¢ dimensions,

Z= / [Dg][DX] exp (—)\ Vig] - / dQX@gabaaXiaij(SU) , X €ERE.



Quantum Liouville gravity pavid, ‘s8] [istier, Kawai, '59]

» Consider 2d gravity coupled to c¢ scalar fields, i.e. the Polyakov
string in ¢ dimensions,

Z= / [Dg][DX] exp <—)\ Vig] - / d2x\/g’gabaax"abxf(s,j> , X €ERE.

» Write g in conformal gauge g., = €7?8.,(7) with Liouville field ¢
and Teichmiiller parameter 7.



Quantum Liouville gravity [pavid, ‘ss] [pistier, Kawai, ‘69]

» Consider 2d gravity coupled to c¢ scalar fields, i.e. the Polyakov
string in ¢ dimensions,

Z= / [Dg][DX] exp <—)\ Vig] - / dQXﬁgabaaXiaij(S,-j) , X €ERE.

» Write g in conformal gauge g., = €7?8.,(7) with Liouville field ¢
and Teichmiiller parameter 7.
» Conformal bootstrap: assuming Z to be of the form

7= / d7[Dsd][DgX] exp (—Si[2, 6] — SmlX, 2])
with the Liouville action
1 ~
Sig 0l = 5 [ @xVEE 0,000 + QR+ pe?)

and requiring invariance w.r.t. g, fixes the constants @ and ~:

2 v [25-c
Q_'y+2_ 6



> If we ignore T-integral and set g, = 0, flat and u =0, %”4

7 / (Do) exp (—jﬁ / d2xaa¢aa¢)7

i.e. simple Gaussian Free Field (GFF)!
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i.e. simple Gaussian Free Field (GFF)!

» Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge ¢ < 1?
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> If we ignore T-integral and set g, = 0, flat and u =0, %

Z= /[Dd)] exp (—417T/d2x ¢ 3a¢>> )

i.e. simple Gaussian Free Field (GFF)!

» Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge ¢ < 1?

» In other words: given a diffeomorphism invariant observable O[g.p],
can we make sense out of the expectation value

©)2= [PA0l sse0 (- [ @xv60.0)

and does it agree with DT?



7>

If we ignore 7-integral and set g.,, = 0, flat and u =0,

Z= /[Dd)] exp (—417T/d2x ¢ 3a¢> )

i.e. simple Gaussian Free Field (GFF)!

Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge ¢ < 1?

In other words: given a diffeomorphism invariant observable O[gap],
can we make sense out of the expectation value

©)2= [PA0l sse0 (- [ @xv60.0)

and does it agree with DT?

Care required: €794,y is almost surely not a Riemannian metric!
Need to take into account the fractal properties of the geometry and
regularize appropriately.
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» Gaussian free field in 1d is a.s. a continuous function: Brownian
motion.
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» Gaussian free field in 1d is a.s. a continuous function: Brownian
motion.
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> ¢(x) has infinite variance. It is not a function, but a distribution.




Gaussian free field basics

» Gaussian free field in 1d is a.s. a continuous function: Brownian
motion.

» In 2d (on a domain D) the covariance is given by

(3(x)(y)) = G(x,y) = —log |x — y| + G(x, y).

> ¢(x) has infinite variance. It is not a function, but a distribution.

» How do we make sense of the measure e7®?

4




Regularization [Sheffield, Duplantier] %
» The integral (f,$) = [ d?x f(x)$(x) has finite variance.

> In particular, for circle average ¢¢(x) := 5 OzﬂdQ B(x + ee?),

(#e(x)?) = —log e — G(x, ).
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» The integral (f,$) = [ d?x f(x)$(x) has finite variance.

> In particular, for circle average ¢¢(x) := 5 Ozﬂdﬁ B(x + ee?),

(pe(x)?) = —loge — G(x, x).
» Therefore,
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RGgUlarlzatlon [Sheffield, Duplantier] %
» The integral (f,$) = [ d?x f(x)$(x) has finite variance. K

> In particular, for circle average ¢¢(x) := 5 OzﬂdG B(x + ee?),
(9e(x)?) = —loge — G(x,x).
» Therefore,
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(19:0)) Z lr00)/2 _ (G(X’X)> _

€

> Define regularized measure dy, = €77/2e7%<()d2x.

> du. converges almost surely to a well-defined random measure dp.,
as € — 0. [Sheffield, Duplantier]



RGgUlarlzatlon [Sheffield, Duplantier]
» The integral (f,$) = [ d?x f(x)$(x) has finite variance.

> In particular, for circle average ¢¢(x) := 5 OzﬂdG B(x + ee?),

(#e(x)?) = —log e — G(x, ).

» Therefore,

~ 72/2
(19:0)) Z lr00)/2 _ (G(X’X)> _

€

> Define regularized measure dyu, = €7/2e7%<()¢2x.

> du. converges almost surely to a well-defined random measure dp.,
as € — 0. [Sheffield, Duplantier]

> Alternatively, one can use a momentum cut-off. Given an
orthonormal basis Agf; = \if;,

0p1= Y (0)f dpp=p~772e1%

Ai<p?



On the lattice

» We can easily put a Gaussian free field on a lattice, say, L x L with
periodic boundary conditions.

RandomField[L ] :=

Re@Fourier [RandomVariate[NormalDistribution[] , {L, L, 2}]1.{1, i}
2 2 -1/2
Ta.ble[If[:i_ =j=1,0, [— Sin[m (i-1) /2]%+ = Sin[x (3 - 1) /L]Z) ],
T bys

i, 2}, {3, 23]+



On the lattice

» L x L with periodic

boundary conditions.




On the lattice

» L x L with periodic
boundary conditions.

» Consider
d'up — p_72/267¢ﬂ(x)d2x
with p < L.

v=0.6,p=10
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with p < L.




On the lattice

» L x L with periodic
boundary conditions.

» Consider
dup = p~772e785() g2x

with p < L.
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On the lattice

» L x L with periodic
boundary conditions.

» Consider
dup = p—72/2ev¢p()<) d?x
with p < L.




On the lattice

» L x L with periodic
boundary conditions.

» Consider
dup = p—72/2ev¢p()<) d?x
with p < L.

» Can we understand the

relation between
6 = u(Bc(x)) and €?




» Look at the circle average ¢.(x) as function of e.
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» Look at the circle average ¢.(x) as function of e.

Pe(x)
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» Look at the circle average ¢.(x) as function of e.

> {(pe(x)e (x)) = —log ™) = min(t,t'), t=—log(£)

: : : log(1
. ' 25 og(1/e)
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» Look at the circle average ¢.(x) as function of e.

> (9e(x)de(x)) = — log ") = min(t, '), t = —log(5)
» Therefore ¢, .-+ is simply a Brownian motion! [Sheffield, Duplantier]

Pe(x)
1.5F

-05¢F
-1.0F
_1‘5 L

0.5 1.0 15 2.0 25

log(1/e)
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Look at the circle average ¢.(x) as function of e.

(6e()ge(x)) = —log ™ = min(t, ¢'), t = —log(5)
Therefore ¢+ is simply a Brownian motion! [Sheffield, Duplantier]

v

v

\4

The volume in a ball is approximated by u(B.(x)) ~ me?uc(x).
[Sheffield, Duplantier]

Pe(x)

10f
05F
0.0F W\
~05F

-10f

. . . log(1/e)
0.5 1.0 1.5 2.0 2.5
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Look at the circle average ¢.(x) as function of e.

(6e()ge(x)) = —log ™ = min(t, ¢'), t = —log(5)
Therefore ¢+ is simply a Brownian motion! [Sheffield, Duplantier]

The volume in a ball is approximated by u(B.(x)) ~ me?uc(x).

[Sheffield, Duplantier]

Hence €(4) is found by solving

§ = w2V /2e79(x) _ 1 Q gvdbe(x)

$e(x)
L5F
1LOF
0.5F
0.0}
-0.5}F
-10}

—-1.5F

0.5

: : : : log(1
' 23 og(1/e)



> ¢(0) = e~ T, where T is the first time a Brownian motion with %
drift @ reaches level A := M + Qlog €p. E



> ¢(0) = e~ T, where T is the first time a Brownian motion with

drift @ reaches level A := M + Qlog €p.

» lIts distribution is given by an Inverse Gaussian distribution,

1= Ao

1
fﬁ(A - QT)2] .



€(0) = epe~ T, where T is the first time a Brownian motion with
drift @ reaches level A := M + Qlog €p.
Its distribution is given by an Inverse Gaussian distribution,

1= Ao

1 2
It follows that

<6(5)2A072> _ /dT ef(2Aof2)TP5(T) o 5%(,/Q2+4A0—4—Q) _ 5A71

where A satisfies the famous KPZ relation [Knizhnik, Polyakov,
Zamolodchikov, '88][Duplantier, Sheffield, '10]

2 2

T A2 Y
Ao = —A 1- A
07y +( 4) ’

which relates the conformal weight Ag of an operator in CFT to its
scaling dimension A when coupled to quantum gravity.



> ¢(0) = e~ T, where T is the first time a Brownian motion with

drift @ reaches level A := M + Qlog €p.
» lIts distribution is given by an Inverse Gaussian distribution,

1= Ao

1
~5p(A- QT )

» [t follows that

<6(5)2A072> _ /dT ef(2Aof2)TP5(T) o 5%(,/Q2+4A0—4—Q) _ 5A71

where A satisfies the famous KPZ relation [Knizhnik, Polyakov,
Zamolodchikov, '88][Duplantier, Sheffield, '10]

2 2

T A2 Y
Ao = —A 1- A
07y +( 4) ’

which relates the conformal weight Ag of an operator in CFT to its
scaling dimension A when coupled to quantum gravity.

> If (1) holds in DT, then KPZ follows!



» Detail: should not choose x uniformly, but w.r.t. Liouville measure.
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» Detail: should not choose x uniformly, but w.r.t. Liouville measure.é
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» Detail: should not choose x uniformly, but w.r.t. Liouville measure.é
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» Detail: should not choose x uniformly, but w.r.t. Liouville measure.é
A 1 (
exp | —=—
VonT3 2T

'S A — Iog(;r/ti) +Q |og €0, T: — |Og(€/€0): TO + (ST, e‘ST:: €0~ 035

>y = YEEEREEE o ye 5= V2 Ym0 = V/B/3.

Ps(T) = A—(Q—7)T)>|.
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Detail: should not choose x uniformly, but w.r.t. Liouville measure. 4

N
d

PHT) = s exp | 34— (@=)TF| .

A= MJrQ logeg, T= —log(e/eo)=To+ 0T, eT:= ¢y ~ 0.35.
v = e 25_f/_6\/ﬁ = Ye=—2 = \/5, Ye=0 = 8/3
One free fit parameter A = —log(n)/y + Ao. Below Ay = 8.6.

P(To)

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.00
0

e Ty=—log(€)
20
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Detail: should not choose x uniformly, but w.r.t. Liouville measure.

PHT) = s exp | 34— (@=)TF| .

A= MJrQ logeg, T= —log(e/eo)=To+ 0T, eT:= ¢y ~ 0.35.
v = e 25_f/_6\/ﬁ = Ye=—2 = \/5, Ye=0 = 8/3
One free fit parameter A = —log(n)/y + Ao. Below Ay = 8.6.

P(To)
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Detail: should not choose x uniformly, but w.r.t. Liouville measure.
)

Pa(T):\/%eXP —%(%\—(C)—V)T)2 :

A= Mqt(\) logeg, T=—log(e/eo)=To+ 0T, e®T:= ¢y ~ 0.35.
v = e 25_:/_6m = Ye=—2 = \/iv Ye=0 = 8/3
One free fit parameter A = —log(n)/y + Ao. Below Ay = 8.6.

P(To)
0.14 1
0.12 1
0.10 1
0.08 1
0.06
0.04 -
0.02 +

0.00 - Ti=-logie)
0 5 10 15 20
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Detail: should not choose x uniformly, but w.r.t. Liouville measure. %
4

Ps(T) = N exp

—%(A —-(Q- v)T)z] :

A= M+Q logeg, T=—log(e/eo)=To+ 0T, e®T:= ¢y ~ 0.35.
"y = —25_5/_6 1—c = ’Yc:72 = \/51 ’YCIO = 8/3
One free fit parameter A = — log(n)/y + Ao. Below Ay = 8.6.

P(To)

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.00
0

S Telog(e)

5 10 15 20
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Detail: should not choose x uniformly, but w.r.t. Liouville measure. %
A 1
Ps(T) = —=(A—(Q-T)|. 4
A7) = e |52 (A- (@) TY]

A= M+Q logeg, T=—log(e/eo)=To+ 0T, e®T:= ¢y ~ 0.35.
Y= % = Y2 = V2, Yoo = 8/3.
One free fit parameter A = — log(n)/y + Ao. Below Ay = 8.6.

P(To)

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.00
0

———= T,=-log(e)
5 10 15 20



Hausdorff dimension

» The Hausdorff dimension dj,
measures the relative scaling of
geodesic distance and volume.

log V
V(r) ~r dy = lim og V(r)
r—0 logr
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Hausdorff dimension

» The Hausdorff dimension dj,
measures the relative scaling of
geodesic distance and volume.

log V
V(r) ~r dy = lim og V(r)
r—0 logr

» In terms of 2-point function
6(r) = [ dx [ 2y /g 0VE ) 8 x.3) 1)

G(r) ~r*=1 dp—1 = lim ——2
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Hausdorff dimension é

» The Hausdorff dimension dj,
measures the relative scaling of
geodesic distance and volume. r

log V(r)
V(r) ~r dy = lim ———2
(r) ~ r®, dy RS log r

> In terms of 2-point function

» For Riemannian surfaces d, = 2 but in random metrics we may find

dp > 2. In fact, a typical geometry in pure 2d quantum gravity has
d, = 4.
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» A shortest non-contractible loop is automatically a geodesic and

therefore we expect its length to scale with the volume V as
1
L~ Vi,

> Look for such loops in triangulations appearing in DT (where
V =N).
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Hausdorff dimension from shortest cycles jambjorn, 8, 131 %

» A shortest non-contractible loop is automatically a geodesic and
therefore we expect its length to scale with the volume V as
1
L~ Vi,
> Look for such loops in triangulations appearing in DT (where
V = N). Also measure second shortest loops, which are a bit longer.
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Hausdorff dimension from shortest cycles jambjorn, 8, 131 %

» A shortest non-contractible loop is automatically a geodesic and
therefore we expect its length to scale with the volume V as
1
L~ V.
» Look for such loops in triangulations appearing in DT (where
V = N). Also measure second shortest loops, which are a bit longer.
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481

46
44F +
42} +

40f +




Hausdorff dimension from shortest cycles jambjorn, 8, 131

7>

» A shortest non-contractible loop is automatically a geodesic and
therefore we expect its length to scale with the volume V as
1
L~ V.
» Look for such loops in triangulations appearing in DT (where
V = N). Also measure second shortest loops, which are a bit longer.

» Data agrees well with Watabiki's formula: d, = 2—% v\/2157_—cc

dy
481

46
441

421

Watabiki
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operator ®1[g] = [ d?x,/g[Agd(x — x0)]x=x, Which has conformal
dimension Ag = 2, i.e. ®1[Agap] = A29/20 [g.p].
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It was argued that geodesic distance is related to the (non-primary)
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Currently little hope of deriving dx(c) for ¢ # 0 using combinatorial
methods.

Where does Watabiki's formula come from? KPZ relation in
Liouville gravity! [watabiki, '93]

It was argued that geodesic distance is related to the (non-primary)
operator ®1[g] = [ d?x,/g[Agd(x — x0)]x=x, Which has conformal
dimension Ag = 2, i.e. ®1[Agap] = A29/20 [g.p].

DNo=2 = A=2, dy=2¥ctvmc
Two questions:
» How to construct a metric out of a Liouville field?
> |s geodesic distance indeed related to an operator with conformal
dimension Ay = 27



Currently little hope of deriving dx(c) for ¢ # 0 using combinatorial
methods.

Where does Watabiki's formula come from? KPZ relation in
Liouville gravity! [watabiki, '93]

It was argued that geodesic distance is related to the (non-primary)
operator ®1[g] = [ d?x,/g[Agd(x — x0)]x=x, Which has conformal
dimension Ag = 2, i.e. ®1[Agap] = A29/20 [g.p].

DNo=2 = A=2, dy=2¥ctvmc
Two questions:
» How to construct a metric out of a Liouville field?
> |s geodesic distance indeed related to an operator with conformal
dimension Ay = 27

Try numerically!



Triangulations versus Liouville

» The harmonic embedding of a random triangulation represents
roughly a piecewise constant field ¢°: e”¢é(x)|xeA =1/(Nap)
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Triangulations versus Liouville

» The harmonic embedding of a random triangulation represents

roughly a piecewise constant field ¢?: e’7¢6(x)|X€A =1/(Nap)




Triangulations versus Liouville

» The harmonic embedding of a random triangulation represents
roughly a piecewise constant field ¢%: 7%’ )|, cn = 1/(N an)

Covariant: lattice sites contain equal Non-covariant: lattice site contains
volume volume o 7%




» Mimic a covariant
cutoff.




» Mimic a covariant
cutoff.

» For § > 0, find the ball
Be(sy(x) around x with
volume 11(Bg(sy) = 9.

» Replace the measure
with the average
measure over the ball.
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Mimic a covariant
cutoff.

For § > 0, find the ball
Be(sy(x) around x with
volume 1i(Be(sy) = 9.
Replace the measure
with the average
measure over the ball.
Define e7¢" () .= 9

me(8)?”
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Mimic a covariant
cutoff.

For § > 0, find the ball
Be(sy(x) around x with
volume 11(Bg(sy) = 9.
Replace the measure
with the average
measure over the ball.

Define ew’s(x) =9

me(8)?”




Mimic a covariant
cutoff.

For § > 0, find the ball
Be(sy(x) around x with
volume 11(Bg(sy) = 9.
Replace the measure
with the average
measure over the ball.

Define e”‘z’s(x) =9

me(8)?”

Compare to DT:
0~1/N
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ds(x,y) = i?f{/ds e¥¢5(x(5>>}
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gamma = 0.9, delta = 1/787
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

amma = 0.9, delta = 1/6423

d(;(X, {Xl = 0})

[m]

=



» To extract dp(y), measure the expectation value
(ds({x1 = 0}, {x1 = 1})) of the distance between left and right
border as function of 4.

(ds(x1=0,x;=1))

02r
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> The slopes of the curves, (ds({x1 = 0}, {x1 =1})) x 52" lead to
the following estimate of the Hausdorff dimension.
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> The slopes of the curves, (ds({x1 = 0}, {x1 =1})) x 52" lead to% '
the following estimate of the Hausdorff dimension. 4

» Compare with Watabiki's formula, d, = 1 + %2 +4/14 392+ L4
dy

445f
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340f
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CII’C'G patterns [David, Eynard, '13] %

» The discrete harmonic embedding
defines a map
& : {triangulations} — {points C R?}.
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Circle patterns pavid, ynard, ‘13

» The discrete harmonic embedding
defines a map

& : {triangulations} — {points C R?}.

» The image of £ is quite non-trivial. It
would be nicer to have a bijective £!

» What then should £~1 be?

L



Circle patterns pavid, eynard, '13]

» The discrete harmonic embedding
defines a map

& : {triangulations} — {points C R?}.

» The image of £ is quite non-trivial. It
would be nicer to have a bijective £!

» What then should £~1 be?



Circle patterns [pavid, eynard, '13]

» The discrete harmonic embedding
defines a map

& : {triangulations} — {points C R?}.

» The image of &£ is quite non-trivial. It
would be nicer to have a bijective £!

» What then should £1 be?

» Natural candidate: Delaunay
triangulation!




Circle patterns [pavid, eynard, '13]

» The discrete harmonic embedding
defines a map

& : {triangulations} — {points C R?}.

» The image of &£ is quite non-trivial. It
would be nicer to have a bijective &!

» What then should £1 be?

» Natural candidate: Delaunay
triangulation!




Circle patterns [pavid, Eynard, 13]

» The discrete harmonic embedding
defines a map

& : {triangulations} — {points C R?}.

» The image of &£ is quite non-trivial. It
would be nicer to have a bijective &!

» What then should £1 be?

» Natural candidate: Delaunay
triangulation!




Circle patterns [pavid, eynard, '13]

» The discrete harmonic embedding
defines a map

& : {triangulations} — {points C R?}.

» The image of &£ is quite non-trivial. It
would be nicer to have a bijective &!

» What then should £1 be?

» Natural candidate: Delaunay
triangulation!

» Condition: e =7 —ae—aL >0




Circle patterns [pavid, Eynard, 13]

» The discrete harmonic embedding
defines a map
& : {triangulations} — {points C R?}.
» The image of &£ is quite non-trivial. It
would be nicer to have a bijective &!

» What then should £71 be?

» Natural candidate: Delaunay
triangulation!

» Condition: e =7 —ae—aL >0

» Circle pattern theorem [Rivin, '94]: the
embedding of the abstract

triangulation is uniquely determined by
the values {6.}.




> To be precise, there exists a bijection
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» Conditions on 6,
» Delaunay condition 0 < 6 < .
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partition function
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> To be precise, there exists a bijection

& : {(triangulations with n vertices, {f.}c)} — {n points C R?}
» Conditions on 6,
» Delaunay condition 0 < 6 < 7.

» For a dual path v encircling a vertex

Zﬂe =27

ecy

> For other simple closed paths

Zae > 27

ecy

» Proposal [David, Eynard, '13]: replace DT
partition function

1
Zg,n = ZT: WVOIQ(T)

Volg(T) = / / I ¢ 6(conditions)




> The weight Voly(T) is not expected to change the universality clas
of DT. Hence Z; , should describe pure 2d gravity.
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» But Z, , is also a partition function for discrete measures in the
plane. Is it a discretization of Liouville gravity?

» Can we find the n-dependence of Zg ,? Write generating function

Zy(x) = Y Z(g, mym 28
n=0
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The weight Volp(T) is not expected to change the universality class 2.

of DT. Hence Z; , should describe pure 2d gravity. v

v

But Z, , is also a partition function for discrete measures in the
plane. Is it a discretization of Liouville gravity?

v

Can we find the n-dependence of Z; ,? Write generating function

Zy(x) = Y Z(g, mym 28
n=0

v

Using Mathematica one finds

Z(X)_X3+X74+X75+61X6+197X7+
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of DT. Hence Z; , should describe pure 2d gravity.

» But Z, , is also a partition function for discrete measures in the
plane. Is it a discretization of Liouville gravity?
» Can we find the n-dependence of Zg ,? Write generating function
Zg(x) =Y Z(g, n)ym 2873y
n=0
» Using Mathematica one finds
Zo(x) X3+X4+X5+61X6+197X7+
X)=—=4+—=+—= —+...
0 6 ' 24 48 ' 4320 ' 17280
x o x27x8
V4 =—4+—=4+-—+...
)= 15" 16 108 "

» The coefficients are exactly the Weil-Petersson volumes of the
moduli spaces M, , of Riemann surfaces of genus g with n
punctures! [Penner][Zograf][Mirzakhani]. ..

The weight Volg(T) is not expected to change the universality class{I‘
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The weight Volp(T) is not expected to change the universality class /&
of DT. Hence Z; , should describe pure 2d gravity. N

But Z, , is also a partition function for discrete measures in the

plane. Is it a discretization of Liouville gravity?

>
S
X3 X4
Zo(X) = g + ﬂ
2
X X
Z](X) = ﬁ =+ R

Can we find the n-dependence of Z; ,? Write generating function

Zy(x) = Y Z(g, mym 28
n=0

Using Mathematica one finds

x5 61x® 1977

e o VAW (230 =

7x3 1 "
+m+.,, Zi(x) = 12 log(Zy"(x))

» The coefficients are exactly the Weil-Petersson volumes of the
moduli spaces M, , of Riemann surfaces of genus g with n
punctu res! [Penner][Zograf][Mirzakhani]. . .
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The weight Volg(T) is not expected to change the universality class iL

>

of DT. Hence Z; , should describe pure 2d gravity. S

But Z, , is also a partition function for discrete measures in the
plane. Is it a discretization of Liouville gravity?

v

v

Can we find the n-dependence of Z; ,? Write generating function

Zy(x) = Y Z(g, mym 28
n=0

» Using Mathematica one finds
x2 Xt x5 61x® 1977 » »
Zo(x)7€+ﬂ+ﬁ+432o+ﬁ+... \/ZO(X)J1<2\/ZO(X)>X
x x* 71X 1
Z =—4+—=—4+-—+... Z = —log(Z{’
e 1) = 75 log(Z4"(x))

» The coefficients are exactly the Weil-Petersson volumes of the
moduli spaces M, , of Riemann surfaces of genus g with n
punctu res! [Penner][Zograf][Mirzakhani]. . .

> If true: Z(g,n) x n2t38C"(1+ O(n"1)), C=~15.6
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Where are the punctured Riemann surfaces?

View the Euclidean plane as the boundary of hyperbolic space Hj!
The convex hull of the vertices in Hj is a surface with constant
curvature —1.

The angle 6, is the “bending angle” of the surface at edge e.
Canonically conjugate to “shear coordinates” z,

(w1 — ws)(w2 —wa)

cr(e) = (w2 — ws)(wp —wg) op(ze + e)
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» Where are the punctured Riemann surfaces?

» View the Euclidean plane as the boundary of hyperbolic space Hj! ¢

» The convex hull of the vertices in Hs is a surface with constant
curvature —1.

» The angle 6. is the “bending angle” of the surface at edge e.

» Canonically conjugate to “shear coordinates” z,

4

(w1 — w3) (w2 — wy)
(w2 — w3) (w1 — wy)

cr(e) = = —exp(ze + i6e)

> Weil-Petersson volume form: wwp = ], dZe| . <traints

» Somehow the Delaunay conditions select a fundamental domain in
Teichmiiller space.
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» Expectation values of observables are averages over Moduli space of
punctured Riemann surfaces w.r.t. the Weil-Petersson volume form.
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Like in DT, we can perform Monte Carlo simulations of

1
Zyn= ZT: mvc>19(T)

Expectation values of observables are averages over Moduli space of
punctured Riemann surfaces w.r.t. the Weil-Petersson volume form.
In many cases only few vertices are needed for good numerical
results.

Example: distribution of the modulus 7 for genus 1 with 25 vertices.

P(rp)
0.07 ¢

0.06 £
0.05 ¢
0.04 +
0.03 -
0.02 £
0.01 ¢
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> Summary
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to a random triangulation. This random measure is shown
numerically to share properties with the measure in Quantum
Liouville gravity.
> Conversely, one can assign a geometric interpretation to a Liouville
measure by implementing a covariant cut-off. This is used to
measure the Hausdorff dimension, which agrees well with Watabiki's
formula.
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> Make sense of the derivation of Watabiki's Hausdorff dimension.
> Until now we have only looked at Gaussian Free Fields instead of real
Liouville fields. Can we understand conformal correlation functions?
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Thanks! QUeStI.OI']S.? Slides available at http://www.nbi.dk/~budd/
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