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2D quantum gravity

» Formally 2d gravity is a statistical system of random metrics on a
surface of fixed topology with partition function

z- / [Dg][DX] exp(~AVIg] — Snle. X))

possibly coupled to some matter fields X with action S,,[g, X].

» | will follow two strategies to make sense of this path-integral:
» Dynamical triangulation (DT): Z = 3", e M7 Z,(T)
> Liouville path integral: gauge fix g = €"®8as(7).
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Hausdorff dimension
» The Hausdorff dimension dj,
measures the relative scaling of
geodesic distance and volume. r

log V(r)
V(r) ~r dy = lim ———2
(r) ~ r®, dy RS log r

> In terms of 2-point function

» For Riemannian surfaces d, = 2 but in random metrics we may find

dp > 2. In fact, a typical geometry in pure 2d quantum gravity has
d, = 4.
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» Combinatorial methods allow to derive d, = 4 analytically for pure
2d gravity, e.g. by computing 2-point function.

» When matter is present, however, it is much harder to keep track of
geodesic distance combinatorially.
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» Combinatorial methods allow to derive dy = 4 analytically for pure &
2d gravity, e.g. by computing 2-point function.

» When matter is present, however, it is much harder to keep track of
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» Combinatorial methods allow to derive d, = 4 analytically for pure
2d gravity, e.g. by computing 2-point function.

» When matter is present, however, it is much harder to keep track of
geodesic distance combinatorially.

» CFTs are classified by central charge ¢ and therefore d, = dp(c).

» Several conjectured formula's for ¢ # 0.

dh = 24 [Distler,Hlousek,Kawai, 90]
1—c+4/(1=c)(25—¢)
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dp of 2d gravity coupled to matter 4

» Combinatorial methods allow to derive d, = 4 analytically for pure w
2d gravity, e.g. by computing 2-point function.

» When matter is present, however, it is much harder to keep track of
geodesic distance combinatorially.

» CFTs are classified by central charge ¢ and therefore d, = dp(c).

» Several conjectured formula's for ¢ # 0.

dh = 24 [Distler,Hlousek,Kawai, 90]
1—c+4/(1=c)(25—¢)

d, = 27{/42957_76; V\/QET_CC [Watabiki, 93]
d, =4 [Duplantier,'11]
dh

501

451

Duplantier

Distler—Hlousek—Kawai

L L L
-3 -2 -1 0 1



dp of 2d gravity coupled to matter A

» As ¢ — —oo quantum effects turn off and we expect d, — 2. Only
satisfied by Watabiki's formula.

dy,

5.0

451

Duplantier

Watabiki

Distler—Hlousek—Kawai :
.

L !
-3 -2 -1 0 1



dp of 2d gravity coupled to matter %

» As ¢ — —oo quantum effects turn off and we expect d, — 2. Only
satisfied by Watabiki's formula.

» First numerical results for ¢ = —2 from measuring 2-point function:
dh =3.58+0.04 [Ambjgrn, Anagnostopoulos, ..., '95]
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dp of 2d gravity coupled to matter %

» As ¢ — —oo quantum effects turn off and we expect d, — 2. Only
satisfied by Watabiki's formula.

» First numerical results for ¢ = —2 from measuring 2-point function:
dh =358 £0.04 [Ambjgrn, Anagnostopoulos, ..., '95]

» Measurements for Ising model (¢ = 1/2) and 3-states Potts
(¢ = 4/5) are inconclusive: various values between dj ~ 3.8 and
dp ~ 4.3 are obtained, but d, = 4 seems to be preferred. [Catterall et
al, '95] [Ambjgrn, Anagnostopoulos, '97]
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Hausdorff dimension from shortest cycles

M N

> A shortest non-contractible loop is automatically a geodesic and
therefore we expect its length to scale with the volume V as
1
L~ Vi,
» Look for such loops in triangulations appearing in DT (where
V =N).
» Especially for ¢ > 0 these loops are really short, so we also measure
second shortest cycles.
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» We have performed Monte Carlo simulations of pure gravity (¢ = 0),
and DT coupled to spanning tree (¢ = —2), Ising model (¢ =1/2)
and 3-stated Potts model (¢ = 4/5). [Ambjgrn, Budd, '13]
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» We have performed Monte Carlo simulations of pure gravity (¢ = 0),

and DT coupled to spanning tree (¢ = —2), Ising model (¢ = 1/2)
and 3-stated Potts model (¢ = 4/5). [Ambjgrn, Budd, '13]

» Used N = Ny = 8000 as reference distribution Pp,(L) and then fit
the distributions Py(L) o Py, (kL). Expect k a (§2)1/dh.
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» We have performed Monte Carlo simulations of pure gravity (c =0),

and DT coupled to spanning tree (¢ = —2), Ising model (¢ =1/2)
and 3-stated Potts model (¢ = 4/5). [Ambjgrn, Budd, '13]
» Used N = Ny = 8000 as reference distribution Pp,(L) and then fit
the distributions Py(L) o Py, (kL). Expect k a (42)1/e.

» Compare to Watabiki's formula.
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» We have performed Monte Carlo simulations of pure gravity (c = 0),
and DT coupled to spanning tree (¢ = —2), Ising model (¢ =1/2)
and 3-stated Potts model (¢ = 4/5). [Ambjgrn, Budd, '13]

» Used N = Ny = 8000 as reference distribution Pp,(L) and then fit
the distributions Py(L) o Py, (kL). Expect k a (42)1/e.

» Compare to Watabiki's formula.
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> Does this rule out dy =4 for 0 < ¢ < 17 Not completely!



Does this rule out dy = 4 for 0 < ¢ < 17 Not completely!
Shortest cycle is not a generic geodesic, it is the shortest in its
homotopy class.

The "real” Hausdorff dimension corresponds to distances between
typical points.

If the shortest cycle scales with larger dimensions than dj, then in
the continuum limit the geometry becomes pinched.
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Teichmiller deformation dimension drp %

» A Riemannian metric g, on the torus defines a unique point 7 in
Teichmiiller space (or, rather, Moduli space).

» How does 7 change under a small random deformation of the metric
at a volume-scale 6?7 (Assuming unit-volume metric)

» E.g., cut out a random disk of volume §, squeeze in a random
direction, glue back in.

» The expected square displacement in Teichmiiller space
(d3 (1,7 + AT)) ~ 6% as § — 0 for a smooth manifold.

Poincaré
» More generally, define drp by (d3 (1,7 + AT)) ~ §itams

Poincaré




Teichmiller deformation for a triangulation

» Given a triangulation of the
torus, there is a natural way to
associate a harmonic
embedding in R? and a
Teichmdiller parameter 7.

TR

g

v, VAN,
RS
DR
SNSONN




Teichmiller deformation for a triangulation

» Given a triangulation of the
torus, there is a natural way to
associate a harmonic
embedding in R? and a
Teichmdiller parameter 7.

» Replace edges by ideal springs
and find equilibrium.
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Teichmiller deformation for a triangulation

» Given a triangulation of the

torus, there is a natural way to

associate a harmonic

embedding in R? and a

Teichmdiller parameter 7.

» Replace edges by ideal springs

and find equilibrium.

» Find linear transformation that

minimizes energy while fixing

the volume.
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Teichmiller deformation for a triangulation

» A natural random deformation
of a triangulation is a flip move
on a random pair of adjacent

triangles. —
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> d2icars(T, T+ AT) scales for
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Teichmiller deformation for a triangulation

» A natural random deformation
of a triangulation is a flip move
on a random pair of adjacent
triangles. —

> d3incars(T, T + AT) scales for
large N like the square a% of
the areas a of the triangles
involved. [Budd,'12]

» Since § = 1/N,
1 2
(d3 (1, 7+A7)) = N Z ah ~ PR
A

is equivalent to
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Relation between d}, and d1p?

» Conjecture: drp = dp. Why?
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Relation between d}, and d1p?

» Conjecture: drp = dp. Why?
» > . a% dominated by large triangles.

» Approximation: large triangles have ‘v‘ \‘§,
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Relation between d}, and d1p?
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Conjecture: drp = di. Why?

>~ A a% dominated by large triangles.

Approximation: large triangles have
equal area and small triangles have
zero area.

How many large triangles are there?
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» Conjecture: drp = d. Why?
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» Approximation: large triangles have
equal area and small triangles have
zero area.
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» Cycles have length ~ N1/
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Relation between d}, and d1p?

» Conjecture: drp = d. Why?

» > . a4 dominated by large triangles.

» Approximation: large triangles have
equal area and small triangles have
zero area.

» How many large triangles are there?
» Cycles have length ~ N1/
» Number of large triangles is ~ N2/




Relation between d}, and d1p? %ﬁ

» Conjecture: drp = d. Why?

» > . a4 dominated by large triangles.

» Approximation: large triangles have
equal area and small triangles have
zero area.

» How many large triangles are there?
» Cycles have length ~ N1/
» Number of large triangles is ~ N2/

» Hence



Quantum Liouville gravity [David, '88] [Distler, Kawai, '89]

» Consider 2d gravity coupled to c¢ scalar fields, i.e. the Polyakov
string in ¢ dimensions,
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» Consider 2d gravity coupled to c¢ scalar fields, i.e. the Polyakov
string in ¢ dimensions,

\
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» Write g in conformal gauge g., = €7?8.,(7) with Liouville field ¢
and Teichmiiller parameter 7.



Quantum Liouville gravity (s, se) pistier, kawai, '39] %
y

» Consider 2d gravity coupled to c¢ scalar fields, i.e. the Polyakov
string in ¢ dimensions,

Z= / [Dg][DX] exp <—)\ Vig] - / dQXﬁgabaaXiaij(S,-j) , X €ERE.

» Write g in conformal gauge g., = €7?8.,(7) with Liouville field ¢
and Teichmiiller parameter 7.
» Conformal bootstrap: assuming Z to be of the form

7= / d7[Dsd][DgX] exp (—Si[2, 6] — SmlX, 2])
with the Liouville action
1 ~
Sig 0l = 5 [ @xVEE 0,000 + QR+ pe?)

and requiring invariance w.r.t. g, fixes the constants @ and ~:

2 v [25-c
Q_’y+2_ 6



> If we ignore T-integral and set g, = 0, flat and u =0,
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> If we ignore T-integral and set g, = 0, flat and u =0,

Z= /[Dd)] exp (—417T/d2x ¢ 3a¢> )

i.e. simple Gaussian Free Field (GFF)!

» Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge ¢ < 1?

» In other words: given a diffeomorphism invariant observable O[g.p],
can we make sense out of the expectation value

©)2= [PA0l sse0 (- [ @xv60.0)

and does it agree with DT?

LA
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If we ignore 7-integral and set g.,, = 0, flat and u =0,

Z= /[Dd)] exp (—417T/d2x ¢ 3a¢> )

i.e. simple Gaussian Free Field (GFF)!

Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge ¢ < 1?

In other words: given a diffeomorphism invariant observable O[gap],
can we make sense out of the expectation value

©)2= [PA0l sse0 (- [ @xv60.0)

and does it agree with DT?

Care required: €794,y is almost surely not a Riemannian metric!
Need to take into account the fractal properties of the geometry and
regularize appropriately.
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Gaussian free field basics %

» Gaussian free field in 1d is a.s. a continuous function: Brownian
motion.

» In 2d (on a domain D) the covariance is given by

(3(x)(y)) = G(x,y) = —log |x — y| + G(x, y).

> ¢(x) has infinite variance. It is not a function, but a distribution.
» How do we make sense of the measure e???
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» The integral (f,$) = [ d?x f(x)$(x) has finite variance.

> In particular, for circle average ¢¢(x) := 5 OzﬂdQ B(x + ee?),

(pe(x)?) = —loge — G(x, x).
» Therefore,
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RGgUlarlzatlon [Sheffield, Duplantier]
» The integral (f,$) = [ d?x f(x)$(x) has finite variance.

> In particular, for circle average ¢¢(x) := 5 OzﬂdG B(x + ee?),

(#e(x)?) = —log e — G(x, ).

» Therefore,

~ 72/2
(19:0)) Z lr00)/2 _ (G(X’X)> _

€

> Define regularized measure dyu, = €7/2e7%<()¢2x.

> du. converges almost surely to a well-defined random measure dp.,
as € — 0. [Sheffield, Duplantier]

> Alternatively, one can use a momentum cut-off. Given an
orthonormal basis Agf; = \if;,

0p1= Y (0)f dpp=p~772e1%

Ai<p?



On the lattice

» We can easily put a Gaussian free field on a lattice, say, L x L with
periodic boundary conditions.

RandomField[L ] :=
Re@Fourier [RandcmVariate[NormalDistributicn[] , {Z, L, 2}1.{1, &}

. . 2 - - 2 2 - . 2 2
Ta.ble[If[:_::g::l, 0, [;s:_n[;r (i-1) /2%« = sin[r (3-1) / 2] ) ]

{i, 23, {3, 11]]:
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» Consider
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with p < L.
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On the lattice

» L x L with periodic
boundary conditions.

» Consider
dup = p~ 7726790 g2x
with p < L.

» Almost all volume
contained in thick
points, a subset of
dimensions 2 — 2 /2.
[Hu, Miller, Peres, '10]

v=0.1,p =320

u]
o)
I
i
it
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» L x L with periodic
boundary conditions.

» Consider
dup = p~ 772619209 g2x
with p < L.

» Almost all volume
contained in thick
points, a subset of
dimensions 2 — 2 /2.
[Hu, Miller, Peres, '10]
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boundary conditions.

» Consider
dup = p~ 7726790 g2x
with p < L.

» Almost all volume
contained in thick
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dimensions 2 — 2 /2.
[Hu, Miller, Peres, '10]
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Geodesic distance?

» Foreach e = 1/p, g5, = ¢7'/2e7%(x)§,, defines a Riemannian metric
with associated geodesic distance

dﬁ(Xay) = |?f {/ d5€72/4e;¢g(><(s))}
r

» Does €?d.(x,y) converge to a continuous d(x, y) for some value
o= o(7)?

A
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Geodesic distance?

» Foreach e = 1/p, g5, = ¢7'/2e7%(x)§,, defines a Riemannian metric
with associated geodesic distance

dﬁ(Xay) = |?f {/ d5€72/4e;¢g(><(5))}
r

» Does €?d.(x,y) converge to a continuous d(x, y) for some value
o=0(7)?
» Numerical investigation is inconclusive.
> Looking at cycle length we would like to compare to total volume,
but what total volume? ([ d’x\/g¢) ~ 1
> When looking at the short-distance behavior of the 2-point function,
one is zooming in on the “thick points”, where the lattice is
“always” too coarse.

A
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Geodesic distance?

v

For each e = 1/p, g5, = 672/2e’7¢6(x)6ab defines a Riemannian metric
with associated geodesic distance

dﬁ(Xay) = |?f {/ d5€72/4e;¢g(><(5))}
r

Does €”d.(x, y) converge to a continuous d(x,y) for some value
o=0(7)?
» Numerical investigation is inconclusive.

v

> Looking at cycle length we would like to compare to total volume,
but what total volume? ([ d’x\/g¢) ~ 1

> When looking at the short-distance behavior of the 2-point function,
one is zooming in on the “thick points”, where the lattice is
“always” too coarse.

v

To get closer to DT: use covariant cut-off!

W
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» The harmonic embedding of a random triangulation represents
roughly a piecewise constant field ¢%: 7%’ ()|, cn = 1/(Nan)
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» The harmonic embedding of a random triangulation represents
roughly a piecewise constant field ¢ 67¢6(X)|xeA =1/(Nap)




» The harmonic embedding of a random triangulation represents
roughly a piecewise constant field ¢ 67¢6(X)|xea =1/(Nap)

Covariant: lattice sites contain equal Non-covariant: lattice site contains
volume volume o e7?




» Mimic a covariant
cutoff.




» Mimic a covariant
cutoff.

» For § > 0, find the ball
Be(sy(x) around x with
volume 11(Bg(sy) = 9.

» Replace the measure
with the average
measure over the ball.
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Mimic a covariant
cutoff.

For § > 0, find the ball
Be(sy(x) around x with
volume 1i(Be(sy) = 9.
Replace the measure
with the average
measure over the ball.
Define e7¢" () .= 9

me(8)?”

v =0.6,6 = 0.01




Mimic a covariant
cutoff.

For § > 0, find the ball
Be(sy(x) around x with
volume 11(Bg(sy) = 9.
Replace the measure
with the average
measure over the ball.

Define ew’s(x) =9

me(8)?”




Mimic a covariant
cutoff.

For § > 0, find the ball
Be(sy(x) around x with
volume 11(Bg(sy) = 9.
Replace the measure
with the average
measure over the ball.

Define e”‘z’s(x) =9

me(8)?”

Compare to DT:
0~1/N




Measure distance w.r.t. g,, = €73,

ds(x, y) = inf {/ dse??’ (X(S”
gamma = 0.9, delta = 1/20

d(;(X, {Xl = 0})

[m]
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Measure distance w.r.t. g,, = €73,

ds(x,y) = ir}f{/dsez"b (X(S”

d(;(X, {Xl = 0})
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Measure distance w.r.t. g,, = €73,

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

d(;(X {Xl = 0}



Measure distance w.r.t. g, = eW’Eéab

gamma = 0.9, delta = 1/96

d(;(X, {Xl = 0})




Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = inf { / dsezw(x(s»}
r
gamma = 0.9, delta = 1/163

gamma = 0.9, delta = 1/163

d(;(X, {Xl = 0})

[m]
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

gamma = 0.9, delta = 1/275

d(;(X, {Xl = 0})

5% 2 ds(x, {x1 = 0}), dy~ 2.70

[m]
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

gamma = 0.9, delta = 1/465

d(;(X, {Xl = 0})

[m]
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

gamma = 0.9, delta = 1/787

d(;(X, {Xl = 0})

5% 2 ds(x, {x1 = 0}), dy~ 2.70

[m]
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

gamma = 0.9, delta = 1/1330

d(;(X, {Xl = 0})

5% 2 ds(x, {x1 = 0}), dy~ 2.70

[m]

=



Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

gamma = 0.9, delta = 1/2249

gamma = 0.9, delta = 1/2249
—

ds(x, {x1 = 0}) 0% 2ds(x,{x1 = 0}), dn = 2.70
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

gamma = 0.9, delta = 1/3800

gamma = 0.9, delta = 1/3800

ds(x, {x1 = 0}) 0% 2ds(x,{x1 = 0}), dn = 2.70
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Measure distance w.r.t. g, = eW’Eéab

ds(x,y) = i?f{/ds e¥¢5(x(5>>}
r

amma = 0.9, delta = 1/6423

d(;(X, {Xl = 0})

[m]

=



» To extract dp(y), measure the expectation value

(ds({x1 = 0}, {x1 = 1})) of the distance between left and right

border as function of §.

(ds(x1=0,x;=1))

0.5
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> The slopes of the curves, (ds({x1 = 0}, {x1 =1})) x 5%_#, lead to =%
the following estimate of the Hausdorff dimension. ‘

dy
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> The slopes of the curves, (ds({x1 = 0}, {x1 =1})) x 5%_#, lead to 23
the following estimate of the Hausdorff dimension.

» Compare with Watabiki's formula, d, =1+ 772 +4/1+ %72 + 1—1674.
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> The slopes of the curves, (ds({x1 = 0}, {x1 =1})) x 5%_71, lead t¢ =
the following estimate of the Hausdorff dimension.

» Compare with Watabiki's formula, dy =1+ 772 +4/1+ %72 + 1—1674.

» Can we understand where this formula comes from?
dj,

4.5f
a0
35)

3.0F
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> Need to understand the relation €(d). Back to the circle average

be(x)!

Pe(x)
1.5¢
1.0F
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» Need to understand the relation €(4). Back to the circle average

be(x)!

Pe(x)

00f W\
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» Need to understand the relation €(4). Back to the circle average
@e(x)!
> (Pe(x)6,(x)) =~ log " = min(t, 1), t = —log()

log(1/e)
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» Need to understand the relation €(4). Back to the circle average
@e(x)!

> (9e(x)¢L(x)) = —log ™D = min(z, ¢'), ¢ = —log(:£)
» Therefore ¢, .-+ is simply a Brownian motion! [Sheffield, Duplantier]
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» Need to understand the relation €(d). Back to the circle average
@e(x)!
> ($e()¢L(x)) = ~log "L = min(t,t'), t=—log(£)

v

Therefore ¢ .-+ is simply a Brownian motion! [Sheffield, Duplantier]

v

The volume in a ball is approximated by (B.(x)) ~ me?ic(x).
[Sheffield, Duplantier]
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Need to understand the relation €(d). Back to the circle average
@e(x)!

(6e(x)61(x)) = —log ") = min(t, '), = —log(5)
Therefore ¢ .-+ is simply a Brownian motion! [Sheffield, Duplantier]

v

v

v

The volume in a ball is approximated by (B.(x)) ~ me?ic(x).
[Sheffield, Duplantier]

» Hence we need to solve

§ = w2V /2e7%(x) _ 1 7Q gvdbe(x)
Pe(x)
15}
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> ¢(0) = ege~ T, where T is the first time a Brownian motion with
drift @ reaches level A := M + Qlog €g.



> ¢(0) = ege~ T, where T is the first time a Brownian motion with L
drift Q reaches level A := I°g(”/5 + Qlog €. T

> Its distribution is given by an Inverse Gaussian distribution,

Ps(T) ox T~3/2exp [217_(QT - A)2] .



> ¢(0) = ege~ T, where T is the first time a Brownian motion with L
drift @ reaches level A := M + Qlog €g. L o

> Its distribution is given by an Inverse Gaussian distribution,

Ps(T) ox T~3/2exp [1 (QT — A)2] .
2T
» |t follows that

<6(5)2x72> . /dT ef(2x72)TP5(T) . 6%(\/o‘2+4x—4—o) = §A-1

where A, satisfies the famous KPZ relation [Knizhnik, Polyakov,
Zamolodchikov, '88][Duplantier, Sheffield, '10]

2 2
Y A2 ’Y
=—A 1-— A,



€(0) = epe~ T, where T is the first time a Brownian motion with i
drift @ reaches level A := M + Qlog €g. ~x
Its distribution is given by an Inverse Gaussian distribution,
1
Ps(T) x T3 exp | —==(QT — A)?|.
2T
It follows that

<6(5)2x72> . /dT ef(2x72)TP5(T) x §3(V@Hax—4-Q) _ 50,1

where A, satisfies the famous KPZ relation [Knizhnik, Polyakov,
Zamolodchikov, '88][Duplantier, Sheffield, '10]

2 2
Y A2 ’Y
=—A 1-— A,

([ nes) = (202 o

In particular,
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> Recall the expression <ZA 32A> ~ N 9o for the Teichmiiller

deformation dimension drp.



__2 . ..
> Recall the expression <ZA 32A> ~ N 9o for the Teichmiiller
deformation dimension drp.

» ... and the relation e’Y‘b&(X)\XeA =1/(Nap) between DT and
Liouville.

o
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__2 . ..
> Recall the expression <ZA 32A> ~ N 9o for the Teichmiiller
deformation dimension drp.

» ... and the relation e’Y‘b&(X)\XeA =1/(Nap) between DT and
Liouville.

» Therefore

</d2x e—v¢6(x)> — <§ BA(NQA)> ~ N T
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__2 . ..
Recall the expression <ZA 32A> ~ N 9o for the Teichmiiller
deformation dimension drp.

.. and the relation e’Y‘b&(X)\XeA =1/(Nap) between DT and
Liouville.

Therefore
</d2xe_7¢ > <Z an(Nan > ~ N ~ = g2
Hence, drp is given by Watabiki's formula,

2 2 3, 1
[Chaven it e S T

<



How about the Hausdorff dimension?

» Watabiki's derivation of dj, relies on a similar derivation. [watabiki, '93]
» dyp arises from the KPZ relation applied to the operator
Algl = fd2xﬁ which scales like A[Agap] = A"1A[gas], while dj
arises from the application to ®1[g] = [ d?x,/8[Agd(x — X0)]x=x,
with the same scaling.



How about the Hausdorff dimension?

» Watabiki's derivation of dj, relies on a similar derivation. [watabiki, '93]

» dyp arises from the KPZ relation applied to the operator
Algl = fd2xﬁ which scales like A[Agap] = A"1A[gas], while dj
arises from the application to ®1[g] = [ d?x,/8[Agd(x — X0)]x=x,
with the same scaling.

» Problems:

> ®[g] is a singular object.
> Connection between ®1[g] and geodesic distance not entirely clear.
Watabiki assumes that

(dZ(x(t),x(0))) ~ t
for a Brownian motion, while we "know" that in DT

(a2 (x(1). x(0))) ~ £/,



How about the Hausdorff dimension?

» Watabiki's derivation of dj, relies on a similar derivation. [watabiki, '93]

» dyp arises from the KPZ relation applied to the operator
Algl = fdzxﬁ which scales like A[Agap] = A"1A[gas], while dj
arises from the application to ®1[g] = [ d?x,/g[Agd(x — X0)]x=x
with the same scaling.

» Problems:

> ®[g] is a singular object.
> Connection between ®1[g] and geodesic distance not entirely clear.
Watabiki assumes that

(dZ(x(t),x(0))) ~ t
for a Brownian motion, while we "know" that in DT
(dZ(x(t), x(0))) ~ /.

» Maybe interpret differently? Also, Liouville Brownian motion under
active investigation. [Garban, Rhodes, Vargas, ..., "13]



Summary & outlook

» Summary:

> Numerical simulations both in DT and in Liouville gravity on the
lattice support Watabiki's formula for the Hausdorff dimension for

c<1,
\/ c+v25—c
\/25—c+\/1—c

dy =

» Outlook/questions:
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» Summary:
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» A different dimension, the Teichmiiller deformation dimension drp,
can be seen to be given by Watabiki's formula and therefore likely
coincides with dj.
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proof.
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» A different dimension, the Teichmiiller deformation dimension drp,
can be seen to be given by Watabiki's formula and therefore likely
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» Outlook/questions:
> Make sense of Watabiki's derivation and preferably turn it into a

proof.
» Relation with Quantum Loewner Evolution? [Miller,Sheffield, 13]
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> Can the Teichmiiller deformation dimension be defined more
generally? On S? or higher genus?
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Summary & outlook

» Summary:
> Numerical simulations both in DT and in Liouville gravity on the
lattice support Watabiki's formula for the Hausdorff dimension for

c <1,
VA VB
V25 —c+yVI-c
» A different dimension, the Teichmiiller deformation dimension drp,
can be seen to be given by Watabiki's formula and therefore likely
coincides with dj.

» Outlook/questions:

> Make sense of Watabiki's derivation and preferably turn it into a
proof.

» Relation with Quantum Loewner Evolution? [Miller,Sheffield, 13]

> Can the Teichmiiller deformation dimension be defined more
generally? On S? or higher genus?

> |s it possible that shortest cycles and generic geodesic distances scale
differently? Then dy = 4 for 0 < ¢ < 1 is not yet ruled out, but the
continuum random surface would be pinched.

dp

Thanks! Questions? Slides available at http://www.nbi.dk/~budd/


http://www.nbi.dk/~budd/

