Approaches to Quantum Gravity, Clermont-Ferrand, Jan. 6, 2014

Fractal dimensions of 2d quantum gravity

 Timothy BuddNiels Bohr Institute, Copenhagen. budd@nbi.dk, http://www.nbi.dk/~budd/

Outline

- Introduction to 2d gravity
- Fractal dimensions
- Hausdorff dimension d_{h}
- "Teichmüller deformation dimension" $d_{T D}$
- Hausdorff dimension in dynamical triangulations
- Overview of results in the literature
- Recent numerical results via shortest cycles
- Quantum Liouville gravity
- Gaussian free field basics
- Distance in the Liouville metric
- Measurement of d_{h}
- Derivation of $d_{T D}$
- Summary \& outlook

2D quantum gravity

- Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-S_{m}[g, X]\right)
$$

possibly coupled to some matter fields X with action $S_{m}[g, X]$.

2D quantum gravity

- Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-S_{m}[g, X]\right)
$$

possibly coupled to some matter fields X with action $S_{m}[g, X]$.

- I will follow two strategies to make sense of this path-integral:

2D quantum gravity

- Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-S_{m}[g, X]\right)
$$

possibly coupled to some matter fields X with action $S_{m}[g, X]$.

- I will follow two strategies to make sense of this path-integral:
- Dynamical triangulation (DT): $Z=\sum_{T} e^{-\lambda N_{T}} Z_{m}(T)$

2D quantum gravity

- Formally 2d gravity is a statistical system of random metrics on a surface of fixed topology with partition function

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-S_{m}[g, X]\right)
$$

possibly coupled to some matter fields X with action $S_{m}[g, X]$.

- I will follow two strategies to make sense of this path-integral:
- Dynamical triangulation (DT): $Z=\sum_{T} e^{-\lambda N_{T}} Z_{m}(T)$
- Liouville path integral: gauge fix $g_{a b}=e^{\gamma \phi} \hat{g}_{a b}(\tau)$.

Hausdorff dimension

- The Hausdorff dimension d_{h} measures the relative scaling of geodesic distance and volume.

$$
V(r) \sim r^{d_{h}}, \quad d_{h}=\lim _{r \rightarrow 0} \frac{\log V(r)}{\log r}
$$

Hausdorff dimension

- The Hausdorff dimension d_{h} measures the relative scaling of geodesic distance and volume.

$$
V(r) \sim r^{d_{h}}, \quad d_{h}=\lim _{r \rightarrow 0} \frac{\log V(r)}{\log r}
$$

- In terms of 2-point function

$$
\begin{aligned}
& G(r)=\int d^{2} x \int d^{2} y \sqrt{g(x)} \sqrt{g(y)} \delta\left(d_{g}(x, y)-r\right) \\
& G(r) \sim r^{d_{h}-1}, \quad d_{h}-1=\lim _{r \rightarrow 0} \frac{\log G(r)}{\log r}
\end{aligned}
$$

Hausdorff dimension

- The Hausdorff dimension d_{h} measures the relative scaling of geodesic distance and volume.

$$
V(r) \sim r^{d_{h}}, \quad d_{h}=\lim _{r \rightarrow 0} \frac{\log V(r)}{\log r}
$$

- In terms of 2-point function

$$
\begin{aligned}
& G(r)=\int d^{2} x \int d^{2} y \sqrt{g(x)} \sqrt{g(y)} \delta\left(d_{g}(x, y)-r\right) \\
& G(r) \sim r^{d_{h}-1}, \quad d_{h}-1=\lim _{r \rightarrow 0} \frac{\log G(r)}{\log r}
\end{aligned}
$$

Hausdorff dimension

- The Hausdorff dimension d_{h} measures the relative scaling of geodesic distance and volume.

$$
V(r) \sim r^{d_{h}}, \quad d_{h}=\lim _{r \rightarrow 0} \frac{\log V(r)}{\log r}
$$

- In terms of 2-point function

$$
\begin{aligned}
& G(r)=\int d^{2} x \int d^{2} y \sqrt{g(x)} \sqrt{g(y)} \delta\left(d_{g}(x, y)-r\right), \\
& G(r) \sim r^{d_{h}-1}, \quad d_{h}-1=\lim _{r \rightarrow 0} \frac{\log G(r)}{\log r}
\end{aligned}
$$

d_{h} of $2 d$ gravity coupled to matter

- Combinatorial methods allow to derive $d_{h}=4$ analytically for pure 2d gravity, e.g. by computing 2-point function.
- When matter is present, however, it is much harder to keep track of geodesic distance combinatorially.

d_{h} of $2 d$ gravity coupled to matter

- Combinatorial methods allow to derive $d_{h}=4$ analytically for pure 2d gravity, e.g. by computing 2-point function.
- When matter is present, however, it is much harder to keep track of geodesic distance combinatorially.
- CFTs are classified by central charge c and therefore $d_{h}=d_{h}(c)$.
- Several conjectured formula's for $c \neq 0$.

d_{h} of $2 d$ gravity coupled to matter

- Combinatorial methods allow to derive $d_{h}=4$ analytically for pure 2d gravity, e.g. by computing 2-point function.
- When matter is present, however, it is much harder to keep track of geodesic distance combinatorially.
- CFTs are classified by central charge c and therefore $d_{h}=d_{h}(c)$.
- Several conjectured formula's for $c \neq 0$.

$$
d_{h}=\frac{24}{1-c+\sqrt{(1-c)(25-c)}} \quad[\text { Distler, Hlousek, Kawai, '90] }
$$

d_{h} of $2 d$ gravity coupled to matter

- Combinatorial methods allow to derive $d_{h}=4$ analytically for pure 2d gravity, e.g. by computing 2-point function.
- When matter is present, however, it is much harder to keep track of geodesic distance combinatorially.
- CFTs are classified by central charge c and therefore $d_{h}=d_{h}(c)$.
- Several conjectured formula's for $c \neq 0$.

$$
\begin{aligned}
d_{h} & =\frac{24}{1-c+\sqrt{(1-c)(25-c)}}
\end{aligned} \quad\left[\begin{array}{l}
\text { Distler,Hlousek, Kawai,'90] } \\
d_{h}
\end{array}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}} \quad[\text { Watabiki,'93] }\right.
$$

d_{h} of $2 d$ gravity coupled to matter

- Combinatorial methods allow to derive $d_{h}=4$ analytically for pure 2d gravity, e.g. by computing 2-point function.
- When matter is present, however, it is much harder to keep track of geodesic distance combinatorially.
- CFTs are classified by central charge c and therefore $d_{h}=d_{h}(c)$.
- Several conjectured formula's for $c \neq 0$.

$$
\begin{aligned}
& d_{h}=\frac{24}{1-c+\sqrt{(1-c)(25-c)}} \quad \text { [Distler,Hlousek, Kawai,' '90] } \\
& d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}} \\
& d_{h}=4 \\
& \text { [Watabiki,'93] }
\end{aligned}
$$

d_{h} of $2 d$ gravity coupled to matter

- As $c \rightarrow-\infty$ quantum effects turn off and we expect $d_{h} \rightarrow 2$. Only satisfied by Watabiki's formula.

d_{h} of $2 d$ gravity coupled to matter

- As $c \rightarrow-\infty$ quantum effects turn off and we expect $d_{h} \rightarrow 2$. Only satisfied by Watabiki's formula.
- First numerical results for $c=-2$ from measuring 2-point function: $d_{h}=3.58 \pm 0.04$ [Ambjbrrn, Anagnostopoulos, '95]

d_{h} of $2 d$ gravity coupled to matter

- As $c \rightarrow-\infty$ quantum effects turn off and we expect $d_{h} \rightarrow 2$. Only satisfied by Watabiki's formula.
- First numerical results for $c=-2$ from measuring 2-point function: $d_{h}=3.58 \pm 0.04$ [Ambjprrn, Anagnostopoulos,
- Measurements for Ising model $(c=1 / 2)$ and 3 -states Potts ($c=4 / 5$) are inconclusive: various values between $d_{h} \approx 3.8$ and $d_{h} \approx 4.3$ are obtained, but $d_{h}=4$ seems to be preferred. [Catterall et al, '95] [Ambjørn, Anagnostopoulos, '97]

Hausdorff dimension from shortest cycles

- A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_{h}}}$.

Hausdorff dimension from shortest cycles

- A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_{h}}}$.
- Look for such loops in triangulations appearing in DT (where $V=N$).

Hausdorff dimension from shortest cycles

- A shortest non-contractible loop is automatically a geodesic and therefore we expect its length to scale with the volume V as $L \sim V^{\frac{1}{d_{h}}}$.
- Look for such loops in triangulations appearing in DT (where $V=N$).
- Especially for $c>0$ these loops are really short, so we also measure second shortest cycles.

- We have performed Monte Carlo simulations of pure gravity $(c=0)$, and DT coupled to spanning tree $(c=-2)$, Ising model $(c=1 / 2)$ and 3 -stated Potts model $(c=4 / 5)$. [Ambjigrn, Budd, '13]
- We have performed Monte Carlo simulations of pure gravity $(c=0)$, and DT coupled to spanning tree $(c=-2)$, Ising model $(c=1 / 2)$ and 3 -stated Potts model $(c=4 / 5)$. [Ambjigrn, Budd, '13]
- Used $N=N_{0}=8000$ as reference distribution $P_{N_{0}}(L)$ and then fit the distributions $P_{N}(L) \propto P_{N_{0}}(k L)$. Expect $k \approx\left(\frac{N_{0}}{N}\right)^{1 / d_{h}}$.

- We have performed Monte Carlo simulations of pure gravity $(c=0)$, and DT coupled to spanning tree $(c=-2)$, Ising model $(c=1 / 2)$ and 3 -stated Potts model ($c=4 / 5$). [Ambjgrn, Budd, '13]
- Used $N=N_{0}=8000$ as reference distribution $P_{N_{0}}(L)$ and then fit the distributions $P_{N}(L) \propto P_{N_{0}}(k L)$. Expect $k \approx\left(\frac{N_{0}}{N}\right)^{1 / d_{h}}$.

- We have performed Monte Carlo simulations of pure gravity $(c=0)$, and DT coupled to spanning tree $(c=-2)$, Ising model $(c=1 / 2)$ and 3 -stated Potts model ($c=4 / 5$). [Ambjørn, Budd, '13]
- Used $N=N_{0}=8000$ as reference distribution $P_{N_{0}}(L)$ and then fit the distributions $P_{N}(L) \propto P_{N_{0}}(k L)$. Expect $k \approx\left(\frac{N_{0}}{N}\right)^{1 / d_{h}}$.
- Compare to Watabiki's formula.

- We have performed Monte Carlo simulations of pure gravity $(c=0)$, and DT coupled to spanning tree $(c=-2)$, Ising model $(c=1 / 2)$ and 3-stated Potts model ($c=4 / 5$). [Ambjorn, Budd, '13]
- Used $N=N_{0}=8000$ as reference distribution $P_{N_{0}}(L)$ and then fit the distributions $P_{N}(L) \propto P_{N_{0}}(k L)$. Expect $k \approx\left(\frac{N_{0}}{N}\right)^{1 / d_{h}}$.
- Compare to Watabiki's formula.

- Does this rule out $d_{h}=4$ for $0<c<1$? Not completely!
- Does this rule out $d_{h}=4$ for $0<c<1$? Not completely!
- Shortest cycle is not a generic geodesic, it is the shortest in its homotopy class.
- The "real" Hausdorff dimension corresponds to distances between typical points.
- If the shortest cycle scales with larger dimensions than d_{h}, then in the continuum limit the geometry becomes pinched.

Teichmüller deformation dimension $d_{T D}$

- A Riemannian metric $g_{a b}$ on the torus defines a unique point τ in Teichmüller space (or, rather, Moduli space).
- How does τ change under a small random deformation of the metric at a volume-scale δ ? (Assuming unit-volume metric)

Teichmüller deformation dimension $d_{T D}$

- A Riemannian metric $g_{a b}$ on the torus defines a unique point τ in Teichmüller space (or, rather, Moduli space).
- How does τ change under a small random deformation of the metric at a volume-scale δ ? (Assuming unit-volume metric)
- E.g., cut out a random disk of volume δ, squeeze in a random direction, glue back in.

Teichmüller deformation dimension $d_{T D}$

- A Riemannian metric $g_{a b}$ on the torus defines a unique point τ in Teichmüller space (or, rather, Moduli space).
- How does τ change under a small random deformation of the metric at a volume-scale δ ? (Assuming unit-volume metric)
- E.g., cut out a random disk of volume δ, squeeze in a random direction, glue back in.

Teichmüller deformation dimension $d_{T D}$

- A Riemannian metric $g_{a b}$ on the torus defines a unique point τ in Teichmüller space (or, rather, Moduli space).
- How does τ change under a small random deformation of the metric at a volume-scale δ ? (Assuming unit-volume metric)
- E.g., cut out a random disk of volume δ, squeeze in a random direction, glue back in.

Teichmüller deformation dimension $d_{T D}$

- A Riemannian metric $g_{a b}$ on the torus defines a unique point τ in Teichmüller space (or, rather, Moduli space).
- How does τ change under a small random deformation of the metric at a volume-scale δ ? (Assuming unit-volume metric)
- E.g., cut out a random disk of volume δ, squeeze in a random direction, glue back in.
- The expected square displacement in Teichmüller space $\left\langle d_{\text {Poincaré }}^{2}(\tau, \tau+\Delta \tau)\right\rangle \sim \delta^{2}$ as $\delta \rightarrow 0$ for a smooth manifold.

Teichmüller deformation dimension $d_{T D}$

- A Riemannian metric $g_{a b}$ on the torus defines a unique point τ in Teichmüller space (or, rather, Moduli space).
- How does τ change under a small random deformation of the metric at a volume-scale δ ? (Assuming unit-volume metric)
- E.g., cut out a random disk of volume δ, squeeze in a random direction, glue back in.
- The expected square displacement in Teichmüller space $\left\langle d_{\text {Poincaré }}^{2}(\tau, \tau+\Delta \tau)\right\rangle \sim \delta^{2}$ as $\delta \rightarrow 0$ for a smooth manifold.
- More generally, define $d_{T D}$ by $\left\langle d_{\text {Poincaré }}^{2}(\tau, \tau+\Delta \tau)\right\rangle \sim \delta^{1+\frac{2}{d_{T D}}}$.

Teichmüller deformation for a triangulation

- Given a triangulation of the torus, there is a natural way to associate a harmonic embedding in \mathbb{R}^{2} and a Teichmüller parameter τ.

Teichmüller deformation for a triangulation

- Given a triangulation of the torus, there is a natural way to associate a harmonic embedding in \mathbb{R}^{2} and a Teichmüller parameter τ.
- Replace edges by ideal springs and find equilibrium.

Teichmüller deformation for a triangulation

- Given a triangulation of the torus, there is a natural way to associate a harmonic embedding in \mathbb{R}^{2} and a Teichmüller parameter τ.
- Replace edges by ideal springs and find equilibrium.
- Find linear transformation that minimizes energy while fixing the volume.

Teichmüller deformation for a triangulation

- A natural random deformation of a triangulation is a flip move on a random pair of adjacent triangles.

Teichmüller deformation for a triangulation

- A natural random deformation of a triangulation is a flip move on a random pair of adjacent triangles.
- $d_{\text {Poincaré }}^{2}(\tau, \tau+\Delta \tau)$ scales for large N like the square a_{\triangle}^{2} of
 the areas a_{\triangle} of the triangles involved. [Budd,'12]

Teichmüller deformation for a triangulation

- A natural random deformation of a triangulation is a flip move on a random pair of adjacent triangles.
- $d_{\text {Poincaré }}^{2}(\tau, \tau+\Delta \tau)$ scales for large N like the square a_{\triangle}^{2} of
 the areas a_{\triangle} of the triangles involved. [Budd,'12]
- Since $\delta \approx 1 / N$,

$$
\left\langle d_{\mathrm{P} .}^{2}(\tau, \tau+\Delta \tau)\right\rangle \approx \frac{1}{N} \sum_{\triangle} a_{\triangle}^{2} \sim \delta^{1+\frac{2}{d_{T D}}}
$$

is equivalent to

$$
\sum_{\triangle} a_{\triangle}^{2} \sim N^{-\frac{2}{d_{T D}}}
$$

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.
- Approximation: large triangles have equal area and small triangles have zero area.

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.
- Approximation: large triangles have equal area and small triangles have zero area.
- How many large triangles are there?

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.
- Approximation: large triangles have equal area and small triangles have zero area.
- How many large triangles are there?
- Cycles have length $\sim N^{1 / d_{n}}$

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.
- Approximation: large triangles have equal area and small triangles have zero area.
- How many large triangles are there?
- Cycles have length $\sim N^{1 / d_{n}}$

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.
- Approximation: large triangles have equal area and small triangles have zero area.
- How many large triangles are there?
- Cycles have length $\sim N^{1 / d_{h}}$
- Number of large triangles is $\sim N^{2 / d_{h}}$.

Relation between d_{h} and $d_{T D}$?

- Conjecture: $d_{T D}=d_{h}$. Why?
- $\sum_{\triangle} a_{\triangle}^{2}$ dominated by large triangles.
- Approximation: large triangles have equal area and small triangles have zero area.
- How many large triangles are there?
- Cycles have length $\sim N^{1 / d_{h}}$
- Number of large triangles is $\sim N^{2 / d_{h}}$.

- Hence

$$
\sum_{\Delta} a_{\triangle}^{2} \sim N^{\frac{2}{d_{h}}}\left(N^{\frac{2}{d_{h}}}\right)^{-2}=N^{-\frac{2}{d_{h}}}=: N^{-\frac{2}{d_{T D}}}
$$

Quantum Liouville gravity [David, '88] [Dister, Kawai, '89]

- Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov string in c dimensions,

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-\int d^{2} x \sqrt{g} g^{a b} \partial_{a} X^{i} \partial_{b} X^{j} \delta_{i j}\right), \quad X \in \mathbb{R}^{c} .
$$

Quantum Liouville gravity [David, '88] [Dister, Kawai, '89]

- Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov string in c dimensions,

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-\int d^{2} x \sqrt{g} g^{a b} \partial_{a} x^{i} \partial_{b} x^{j} \delta_{i j}\right), \quad x \in \mathbb{R}^{c} .
$$

- Write g in conformal gauge $g_{a b}=e^{\gamma \phi} \hat{g}_{a b}(\tau)$ with Liouville field ϕ and Teichmüller parameter τ.

Quantum Liouville gravity [David, '88] [Dister, Kawai, '89]

- Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov string in c dimensions,

$$
Z=\int[\mathcal{D} g][\mathcal{D} X] \exp \left(-\lambda V[g]-\int d^{2} x \sqrt{g} g^{a b} \partial_{a} X^{i} \partial_{b} X^{j} \delta_{i j}\right), \quad X \in \mathbb{R}^{c} .
$$

- Write g in conformal gauge $g_{a b}=e^{\gamma \phi} \widehat{g}_{a b}(\tau)$ with Liouville field ϕ and Teichmüller parameter τ.
- Conformal bootstrap: assuming Z to be of the form

$$
Z=\int d \tau\left[\mathcal{D}_{\hat{g}} \phi\right]\left[\mathcal{D}_{\hat{g}} X\right] \exp \left(-S_{L}[\hat{g}, \phi]-S_{m}[X, \hat{g}]\right)
$$

with the Liouville action

$$
S_{L}[\hat{g}, \phi]=\frac{1}{4 \pi} \int d^{2} x \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} \phi \partial_{b} \phi+Q \hat{R} \phi+\mu e^{\gamma \phi}\right)
$$

and requiring invariance w.r.t. $\hat{g}_{a b}$ fixes the constants Q and γ :

$$
Q=\frac{2}{\gamma}+\frac{\gamma}{2}=\sqrt{\frac{25-c}{6}}
$$

- If we ignore τ-integral and set $\hat{g}_{a b}=\delta_{a b}$ flat and $\mu=0$,

$$
Z=\int[\mathcal{D} \phi] \exp \left(-\frac{1}{4 \pi} \int d^{2} x \partial^{a} \phi \partial_{a} \phi\right),
$$

i.e. simple Gaussian Free Field (GFF)!

- If we ignore τ-integral and set $\hat{g}_{a b}=\delta_{a b}$ flat and $\mu=0$,

$$
Z=\int[\mathcal{D} \phi] \exp \left(-\frac{1}{4 \pi} \int d^{2} x \partial^{a} \phi \partial_{a} \phi\right),
$$

i.e. simple Gaussian Free Field (GFF)!

- Does this Z really describe the quantum geometry of 2d gravity coupled to matter with any central charge $c<1$?
- If we ignore τ-integral and set $\hat{g}_{a b}=\delta_{a b}$ flat and $\mu=0$,

$$
Z=\int[\mathcal{D} \phi] \exp \left(-\frac{1}{4 \pi} \int d^{2} x \partial^{a} \phi \partial_{a} \phi\right),
$$

i.e. simple Gaussian Free Field (GFF)!

- Does this Z really describe the quantum geometry of 2d gravity coupled to matter with any central charge $c<1$?
- In other words: given a diffeomorphism invariant observable $\mathcal{O}\left[g_{a b}\right]$, can we make sense out of the expectation value

$$
\langle\mathcal{O}\rangle_{Z}=\frac{1}{Z} \int[\mathcal{D} \phi] \mathcal{O}\left[e^{\gamma \phi} \delta_{a b}\right] \exp \left(-\frac{1}{4 \pi} \int d^{2} x \partial^{a} \phi \partial_{a} \phi\right)
$$

and does it agree with DT?

- If we ignore τ-integral and set $\hat{g}_{a b}=\delta_{a b}$ flat and $\mu=0$,

$$
Z=\int[\mathcal{D} \phi] \exp \left(-\frac{1}{4 \pi} \int d^{2} x \partial^{a} \phi \partial_{a} \phi\right),
$$

i.e. simple Gaussian Free Field (GFF)!

- Does this Z really describe the quantum geometry of 2d gravity coupled to matter with any central charge $c<1$?
- In other words: given a diffeomorphism invariant observable $\mathcal{O}\left[g_{a b}\right]$, can we make sense out of the expectation value

$$
\langle\mathcal{O}\rangle_{Z}=\frac{1}{Z} \int[\mathcal{D} \phi] \mathcal{O}\left[e^{\gamma \phi} \delta_{a b}\right] \exp \left(-\frac{1}{4 \pi} \int d^{2} x \partial^{a} \phi \partial_{a} \phi\right)
$$

and does it agree with DT?

- Care required: $e^{\gamma \phi} \delta_{a b}$ is almost surely not a Riemannian metric! Need to take into account the fractal properties of the geometry and regularize appropriately.

Gaussian free field basics

- Gaussian free field in 1d is a.s. a continuous function: Brownian motion.

Gaussian free field basics

- Gaussian free field in 1d is a.s. a continuous function: Brownian motion.
- In 2d (on a domain D) the covariance is given by

$$
\langle\phi(x) \phi(y)\rangle=G(x, y)=-\log |x-y|+\tilde{G}(x, y) .
$$

Gaussian free field basics

- Gaussian free field in 1d is a.s. a continuous function: Brownian motion.
- In 2d (on a domain D) the covariance is given by

$$
\langle\phi(x) \phi(y)\rangle=G(x, y)=-\log |x-y|+\tilde{G}(x, y)
$$

- $\phi(x)$ has infinite variance. It is not a function, but a distribution.

Gaussian free field basics

- Gaussian free field in 1d is a.s. a continuous function: Brownian motion.
- In 2d (on a domain D) the covariance is given by

$$
\langle\phi(x) \phi(y)\rangle=G(x, y)=-\log |x-y|+\tilde{G}(x, y) .
$$

- $\phi(x)$ has infinite variance. It is not a function, but a distribution.
- How do we make sense of the measure $e^{\gamma \phi}$?

Regularization [Sheffield, Duplantier]

- The integral $(f, \phi)=\int d^{2} x f(x) \phi(x)$ has finite variance.
- In particular, for circle average $\phi_{\epsilon}(x):=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \phi\left(x+\epsilon e^{i \theta}\right)$,

$$
\left\langle\phi_{\epsilon}(x)^{2}\right\rangle=-\log \epsilon-\tilde{G}(x, x) .
$$

Regularization [Sheffield, Duplantier]

- The integral $(f, \phi)=\int d^{2} x f(x) \phi(x)$ has finite variance.
- In particular, for circle average $\phi_{\epsilon}(x):=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \phi\left(x+\epsilon e^{i \theta}\right)$,

$$
\left\langle\phi_{\epsilon}(x)^{2}\right\rangle=-\log \epsilon-\tilde{G}(x, x) .
$$

- Therefore,

$$
\left\langle e^{\gamma \phi_{\epsilon}(x)}\right\rangle=e^{\left\langle\left(\gamma \phi_{\epsilon}\right)^{2}\right\rangle / 2}=\left(\frac{\tilde{G}(x, x)}{\epsilon}\right)^{\gamma^{2} / 2} .
$$

Regularization [Sheffield, Duplantier]

- The integral $(f, \phi)=\int d^{2} x f(x) \phi(x)$ has finite variance.
- In particular, for circle average $\phi_{\epsilon}(x):=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \phi\left(x+\epsilon e^{i \theta}\right)$,

$$
\left\langle\phi_{\epsilon}(x)^{2}\right\rangle=-\log \epsilon-\tilde{G}(x, x)
$$

- Therefore,

$$
\left\langle e^{\gamma \phi_{\epsilon}(x)}\right\rangle=e^{\left\langle\left(\gamma \phi_{\epsilon}\right)^{2}\right\rangle / 2}=\left(\frac{\tilde{G}(x, x)}{\epsilon}\right)^{\gamma^{2} / 2} .
$$

- Define regularized measure $d \mu_{\epsilon}=\epsilon^{\gamma^{2} / 2} e^{\gamma \phi_{\epsilon}(x)} d^{2} x$.
- $d \mu_{\epsilon}$ converges almost surely to a well-defined random measure $d \mu_{\gamma}$ as $\epsilon \rightarrow 0$. [Sheffield, Duplantier]

Regularization [Sheffield, Duplantier]

- The integral $(f, \phi)=\int d^{2} x f(x) \phi(x)$ has finite variance.
- In particular, for circle average $\phi_{\epsilon}(x):=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \phi\left(x+\epsilon e^{i \theta}\right)$,

$$
\left\langle\phi_{\epsilon}(x)^{2}\right\rangle=-\log \epsilon-\tilde{G}(x, x)
$$

- Therefore,

$$
\left\langle e^{\gamma \phi_{\epsilon}(x)}\right\rangle=e^{\left\langle\left(\gamma \phi_{\epsilon}\right)^{2}\right\rangle / 2}=\left(\frac{\tilde{G}(x, x)}{\epsilon}\right)^{\gamma^{2} / 2} .
$$

- Define regularized measure $d \mu_{\epsilon}=\epsilon^{\gamma^{2} / 2} e^{\gamma \phi_{\epsilon}(x)} d^{2} x$.
- $d \mu_{\epsilon}$ converges almost surely to a well-defined random measure $d \mu_{\gamma}$ as $\epsilon \rightarrow 0$. [Sheffield, Duplantier]
- Alternatively, one can use a momentum cut-off. Given an orthonormal basis $\Delta_{E} f_{i}=\lambda_{i} f_{i}$,

$$
\phi_{p}:=\sum_{\lambda_{i} \leq p^{2}}\left(f_{i}, \phi\right) f_{i}, \quad d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x
$$

On the lattice

- We can easily put a Gaussian free field on a lattice, say, $L \times L$ with periodic boundary conditions.

```
RandomField[L_] :=
    Re@Fourier[RandomVariate[NormalDistribution[], \{L, \(L, 2\}\) ].\{1, ì
    \(\operatorname{Table}\left[\operatorname{If}\left[i=j=1,0,\left(\frac{2}{\pi} \operatorname{Sin}[\pi(i-1) / L]^{2}+\frac{2}{\pi} \operatorname{Sin}[\pi(j-1) / L]^{2}\right)^{-1 / 2}\right]\right.\),
    \(\{i, L\},\{j, L\}]]\);
```


On the lattice

- $L \times L$ with periodic boundary conditions.

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.
$\gamma=0.6, p=10$

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.
$\gamma=0.6, p=20$

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.

$$
\gamma=0.6, p=40
$$

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.
- Almost all volume contained in thick points, a subset of dimensions $2-\gamma^{2} / 2$. [Hu, Miller, Peres, '10]

$$
\gamma=0.1, p=320
$$

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.
- Almost all volume contained in thick points, a subset of dimensions $2-\gamma^{2} / 2$. [Hu, Miller, Peres, '10]

$$
\gamma=0.3, p=320
$$

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.
- Almost all volume contained in thick points, a subset of dimensions $2-\gamma^{2} / 2$. [Hu, Miller, Peres, '10]

$$
\gamma=0.6, p=320
$$

On the lattice

- $L \times L$ with periodic boundary conditions.
- Consider $d \mu_{p}=p^{-\gamma^{2} / 2} e^{\gamma \phi_{p}(x)} d^{2} x$ with $p \ll L$.
- Almost all volume contained in thick points, a subset of dimensions $2-\gamma^{2} / 2$. [Hu, Miller, Peres, '10]

Geodesic distance?

- For each $\epsilon \approx 1 / p, g_{a b}^{\epsilon}=\epsilon^{\gamma^{2} / 2} e^{\gamma \phi_{\epsilon}(x)} \delta_{a b}$ defines a Riemannian metric with associated geodesic distance

$$
d_{\epsilon}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s \epsilon^{\gamma^{2} / 4} e^{\frac{\gamma}{2} \phi_{\epsilon}(x(s))}\right\}
$$

- Does $\epsilon^{\sigma} d_{\epsilon}(x, y)$ converge to a continuous $d(x, y)$ for some value $\sigma=\sigma(\gamma)$?

Geodesic distance?

- For each $\epsilon \approx 1 / p, g_{a b}^{\epsilon}=\epsilon^{\gamma^{2} / 2} e^{\gamma \phi_{\epsilon}(x)} \delta_{a b}$ defines a Riemannian metric with associated geodesic distance

$$
d_{\epsilon}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s \epsilon^{\gamma^{2} / 4} e^{\frac{\gamma}{2} \phi_{\epsilon}(x(s))}\right\}
$$

- Does $\epsilon^{\sigma} d_{\epsilon}(x, y)$ converge to a continuous $d(x, y)$ for some value $\sigma=\sigma(\gamma)$?
- Numerical investigation is inconclusive.
- Looking at cycle length we would like to compare to total volume, but what total volume? $\left\langle\int d^{2} x \sqrt{g^{\epsilon}}\right\rangle \sim 1$
- When looking at the short-distance behavior of the 2-point function, one is zooming in on the "thick points", where the lattice is "always" too coarse.

Geodesic distance?

- For each $\epsilon \approx 1 / p, g_{a b}^{\epsilon}=\epsilon^{\gamma^{2} / 2} e^{\gamma \phi_{\epsilon}(x)} \delta_{a b}$ defines a Riemannian metric with associated geodesic distance

$$
d_{\epsilon}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s \epsilon^{\gamma^{2} / 4} e^{\frac{\gamma}{2} \phi_{\epsilon}(x(s))}\right\}
$$

- Does $\epsilon^{\sigma} d_{\epsilon}(x, y)$ converge to a continuous $d(x, y)$ for some value $\sigma=\sigma(\gamma)$?
- Numerical investigation is inconclusive.
- Looking at cycle length we would like to compare to total volume, but what total volume? $\left\langle\int d^{2} x \sqrt{g^{\epsilon}}\right\rangle \sim 1$
- When looking at the short-distance behavior of the 2-point function, one is zooming in on the "thick points", where the lattice is "always" too coarse.
- To get closer to DT: use covariant cut-off!
- The harmonic embedding of a random triangulation represents roughly a piecewise constant field $\phi^{\delta}:\left.e^{\gamma \phi^{\delta}(x)}\right|_{x \in \Delta}=1 /\left(N a_{\Delta}\right)$

- The harmonic embedding of a random triangulation represents roughly a piecewise constant field $\phi^{\delta}:\left.e^{\gamma \phi^{\delta}(x)}\right|_{x \in \triangle}=1 /\left(N a_{\triangle}\right)$

- The harmonic embedding of a random triangulation represents roughly a piecewise constant field $\phi^{\delta}:\left.e^{\gamma \phi^{\delta}(x)}\right|_{x \in \triangle}=1 /\left(N a_{\triangle}\right)$

Covariant: lattice sites contain equal volume

Non-covariant: lattice site contains volume $\propto e^{\gamma \phi}$

- Mimic a covariant cutoff.

$$
\gamma=0.6
$$

- Mimic a covariant cutoff.
- For $\delta>0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu\left(B_{\epsilon(\delta)}\right)=\delta$.
- Replace the measure with the average measure over the ball.

$\gamma=0.6, \delta=0.01$
- Mimic a covariant cutoff.
- For $\delta>0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu\left(B_{\epsilon(\delta)}\right)=\delta$.
- Replace the measure with the average measure over the ball.
- Define $e^{\gamma \phi^{\delta}(x)}:=\frac{\delta}{\pi \epsilon(\delta)^{2}}$.

$$
\gamma=0.6, \delta=0.01
$$

- Mimic a covariant cutoff.
- For $\delta>0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu\left(B_{\epsilon(\delta)}\right)=\delta$.
- Replace the measure with the average measure over the ball.
- Define $\mathrm{e}^{\gamma \phi^{\delta}(x)}:=\frac{\delta}{\pi \epsilon(\delta)^{2}}$.

$\gamma=0.6, \delta=0.0005$
- Mimic a covariant cutoff.
- For $\delta>0$, find the ball $B_{\epsilon(\delta)}(x)$ around x with volume $\mu\left(B_{\epsilon(\delta)}\right)=\delta$.
- Replace the measure with the average measure over the ball.
- Define $e^{\gamma \phi^{\delta}(x)}:=\frac{\delta}{\pi \epsilon(\delta)^{2}}$.
- Compare to DT: $\delta \sim 1 / N$

$\gamma=0.6, \delta=0.0005$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$$
d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)
$$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$$
d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)
$$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s s^{\frac{y}{2} \phi^{\delta}(x(s))}\right\}
$$

$$
d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)
$$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$$
d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)
$$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

Measure distance w.r.t. $g_{a b}=e^{\gamma \phi^{\delta}} \delta_{a b}$

$$
d_{\delta}(x, y)=\inf _{\Gamma}\left\{\int_{\Gamma} d s e^{\frac{\gamma}{2} \phi^{\delta}(x(s))}\right\}
$$

$d_{\delta}\left(x,\left\{x_{1}=0\right\}\right)$

- To extract $d_{h}(\gamma)$, measure the expectation value $\left\langle d_{\delta}\left(\left\{x_{1}=0\right\},\left\{x_{1}=1\right\}\right)\right\rangle$ of the distance between left and right border as function of δ.

- The slopes of the curves, $\left\langle d_{\delta}\left(\left\{x_{1}=0\right\},\left\{x_{1}=1\right\}\right)\right\rangle \propto \delta^{\frac{1}{2}-\frac{1}{d_{h}}}$, lead to the following estimate of the Hausdorff dimension.

- The slopes of the curves, $\left\langle d_{\delta}\left(\left\{x_{1}=0\right\},\left\{x_{1}=1\right\}\right)\right\rangle \propto \delta^{\frac{1}{2}-\frac{1}{d_{h}}}$, lead to the following estimate of the Hausdorff dimension.
- Compare with Watabiki's formula, $d_{h}=1+\frac{\gamma^{2}}{4}+\sqrt{1+\frac{3}{2} \gamma^{2}+\frac{1}{16} \gamma^{4}}$.

- The slopes of the curves, $\left\langle d_{\delta}\left(\left\{x_{1}=0\right\},\left\{x_{1}=1\right\}\right)\right\rangle \propto \delta^{\frac{1}{2}-\frac{1}{d_{h}}}$, lead to the following estimate of the Hausdorff dimension.
- Compare with Watabiki's formula, $d_{h}=1+\frac{\gamma^{2}}{4}+\sqrt{1+\frac{3}{2} \gamma^{2}+\frac{1}{16} \gamma^{4}}$.
- Can we understand where this formula comes from?

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!
- $\left\langle\phi_{\epsilon}(x) \phi_{\epsilon}^{\prime}(x)\right\rangle=-\log \frac{\max \left(\epsilon, \epsilon^{\prime}\right)}{\epsilon_{0}}=\min \left(t, t^{\prime}\right), \quad t=-\log \left(\frac{\epsilon}{\epsilon_{0}}\right)$

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!
- $\left\langle\phi_{\epsilon}(x) \phi_{\epsilon}^{\prime}(x)\right\rangle=-\log \frac{\max \left(\epsilon, \epsilon^{\prime}\right)}{\epsilon_{0}}=\min \left(t, t^{\prime}\right), \quad t=-\log \left(\frac{\epsilon}{\epsilon_{0}}\right)$
- Therefore $\phi_{\epsilon_{0} e^{-t}}$ is simply a Brownian motion! [Sheffield, Duplantier]

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!
- $\left\langle\phi_{\epsilon}(x) \phi_{\epsilon}^{\prime}(x)\right\rangle=-\log \frac{\max \left(\epsilon, \epsilon^{\prime}\right)}{\epsilon_{0}}=\min \left(t, t^{\prime}\right), \quad t=-\log \left(\frac{\epsilon}{\epsilon_{0}}\right)$
- Therefore $\phi_{\epsilon_{0} e^{-t}}$ is simply a Brownian motion! [Sheffield, Duplantier]
- The volume in a ball is approximated by $\mu\left(B_{\epsilon}(x)\right) \approx \pi \epsilon^{2} \mu_{\epsilon}(x)$. [Sheffield, Duplantier]

- Need to understand the relation $\epsilon(\delta)$. Back to the circle average $\phi_{\epsilon}(x)$!
- $\left\langle\phi_{\epsilon}(x) \phi_{\epsilon}^{\prime}(x)\right\rangle=-\log \frac{\max \left(\epsilon, \epsilon^{\prime}\right)}{\epsilon_{0}}=\min \left(t, t^{\prime}\right), \quad t=-\log \left(\frac{\epsilon}{\epsilon_{0}}\right)$
- Therefore $\phi_{\epsilon_{0} e^{-t}}$ is simply a Brownian motion! [Sheffield, Duplantier]
- The volume in a ball is approximated by $\mu\left(B_{\epsilon}(x)\right) \approx \pi \epsilon^{2} \mu_{\epsilon}(x)$. [Sheffield, Duplantier]
- Hence we need to solve

$$
\delta=\pi \epsilon^{2} \epsilon^{\gamma^{2} / 2} e^{\gamma \phi_{\epsilon}(x)}=\pi \epsilon^{\gamma Q} e^{\gamma \phi_{\epsilon}(x)}
$$

- $\epsilon(\delta)=\epsilon_{0} e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A:=\frac{\log (\pi / \delta)}{\gamma}+Q \log \epsilon_{0}$.
- $\epsilon(\delta)=\epsilon_{0} e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A:=\frac{\log (\pi / \delta)}{\gamma}+Q \log \epsilon_{0}$.
- Its distribution is given by an Inverse Gaussian distribution,

$$
P_{\delta}(T) \propto T^{-3 / 2} \exp \left[-\frac{1}{2 T}(Q T-A)^{2}\right] .
$$

- $\epsilon(\delta)=\epsilon_{0} e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A:=\frac{\log (\pi / \delta)}{\gamma}+Q \log \epsilon_{0}$.
- Its distribution is given by an Inverse Gaussian distribution,

$$
P_{\delta}(T) \propto T^{-3 / 2} \exp \left[-\frac{1}{2 T}(Q T-A)^{2}\right] .
$$

- It follows that

$$
\left\langle\epsilon(\delta)^{2 x-2}\right\rangle \propto \int d T e^{-(2 x-2) T} P_{\delta}(T) \propto \delta^{\frac{1}{\gamma}\left(\sqrt{Q^{2}+4 x-4}-Q\right)}=\delta^{\Delta_{x}-1}
$$

where Δ_{x} satisfies the famous KPZ relation [Knizhnik, Polyakov,
Zamolodchikov, '88][Duplantier, Sheffield, '10]

$$
x=\frac{\gamma^{2}}{4} \Delta_{x}^{2}+\left(1-\frac{\gamma^{2}}{4}\right) \Delta_{x}
$$

- $\epsilon(\delta)=\epsilon_{0} e^{-T}$, where T is the first time a Brownian motion with drift Q reaches level $A:=\frac{\log (\pi / \delta)}{\gamma}+Q \log \epsilon_{0}$.
- Its distribution is given by an Inverse Gaussian distribution,

$$
P_{\delta}(T) \propto T^{-3 / 2} \exp \left[-\frac{1}{2 T}(Q T-A)^{2}\right] .
$$

- It follows that

$$
\left\langle\epsilon(\delta)^{2 x-2}\right\rangle \propto \int d T e^{-(2 x-2) T} P_{\delta}(T) \propto \delta^{\frac{1}{\gamma}\left(\sqrt{Q^{2}+4 x-4}-Q\right)}=\delta^{\Delta_{x}-1}
$$

where Δ_{x} satisfies the famous KPZ relation [Knizhnik, Polyakov,
Zamolodchikov, '88][Duplantier, Sheffield, '10]

$$
x=\frac{\gamma^{2}}{4} \Delta_{x}^{2}+\left(1-\frac{\gamma^{2}}{4}\right) \Delta_{x}
$$

- In particular,

$$
\left\langle\int d^{2} x e^{-\gamma \phi^{\delta}(x)}\right\rangle=\left\langle\frac{\pi \epsilon(\delta)^{2}}{\delta}\right\rangle \propto \delta^{\Delta_{2}-2} .
$$

- Recall the expression $\left\langle\sum_{\Delta} a_{\Delta}^{2}\right\rangle \sim N^{-\frac{2}{d_{T D}}}$ for the Teichmüller deformation dimension $d_{T D}$.
- Recall the expression $\left\langle\sum_{\Delta} a_{\Delta}^{2}\right\rangle \sim N^{-\frac{2}{d_{T D}}}$ for the Teichmüller deformation dimension $d_{T D}$.
- ... and the relation $\left.e^{\gamma \phi^{\delta}(x)}\right|_{x \in \Delta}=1 /\left(N a_{\triangle}\right)$ between DT and Liouville.
- Recall the expression $\left\langle\sum_{\Delta} a_{\Delta}^{2}\right\rangle \sim N^{-\frac{2}{d_{T D}}}$ for the Teichmüller deformation dimension $d_{T D}$.
- ... and the relation $\left.e^{\gamma \phi^{\delta}(x)}\right|_{x \in \triangle}=1 /\left(N a_{\triangle}\right)$ between DT and Liouville.
- Therefore

$$
\left\langle\int d^{2} x e^{-\gamma \phi^{\delta}(x)}\right\rangle=\left\langle\sum_{\Delta} a_{\Delta}\left(N a_{\triangle}\right)\right\rangle \sim N^{1-\frac{2}{d T D}}
$$

- Recall the expression $\left\langle\sum_{\Delta} a_{\Delta}^{2}\right\rangle \sim N^{-\frac{2}{d T D}}$ for the Teichmüller deformation dimension $d_{T D}$.
- ... and the relation $\left.e^{\gamma \phi^{\delta}(x)}\right|_{x \in \triangle}=1 /\left(N a_{\triangle}\right)$ between DT and Liouville.
- Therefore

$$
\left\langle\int d^{2} x e^{-\gamma \phi^{\delta}(x)}\right\rangle=\left\langle\sum_{\Delta} a_{\Delta}\left(N a_{\triangle}\right)\right\rangle \sim N^{1-\frac{2}{d T D}}=\delta^{\Delta_{2}-2}
$$

- Hence, $d_{T D}$ is given by Watabiki's formula,

$$
d_{T D}=\frac{2}{\Delta_{2}-1}=1+\frac{\gamma^{2}}{4}+\sqrt{1+\frac{3}{2} \gamma^{2}+\frac{1}{16} \gamma^{4}}
$$

How about the Hausdorff dimension?

- Watabiki's derivation of d_{h} relies on a similar derivation. [Watabiki, '93]
- $d_{T D}$ arises from the KPZ relation applied to the operator $A[g]=\int d^{2} \times \frac{1}{\sqrt{g}}$ which scales like $A\left[\lambda g_{a b}\right]=\lambda^{-1} A\left[g_{a b}\right]$, while d_{h} arises from the application to $\Phi_{1}[g]=\int d^{2} x \sqrt{g}\left[\Delta_{g} \delta\left(x-x_{0}\right)\right]_{x=x_{0}}$ with the same scaling.

How about the Hausdorff dimension?

- Watabiki's derivation of d_{h} relies on a similar derivation. [Watabiki, '93]
- $d_{T D}$ arises from the KPZ relation applied to the operator $A[g]=\int d^{2} \times \frac{1}{\sqrt{g}}$ which scales like $A\left[\lambda g_{a b}\right]=\lambda^{-1} A\left[g_{a b}\right]$, while d_{h} arises from the application to $\Phi_{1}[g]=\int d^{2} x \sqrt{g}\left[\Delta_{g} \delta\left(x-x_{0}\right)\right]_{x=x_{0}}$ with the same scaling.
- Problems:
- $\Phi_{1}[g]$ is a singular object.
- Connection between $\Phi_{1}[g]$ and geodesic distance not entirely clear. Watabiki assumes that

$$
\left\langle d_{g}^{2}(x(t), x(0))\right\rangle \sim t
$$

for a Brownian motion, while we "know" that in DT

$$
\left\langle d_{g}^{2}(x(t), x(0))\right\rangle \sim t^{2 / d_{h}} .
$$

How about the Hausdorff dimension?

- Watabiki's derivation of d_{h} relies on a similar derivation. [Watabiki, '93]
- $d_{T D}$ arises from the KPZ relation applied to the operator $A[g]=\int d^{2} \times \frac{1}{\sqrt{g}}$ which scales like $A\left[\lambda g_{a b}\right]=\lambda^{-1} A\left[g_{a b}\right]$, while d_{h} arises from the application to $\Phi_{1}[g]=\int d^{2} x \sqrt{g}\left[\Delta_{g} \delta\left(x-x_{0}\right)\right]_{x=x_{0}}$ with the same scaling.
- Problems:
- $\Phi_{1}[g]$ is a singular object.
- Connection between $\Phi_{1}[g]$ and geodesic distance not entirely clear. Watabiki assumes that

$$
\left\langle d_{g}^{2}(x(t), x(0))\right\rangle \sim t
$$

for a Brownian motion, while we "know" that in DT

$$
\left\langle d_{g}^{2}(x(t), x(0))\right\rangle \sim t^{2 / d_{h}} .
$$

- Maybe interpret differently? Also, Liouville Brownian motion under active investigation. [Garban, Rhodes, Vargas,

Summary \& outlook

- Summary:
- Numerical simulations both in DT and in Liouville gravity on the lattice support Watabiki's formula for the Hausdorff dimension for $c<1$,

$$
d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}} .
$$

- Outlook/questions:

Summary \& outlook

- Summary:
- Numerical simulations both in DT and in Liouville gravity on the lattice support Watabiki's formula for the Hausdorff dimension for $c<1$,

$$
d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

- A different dimension, the Teichmüller deformation dimension $d_{T D}$, can be seen to be given by Watabiki's formula and therefore likely coincides with d_{h}.
- Outlook/questions:

Summary \& outlook

- Summary:
- Numerical simulations both in DT and in Liouville gravity on the lattice support Watabiki's formula for the Hausdorff dimension for $c<1$,

$$
d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

- A different dimension, the Teichmüller deformation dimension $d_{T D}$, can be seen to be given by Watabiki's formula and therefore likely coincides with d_{h}.
- Outlook/questions:
- Make sense of Watabiki's derivation and preferably turn it into a proof.

Summary \& outlook

- Summary:
- Numerical simulations both in DT and in Liouville gravity on the lattice support Watabiki's formula for the Hausdorff dimension for $c<1$,

$$
d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

- A different dimension, the Teichmüller deformation dimension $d_{T D}$, can be seen to be given by Watabiki's formula and therefore likely coincides with d_{h}.
- Outlook/questions:
- Make sense of Watabiki's derivation and preferably turn it into a proof.
- Relation with Quantum Loewner Evolution? [Miller,Sheffield,'13]

Summary \& outlook

- Summary:
- Numerical simulations both in DT and in Liouville gravity on the lattice support Watabiki's formula for the Hausdorff dimension for $c<1$,

$$
d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

- A different dimension, the Teichmüller deformation dimension $d_{T D}$, can be seen to be given by Watabiki's formula and therefore likely coincides with d_{h}.
- Outlook/questions:
- Make sense of Watabiki's derivation and preferably turn it into a proof.
- Relation with Quantum Loewner Evolution? [Miller,Sheffield,'13]
- Can the Teichmüller deformation dimension be defined more generally? On S^{2} or higher genus?

Summary \& outlook

- Summary:
- Numerical simulations both in DT and in Liouville gravity on the lattice support Watabiki's formula for the Hausdorff dimension for $c<1$,

$$
d_{h}=2 \frac{\sqrt{49-c}+\sqrt{25-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

- A different dimension, the Teichmüller deformation dimension $d_{T D}$, can be seen to be given by Watabiki's formula and therefore likely coincides with d_{h}.
- Outlook/questions:
- Make sense of Watabiki's derivation and preferably turn it into a proof.
- Relation with Quantum Loewner Evolution? [Miller,Sheffield,'13]
- Can the Teichmüller deformation dimension be defined more generally? On S^{2} or higher genus?
- Is it possible that shortest cycles and generic geodesic distances scale differently? Then $d_{h}=4$ for $0<c<1$ is not yet ruled out, but the continuum random surface would be pinched.

Thanks! Questions?

