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2D quantum gravity

I Formally 2d gravity is a statistical system of random metrics on a
surface of fixed topology with partition function

Z =

∫
[Dg ][DX ] exp(−λV [g ]− Sm[g ,X ]) ,

possibly coupled to some matter fields X with action Sm[g ,X ].

I I will follow two strategies to make sense of this path-integral:

I Dynamical triangulation (DT): Z =
∑

T e−λNTZm(T )

I Liouville path integral: gauge fix gab = eγφĝab(τ).
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Hausdorff dimension

I The Hausdorff dimension dh

measures the relative scaling of
geodesic distance and volume.

V (r) ∼ rdh , dh = lim
r→0

log V (r)

log r

I In terms of 2-point function

G (r) =

∫
d2x

∫
d2y

√
g(x)

√
g(y) δ(dg (x , y)−r),

G (r) ∼ rdh−1, dh−1 = lim
r→0

log G (r)

log r

I For Riemannian surfaces dh = 2 but in random metrics we may find
dh > 2. In fact, a typical geometry in pure 2d quantum gravity has
dh = 4.
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dh of 2d gravity coupled to matter
I Combinatorial methods allow to derive dh = 4 analytically for pure

2d gravity, e.g. by computing 2-point function.
I When matter is present, however, it is much harder to keep track of

geodesic distance combinatorially.

I CFTs are classified by central charge c and therefore dh = dh(c).
I Several conjectured formula’s for c 6= 0.

dh = 24

1−c+
√

(1−c)(25−c)
[Distler,Hlousek,Kawai,’90]

dh = 2
√

49−c+
√

25−c√
25−c+

√
1−c [Watabiki,’93]

dh = 4 [Duplantier,’11]
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dh of 2d gravity coupled to matter

I As c → −∞ quantum effects turn off and we expect dh → 2. Only
satisfied by Watabiki’s formula.

I First numerical results for c = −2 from measuring 2-point function:
dh = 3.58± 0.04 [Ambjørn, Anagnostopoulos, . . . , ’95]

I Measurements for Ising model (c = 1/2) and 3-states Potts
(c = 4/5) are inconclusive: various values between dh ≈ 3.8 and
dh ≈ 4.3 are obtained, but dh = 4 seems to be preferred. [Catterall et

al, ’95] [Ambjørn, Anagnostopoulos, ’97]
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Hausdorff dimension from shortest cycles

I A shortest non-contractible loop is automatically a geodesic and
therefore we expect its length to scale with the volume V as

L ∼ V
1
dh .

I Look for such loops in triangulations appearing in DT (where
V = N).

I Especially for c > 0 these loops are really short, so we also measure
second shortest cycles.
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I We have performed Monte Carlo simulations of pure gravity (c = 0),
and DT coupled to spanning tree (c = −2), Ising model (c = 1/2)
and 3-stated Potts model (c = 4/5). [Ambjørn, Budd, ’13]

I Used N = N0 = 8000 as reference distribution PN0 (L) and then fit
the distributions PN(L) ∝ PN0 (kL). Expect k ≈ (N0

N )1/dh .

I Compare to Watabiki’s formula.
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I Does this rule out dh = 4 for 0 < c < 1? Not completely!

I Shortest cycle is not a generic geodesic, it is the shortest in its
homotopy class.

I The “real” Hausdorff dimension corresponds to distances between
typical points.

I If the shortest cycle scales with larger dimensions than dh, then in
the continuum limit the geometry becomes pinched.
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Teichmüller deformation dimension dTD

I A Riemannian metric gab on the torus defines a unique point τ in
Teichmüller space (or, rather, Moduli space).

I How does τ change under a small random deformation of the metric
at a volume-scale δ? (Assuming unit-volume metric)

I E.g., cut out a random disk of volume δ, squeeze in a random
direction, glue back in.

I The expected square displacement in Teichmüller space
〈d2

Poincaré(τ, τ + ∆τ)〉 ∼ δ2 as δ → 0 for a smooth manifold.

I More generally, define dTD by 〈d2
Poincaré(τ, τ + ∆τ)〉 ∼ δ1+ 2

dTD .
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Teichmüller deformation for a triangulation
I Given a triangulation of the

torus, there is a natural way to
associate a harmonic
embedding in R2 and a
Teichmüller parameter τ .

I Replace edges by ideal springs
and find equilibrium.

I Find linear transformation that
minimizes energy while fixing
the volume.

Τ
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Teichmüller deformation for a triangulation
I A natural random deformation

of a triangulation is a flip move
on a random pair of adjacent
triangles.

I d2
Poincaré(τ, τ + ∆τ) scales for

large N like the square a2
4 of

the areas a4 of the triangles
involved. [Budd,’12]

I Since δ ≈ 1/N,

〈d2
P.(τ, τ+∆τ)〉 ≈ 1

N

∑
4

a2
4 ∼ δ

1+ 2
dTD

is equivalent to∑
4

a2
4 ∼ N

− 2
dTD
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Relation between dh and dTD?

I Conjecture: dTD = dh. Why?

I
∑
4 a2
4 dominated by large triangles.

I Approximation: large triangles have
equal area and small triangles have
zero area.

I How many large triangles are there?

I Cycles have length ∼ N1/dh

I Number of large triangles is ∼ N2/dh .

I Hence ∑
4

a2
4 ∼ N

2
dh (N

2
dh )−2 = N

− 2
dh =: N

− 2
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Quantum Liouville gravity [David, ’88] [Distler, Kawai, ’89]

I Consider 2d gravity coupled to c scalar fields, i.e. the Polyakov
string in c dimensions,

Z =

∫
[Dg ][DX ] exp

(
−λV [g ]−

∫
d2x
√

gg ab∂aX i∂bX jδij

)
, X ∈ Rc .

I Write g in conformal gauge gab = eγφĝab(τ) with Liouville field φ
and Teichmüller parameter τ .

I Conformal bootstrap: assuming Z to be of the form

Z =

∫
dτ [Dĝφ][DĝX ] exp (−SL[ĝ , φ]− Sm[X , ĝ ])

with the Liouville action

SL[ĝ , φ] =
1

4π

∫
d2x

√
ĝ(ĝ ab∂aφ∂bφ+ QR̂φ+ µeγφ)

and requiring invariance w.r.t. ĝab fixes the constants Q and γ:

Q =
2

γ
+
γ

2
=

√
25− c

6
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I If we ignore τ -integral and set ĝab = δab flat and µ = 0,

Z =

∫
[Dφ] exp

(
− 1

4π

∫
d2x ∂aφ∂aφ

)
,

i.e. simple Gaussian Free Field (GFF)!

I Does this Z really describe the quantum geometry of 2d gravity
coupled to matter with any central charge c < 1?

I In other words: given a diffeomorphism invariant observable O[gab],
can we make sense out of the expectation value

〈O〉Z =
1

Z

∫
[Dφ]O[eγφδab] exp

(
− 1

4π

∫
d2x ∂aφ∂aφ

)
and does it agree with DT?

I Care required: eγφδab is almost surely not a Riemannian metric!
Need to take into account the fractal properties of the geometry and
regularize appropriately.
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Gaussian free field basics
I Gaussian free field in 1d is a.s. a continuous function: Brownian

motion.

I In 2d (on a domain D) the covariance is given by

〈φ(x)φ(y)〉 = G (x , y) = − log |x − y |+ G̃ (x , y).

I φ(x) has infinite variance. It is not a function, but a distribution.

I How do we make sense of the measure eγφ?
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Regularization [Sheffield, Duplantier]

I The integral (f , φ) =
∫

d2x f (x)φ(x) has finite variance.

I In particular, for circle average φε(x) := 1
2π

∫ 2π

0
dθ φ(x + εe iθ),

〈φε(x)2〉 = − log ε− G̃ (x , x).

I Therefore,

〈eγφε(x)〉 = e〈(γφε)2〉/2 =

(
G̃ (x , x)

ε

)γ2/2

.

I Define regularized measure dµε = εγ
2/2eγφε(x)d2x .

I dµε converges almost surely to a well-defined random measure dµγ
as ε→ 0. [Sheffield, Duplantier]

I Alternatively, one can use a momentum cut-off. Given an
orthonormal basis ∆E fi = λi fi ,

φp :=
∑
λi≤p2

(fi , φ)fi , dµp = p−γ
2/2eγφp(x)d2x
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On the lattice
I We can easily put a Gaussian free field on a lattice, say, L× L with

periodic boundary conditions.

I L× L with periodic
boundary conditions.

I Consider
dµp = p−γ

2/2eγφp(x)d2x
with p � L.

I Almost all volume
contained in thick
points, a subset of
dimensions 2− γ2/2.
[Hu, Miller, Peres, ’10]
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On the lattice

I L× L with periodic
boundary conditions.

I Consider
dµp = p−γ

2/2eγφp(x)d2x
with p � L.

I Almost all volume
contained in thick
points, a subset of
dimensions 2− γ2/2.
[Hu, Miller, Peres, ’10]
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Geodesic distance?

I For each ε ≈ 1/p, g εab = εγ
2/2eγφε(x)δab defines a Riemannian metric

with associated geodesic distance

dε(x , y) = inf
Γ

{∫
Γ

ds εγ
2/4e

γ
2 φε(x(s))

}
I Does εσdε(x , y) converge to a continuous d(x , y) for some value
σ = σ(γ)?

I Numerical investigation is inconclusive.
I Looking at cycle length we would like to compare to total volume,

but what total volume? 〈
∫
d2x
√
g ε〉 ∼ 1

I When looking at the short-distance behavior of the 2-point function,
one is zooming in on the “thick points”, where the lattice is
“always” too coarse.

I To get closer to DT: use covariant cut-off!
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I The harmonic embedding of a random triangulation represents

roughly a piecewise constant field φδ: eγφ
δ(x)|x∈4 = 1/(N a4)

Covariant: lattice sites contain equal
volume

Non-covariant: lattice site contains
volume ∝ eγφ
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I Mimic a covariant
cutoff.

I For δ > 0, find the ball
Bε(δ)(x) around x with
volume µ(Bε(δ)) = δ.

I Replace the measure
with the average
measure over the ball.

I Define eγφ
δ(x) := δ

πε(δ)2 .

I Compare to DT:
δ ∼ 1/N

γ = 0.6
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Measure distance w.r.t. gab = eγφ
δ

δab

dδ(x , y) = inf
Γ

{∫
Γ

ds e
γ
2 φ

δ(x(s))

}

dδ(x , {x1 = 0}) δ
1
dh
− 1

2 dδ(x , {x1 = 0}), dh ≈ 2.70
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I To extract dh(γ), measure the expectation value
〈dδ({x1 = 0}, {x1 = 1})〉 of the distance between left and right
border as function of δ.



I The slopes of the curves, 〈dδ({x1 = 0}, {x1 = 1})〉 ∝ δ
1
2−

1
dh , lead to

the following estimate of the Hausdorff dimension.

I Compare with Watabiki’s formula, dh = 1 + γ2

4 +
√

1 + 3
2γ

2 + 1
16γ

4.

I Can we understand where this formula comes from?
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I Need to understand the relation ε(δ). Back to the circle average
φε(x)!

I 〈φε(x)φ′ε(x)〉 = − log max(ε,ε′)
ε0

= min(t, t ′), t = − log( εε0
)

I Therefore φε0e−t is simply a Brownian motion! [Sheffield, Duplantier]

I The volume in a ball is approximated by µ(Bε(x)) ≈ πε2µε(x).
[Sheffield, Duplantier]

I Hence we need to solve

δ = πε2εγ
2/2eγφε(x) = πεγQeγφε(x)
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I ε(δ) = ε0e−T , where T is the first time a Brownian motion with

drift Q reaches level A := log(π/δ)
γ + Q log ε0.

I Its distribution is given by an Inverse Gaussian distribution,

Pδ(T ) ∝ T−3/2 exp

[
− 1

2T
(QT − A)2

]
.

I It follows that〈
ε(δ)2x−2

〉
∝
∫

dT e−(2x−2)TPδ(T ) ∝ δ
1
γ (
√
Q2+4x−4−Q) = δ∆x−1

where ∆x satisfies the famous KPZ relation [Knizhnik, Polyakov,

Zamolodchikov, ’88][Duplantier, Sheffield, ’10]

x =
γ2

4
∆2

x +

(
1− γ2

4

)
∆x .

I In particular,〈∫
d2x e−γφ

δ(x)

〉
=

〈
πε(δ)2

δ

〉
∝ δ∆2−2.
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I Recall the expression
〈∑

4 a2
4

〉
∼ N

− 2
dTD for the Teichmüller

deformation dimension dTD .

I ... and the relation eγφ
δ(x)|x∈4 = 1/(N a4) between DT and

Liouville.

I Therefore〈∫
d2x e−γφ

δ(x)

〉
=

〈∑
4

a4(Na4)

〉
∼ N

1− 2
dTD

= δ∆2−2

I Hence, dTD is given by Watabiki’s formula,

dTD =
2

∆2 − 1
= 1 +

γ2

4
+

√
1 +

3

2
γ2 +

1

16
γ4
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How about the Hausdorff dimension?

I Watabiki’s derivation of dh relies on a similar derivation. [Watabiki, ’93]

I dTD arises from the KPZ relation applied to the operator
A[g ] =

∫
d2x 1√

g which scales like A[λgab] = λ−1A[gab], while dh

arises from the application to Φ1[g ] =
∫

d2x
√

g [∆gδ(x − x0)]x=x0

with the same scaling.

I Problems:
I Φ1[g ] is a singular object.
I Connection between Φ1[g ] and geodesic distance not entirely clear.

Watabiki assumes that

〈d2
g (x(t), x(0))〉 ∼ t

for a Brownian motion, while we ”know” that in DT

〈d2
g (x(t), x(0))〉 ∼ t2/dh .

I Maybe interpret differently? Also, Liouville Brownian motion under
active investigation. [Garban, Rhodes, Vargas, . . . , ’13]
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Summary & outlook
I Summary:

I Numerical simulations both in DT and in Liouville gravity on the
lattice support Watabiki’s formula for the Hausdorff dimension for
c < 1,

dh = 2

√
49− c +

√
25− c√

25− c +
√

1− c
.

I A different dimension, the Teichmüller deformation dimension dTD ,
can be seen to be given by Watabiki’s formula and therefore likely
coincides with dh.

I Outlook/questions:

I Make sense of Watabiki’s derivation and preferably turn it into a
proof.

I Relation with Quantum Loewner Evolution? [Miller,Sheffield,’13]

I Can the Teichmüller deformation dimension be defined more
generally? On S2 or higher genus?

I Is it possible that shortest cycles and generic geodesic distances scale
differently? Then dh = 4 for 0 < c < 1 is not yet ruled out, but the
continuum random surface would be pinched.

Thanks! Questions? Slides available at http://www.nbi.dk/~budd/

http://www.nbi.dk/~budd/
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