
Effective Dynamics in non-perturbative quantum gravity

Timothy Budd

QUIST & Thesis talk, March 15, 2012
Institute for Theoretical Physics



Path integral approach to quantum gravity

I Quantum mechanics according to
Feynman

x i (t)

I Gravity according to
Einstein

gµν(x)

I Can we combine these pillars of modern theoretical physics?

I First try pure gravity: sum over space-time geometries.

I Hope: UV complete model gravity + reproduces general relativity.

I This talk: given a microscopic model (CDT), establish its effective
dynamics.
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Outline

I Introduction to CDT in 2+1 dimensions

I Previous results for topology S2 × R: spatial volume

I Effective action for CDT: conformal model problem

I Alternative to Einstein–Hilbert

I Moduli as observables for CDT with topology T 2 × R
I Monte Carlo measurements vs ansatz

I Summary and outlook



CDT in 2+1 dimensions
I Causal Dynamical Triangulation is a regularization of the Euclidean

path integral over geometries

Z =

∫ Dg

Diff
e−SEH [g ] → ZCDT =

∑
triangulationsT

1

CT
e−SCDT [T ].

→

t=0

t=T

I Triangulations T are built from equilateral tetrahedra. The sum is
over inequivalent ways of putting them together.

I “Causal” in CDT means that we only allow triangulations that are
foliated by 2D triangulations with constant topology.

I The Euclidean Einstein–Hilbert action S [g ] = −κ
∫

d3x
√

g(R − 2Λ)
evaluated on the piecewise linear geometry leads to

SCDT [T ] = k3N3 − k0N0.
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Monte Carlo methods for CDT
I The fixed volume partition function reads

Z (N3) =
∑

T

1

CT
e−k0N0 .

I The expectation value of an observable
O : T → O(T ) is given by

〈O〉N3 =
1

Z

∑
T

O(T )

CT
e−k0N0 .

I We use Monte Carlo methods to approximate these:

〈O〉N3 ≈
1

n

n∑
i=1

O(Ti ),

where the {Ti} is a large set of random triangulations generated by
applying a large number of random update moves satisfying a
detailed balance condition.
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CDT with spherical spatial topology
I Take periodic time and

spatial topology S2

I 〈V (t)〉 ∝ cos2(
√

c1t) plus minimal
“stalk”

-30 -20 -10 0 10 20 30
t'

300
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900

1200
VHt'L

I 〈V (t)〉 is classical solution to

Seff [V ] = c0

∫
dt

(
V̇ 2

V
− 2c1V

)
.

I Also correlations

〈V (t)V (t ′)〉 − 〈V (t)〉〈V (t ′)〉 ∝
(

δ2Seff

δV (t)δV (t′)

∣∣∣
〈V (t)〉

)−1

well-described by this action for suitable values c0, c1 > 0.
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CDT with spherical spatial topology (continued)

I Seff [V ] = c0

∫
dt
(

V̇ 2

V − 2c1V
)

is of the same form as the

minisuperspace action obtained by evaluating Einstein–Hilbert on
spherical cosmology ds2 = dt2 + V (t)dΩ2,

SEH = κ

∫
d3x
√

g(−R + 2Λ) = −κ
∫

dt

(
V̇ 2

V
− 2ΛV

)

I This is non-trivial! We did not impose homogeneity/isotropy from
the start. A (Euclidean) de Sitter space seems to emerge.

I How much does this tell us about the “full” effective dynamics of
CDT? Is it close to EH? Is the emerging geometry really isotropic?

I To find out we could study deviations from 〈V (t)〉 ∝ cos2(
√

c1t)
due to anisotropies, or introduce observables that go beyond spatial
volume.
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I Seff [V ] should have a minimum at its classical solution, since we
identify semiclassically

ZCDT =
∑

T

1

CT
e−SCDT [T ] ≈

∫ ( T∏
t=0

dV (t)

)
e−Seff [V (t)].

I This is true for Seff [V ] = c0

∫
dt
(

V̇ 2

V − 2c1V
)

for fixed 3-volume

but not for Einstein–Hilbert action in general: conformal mode
problem.

I Metric in proper-time form, ds2 = dt2 + gab(t, x)dxadxb. Then

SEH [gab] = κ

∫
dt

∫
d2x
√

g

(
1

4
ġabGabcd ġcd − R + 2Λ

)
(1)

where Gabcd is the Wheeler–DeWitt metric,

Gabcd =
1

2

(
g ac g bd + g ad g bc

)
− g abg cd . (2)

I Indefinite metric! Positive definite on traceless directions, negative
definite on trace/conformal directions in superspace.
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Alternative ansatz for effective action
I Fixed distance between initial and final boundary and preferred time

foliation suggest Seff [g ] only needs to be invariant under foliation
preserving diffeomorphisms.

I The Einstein–Hilbert action (with N = 1 and Na = 0)

SEH = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd ġab + R − 2Λ)

generalizes naturally to

Sansatz = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd
λ ġab − U[g ]),

in which the most general ultralocal supermetric is

Gabcd
λ =

1

2

(
g ac g bd + g ad g bc

)
− λg abg cd .

I Gλ is positive definite for λ < 1/2; λ = 1 in EH.
I We have ended up with an ansatz in the realm of Euclidean

(projectable) Hǒrava–Lifshitz gravity.
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λ ġab − U[g ]),

in which the most general ultralocal supermetric is

Gabcd
λ =

1

2

(
g ac g bd + g ad g bc

)
− λg abg cd .

I Gλ is positive definite for λ < 1/2; λ = 1 in EH.
I We have ended up with an ansatz in the realm of Euclidean
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λ ġab − U[g ]),

in which the most general ultralocal supermetric is

Gabcd
λ =

1

2

(
g ac g bd + g ad g bc

)
− λg abg cd .

I Gλ is positive definite for λ < 1/2; λ = 1 in EH.

I We have ended up with an ansatz in the realm of Euclidean
(projectable) Hǒrava–Lifshitz gravity.



Alternative ansatz for effective action
I Fixed distance between initial and final boundary and preferred time

foliation suggest Seff [g ] only needs to be invariant under foliation
preserving diffeomorphisms.

I The Einstein–Hilbert action (with N = 1 and Na = 0)

SEH = κ

∫ T

0

dt

∫
d2x
√
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New observables

I Need observable f : {2d triangulations} → R. Whole journals are
dedicated to shape recognition in medical imaging, computer
graphics, etc. However the random geometries in CDT are much
wilder.

I The conformal structure of a torus! Moduli τi (Teichmüller
parameters) .
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Moduli on a triangulation

I Replace every edge by a perfect
spring: periodic discrete harmonic
embedding.

I Invariant under linear transformations.
Moduli τi correspond to energetically
preferred configuration with unit
volume. “Most equilateral
configuration”.

Τ

I The functions τi :
{ }

→ R are well-defined.
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CDT with spatial torus topology
I Try periodic boundary conditions T 2 × S1. No breaking of time

translation symmetry:

-30 -20 -10 0 10 20 30
t'
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I We need different boundary conditions to get non-trivial dynamics.
Use fixed boundaries at t = 0 and t = T .

I Hopf foliation of S3! Maximally different moduli: τ(0) = 0 and
τ(T ) = i∞.

Hopf Link
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Comparison with ansatz

I Evaluating

Sansatz = κ

∫ T

0

dt

∫
d2x
√

g(ġabGabcd
λ ġcd − U[g ]),

on spatially flat cosmology ds2 = dt2 + V (t)ĝab(τ)dxadxb,

ĝab(τ, x) = 1
τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
gives

S [V , τ ] = κ

∫
dt
(

(
1

2
− λ)

V̇ 2

V
+

V

2

τ̇ 2
1 + τ̇ 2

2

τ 2
2

− U(V , τ)
)
.

I Seff [V , τ ] should describe all 〈V (t)〉, 〈τi (t)〉, 〈τi (t)τj (t ′)〉,. . .. Too
ambitious. What is U(V , τ)? Focus on kinetic term.

I Prefactors in kinetic term related to inverse of correlators:

(〈τi (t)τj (t ′)〉 − 〈τi (t)〉〈τj (t ′)〉)−1 ∝
(

Pi (t)
d2

dt2
+ · · ·

)
δ(t − t ′)δij



Comparison with ansatz

I Evaluating

Sansatz = κ

∫ T

0

dt

∫
d2x
√
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I Compare Pi (t) and 〈V (t)/τ2(t)2〉
in CDT simulation.

I Ansatz wrong or homogeneity is a
bad approximation.

I We can do better!

t/T
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V/τ 2

2Pi (t)

S [V , τ ] = κ

∫
dt
(

(
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2
− λ)

V̇ 2

V
+

V

2︸︷︷︸
Depends sensitively on the flatness.

τ̇ 2
1 + τ̇ 2

2

τ 2
2

− U(V , τ)
)
.

I A[g ] is the expected change in τ under a random deformation δgab

(normalized w.r.t. G)

A[g ] =
δij

4τ 2
2

∫
d2x
√

g
δτi

δgab
Gabcd

δτj

δgcd
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I A[g ] can be worked out explicitly for a general metric gab on the
torus

A[g ] =
δij

4τ 2
2

∫
d2x
√

g
δτi

δgab
Gλabcd

δτj

δgcd

=

∫
d2x
√

g exp(2∆−1R)(∫
d2x
√

g exp(∆−1R)
)2

≥ 1

V

I A natural discretization of A[g ] to triangulations T is
A[T ] =

∑
σ∈T area(σ)2, where area(σ) is the area of the triangle σ

in the harmonic embedding of T in the plane.

VA[T ] = 1 VA[T ] ≈ 1.9 VA[T ] ≈ 4.9
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I Retry: compare Pi and
〈1/(A(t)τ2(t)2)〉.
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I The fitted overall factor corresponds to κ,

S [V , τ ] = κ

∫
dt
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− U(V , τ)
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I Similar analysis for spatial volume V (t) leads to a measurement of
κ( 1

2 − λ). Combining both we get a value λ ≈ 0.22 (for coupling
k0 = 2.5).
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I We can perform this analysis for various
couplings k0 (≈ bare Newton’s
constant).

I k0 → k∗0 ≈ 5.6 is CDT phase transition:
number of 22-simplices drops to zero.

I Plot shows that as k0 → k∗0 the spatial
volumes V (t),V (t + 1) decouple, while
the moduli τi (t), τi (t + 1) remain
coupled!

I Possible explanation: moduli are
topological degrees of freedom.

I However, seems to hold more generally
for trace vs traceless d.o.f. in gab. See
extrinsic curvature measurements in
chapter 6 of my thesis.
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Summary

I In order to describe the measurements of the moduli in CDT with
topology T 2 × R we have introduced a non-covariant ansatz for an
effective action.

I The correlations in V and τ are compatible with a kinetic term given
by a generalized Wheeler–DeWitt metric Gλ with λ < 1/2 (recall
that λ = 1 in GR).

I This strengthens an earlier observed connection between CDT and
Hǒrava–Lifshitz gravity, a potentially renormalizable non-covariant
generalization of GR.



Outlook

I Construct full effective action S [V (t), τ(t)]. What is U[V , τ ] and
how does A[g ] scale with V ?

I Can we better understand CDT close to the phase transition?

I Is there any way to get rid of the spurious conformal degree of
freedom?

I Having (more) large scale observables helps when studying
renormalization. Outcomes of measurements should be invariant.

Don’t forget: Tuesday at 2:30 PM, my thesis defense!

Thanks!
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Appendices



Measurement of τ in the continuum
I Any metric gab on the torus is conformally flat and up to

diffeomorphisms the flat unit-volume metrics are given by

ĝab(τ, x) =
1

τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
.

I How do we find the “periodic” coordinates x1, x2 ∈ [0, 1) such that
ds2 = Ω2(x)ĝabdxadxb?

I The 1-forms α1 = dx1 and α2 = dx2 are
special: they form a basis of the space of
harmonic forms, i.e. dαi = δαi = 0 or
∆αi = 0 with

∆ = dδ + δd (Hodge Laplacian)

d exterior derivative, δ its adjoint w.r.t.
standard inner-product 〈φ, ψ〉 =

∫
φ ∧ ∗ψ.

I Given generators γj , the αi are uniquely determined by
∫
γj
αi = δi

j .

I τ = − 〈α
1,α2〉

〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.
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standard inner-product 〈φ, ψ〉 =

∫
φ ∧ ∗ψ.

Τ

Γ1

Γ2

-0.5 0 0.5 1

0.5

1

1.5

I Given generators γj , the αi are uniquely determined by
∫
γj
αi = δi

j .

I τ = − 〈α
1,α2〉

〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.



Measurement of τ for torus triangulations

I Recipe: [Ambjørn, Barkley, TB, arXiv:1110.4649]

I Determine pair of curves γj that generate fundamental group.
I Find the 2-dimensional kernel of ∆.
I Determine basis αj such that

∫
γj
αi = δi

j .

I Compute τ = − 〈α1,α2〉
〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.

I We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.

I Once we have these ingredients we can construct discrete conformal
maps:
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Discrete differential forms

I In 2d triangulations we have

I Vertices: 0-simplices denoted by i ,

I Edges: 1-simplices denoted by (ij),

I Triangles: 2-simplices denoted by (ijk).

i

jk

HijLHkiL

HjkL

HijkL

I A discrete p-form φ assigns a real number φσ to each (oriented)
p-simplex σ.

I Exterior derivative on 1-forms: (dφ)(ijk) = φ(ij) + φ(jk) + φ(ki)

I Divergence on 1-forms: (δφ)j =
∑

edges (ij) φ(ij)

I More generally: (dψ)(σp+1) =
∑
σp∈σp+1

(−1)σpψ(σp).

I δ adjoint of d w.r.t. 〈φ, ψ〉 =
∑
σ φ(σ)ψ(σ).

I ∆ = dδ + δd becomes a matrix of which we can determine the
nullspace ∆α = 0 (⇔ dα = 0 and δα = 0)
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