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Path integral approach to quantum gravity

» Quantum mechanics according to » Gravity according to
Feynman Einstein

Can we combine these pillars of modern theoretical physics?
First try pure gravity: sum over space-time geometries.

Hope: UV complete model gravity +
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This talk: given a microscopic model (CDT), establish its effective
dynamics.
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Introduction to CDT in 2+1 dimensions

Previous results for topology S2 x R: spatial volume
Effective action for CDT: conformal model problem
Alternative to Einstein—Hilbert

Moduli as observables for CDT with topology T2 x R
Monte Carlo measurements vs ansatz

Summary and outlook
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CDT in 241 dimensions %

» Causal Dynamical Triangulation is a regularization of the Euclidean
path integral over geometries

Z = De e elel s Zopr = Z i675“’7[7—].

. ‘ Cr
triangulations T

| Diff

» Triangulations T are built from equilateral tetrahedra. The sum is
over inequivalent ways of putting them together.

» “Causal” in CDT means that we only allow triangulations that are
foliated by 2D triangulations with constant topology.

» The Euclidean Einstein—Hilbert action S[g] = —« [ d*x,/g(R — 2A)
evaluated on the piecewise linear geometry leads to
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> The fixed volume partition function reads
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» The expectation value of an observable
O: T — O(T) is given by
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» The fixed volume partition function reads

Monte Carlo methods for CDT %

-

Z(Ns) =) Cie—ko'vo.

T T

» The expectation value of an observable
O: T — O(T) is given by

Om=F X . PR
T

» We use Monte Carlo methods to approximate these:

O~ 7+ > 0(T),
i=1

where the {T;} is a large set of random triangulations generated by
applying a large number of random update moves satisfying a
detailed balance condition.
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» Take periodic time and » (V(t)) o cos?(y/crt) plus minimal’
spatial topology S2 “stalk”
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» (V(t)) is classical solution to

\'/2
Seff[\/] = Co/dt 7 — 2C]_V .
» Also correlations

(V()V(t) — (V(E)(V(t)) (ﬁ% <V(t)>> _

well-described by this action for suitable values ¢p, ¢; > 0.
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» To find out we could study deviations from (V/(t)) oc cos?(,/crt)
due to anisotropies, or introduce observables that go beyond spatial
volume.
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Sefr[V] should have a minimum at its classical solution, since we
identify semiclassically

-
1 _
ZepT = ZC—Te Scor(T] %/ (H dV(t)> e SerlV(O]
t=0

T

This is true for Se[V] = ¢ [ dt (V72 -2 V) for fixed 3-volume

but not for Einstein—Hilbert action in general: conformal mode
problem.

Metric in proper-time form, ds? = dt? + gap(t, x)dx?dx®. Then

1. .
Ser|gan] = H/df/d2X\/§ (4gabgab6dgcd - R+ 2/\> (1)
where G2b¢d is the Wheeler-DeWitt metric,

gabcd — % (gacgbd + gadgbc) _ gabgcd. (2)

Indefinite metric! Positive definite on traceless directions, negative
definite on trace/conformal directions in superspace.
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» Fixed distance between initial and final boundary and preferred time

foliation suggest Sefr[g] only needs to be invariant under foliation
preserving diffeomorphisms.
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Alternative ansatz for effective action

» Fixed distance between initial and final boundary and preferred time
foliation suggest Sefr[g] only needs to be invariant under foliation
preserving diffeomorphisms.

» The Einstein—Hilbert action (with N =1 and N? = 0)

.

.
Sen = H/ dt/ d’x/8(£:6G°" gap + R — 2N)
0

generalizes naturally to

T
Sansatz - ’i/ dt/dzx\/é(g—abg;bt:dgab - U[g])a
0

in which the most general ultralocal supermetric is

1
g‘)a\bcd _ E (gacgbd 4 gadgbc) _ )\gabgcd_

> G, is positive definite for A < 1/2; A =1 in EH.
» We have ended up with an ansatz in the realm of Euclidean
(projectable) Hotava-Lifshitz gravity.
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graphics, etc. However the random geometries in CDT are much
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New observables

> Need observable f : {2d triangulations} — R. Whole journals are
dedicated to shape recognition in medical imaging, computer
graphics, etc. However the random geometries in CDT are much

» The conformal structure of a torus! Moduli 7; (Teichmiiller
parameters) .
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Moduli on a triangulation

> Replace every edge by a perfect
spring: periodic discrete harmonic
embedding.

> Invariant under linear transformations.
Moduli 7; correspond to energetically
preferred configuration with unit
volume. “Most equilateral
configuration”.

» The functions 7; : { ‘@ } — R are well-defined.
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CDT with spatial torus topology

» Try periodic boundary conditions T2 x S'. No breaking of time
translation symmetry:
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> We need different boundary conditions to get non-trivial dynamics.
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» Hopf foliation of S3! Maximally different moduli: 7(0) = 0 and
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Comparison with ansatz

» Evaluating

T
5ansal’z = "Q/ dt/dzx\/g(gabgib‘:dgcd - U[g])7
0

on spatially flat cosmology ds? = dt? + V/(t)&ap(7)dx?dx>,

o 1 T .
Bab(7,X) = = (71 2 4:722) gives

1 V2 Vit 443
SV, 7] :K,/cns((i—x)7+E LT u(vn).

2

> Serr[V, 7] should describe all (V(t)), (ri(¢t)), (7i(t)7;(t')),.... Too
ambitious. What is U(V, 7)? Focus on kinetic term.

» Prefactors in kinetic term related to inverse of correlators:

2

() = NN x (PO Sz + -+ ) ole = e
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Compare P;(t) and (V/(t)/72(t)?) P(t) V)72
in CDT simulation. 3000

Ansatz wrong or homogeneity is a 2000
bad approximation.

We can do better!

1000
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Depends sensitively on the flatness.

Alg] is the expected change in 7 under a random deformation dgsp
(normalized w.r.t. G)
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» Alg] can be worked out explicitly for a general metric g, on the
torus

§ji OTi OT;
A — Y 2 ! A J
[g] 47_22 / d X\/E 5gab gabcd 5gcd

[ d’x/gexp(2A'R) o1

([ d?x gexp(A*lR))2 Vv

> A natural discretization of A[g] to triangulations T is
AlT] =, crarea(c)?, where arca(c) is the area of the triangle o
in the harmonic embedding of T in the plane.
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VA[T] =1 VA[T] ~ 1.9 VA[T] ~ 4.9
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» The fitted overall factor corresponds to k,

1 I s
S[V,T]:m/dt<(§—>\)7+ﬂ 1722 2 _ U(V,T)).

» Similar analysis for spatial volume V/(t) leads to a measurement of
#(3 — A). Combining both we get a value A ~ 0.22 (for coupling
ko = 2.5).
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coupled!
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We can perform this analysis for various

couplings ko (= bare Newton's A
constant). B -
ko — ki ~ 5.6 is CDT phase transition: |,
number of 22-simplices drops to zero. 02

Plot shows that as ko — kj the spatial 0';
volumes V/(t), V(t + 1) decouple, while -0
the moduli 7;(t), 7;(t + 1) remain 2
coupled!

Possible explanation: moduli are
topological degrees of freedom.

However, seems to hold more generally
for trace vs traceless d.o.f. in g,,. See
extrinsic curvature measurements in
chapter 6 of my thesis.




Summary

» In order to describe the measurements of the moduli in CDT with
topology T2 x R we have introduced a non-covariant ansatz for an
effective action.

» The correlations in V and 7 are compatible with a kinetic term given
by a generalized Wheeler-DeWitt metric G, with A < 1/2 (recall
that A =1 in GR).

» This strengthens an earlier observed connection between CDT and
Hofava-Lifshitz gravity, a potentially renormalizable non-covariant
generalization of GR.
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Outlook

» Construct full effective action S[V/(t), 7(t)]. What is U[V/, 7] and
how does A[g] scale with V?

» Can we better understand CDT close to the phase transition?

> Is there any way to get rid of the spurious conformal degree of
freedom?

» Having (more) large scale observables helps when studying
renormalization. Outcomes of measurements should be invariant.

Don't forget: Tuesday at 2:30 PM, my thesis defense!
Thanks!
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> Any metric g, on the torus is conformally flat and up to
diffeomorphisms the flat unit-volume metrics are given by
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» How do we find the “periodic” coordinates x*, x> € [0,1) such that
ds? = Q2(x)gapdx?dx??

» The 1-forms o' = dx! and a? = dx? are
special: they form a basis of the space of
harmonic forms, i.e. da/ = da’ =0 or
Ao’ =0 with

A =dd+ dd (Hodge Laplacian)

d exterior derivative, 0 its adjoint w.r.t.
standard inner-product (¢, ¥) = [ ¢ A *).



Measurement of 7 in the continuum
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> Any metric g, on the torus is conformally flat and up to
diffeomorphisms the flat unit-volume metrics are given by

g(rx)= L (1 ™
8ab(T, o\ 7'12—|—722 ’
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» The 1-forms o' = dx! and a? = dx? are ;
special: they form a basis of the space of T
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» Given generators 7;, the o are uniquely determined by I, ol =0l
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Any metric g, on the torus is conformally flat and up to
diffeomorphisms the flat unit-volume metrics are given by
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How do we find the “periodic” coordinates x*,x? € [0,1) such that
ds? = Q2(x)gapdx?dx??

The 1-forms o' = dx! and a? = dx? are ;
special: they form a basis of the space of T
harmonic forms, i.e. da/ = da/ =0 or
Ao’ = 0 with

A =dd+ dd (Hodge Laplacian) 05

d exterior derivative, d its adjoint w.r.t. ‘ )
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Measurement of 7 for torus triangulations %

> Recipe: [Ambjgrn, Barkley, TB, arXiv:1110.4649]

> Determine pair of curves ~; that generate fundamental group.
» Find the 2-dimensional kernel of A.
» Determine basis «; such that f o =4
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» We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.
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Measurement of 7 for torus triangulations

> Recipe: [Ambjgrn, Barkley, TB, arXiv:1110.4649]

> Determine pair of curves ~; that generate fundamental group.
» Find the 2-dimensional kernel of A.
> Determine basis o such that [ o' = 4;.

i

1 2 2
- Compwe = () ek — ()"
» We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.

» Once we have these ingredients we can construct discrete conformal
maps:
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Discrete differential forms

> In 2d triangulations we have

> Vertices: 0-simplices denoted by i,
> Edges: 1-simplices denoted by (i),
> Triangles: 2-simplices denoted by (ijk).
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> A discrete p-form ¢ assigns a real number ¢, to each (oriented)
p-simplex o.
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Discrete differential forms

> In 2d triangulations we have

L
(ijk)

(i) (i)

> Edges: 1-simplices denoted by (i), i

> Vertices: 0-simplices denoted by i,

> Triangles: 2-simplices denoted by (ijk).

v

A discrete p-form ¢ assigns a real number ¢, to each (oriented)
p-simplex o.

Exterior derivative on 1-forms: (do) i) = ¢(ij) + (k) + (ki)
Divergence on 1-forms: (60); = > _cqges (i) P(i)

More generally: (dv))(0p+1) =32, c,,.,(=1)7"%(0p).

d adjoint of d w.r.t. (¢,9) = d(o)(o).
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Discrete differential forms
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In 2d triangulations we have

L
(ijk)

(i) (i)

> Edges: 1-simplices denoted by (i), i

> Vertices: 0-simplices denoted by i,

> Triangles: 2-simplices denoted by (ijk).

v

A discrete p-form ¢ assigns a real number ¢, to each (oriented)
p-simplex o.

v

Exterior derivative on 1-forms: (do) i) = ¢(ij) + (k) + (ki)
Divergence on 1-forms: (60); = > _cqges (i) P(i)

More generally: (dv))(0p+1) =32, c,,.,(=1)7"%(0p).

d adjoint of d w.r.t. (¢,9) = d(o)(o).

A = dd + dd becomes a matrix of which we can determine the
nullspace Aa =0 (& da =0 and da = 0)
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