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No, ...
...only when coupled to gravity
(in continuum limit)!
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> durqc is conformally invariant, and
intimately related to SLE,; with
16 (3xk — 8)(6 — k)
= %5, C=m —7—F7—-—7—-
~2 2k
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From trees back to 2D quantum gravity (RL) _ (Cow sin 0‘) X,

" sina cosa

P TIL —
<\ ‘0|1‘[
" i

~—

n : {0l _ T (A2
Mating of trees a=g(v*—2)
[Duplantier, Miller, Sheffield, '14]
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-
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i — 2
"Mating of trees" a=Z(y2-2)
[Duplantier, Miller, Sheffield, '14]
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Uniformization LQG’Y
[Gwynne, Miller, Sheffield, 17]
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» Fractal properties? Hausdorff
dimension d,?
» “Classical gravity”: dy,—o = 2
> “Pure gravity”: dﬂ/:\/g/f3 =4
[Ambjgrn, Watabiki, '95] [Schaeffer,
Chassaing, Le Gall, Miermont, ...].
» “Gravity coupled to matter’: d, =7
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> Use tree encoding to obtain higher accuracy for v < /8/3!
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Bipolar-oriented triangulations

» Consider triangulation of S? with an oriented root edge.

» Bipolar orientation: assignment of directions that is acyclic and has no
sources or sinks except at root.

» Random geometry: sample uniformly among all bipolar-oriented
triangulations with n triangles.

» In universality class of LQG'y:\/m + SLE15. [Kenyon, Miller, Sheffield,
Wilson, '15]
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» Similar encoding known for several other models.

» Lattice walks can be sampled in linear time: much more efficient than
MCMC methods.
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» Perfectly consistent with d?G =2+%5+ f/%. [Ding, Gwynne, '18]
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Approaching from Liouville side

» Volume measure in LQG
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» Volume measure in LQG
duLqa = /g d°z
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» Discretize ¢ on w X w square lattice

» Define discrete geodesic distance
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» Describes distances in LQG,, only if
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»
[Ding, Gwynne, Ang

(conformal invariance)
]
» Given pair (£, A) can solve for (v, d,)!
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Results from finite-size

scaling in |_QG,y [Barkley, TB, '19]
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Wrapping up

> After 25 years Watabiki's conjecture is dead.
Long live Ding-Gwynne's, ... but for how long?

» Building (quantum) geometries from scale-invariant trees is a very
recent and fruitful perspective on 2D quantum gravity. How about
higher dimensions?




