Quantum Gravity and Quantum Geometry © Nijmegen, 31-10-2019

Trees and Fractal Dimensions in 2D Quantum Gravity

Timothy Budd

based on joint work with Jerome Barkley, arXiv:1908.09469
t.budd@science.ru.nl http://hef.ru.nl/~tbuidd/

Radboud University

Outline

Introduction:

Fractal dimensions in random surfaces:

Fractal dimensions in Liouville Quantum Gravity:

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]
- Pair of spanning trees \leftrightarrow space-filling "peano" curve $\gamma: \mathbb{Z} \rightarrow\left(\frac{1}{2} \mathbb{Z}\right)^{2}$

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]
- Pair of spanning trees \leftrightarrow space-filling "peano" curve $\gamma: \mathbb{Z} \rightarrow\left(\frac{1}{2} \mathbb{Z}\right)^{2}$

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]
- Pair of spanning trees \leftrightarrow space-filling "peano" curve $\gamma: \mathbb{Z} \rightarrow\left(\frac{1}{2} \mathbb{Z}\right)^{2}$
- Both spins and peano curve posess conformal scaling limits:

$$
\mathrm{CFT}_{c=\frac{1}{2}} \text { resp. (space-filling) Schramm-Loewner Evolution }
$$

$$
\operatorname{SLE}_{\kappa=\frac{16}{3}}: \mathbb{R} \rightarrow \mathbb{C}
$$

[Schramm, Smirnov, Chelkak, Duminil-Copin, Garban, ...]

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]
- Pair of spanning trees \leftrightarrow space-filling "peano" curve $\gamma: \mathbb{Z} \rightarrow\left(\frac{1}{2} \mathbb{Z}\right)^{2}$
- Both spins and peano curve posess conformal scaling limits:

$$
\begin{array}{cc}
\text { CFT }_{c=\frac{1}{2}} \quad \text { resp. } \quad \text { (space-filling) Schramm-Loewner Evolution } \\
& \operatorname{SLE}_{\kappa=\frac{16}{3}}: \mathbb{R} \rightarrow \mathbb{C}
\end{array}
$$

[Schramm, Smirnov, Chelkak, Duminil-Copin, Garban, ...]

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]
- Pair of spanning trees \leftrightarrow space-filling "peano" curve $\gamma: \mathbb{Z} \rightarrow\left(\frac{1}{2} \mathbb{Z}\right)^{2}$
- Both spins and peano curve posess conformal scaling limits:

$$
\begin{array}{cc}
\text { CFT }_{c=\frac{1}{2}} \quad \text { resp. } \quad \text { (space-filling) Schramm-Loewner Evolution } \\
& \operatorname{SLE}_{\kappa=\frac{16}{3}}: \mathbb{R} \rightarrow \mathbb{C}
\end{array}
$$

[Schramm, Smirnov, Chelkak, Duminil-Copin, Garban, ...]

Statistical systems and trees?

- The 2D Ising model and many other critical statistical systems have associated pair of spanning trees. [Sheffield, Bernardi, Wilson, ...]
- Pair of spanning trees \leftrightarrow space-filling "peano" curve $\gamma: \mathbb{Z} \rightarrow\left(\frac{1}{2} \mathbb{Z}\right)^{2}$
- Both spins and peano curve posess conformal scaling limits:

$$
\begin{array}{cc}
\text { CFT }_{c=\frac{1}{2}} \quad \text { resp. } \quad \text { (space-filling) Schramm-Loewner Evolution } \\
& \operatorname{SLE}_{\kappa=\frac{16}{3}}: \mathbb{R} \rightarrow \mathbb{C}
\end{array}
$$

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{\mathrm{FK}}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara, Duminil-Copin,'11]
- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.

- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by
 coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by
 coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.
- Can retrieve the trees and grid by "gluing" the graph of $\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.
- Can retrieve the trees and grid by "gluing" the graph of $\left(R_{t}, L_{t}\right)$.

- Fortuin-Kasteleyn (FK) model on square grid $G \subset \mathbb{Z}^{2}, q \in[0,4)$:

$$
Z_{F K}=\sum_{E \subset G} x^{\# \text { edges }} q^{\# \text { clusters }}
$$

- Phase transition at $x=\sqrt{q}$. [Beffara,

Duminil-Copin,'11]

- Expected to be in universality class of CFT with $c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}$, $\cos ^{2}(4 \pi / \kappa)=q / 4$.
- For $q=2$ related to Ising model by coin-flip on every cluster.
- Draw dual clusters and loops separating them.
- Loops can be merged into space-filling curve $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$. [Sheffield]
- Configuration is encoded in the contour length functions $t \mapsto\left(R_{t}, L_{t}\right)$.
- Can retrieve the trees and grid by "gluing" the graph of $\left(R_{t}, L_{t}\right)$.

[Duplantier, Miller, Sheffield]

So trees $/\left(R_{t}, L_{t}\right)$ can describe the Ising model, but do they have a simple law?

So trees $/\left(R_{t}, L_{t}\right)$ can describe the Ising model, but do they have a simple law?

No, ...
... only when coupled to gravity
(in continuum limit)!

Liouville Quantum Gravity

- CFT of the Liouville field $\phi: \mathbb{C} \rightarrow \mathbb{R}$

$$
\gamma \in[0,2], \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b}
$$

$S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{g}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)$
[Polyakov, Knizhnik, Zamolodchikov, David, ...]

Liouville Quantum Gravity

- CFT of the Liouville field $\phi: \mathbb{C} \rightarrow \mathbb{R}$

$$
\gamma \in[0,2], \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b}
$$

$S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{\mathrm{~g}}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)$ [Polyakov, Knizhnik, Zamolodchikov, David, ...]

- Critical matter coupling determines

$$
\gamma^{2}=\frac{}{13-c+\sqrt{(25-c)(1-c)}}
$$

Liouville Quantum Gravity

- CFT of the Liouville field $\phi: \mathbb{C} \rightarrow \mathbb{R}$

$$
\gamma \in[0,2], \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b}
$$

$S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{\mathrm{~g}}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)$ [Polyakov, Knizhnik, Zamolodchikov, David, ...]

- Critical matter coupling determines

$$
\gamma^{2}=\frac{}{13-c+\sqrt{(25-c)(1-c)}}
$$

- Regularize $g_{a b}^{\epsilon}=e^{\gamma \phi_{\epsilon}} \hat{g}_{a b}$ and take $\epsilon \rightarrow 0$: random fractal volume measure

$$
\epsilon^{\gamma^{2} / 2} \sqrt{g^{\epsilon}} \mathrm{d}^{2} z \xrightarrow{\epsilon \rightarrow 0} \mathrm{~d} \mu_{\mathrm{LQG}}
$$

[Duplantier, Sheffield, David, Rhodes, Vargas, ...]

Liouville Quantum Gravity

－CFT of the Liouville field $\phi: \mathbb{C} \rightarrow \mathbb{R}$

$$
\gamma \in[0,2], \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b}
$$

$S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{\mathrm{~g}}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)$
［Polyakov，Knizhnik，Zamolodchikov，David，．．．］
－Critical matter coupling determines

$$
\gamma^{2}=\frac{}{13-c+\sqrt{(25-c)(1-c)}}
$$

－Regularize $g_{a b}^{\epsilon}=e^{\gamma \phi_{\epsilon}} \hat{g}_{a b}$ and take $\epsilon \rightarrow 0$ ： random fractal volume measure

$$
\epsilon^{\gamma^{2} / 2} \sqrt{g^{\epsilon}} \mathrm{d}^{2} z \xrightarrow{\epsilon \rightarrow 0} \mathrm{~d} \mu_{\mathrm{LQG}}
$$

［Duplantier，Sheffield，David，Rhodes，Vargas，．．．］
－ $\mathrm{d} \mu_{\mathrm{LQG}}$ is conformally invariant，and intimately related to SLE_{κ} with

$$
\kappa=\frac{16}{\gamma^{2}}, \quad c=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}
$$

Liouville Quantum Gravity

- SLE_{κ} can be parametrized by contour length functions $\left(\hat{L}_{\hat{t}}, \hat{R}_{\hat{t}}\right)$ as function of area \hat{t} w.r.t. Euclidean metric $\hat{g}_{a b}$.
- The law of $\left(\hat{L}_{\hat{t}}, \hat{R}_{\hat{t}}\right)$ is complicated, but reparametrizing in terms of $g_{a b}=e^{\gamma \phi} \hat{g}_{a b}$,
$\binom{R_{t}}{L_{t}} \stackrel{\operatorname{law}}{=}\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot \vec{X}_{t}, \alpha=\frac{\pi}{8}\left(\gamma^{2}-2\right)$, with \vec{X}_{t} a standard 2D Brownian motion! [Sheffield, Duplantier, Miller, Gwynne, ...]
$\mathrm{SLE}_{\kappa=16 / \gamma^{2}}+\mathrm{LQG}_{\gamma}=2 \mathrm{D}$ Brownian motion ${ }_{\alpha}$

Liouville Quantum Gravity

- SLE_{κ} can be parametrized by contour length functions $\left(\hat{L}_{\hat{t}}, \hat{R}_{\hat{t}}\right)$ as function of area \hat{t} w.r.t. Euclidean metric $\hat{g}_{a b}$.
- The law of $\left(\hat{L}_{\hat{t}}, \hat{R}_{\hat{t}}\right)$ is complicated, but reparametrizing in terms of $g_{a b}=e^{\gamma \phi} \hat{g}_{a b}$,
$\binom{R_{t}}{L_{t}} \stackrel{\operatorname{law}}{=}\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot \vec{X}_{t}, \quad \alpha=\frac{\pi}{8}\left(\gamma^{2}-2\right)$, with \vec{X}_{t} a standard 2D Brownian motion! [Sheffield, Duplantier, Miller, Gwynne, ...]
$\underbrace{\mathrm{SLE}_{\kappa=16 / \gamma^{2}}}_{\text {matter }}+\underbrace{\mathrm{LQG}_{\gamma}}_{\text {gravity }}=\underbrace{2 \mathrm{D} \text { Brownian motion }}_{\text {pair of trees }}$,

From trees back to 2D quantum gravity
$\binom{R_{t}}{L_{t}}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot \vec{X}_{t}$

From trees back to 2D quantum gravity $\quad\binom{R_{t}}{L_{t}}=\left(\begin{array}{c}\cos \alpha \sin \alpha \\ \sin \alpha \\ \cos \alpha\end{array}\right) \cdot \vec{X}_{t}$

From trees back to 2D quantum gravity
$\binom{R_{t}}{L_{t}}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot \vec{X}_{t}$

From trees back to 2D quantum gravity
$\binom{R_{t}}{L_{t}}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot \vec{X}_{t}$

$$
\alpha=\frac{\pi}{8}\left(\gamma^{2}-2\right)
$$

Uniformization
[Gwynne, Miller, Sheffield, '17]

From trees back to 2D quantum gravity
$\binom{R_{t}}{L_{t}}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot \vec{X}_{t}$

$\gamma=0$
$\gamma=1$

$\gamma=\sqrt{4 / 3} \quad \gamma=\sqrt{2}$

$$
\gamma=\sqrt{8 / 3}
$$

- 1-parameter family of scale-invariant geometries: UV fixed points of the renormalization group flow of 2D quantum gravity.

$\gamma=0$

- 1-parameter family of scale-invariant geometries: UV fixed points of the renormalization group flow of 2D quantum gravity.
- Fractal properties? Hausdorff dimension d_{γ} ?
- "Classical gravity": $\boldsymbol{d}_{\gamma=0}=2$
- "Pure gravity": $d_{\gamma=\sqrt{8 / 3}}=4$ [Ambjørn, Watabiki, '95] [Schaeffer, Chassaing, Le Gall, Miermont, ...].
- "Gravity coupled to matter": $d_{\gamma}=$?

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...
- ... and with recent rigorous bounds. [Ding, Gwynne, Pfeffer, Ang, '18-'19]

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...
- ... and with recent rigorous bounds. [Ding, Gwynne, Pfeffer, Ang, '18-'19]
- But something is off for small γ :
[Ding, Goswami, '16] $\quad d_{\gamma} \geq 2+C \frac{\gamma^{4 / 3}}{\log \gamma^{-1}}, \quad$ while $\quad d_{\gamma}^{W}=2+O\left(\gamma^{2}\right)$.

- Watabiki's conjecture [Watabiki, '93]: $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$
- Derivation not without issues, but agrees very well with numerical data...
- ... and with recent rigorous bounds. [Ding, Gwynne, Pfeffer, Ang, '18-'19]
- But something is off for small γ :
[Ding, Goswami, '16] $\quad d_{\gamma} \geq 2+C \frac{\gamma^{4 / 3}}{\log \gamma^{-1}}, \quad$ while $\quad d_{\gamma}^{W}=2+O\left(\gamma^{2}\right)$.
- Use tree encoding to obtain higher accuracy for $\gamma<\sqrt{8 / 3}$!

Bipolar-oriented triangulations

- Consider triangulation of S^{2} with an oriented root edge.

Bipolar-oriented triangulations

- Consider triangulation of S^{2} with an oriented root edge.
- Bipolar orientation: assignment of directions that is acyclic and has no sources or sinks except at root.

Bipolar-oriented triangulations

- Consider triangulation of S^{2} with an oriented root edge.
- Bipolar orientation: assignment of directions that is acyclic and has no sources or sinks except at root.
- Random geometry: sample uniformly among all bipolar-oriented triangulations with n triangles.

Bipolar-oriented triangulations

- Consider triangulation of S^{2} with an oriented root edge.
- Bipolar orientation: assignment of directions that is acyclic and has no sources or sinks except at root.
- Random geometry: sample uniformly among all bipolar-oriented triangulations with n triangles.
- In universality class of $\mathrm{LQG}_{\gamma=\sqrt{4 / 3}}$ [Kenyon, Miller, Sheffield, Wilson, '15]

Bipolar-oriented triangulations

- Consider triangulation of S^{2} with an oriented root edge.
- Bipolar orientation: assignment of directions that is acyclic and has no sources or sinks except at root.
- Random geometry: sample uniformly among all bipolar-oriented triangulations with n triangles.
- In universality class of $\mathrm{LQG}_{\gamma=\sqrt{4 / 3}}+\mathrm{SLE}_{12}$. [Kenyon, Miller, Sheffield, Wilson, '15]

- Similar encoding known for several other models.

- Similar encoding known for several other models.
- Lattice walks can be sampled in linear time: much more efficient than MCMC methods.

Finite-size scaling analysis of distances [Barkley, TB, '19]

Finite-size scaling analysis of distances [Barkley, TB, '19]

Finite-size scaling analysis of distances [Barkley, TB, '19]

Finite-size scaling analysis of distances [Barkley, TB, '19]

Finite-size scaling analysis of distances [Barkley, TB, '19]

Finite-size scaling analysis of distances [Barkley, TB, '19]

Finite-size scaling analysis of distances [Barkley, TB, '19]

New Hausdorff dimension estimates [Barkley, TB, '19]

New Hausdorff dimension estimates [Barkley, TB, '19]

- Significant deviation $(>20 \sigma)$ from $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$.

New Hausdorff dimension estimates [Barkley, TB, '19]

- Significant deviation $(>20 \sigma)$ from $d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}$.
- Perfectly consistent with $d_{\gamma}^{\mathrm{DG}}=2+\frac{\gamma^{2}}{2}+\frac{\gamma}{\sqrt{6}}$. [Ding, Gwynne, '18]

Approaching from Liouville side

- Volume measure in LQG_{γ} :

$$
\mathrm{d} \mu_{\mathrm{LQG}} \approx \sqrt{g} \mathrm{~d}^{2} z, \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b} .
$$

$$
S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{\mathrm{~g}}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

Approaching from Liouville side

- Volume measure in LQG_{γ} :

$$
\mathrm{d} \mu_{\mathrm{LQG}} \approx \sqrt{g} \mathrm{~d}^{2} z, \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b} .
$$

$$
S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{\mathrm{~g}}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

- Discretize ϕ on $w \times w$ square lattice:

$$
\int[\mathrm{d} \phi] e^{-\frac{1}{4 \pi} \sum_{x, y} \phi(x) \Delta_{x y} \phi(y)} \delta\left(\sum \phi(x)\right) .
$$

Approaching from Liouville side

- Volume measure in LQG_{γ} :

$$
\mathrm{d} \mu_{\mathrm{LQG}} \approx \sqrt{g} \mathrm{~d}^{2} z, \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b} .
$$

$$
S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{g}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

- Discretize ϕ on $w \times w$ square lattice:

$$
\int[\mathrm{d} \phi] e^{-\frac{1}{4 \pi} \sum_{x, y} \phi(x) \Delta_{x y} \phi(y)} \delta\left(\sum \phi(x)\right) .
$$

- Define discrete geodesic distance

$$
D_{w}(x, y)=\inf _{\Gamma: x \rightarrow y} \sum_{w \in \Gamma} e^{\xi \phi(w)}
$$

Approaching from Liouville side

- Volume measure in LQG_{γ} :

$$
\mathrm{d} \mu_{\mathrm{LQG}} \approx \sqrt{g} \mathrm{~d}^{2} z, \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b} .
$$

$$
S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{g}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

- Discretize ϕ on $w \times w$ square lattice:

$$
\int[\mathrm{d} \phi] e^{-\frac{1}{4 \pi} \sum_{x, y} \phi(x) \Delta_{x y} \phi(y)} \delta\left(\sum \phi(x)\right) .
$$

- Define discrete geodesic distance

$$
D_{w}(x, y)=\inf _{\Gamma: x \rightarrow y} \sum_{w \in \Gamma} e^{\xi \phi(w)} \stackrel{w \rightarrow \infty}{\sim} w^{1-\lambda}
$$

Approaching from Liouville side

- Volume measure in LQG_{γ} :

$$
\mathrm{d} \mu_{\mathrm{LQG}} \approx \sqrt{g} \mathrm{~d}^{2} z, \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b} .
$$

$$
S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{g}}\left(\hat{\mathrm{~g}}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

- Discretize ϕ on $w \times w$ square lattice:

$$
\int[\mathrm{d} \phi] e^{-\frac{1}{4 \pi} \sum_{x, y} \phi(x) \Delta_{x y} \phi(y)} \delta\left(\sum \phi(x)\right) .
$$

- Define discrete geodesic distance

$$
D_{w}(x, y)=\inf _{\Gamma: x \rightarrow y} \sum_{w \in \Gamma} e^{\xi \phi(w)} \stackrel{w \rightarrow \infty}{\sim} w^{1-\lambda}
$$

- Describes distances in LQG_{γ} only if
- $\xi=\gamma / d_{\gamma}$ (fractal dimension)
- $\lambda=1-\frac{2}{d_{\gamma}}-\frac{\gamma^{2}}{2 d_{\gamma}}$ (conformal invariance) [Ding, Gwynne, Ang, ...]

Approaching from Liouville side

- Volume measure in LQG_{γ} : $\mathrm{d} \mu_{\mathrm{LQG}} \approx \sqrt{g} \mathrm{~d}^{2} z, \quad g_{a b}=e^{\gamma \phi} \hat{g}_{a b}$.

$$
S[\phi]=\frac{1}{4 \pi} \int \mathrm{~d}^{2} z \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} \phi \partial_{b} \phi+Q_{\gamma} \hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

- Discretize ϕ on $w \times w$ square lattice:

$$
\int[\mathrm{d} \phi] e^{-\frac{1}{4 \pi} \sum_{x, y} \phi(x) \Delta_{x y} \phi(y)} \delta\left(\sum \phi(x)\right) .
$$

- Define discrete geodesic distance

$$
D_{w}(x, y)=\inf _{\Gamma: x \rightarrow y} \sum_{w \in \Gamma} e^{\xi \phi(w)} \stackrel{w \rightarrow \infty}{\sim} w^{1-\lambda}
$$

- Describes distances in LQG_{γ} only if
- $\xi=\gamma / d_{\gamma}$ (fractal dimension)
- $\lambda=1-\frac{2}{d_{\gamma}}-\frac{\gamma^{2}}{2 d_{\gamma}}$ (conformal invariance) [Ding, Gwynne, Ang, ...]
- Given pair (ξ, λ) can solve for $\left(\gamma, \boldsymbol{d}_{\gamma}\right)$!

Results from finite-size scaling in LQG_{γ} [Barkley, TB, '19]

Results from finite-size scaling in LQG_{γ} [Barkley, тв, '19]

Results from finite-size scaling in LQG_{γ} [Barkle,, тв, '19]

Results from finite-size scaling in LQG_{γ} [Barkley, TB, '19]

Results from finite-size scaling in LQG_{γ} [Barkley, TB, '19]

Wrapping up

- After 25 years Watabiki's conjecture is dead.

Long live Ding-Gwynne's, ... but for how long?

$$
d_{\gamma}^{W}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}
$$

- Building (quantum) geometries from scale-invariant trees is a very recent and fruitful perspective on 2D quantum gravity. How about higher dimensions?

