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Statistical systems and trees?

I The 2D Ising model and many other critical statistical systems have
associated pair of spanning trees. [Sheffield, Bernardi, Wilson, . . . ]

I Pair of spanning trees ↔ space-filling “peano” curve γ : Z→ ( 1
2Z)2

I Both spins and peano curve posess conformal scaling limits:
CFTc= 1

2
resp. (space-filling) Schramm-Loewner Evolution

SLEκ= 16
3

: R→ C
[Schramm, Smirnov, Chelkak, Duminil-Copin, Garban, ...]
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I Fortuin-Kasteleyn (FK) model on
square grid G ⊂ Z2, q ∈ [0, 4):

ZFK =
∑
E⊂G

x#edgesq#clusters

I Phase transition at x =
√
q. [Beffara,

Duminil-Copin,’11]

I Expected to be in universality class of

CFT with c = (3κ−8)(6−κ)
2κ ,

cos2(4π/κ) = q/4.

I For q = 2 related to Ising model by
coin-flip on every cluster.

I Draw dual clusters and loops
separating them.

I Loops can be merged into space-filling
curve γ : Z→ Z2. [Sheffield]

I Configuration is encoded in the
contour length functions t 7→ (R t , Lt).

I Can retrieve the trees and grid by
“gluing” the graph of (R t , Lt).
[Duplantier, Miller, Sheffield]
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So trees/(R t , Lt) can describe the Ising
model, but do they have a simple law?

No, . . .
. . . only when coupled to gravity

(in continuum limit)!
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Liouville Quantum Gravity

I CFT of the Liouville field φ : C→ R
γ ∈ [0, 2], gab = eγφĝab

S [φ] = 1
4π

∫
d2z
√
ĝ(ĝ ab∂aφ∂bφ+QγR̂φ+λeγφ)
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S [φ] = 1
4π

∫
d2z
√
ĝ(ĝ ab∂aφ∂bφ+ QγR̂φ+ λeγφ)

I SLEκ can be parametrized by contour
length functions (L̂t̂ , R̂t̂) as function of area
t̂ w.r.t. Euclidean metric ĝab.

I The law of (L̂t̂ , R̂t̂) is complicated, but
reparametrizing in terms of gab = eγφĝab,(
Rt

Lt

)
law
=

(
cosα sinα
sinα cosα

)
· ~Xt , α = π

8 (γ2− 2),

with ~Xt a standard 2D Brownian motion!
[Sheffield, Duplantier, Miller, Gwynne, . . . ]
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matter

+ LQGγ

︸ ︷︷ ︸
gravity

= 2D Brownian motionα
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pair of trees



Liouville Quantum Gravity
γ ∈ [0, 2], gab = eγφĝab
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I 1-parameter family of scale-invariant geometries: UV fixed points of
the renormalization group flow of 2D quantum gravity.

I Fractal properties? Hausdorff
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I “Classical gravity”: dγ=0 = 2
I “Pure gravity”: d

γ=
√

8/3
= 4
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Chassaing, Le Gall, Miermont, . . . ].
I “Gravity coupled to matter”: dγ =?
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I Watabiki’s conjecture [Watabiki, ’93]: dW
γ = 1 + γ2

4 +
√

(1 + γ2

4 )2 + γ2

I Derivation not without issues, but agrees very well with numerical
data. . .

I . . . and with recent rigorous bounds. [Ding, Gwynne, Pfeffer, Ang, ’18-’19]

I But something is off for small γ:

[Ding, Goswami, ’16] dγ ≥ 2 + C
γ4/3

log γ−1
, while dW

γ = 2 + O(γ2).

I Use tree encoding to obtain higher accuracy for γ <
√

8/3!
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Bipolar-oriented triangulations

I Consider triangulation of S2 with an oriented root edge.

I Bipolar orientation: assignment of directions that is acyclic and has no
sources or sinks except at root.

I Random geometry: sample uniformly among all bipolar-oriented
triangulations with n triangles.

I In universality class of LQG
γ=
√

4/3

+ SLE12.

[Kenyon, Miller, Sheffield,

Wilson, ’15]
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I Similar encoding known for several other models.

I Lattice walks can be sampled in linear time: much more efficient than
MCMC methods.
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New Hausdorff dimension estimates [Barkley, TB, ’19]

I Significant deviation (> 20σ) from dW
γ = 1 + γ2

4 +
√

(1 + γ2

4 )2 + γ2.

I Perfectly consistent with dDG
γ = 2 + γ2

2 + γ√
6

. [Ding, Gwynne, ’18]
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Approaching from Liouville side
I Volume measure in LQGγ :

dµLQG ≈
√
g d2z , gab = eγφĝab.

S [φ] = 1
4π

∫
d2z
√
ĝ(ĝ ab∂aφ∂bφ+ QγR̂φ+ λeγφ)

I Discretize φ on w × w square lattice:∫
[dφ]e−

1
4π

∑
x,y φ(x)∆xyφ(y)δ

(∑
φ(x)

)
.

I Define discrete geodesic distance

Dw (x , y) = inf
Γ:x→y

∑
w∈Γ

eξφ(w)

w→∞∼ w1−λ

I Describes distances in LQGγ only if
I ξ = γ/dγ (fractal dimension)

I λ = 1− 2
dγ
− γ2

2dγ
(conformal invariance)

[Ding, Gwynne, Ang, . . . ]

I Given pair (ξ, λ) can solve for (γ, dγ)!
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S [φ] = 1
4π

∫
d2z
√
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Wrapping up

I After 25 years Watabiki’s conjecture is dead.
Long live Ding-Gwynne’s, . . . but for how long?

I Building (quantum) geometries from scale-invariant trees is a very
recent and fruitful perspective on 2D quantum gravity. How about
higher dimensions?


