Quantum gravity in Paris, 21-03-2017

Escaping universality in two-dimensional quantum gravity

Timothy Budd

Based on joint work with Nicolas Curien, Cyril Marzouk.
IPhT, CEA, Université Paris-Saclay
timothy.budd@cea.fr, http://www.nbi.dk/~budd/

[Le Gall, Miermont, ...]

[Le Gall, Miermont, ...]

Brownian sphere

- It's a metric space, i.e. a set with a distance function $d(x, y)$
- Induced topology S^{2} almost surely.
- Genuinely fractal: $d_{H}=4$

Liouville Quantum Gravity

$$
g_{a b}=e^{\gamma \phi} \hat{g}_{a b} \quad Z=\int \mathcal{D} \phi e^{-S[\phi, \hat{g}]}
$$

$$
S[\phi, \hat{g}]=\int \mathrm{d}^{2} x \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} \phi \partial_{b} \phi+\hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

Planar maps

Planar maps

Liouville Quantum Gravity

$$
g_{a b}=e^{\gamma \phi} \hat{g}_{a b} \quad Z=\int \mathcal{D} \phi e^{-S[\phi, \hat{g}]}
$$

$$
S[\phi, \hat{g}]=\int \mathrm{d}^{2} x \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} \phi \partial_{b} \phi+\hat{R} \phi+\lambda e^{\gamma \phi}\right)
$$

Liouville Quantum Gravity

Planar maps with "matter"

$$
\begin{array}{r}
g_{a b}=e^{\gamma \phi} \hat{g}_{a b} \quad Z=\int \mathcal{D} \phi e^{-S[\phi, \hat{g}]} \\
S[\phi, \hat{g}]=\int \mathrm{d}^{2} x \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} \phi \partial_{b} \phi+\hat{R} \phi+\lambda e^{\gamma \phi}\right)
\end{array}
$$

Liouville Quantum Gravity

Planar maps with "matter"

$$
\begin{array}{r}
g_{a b}=e^{\gamma \phi} \hat{g}_{a b} \quad Z=\int \mathcal{D} \phi e^{-S[\phi, \hat{g}]} \\
S[\phi, \hat{g}]=\int \mathrm{d}^{2} x \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} \phi \partial_{b} \phi+\hat{R} \phi+\lambda e^{\gamma \phi}\right)
\end{array}
$$

- Take any random metric space on S^{2} (with no holes or atoms).

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
(1)
"Horizontal Markov property": Conditionally on L the ball and its complement are independent;

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
(1)
"Horizontal Markov property": Conditionally on L the ball and its complement are independent;
(2) "Scale invariance":
$L \rightarrow c L \quad \leftrightarrow \quad d \rightarrow c^{\alpha} d ;$

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
(1) "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
(2) "Scale invariance":
$L \rightarrow c L \quad \leftrightarrow \quad d \rightarrow c^{\alpha} d ;$
(3) "Vertical Markov property": geodesic slices of the complement are independent

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
(1) "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
(2) "Scale invariance":
$L \rightarrow c L \quad \leftrightarrow \quad d \rightarrow c^{\alpha} d ;$
(3) "Vertical Markov property": geodesic slices of the complement are independent

- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
(1) "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
(2) "Scale invariance":
$L \rightarrow c L \quad \leftrightarrow \quad d \rightarrow c^{\alpha} d ;$
(3) "Vertical Markov property": geodesic slices of the complement are independent

- Two ways to escape Brownian universality
- violate (1) e.g. by matter coupling, but studying geometry hard
- keep (1)+(2) but violate (3)
- Take any random metric space on S^{2} (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
(1) "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
(2) "Scale invariance":
$L \rightarrow c L \quad \leftrightarrow \quad d \rightarrow c^{\alpha} d ;$
(3) "Vertical Markov property": geodesic slices of the complement are independent

- Two ways to escape Brownian universality
- violate (1) e.g. by matter coupling, but studying geometry hard
- keep (1)+(2) but violate (3) e.g. by encouraging geodesics to meet in special points ("with exceptionally large negative curvature")

From Brownian to stable

Brownian sphere

From Brownian to stable

Relax "continuity", retain self-similarity \& Markov property

Brownian tree (Aldous' CRT)
\qquad stable trees

$?$
$?$

Brownian sphere \qquad

From Brownian to stable

Relax "continuity", retain self-similarity \& Markov property

$?$

Brownian sphere \qquad stable spheres

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over faces f.

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over faces f.
- \mathbf{q} admissible iff the partition function $Z=\sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the \mathbf{q}-Boltzmann planar map.

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over faces f.
- \mathbf{q} admissible iff the partition function $Z=\sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the \mathbf{q}-Boltzmann planar map.
- q critical iff admissible and increasing any q_{k} leads to $Z=\infty$.

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over faces f.
- \mathbf{q} admissible iff the partition function $Z=\sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the \mathbf{q}-Boltzmann planar map.
- q critical iff admissible and increasing any q_{k} leads to $Z=\infty$.
- if \mathbf{q} is finetuned to be critical and have asymptotics $\mathbf{q}_{k} \sim \mathrm{p} \cdot \mathrm{c}^{-k} \cdot k^{-a}, a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, then typical faces have degree distribution with heavy tail $\sim k^{-a}$ (infinite variance).

Boltzmann planar maps

- A planar map \mathfrak{m} is a multigraph embedded in S^{2} modulo deformation. In addition, rooted and bipartite.
- Given a sequence $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\mathbf{q}}(\mathfrak{m})=\prod_{f} q_{\operatorname{deg}(f) / 2}$ over faces f.
- \mathbf{q} admissible iff the partition function $Z=\sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m})<\infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the \mathbf{q}-Boltzmann planar map.
- q critical iff admissible and increasing any q_{k} leads to $Z=\infty$.
- if \mathbf{q} is finetuned to be critical and have asymptotics $\mathbf{q}_{k} \sim \mathrm{p} \cdot \mathrm{c}^{-k} \cdot k^{-a}, a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, then typical faces have degree distribution with heavy tail $\sim k^{-a}$ (infinite variance).
- The dual map \mathfrak{m}^{\dagger} has vertices of high degree.

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]

$$
r=2
$$

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$$
r=2
$$

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$$
r=2
$$

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$$
r=2
$$

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$$
r=2
$$

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$r=2$

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$r=2$

\equiv

Infinite Boltzmann planar maps

- q-BPMs are small, so we first condition them to have a large fixed number of vertices N.
- As $N \rightarrow \infty$ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, '14] [Stephenson, '14]
- We will study the geodesic ball of radius r on the dual \mathfrak{m}^{\dagger}, consisting of edges with one endpoint at $<r$.

$r=2$

\equiv

Simulations

$$
a=2.45
$$

Simulations

$$
a=2.35
$$

Simulations

$$
a=2.3
$$

Simulations

$$
a=2.3
$$

Simulations

$$
a=2.0
$$

Simulations

$$
a=2.0
$$

Simulations

$$
a=1.8
$$

Simulations

$$
a=1.8
$$

Simulations

$$
a=1.7
$$

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

Peeling by layers of a \mathbf{q}-IBPM

- Horizontal Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$. (A discrete version of condition (1)!)

Peeling by layers of a \mathbf{q}-IBPM

- Horizontal Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$. (A discrete version of condition (1)!)
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of direction of exploration.

Peeling by layers of a \mathbf{q}-IBPM

- Horizontal Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$. (A discrete version of condition (1)!)
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of direction of exploration.
- Law is very simple: random walk with step prob $\nu_{\mathbf{q}}(k)$ conditioned to stay positive.

$$
\mathbb{P}\left(P_{i+1}=P_{i}+k\right)=\frac{h^{\uparrow}\left(P_{i}+k\right)}{h^{\uparrow}\left(P_{i}\right)} \nu_{\mathbf{q}}(k) \quad h^{\uparrow}(I)=2 / \cdot 4^{-1}\binom{2 I}{I}
$$

Peeling by layers of a \mathbf{q}-IBPM

- Horizontal Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$. (A discrete version of condition (1)!)
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of direction of exploration.
- Law is very simple: random walk with step prob $\nu_{\mathbf{q}}(k)$ conditioned to stay positive.

$$
\mathbb{P}\left(P_{i+1}=P_{i}+k\right)=\frac{h^{\uparrow}\left(P_{i}+k\right)}{h^{\uparrow}\left(P_{i}\right)} \nu_{\mathbf{q}}(k) \quad h^{\uparrow}(I)=2 / \cdot 4^{-1}\binom{2 I}{I}
$$

- In fact $\left\{\nu(k): h^{\uparrow}\right.$ does this job $\} \leftrightarrow\{\mathbf{q}$ critical $\}$. [TB,'15]

Peeling by layers of a q-IBPM

- When $\mathbf{q}_{k} \sim \mathrm{p} \cdot \mathrm{c}^{-k} \cdot \mathrm{k}^{-a}$, $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$ then $\nu(k)$ is of form:

- Horizontal Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter $2 P_{i}$. (A discrete version of condition (1)!)
- In particular, $\left(P_{i}\right)_{i}$ is Markov and independent of direction of exploration.
- Law is very simple: random walk with step prob $\nu_{\mathbf{q}}(k)$ conditioned to stay positive.

$$
\mathbb{P}\left(P_{i+1}=P_{i}+k\right)=\frac{h^{\uparrow}\left(P_{i}+k\right)}{h^{\uparrow}\left(P_{i}\right)} \nu_{\mathbf{q}}(k) \quad h^{\uparrow}(I)=2 l \cdot 4^{-1}\binom{2 /}{l}
$$

- In fact $\left\{\nu(k): h^{\uparrow}\right.$ does this job $\} \leftrightarrow\{\mathbf{q}$ critical $\}$. [TB, $\left.{ }^{\prime} 15\right]$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

$$
r+1
$$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
Steps to complete layer of perim. P	$\approx P^{a-1}$	$\approx \frac{P}{\log P}$	$\approx P$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
Steps to complete layer of perim. P	$\approx P^{a-1}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance after n steps	\ldots	$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{a-2}{a-1}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
Steps to complete layer of perim. P	$\approx P^{a-1}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance after n steps	\cdots	$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{a-2}{a-1}}$
P^{\prime} / P	$\approx \underset{(\mathbb{E} \mathcal{Z}>0)}{ }$	≈ 1	≈ 1

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
Steps to complete layer of perim. P	$\approx P^{a-1}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance after n steps	\ldots	$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{a-2}{a-1}}$
Perimeter at distance r	$\approx e^{\mathcal{Z}}$	≈ 1	≈ 1

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
Steps to complete layer of perim. P	$\approx P^{a-1}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance after n steps		$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{a-2}{a-1}}$
P^{\prime} / P	$\underset{(\mathbb{E Z}>0)}{\approx}$	≈ 1	≈ 1
Perimeter at distance r	$\approx e^{c r}$	$\sim e^{\pi \sqrt{2} \sqrt{r}}$	$\approx r^{\frac{1}{a-2}}$
Volume of ball of radius r			

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$\frac{3}{2}<a<2$	$a=2$	$2<a<\frac{5}{2}$
Perimeter after n steps	$\approx n^{\frac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
Steps to complete layer of perim. P	$\approx P^{a-1}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance after n steps		$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{a-2}{a-1}}$
P^{\prime} / P	$\underset{(\mathbb{E} \mathcal{Z}>0)}{\approx}$	≈ 1	≈ 1
Perimeter at distance r	$\approx e^{c r}$	$\approx e^{\pi \sqrt{2} \sqrt{r}}$	$\approx r^{\frac{1}{a-2}}$
Volume of ball of radius r	$\left\langle e^{c^{\prime} r}\right.$	$\int e^{\frac{3 \pi \sqrt{r}}{\sqrt{2}}}$	$r^{\frac{a-\frac{1}{2}}{a-2}}(r$
Scaling limit			

Geodesics

- Indeed geodesics like to merge in vertices of high degree! Hence not Brownian geometry!
- If scaling limit exists, $d_{H}=\frac{a-\frac{1}{2}}{a-2}>4$.

Spectral properties

- The simple random walk on \mathfrak{m} (with large degree faces) is always recurrent [Björnberg, Stefánsson]

Spectral properties

- The simple random walk on \mathfrak{m} (with large degree faces) is always recurrent [Björnberg, Stefánsson]

Spectral properties

- The simple random walk on \mathfrak{m} (with large degree faces) is always recurrent [Björnberg, Stefánsson]
- We can prove transience on \mathfrak{m}^{\dagger} for $a \in\left(\frac{3}{2}, 2\right)$ [TB, Curien, '16]

Spectral properties

- The simple random walk on \mathfrak{m} (with large degree faces) is always recurrent [Björnberg, Stefánsson]
- We can prove transience on \mathfrak{m}^{\dagger} for $a \in\left(\frac{3}{2}, 2\right)$ [TB, Curien, '16]
- Simulations suggest: transience for

Spectral properties

- The simple random walk on \mathfrak{m} (with large degree faces) is always recurrent [Björnberg, Stefánsson]
- We can prove transience on \mathfrak{m}^{\dagger} for $a \in\left(\frac{3}{2}, 2\right)$ [TB, Curien, '16]
- Simulations suggest: transience for
 $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, with $d_{S} \approx \frac{3 a-3 / 2}{2 a-2}>2$.

Questions

- Does "stable geometry" with $a \in\left(2, \frac{5}{2}\right)$ form a new family of universality classes extending Brownian geometry ($a \rightarrow \frac{5}{2}$)?
- Gromov-Hausdorff convergence: does the scaling limit exist in the sense of metric spaces?
- Can the uniqueness conditions of Miller-Sheffield be weakened to single out the family of stable spheres?

Questions

- Does "stable geometry" with $a \in\left(2, \frac{5}{2}\right)$ form a new family of universality classes extending Brownian geometry ($a \rightarrow \frac{5}{2}$)?
- Gromov-Hausdorff convergence: does the scaling limit exist in the sense of metric spaces?
- Can the uniqueness conditions of Miller-Sheffield be weakened to single out the family of stable spheres?

Thanks for your attention!

