
Quantum gravity in Paris, 21-03-2017

Escaping universality in
two-dimensional quantum gravity

Timothy Budd

Based on joint work with Nicolas Curien, Cyril Marzouk.

IPhT, CEA, Université Paris-Saclay
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It's a metric space, i.e. a set with 
a distance function 

Induced topology       almost surely. 

Genuinely fractal:  
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I Take any random metric space on
S2 (with no holes or atoms).

I Then by [Miller, Sheffield, ’15] it is the
Brownian sphere iff for two random
points (and appropriate random
volume):

(1) “Horizontal Markov property”:
Conditionally on L the ball and its
complement are independent;

(2) “Scale invariance”:
L → cL ↔ d → cαd ;

(3) “Vertical Markov property”:
geodesic slices of the complement
are independent

I Two ways to escape Brownian universality
I violate (1) e.g. by matter coupling, but studying geometry hard
I keep (1)+(2) but violate (3)

e.g. by encouraging geodesics to meet
in special points (“with exceptionally large negative curvature”)
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Boltzmann planar maps
I A planar map m is a multigraph embedded in S2 modulo

deformation. In addition, rooted and bipartite.

I Given a sequence q = (q1, q2, . . .) in [0,∞), define weight of m to
be the product wq(m) =

∏
f qdeg(f )/2 over faces f .

I q admissible iff the partition function Z =
∑

m wq(m) <∞. Then
wq gives rise to probability measure: the q-Boltzmann planar map.

I q critical iff admissible and increasing any qk leads to Z =∞.
I if q is finetuned to be critical and have asymptotics

qk ∼ p · c−k · k−a, a ∈ ( 3
2 ,

5
2 ), then typical faces have degree

distribution with heavy tail ∼ k−a (infinite variance).
I The dual map m† has vertices of high degree.
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Infinite Boltzmann planar maps

I q-BPMs are small, so we first condition them to have a large fixed
number of vertices N.

I As N →∞ there is a well-defined “local” limit, the Infinite BPM, in
the sense that the law of the neighbourhood of the root converges.
[Björnberg, Stefánsson, ’14] [Stephenson, ’14]

I We will study the geodesic ball of radius r on the dual m†,
consisting of edges with one endpoint at < r .

r = 2
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Peeling by layers of a q-IBPM

I Horizontal Markov property: unexplored region after i steps is
distributed as a q-IBPM with boundary length equal to perimeter
2Pi . (A discrete version of condition (1)!)

I In particular, (Pi )i is Markov and independent of direction of
exploration.

I Law is very simple: random walk with step prob νq(k) conditioned
to stay positive.

P(Pi+1 = Pi + k) =
h↑(Pi + k)

h↑(Pi )
νq(k) h↑(l) = 2l · 4−l

(
2l

l

)
I In fact {ν(k) : h↑ does this job } ↔ {q critical }. [TB,’15]
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Peeling by layers of a q-IBPM

I When qk ∼ p · c−k · k−a,
a ∈ ( 3

2 ,
5
2 ) then ν(k) is of form:
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distributed as a q-IBPM with boundary length equal to perimeter
2Pi . (A discrete version of condition (1)!)

I In particular, (Pi )i is Markov and independent of direction of
exploration.
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to stay positive.
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Scaling limit ?????
?







Geodesics

I Indeed geodesics like to merge in vertices of high degree! Hence not
Brownian geometry!

I If scaling limit exists, dH =
a− 1

2

a−2 > 4.



Spectral properties
I The simple random walk on m (with

large degree faces) is always recurrent
[Björnberg, Stefánsson]

I We can prove transience on m† for
a ∈ ( 3

2 , 2) [TB, Curien, ’16]

I Simulations suggest: transience for

a ∈ ( 3
2 ,

5
2 )

, with dS ≈ 3a−3/2
2a−2 > 2.
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large degree faces) is always recurrent
[Björnberg, Stefánsson]

I We can prove transience on m† for
a ∈ ( 3

2 , 2) [TB, Curien, ’16]

I Simulations suggest: transience for

a ∈ ( 3
2 ,

5
2 ), with dS ≈ 3a−3/2

2a−2 > 2.



Questions

I Does “stable geometry” with a ∈ (2, 5
2 ) form a new family of

universality classes extending Brownian geometry (a→ 5
2 )?

I Gromov-Hausdorff convergence: does the scaling limit exist in the
sense of metric spaces?

I Can the uniqueness conditions of Miller–Sheffield be weakened to
single out the family of stable spheres?

Thanks for your attention!
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