Quantum gravity in Paris, 21-03-2017

Escaping universality in two-dimensional quantum gravity

Timothy Budd

Based on joint work with Nicolas Curien, Cyril Marzouk. IPhT, CEA, Université Paris-Saclay timothy.budd@cea.fr, http://www.nbi.dk/~budd/

[Le Gall, Miermont, ...]

э

<ロト <回ト < 注ト < 注ト

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

[Le Gall, Miermont, ...]

0 $\sqrt{\frac{8}{3}}$ 2

Planar maps

- 日本 - 1 日本 - 1 日本 - 1 日本

▲□▶▲圖▶★圖▶★圖▶ ■ のへで

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 重|||の��

 Take any random metric space on S² (with no holes or atoms).

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
 - "Horizontal Markov property": Conditionally on L the ball and its complement are independent;

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
 - "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
 - (2) "Scale invariance":

 $L \rightarrow cL \quad \leftrightarrow \quad d \rightarrow c^{\alpha}d;$

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
 - "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
 - (2) "Scale invariance":

 $L
ightarrow cL \quad \leftrightarrow \quad d
ightarrow c^{lpha} d;$

(3) "Vertical Markov property": geodesic slices of the complement are independent

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
 - "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
 - (2) "Scale invariance":

 $L \rightarrow cL \quad \leftrightarrow \quad d \rightarrow c^{lpha} d;$

(3) "Vertical Markov property": geodesic slices of the complement are independent

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
 - "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
 - (2) "Scale invariance":

$$L
ightarrow cL \quad \leftrightarrow \quad d
ightarrow c^{lpha} d;$$

- (3) "Vertical Markov property": geodesic slices of the complement are independent
- ► Two ways to escape Brownian universality
 - violate (1) e.g. by matter coupling, but studying geometry hard
 - keep (1)+(2) but violate (3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Take any random metric space on S² (with no holes or atoms).
- Then by [Miller, Sheffield, '15] it is the Brownian sphere iff for two random points (and appropriate random volume):
 - "Horizontal Markov property": Conditionally on L the ball and its complement are independent;
 - (2) "Scale invariance":

 $L
ightarrow cL \quad \leftrightarrow \quad d
ightarrow c^{lpha} d;$

(3) "Vertical Markov property": geodesic slices of the complement are independent

- Two ways to escape Brownian universality
 - violate (1) e.g. by matter coupling, but studying geometry hard
 - keep (1)+(2) but violate (3) e.g. by encouraging geodesics to meet in special points ("with exceptionally large negative curvature")

From Brownian to stable

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Brownian sphere

From Brownian to stable

Relax "continuity", retain self-similarity & Markov property

From Brownian to stable

Relax "continuity", retain self-similarity & Markov property

- Given a sequence q = (q₁, q₂, ...) in [0, ∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over faces f.
- **q** admissible iff the partition function $Z = \sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the **q**-Boltzmann planar map.

- **q** admissible iff the partition function $Z = \sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the **q**-Boltzmann planar map.
- **q** critical iff admissible and increasing any q_k leads to $Z = \infty$.

- ► A planar map m is a multigraph embedded in S² modulo deformation. In addition, rooted and bipartite.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over faces f.
- ▶ **q** admissible iff the partition function $Z = \sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the **q**-Boltzmann planar map.
- **q** critical iff admissible and increasing any q_k leads to $Z = \infty$.
- if q is finetuned to be critical and have asymptotics
 q_k ~ p ⋅ c^{-k} ⋅ k^{-a}, a ∈ (³/₂, ⁵/₂), then typical faces have degree distribution with heavy tail ~ k^{-a} (infinite variance).

- ► A planar map m is a multigraph embedded in S² modulo deformation. In addition, rooted and bipartite.
- Given a sequence q = (q₁, q₂, ...) in [0,∞), define weight of m to be the product w_q(m) = ∏_f q_{deg(f)/2} over faces f.
- **q** admissible iff the partition function $Z = \sum_{\mathfrak{m}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$. Then $w_{\mathbf{q}}$ gives rise to probability measure: the **q**-Boltzmann planar map.
- **q** critical iff admissible and increasing any q_k leads to $Z = \infty$.
- if q is finetuned to be critical and have asymptotics
 q_k ~ p ⋅ c^{-k} ⋅ k^{-a}, a ∈ (³/₂, ⁵/₂), then typical faces have degree distribution with heavy tail ~ k^{-a} (infinite variance).
- > The dual map \mathfrak{m}^{\dagger} has vertices of high degree.

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]

r = 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

r = 2

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

r = 2

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

r = 2

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

r = 2

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

Infinite Boltzmann planar maps

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

Infinite Boltzmann planar maps

- ► **q**-BPMs are small, so we first condition them to have a large fixed number of vertices *N*.
- ► As N → ∞ there is a well-defined "local" limit, the Infinite BPM, in the sense that the law of the neighbourhood of the root converges. [Björnberg, Stefánsson, '14] [Stephenson, '14]
- ▶ We will study the geodesic ball of radius r on the dual m[†], consisting of edges with one endpoint at < r.</p>

Simulations a = 2.3

・ロト ・四ト ・ヨト ・ヨト æ

a = 1.8

a = 1.8

a = 1.7

Peeling by layers of a $\ensuremath{\textbf{q}}\xspace$ -IBPM

|▲□▶|▲□▶|▲三▶|▲三▶||三|||のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

<ロト <回ト < 注ト < 注ト

æ

Peeling by layers of a $\ensuremath{\textbf{q}}\xspace$ -IBPM

・ロト ・聞ト ・ヨト ・ヨト

æ

 Horizontal Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i. (A discrete version of condition (1)!)

- Horizontal Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i. (A discrete version of condition (1)!)
- ► In particular, (P_i)_i is Markov and independent of direction of exploration.

- Horizontal Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i. (A discrete version of condition (1)!)
- ► In particular, (P_i)_i is Markov and independent of direction of exploration.
- Law is very simple: random walk with step prob ν_q(k) conditioned to stay positive.

$$\mathbb{P}(P_{i+1} = P_i + k) = \frac{h^{\uparrow}(P_i + k)}{h^{\uparrow}(P_i)} \nu_{\mathbf{q}}(k) \qquad h^{\uparrow}(I) = 2I \cdot 4^{-I} \binom{2I}{I}$$

- Horizontal Markov property: unexplored region after *i* steps is distributed as a q-IBPM with boundary length equal to *perimeter* 2P_i. (A discrete version of condition (1)!)
- ► In particular, (P_i)_i is Markov and independent of direction of exploration.
- Law is very simple: random walk with step prob ν_q(k) conditioned to stay positive.

$$\mathbb{P}(P_{i+1}=P_i+k)=\frac{h^{\uparrow}(P_i+k)}{h^{\uparrow}(P_i)}\nu_{\mathbf{q}}(k) \qquad h^{\uparrow}(l)=2l\cdot 4^{-l}\binom{2l}{l}$$

▶ In fact $\{\nu(k): h^{\uparrow} \text{ does this job }\} \leftrightarrow \{\mathbf{q} \text{ critical }\}$. [TB, '15]

- Horizontal Markov property: unexplored region after i steps is distributed as a **q**-IBPM with boundary length equal to *perimeter* $2P_i$. (A discrete version of condition (1)!)
- In particular, $(P_i)_i$ is Markov and independent of direction of exploration.
- Law is very simple: random walk with step prob $\nu_{\mathbf{q}}(k)$ conditioned to stay positive.

$$\mathbb{P}(P_{i+1} = P_i + k) = \frac{h^{\uparrow}(P_i + k)}{h^{\uparrow}(P_i)}\nu_{\mathbf{q}}(k) \qquad h^{\uparrow}(I) = 2I \cdot 4^{-I} \binom{2I}{I}$$

► In fact $\{\nu(k): h^{\uparrow} \text{ does this job }\} \leftrightarrow \{\mathbf{q} \text{ critical }\}$. [TB,'15]

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	pprox n	$pprox n^{rac{1}{a-1}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after <i>n</i> steps	$pprox n^{rac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after <i>n</i> steps	$pprox n^{rac{1}{a-1}}$	pprox n	$pprox n^{rac{1}{a-1}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

		$2 < a < \frac{5}{2}$		
$\approx n^{\frac{1}{a-1}}$	pprox n	$\approx n^{\frac{1}{a-1}}$		
r+1				
	$\approx n^{\frac{1}{a-1}}$			

(ロ)、(型)、(E)、(E)、 E) のQの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
$pprox n^{rac{1}{a-1}}$	pprox n	$pprox n^{rac{1}{a-1}}$
	1	-

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	pprox n	$pprox n^{rac{1}{a-1}}$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	pprox n	$\approx n^{\frac{1}{a-1}}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	pprox n	$\approx n^{\frac{1}{a-1}}$
•		•	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	pprox n	$\approx n^{\frac{1}{a-1}}$
		Ţ	
			•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	$\approx n$	$\approx n^{\frac{1}{a-1}}$
••		•	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

'MPTOTIC growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]					
	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$		
Perimeter after <i>n</i> steps	$pprox n^{rac{1}{a-1}}$	$\approx n$	$pprox n^{rac{1}{a-1}}$		
Steps to complete layer of perim. ${\cal P}$	$\approx P^{a-1}$	$pprox rac{P}{\log P}$	$\approx P$		

	$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
Perimeter after n steps	$pprox n^{rac{1}{a-1}}$	$\approx n$	$pprox n^{rac{1}{a-1}}$
Steps to complete layer of perim. ${\cal P}$	$\approx P^{a-1}$	$pprox rac{P}{\log P}$	$\approx P$
Distance after $n { m steps}$		$\sum_{i=0}^{n} \frac{\log P_i}{P_i} \approx (\log n)^2$	$\sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{a-2}{a-1}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

		$\frac{3}{2} < a < 2$	a=2	$2 < a < \frac{5}{2}$
af	Perimeter ter <i>n</i> steps	$pprox n^{rac{1}{a-1}}$	$\approx n$	$pprox n^{rac{1}{a-1}}$
	to complete of perim. P	$\approx P^{a-1}$	$pprox rac{P}{\log P}$	$\approx P$
aft	Distance er n steps		$\sum_{i=0}^{n} \frac{\log P_i}{P_i} \approx (\log n)^2$	$\sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{a-2}{a-1}}$
	P'/P	$\mathop{pprox}_{(\mathbb{E}\mathcal{Z}>0)}\!$	≈ 1	≈ 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\frac{3}{2} < a < 2$ $2 < a < \frac{5}{2}$ a=2 $\approx n^{\frac{1}{a-1}}$ Perimeter $\approx n^{\frac{1}{a-1}}$ $\approx n$ after *n* steps $\approx P^{a-1}$ $\approx \frac{P}{\log P}$ Steps to complete $\approx P$ layer of perim. P $\sum_{i=0}^n \frac{\log P_i}{P_i} \approx (\log n)^2 \Bigg| \quad \sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{a-2}{a-1}}$ Distance after *n* steps ≈ 1 $\underset{(\mathbb{E}\mathcal{Z} > 0)}{\approx} e^{\mathcal{Z}}$ ≈ 1 P'/P $\approx r^{\frac{1}{a-2}}$ $\approx e^{cr}$ $\approx e^{\pi\sqrt{2}\sqrt{r}}$ Perimeter at distance rr

 $2 < a < \frac{5}{2}$ $\frac{3}{2} < a < 2$ a=2 $pprox n^{rac{1}{a-1}}$ $\approx n^{\frac{1}{a-1}}$ Perimeter $\approx n$ after *n* steps $pprox P^{a-1}$ $\approx \frac{P}{\log P}$ Steps to complete $\approx P$ layer of perim. PDistance $\sum_{i=0}^n \frac{\log P_i}{P_i} \approx (\log n)^2 \Bigg| \quad \sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{a-2}{a-1}}$ after *n* steps ≈ 1 $\underset{(\mathbb{E}\mathcal{Z} > 0)}{\approx} e^{\mathcal{Z}}$ ≈ 1 P'/P $\approx e^{cr}$ $\approx e^{\pi\sqrt{2}\sqrt{r}}$ $\approx r^{\frac{1}{a-2}}$ Perimeter at distance rVolume of ball c'rof radius rr

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Geodesics

Indeed geodesics like to merge in vertices of high degree! Hence not Brownian geometry!

• If scaling limit exists,
$$d_H = \frac{a - \frac{1}{2}}{a - 2} > 4$$
.

 The simple random walk on m (with large degree faces) is always recurrent [Björnberg, Stefánsson]

・ロト ・ 一 ト ・ ヨ ト

 The simple random walk on m (with large degree faces) is always recurrent [Björnberg, Stefánsson]

 The simple random walk on m (with large degree faces) is always recurrent [Björnberg, Stefánsson]

• We can prove transience on \mathfrak{m}^{\dagger} for $a \in \left(\frac{3}{2}, 2\right)$ [TB, Curien, '16]

- The simple random walk on m (with large degree faces) is always recurrent [Björnberg, Stefánsson]
- We can prove transience on \mathfrak{m}^{\dagger} for $a \in \left(\frac{3}{2}, 2\right)$ [TB, Curien, '16]
- Simulations suggest: transience for $a \in \left(\frac{3}{2}, \frac{5}{2}\right)$

- The simple random walk on m (with large degree faces) is always recurrent [Björnberg, Stefánsson]
- We can prove transience on \mathfrak{m}^{\dagger} for $a \in \left(\frac{3}{2}, 2\right)$ [TB, Curien, '16]
- ▶ Simulations suggest: transience for $a \in (\frac{3}{2}, \frac{5}{2})$, with $d_S \approx \frac{3a-3/2}{2a-2} > 2$.

Questions

- Does "stable geometry" with a ∈ (2, ⁵/₂) form a new family of universality classes extending Brownian geometry (a → ⁵/₂)?
- Gromov-Hausdorff convergence: does the scaling limit exist in the sense of metric spaces?
- Can the uniqueness conditions of Miller–Sheffield be weakened to single out the family of stable spheres?

Questions

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

- Does "stable geometry" with a ∈ (2, ⁵/₂) form a new family of universality classes extending Brownian geometry (a → ⁵/₂)?
- Gromov-Hausdorff convergence: does the scaling limit exist in the sense of metric spaces?
- Can the uniqueness conditions of Miller–Sheffield be weakened to single out the family of stable spheres?

Thanks for your attention!