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Planar maps coupled to a rigid O(n) loop model
I Planar map: planar (multi)graph properly

embedded in R2 viewed up to continuous
deformations.

Rooted, perimeter 2p fixed.
Bipartite for simplicity.

I O(n) loop model: add disjoint loops that
intersect quadrangles rigidly. Partition
function W (p) =

∑
m of perim 2p wn,g ,q(m),

wn,g ,q(m) = n# g#
∏

reg. faces f

q deg(f )
2

for n, g , q1, q2, q3, . . . ∈ R+ fixed.

I For n ∈ (0, 2) the model has four phases as
p →∞: [Borot, Bouttier, Guitter, ’11] [TB, Chen, ’18]

I subcritical: treelike/only see boundary
I pure gravity: microscopic loops
I dilute critical: self-avoiding loops
I dense critical: self-touching loops
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Simulation: dilute quadrangulation (q2 > 0,q1 = q3 = . . . = 0),
p = 50, n = 0.6
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First-passage percolation

I Assign i.i.d. Exp(1) lengths to dual edges, but 0 to loop-edges.

Theorem (TB, ’18)

In the dilute phase the fpp-distance dfpp between the boundary and a
random vertex of a loop-decorated map of perimeter 2p satisfies:

dfpp
c pb

(d)−−−→
p→∞

R, b = 1
π arccos( n

2 ) ∈ (0, 1
2 ],

with R a random variable with explicit distribution depending on b.
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I First explicitly evaluated distance statistic in a model of random
planar maps coupled to critical matter.

I Consistent with the existence of a continuum limit with Hausdorff
dimensions dH = 2/b.

I The result of contracting all loops of a LQG√κ+CLEκ, κ = 4
1+b ?

I Bound on Hausdorff dimension of LQGγ : dH ≤ 2γ2

4−γ2 , γ ∈ [ 8
3 , 2).
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I Define the ball of radius t of m:

I Example of a peeling exploration of m with three types of events.

I Due to exponential law, events occur uniformly on the hole
boundaries, and ∆t = Exp(1/|hole boundaries|).
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Peeling exploration
I Introduced in [Watabiki, ’95], it led to the first derivation of a distance

statistic in random triangulations [Ambjørn, Watabiki, ’95].

I Although regarded heuristic at first, their results are exact if
interpreted in terms of first-passage percolation [Ambjørn, TB, ’14].

I Important tool to study variety of properties of Brownian geometry
[Angel, Curien, Benjamini, Le Gall, TB, Richier, Marzouk, . . . ]
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Targeted peeling exploration of map with O(n) model

I Mark a random vertex.

I Fix an exploration algorithm.

I Explore by 3 types of events:
I Reveal new face.
I Reveal new loop.
I Glue pair of edges.

I Track half-length of frontier
and # of loops crossed.

I (Pi ,Ni ) is a Markov process
independent of peel algorithm!

I If we know its law, can
compute dfpp =

∑
i
Exp(1)

2Pi
.
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Ricocheted random walk
I Let (Si ) be a random walk with increments of law ν : Z→ [0, 1].

I For p ∈ [0, 1], define p-ricocheted random walk (S∗i ):

I absorb in Z<0 with probability 1− p;
I ricochet to absolute value with probability p;

Ni+1 = Ni + 1;

I absorb at 0 with probability 1.

Proposition (TB,’18)

For (q, g , n) in the dilute phase: there exists a law ν such that

(Pi ,Ni )
(d)
= (S∗i ,#ricochets) conditioned to be absorbed at 0, with

p = n
2 , ν(k) =

{
g−kqk+1 + n gk+2W (k+1) k ≥ 0

2 g−kW (−k−1) k < 0.
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Theorem (TB,’18)

In the non-generic critical phase, the perimeter process (Pi )i≥0 of a
loop-decorated map of boundary length 2p satisfies the convergence(

Pbcp1+btc

p

)
(d)−−−→

p→∞
(Xt)t≥0, b = 1

π arccos( n
2 ) ∈ (0, 1

2 ).

I (Xt) is a positive︸ ︷︷ ︸
Xt>0

self-similar︸ ︷︷ ︸
X
λ1+bt

(d)
=λXt

Markov process︸ ︷︷ ︸
memoryless

(pssMp)

I It has an explicit description as eLévy process, in particular

E
[∫ ∞

0

X γ
t dt

]
=

π

Γ(2 + 3b + γ)Γ(−γ)( n
2 + cos(πγ + 2πb))

.
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E
[∫ ∞

0

X γ
t dt

]
=

π

Γ(2 + 3b + γ)Γ(−γ)( n
2 + cos(πγ + 2πb))

.



Theorem (TB,’18)

In the non-generic critical phase, the perimeter process (Pi )i≥0 of a
loop-decorated map of boundary length 2p satisfies the convergence(

Pbcp1+btc

p

)
(d)−−−→

p→∞
(Xt)t≥0, b = 1

π arccos( n
2 ) ∈ (0, 1

2 ).

I (Xt) is a positive︸ ︷︷ ︸
Xt>0

self-similar︸ ︷︷ ︸
X
λ1+bt

(d)
=λXt

Markov process︸ ︷︷ ︸
memoryless

(pssMp)

I It has an explicit description as eLévy process, in particular
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E
[∫ ∞

0

X γ
t dt

]
=

π

Γ(2 + 3b + γ)Γ(−γ)( n
2 + cos(πγ + 2πb))

.



Theorem (TB,’18)

In the non-generic critical phase, the perimeter process (Pi )i≥0 of a
loop-decorated map of boundary length 2p satisfies the convergence(

Pbcp1+btc

p

)
(d)−−−→

p→∞
(Xt)t≥0, b = 1

π arccos( n
2 ) ∈ (0, 1

2 ).

dfpp
c pb

(d)−−−→
p→∞

R =

∫ ∞
0

dt

Xt
.

I Recall dfpp =
∑

i
Exp(1)

2Pi
∼
∑

i
1

2Pi
.



Theorem (TB,’18)

In the non-generic critical phase, the perimeter process (Pi )i≥0 of a
loop-decorated map of boundary length 2p satisfies the convergence(

Pbcp1+btc

p

)
(d)−−−→

p→∞
(Xt)t≥0, b = 1

π arccos( n
2 ) ∈ (0, 1

2 ).

dfpp
c pb

(d)−−−→
p→∞

R =

∫ ∞
0

dt

Xt
.

I Recall dfpp =
∑

i
Exp(1)

2Pi
∼
∑

i
1

2Pi
.



I How to get distribution of R =
∫∞

0
dt
Xt

knowing E
[∫∞

0
X γ
t dt

]
?

Proposition (Carmona, Petit, Yor, ’97)

If (Xt) is a pssMp of index 1 + b started at 1 then for κ ∈ (c−, c+),

E
[
Rκ
]

= κE
[ ∫ ∞

0

X
b(κ−1)−1
t dt

]
E
[
Rκ−1

]
.

Rκ = −
∫ ∞

0

∂u

(∫ ∞
u

dt

Xt

)κ
du

= κ

∫ ∞
0

1

Xu

(∫ ∞
u

dt

Xt

)κ−1

du

E[Rκ] = κ

∫ ∞
0

E[X b(κ−1)−1
u ]E[R̃κ−1]du
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M(κ) = κE
[ ∫ ∞

0

X
b(κ−1)−1
t dt

]
M(κ− 1)

I [Kuznetsov, Pardo, ’13] provides suitable boundary conditions such that
M(κ) = E[Rκ] is unique solution.

I Explicit solution involves “double Gamma” functions G (·, ·):

M(κ) = Cb

(
21−b

b2

)κ
Γ(2− κ)

Γ
(
κb
2 −

b
2 + 1

) G ( 1
b − κ+ 2, 2

b

)
G
(

2
b + κ+ 1, 2

b

)
G
(

2
b − κ,

2
b

)
G
(

1
b + κ, 2

b

)
I Obtain explicit distribution by inverse Mellin transform.
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Summary

I Many models of 2d QG were deemed “exactly solved” already in
80s, but that does not imply their geometry is accessible “exactly”.

I Previously known distance statistics were limited to the pure gravity
regime and relied on precise enumeration at the discrete level and
successive scaling limits, but this is unfeasible in the presence of
matter.

I Proof of concept: exact scale invariance (and Markov properties)
facilitates the computation of statistics in the continuum.

Questions?
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