

Based on: arXiv:1110.4649

Outline

- Introduction to 2d gravity and Liouville theory
- Derive the moduli integrand of the Liouville partition function on the torus
- 2D Dynamical triangulations
- Moduli parameters for torus triangulations
- Results for pure gravity
- Coupling to $c=-2$ matter
- Conclusions and outlook

2D gravity and Liouville theory

- Classical pure gravity in 2d is not very interesting

$$
\begin{equation*}
S_{\mathrm{EH}}[g]=\int d^{2} x \sqrt{g}(\kappa R+\mu)=4 \pi(1-g) \kappa+\mu \int d^{2} x \sqrt{g} . \tag{1}
\end{equation*}
$$

2D gravity and Liouville theory

- Classical pure gravity in 2d is not very interesting

$$
\begin{equation*}
S_{\mathrm{EH}}[g]=\int d^{2} x \sqrt{g}(\kappa R+\mu)=4 \pi(1-g) \kappa+\mu \int d^{2} x \sqrt{g} . \tag{1}
\end{equation*}
$$

We can write down formal partition function

$$
\begin{equation*}
Z=\sum_{g=0}^{\infty} e^{4 \pi(g-1) \kappa} \int \frac{\mathcal{D} g}{\operatorname{vol}(\text { Diff })} e^{-\mu V[g]} \tag{2}
\end{equation*}
$$

2D gravity and Liouville theory

- Classical pure gravity in 2d is not very interesting

$$
\begin{equation*}
S_{\mathrm{EH}}[g]=\int d^{2} x \sqrt{g}(\kappa R+\mu)=4 \pi(1-g) \kappa+\mu \int d^{2} x \sqrt{g} . \tag{1}
\end{equation*}
$$

We can write down formal partition function

$$
\begin{equation*}
Z=\sum_{g=0}^{\infty} e^{4 \pi(g-1) \kappa} \int \frac{\mathcal{D} g}{\operatorname{vol}(\text { Diff })} e^{-\mu V[g]} \tag{2}
\end{equation*}
$$

- Becomes more interesting if we consider the partition function of 2d gravity coupled to conformal matter X^{i} :

$$
\begin{equation*}
Z=\int \frac{\mathcal{D} g \mathcal{D} X}{\operatorname{vol}(\text { Diff })} \exp \left(-S_{m}[X, g]-\mu V[g]\right) \tag{3}
\end{equation*}
$$

2D gravity and Liouville theory

- Classical pure gravity in 2 d is not very interesting

$$
\begin{equation*}
S_{\mathrm{EH}}[g]=\int d^{2} x \sqrt{g}(\kappa R+\mu)=4 \pi(1-g) \kappa+\mu \int d^{2} x \sqrt{g} . \tag{1}
\end{equation*}
$$

We can write down formal partition function

$$
\begin{equation*}
Z=\sum_{g=0}^{\infty} e^{4 \pi(g-1) \kappa} \int \frac{\mathcal{D} g}{\operatorname{vol}(\text { Diff })} e^{-\mu V[g]} \tag{2}
\end{equation*}
$$

- Becomes more interesting if we consider the partition function of 2d gravity coupled to conformal matter X^{i} :

$$
\begin{equation*}
Z=\int \frac{\mathcal{D} g \mathcal{D} X}{\operatorname{vol}(\text { Diff })} \exp \left(-S_{m}[X, g]-\mu V[g]\right) \tag{3}
\end{equation*}
$$

- Bosonic string in d-dimensional Euclidean space (a conformal field theory with central charge $c=d$)

$$
\begin{equation*}
S_{m}[X, g]=\int d^{2} x \sqrt{g} g^{a b} \partial_{a} X^{i} \partial_{b} X^{j} \delta_{i j} \tag{4}
\end{equation*}
$$

- How to tackle this partition function?

$$
\begin{equation*}
Z=\int \frac{\mathcal{D} g \mathcal{D} X}{\operatorname{vol}(\text { Diff })} \exp \left(-S_{m}[X, g]-\mu V[g]\right) \tag{5}
\end{equation*}
$$

- How to tackle this partition function?

$$
\begin{equation*}
Z=\int \frac{\mathcal{D} g \mathcal{D} X}{\operatorname{vol}(\text { Diff })} \exp \left(-S_{m}[X, g]-\mu V[g]\right) \tag{5}
\end{equation*}
$$

- Non-critical string approach: fix conformal gauge $g_{a b}=e^{2 \beta \phi} \hat{g}_{a b}(\tau)$ with Liouville field ϕ and moduli τ.
- How to tackle this partition function?

$$
\begin{equation*}
Z=\int \frac{\mathcal{D} g \mathcal{D} X}{\operatorname{vol}(\text { Diff })} \exp \left(-S_{m}[X, g]-\mu V[g]\right) \tag{5}
\end{equation*}
$$

- Non-critical string approach: fix conformal gauge $g_{a b}=e^{2 \beta \phi} \hat{g}_{a b}(\tau)$ with Liouville field ϕ and moduli τ.
- Requiring the partition function to be independent of \hat{g} leads to the Liouville partition function

$$
\begin{gather*}
Z=\int d \tau \mathcal{D}_{\hat{g}} \phi \mathcal{D}_{\hat{g}} X J[\hat{g}] \exp \left(-S_{L}[\hat{g}, \phi]-S_{m}[X, \hat{g}]\right) \tag{6}\\
S_{L}[\hat{g}, \phi]=\frac{1}{4 \pi} \int d^{2} \times \sqrt{\hat{g}}\left(\phi \Delta \phi+Q \hat{R} \phi+\mu e^{2 \beta \phi}\right) \tag{7}\\
Q=\sqrt{\frac{25-d}{6}}=\frac{1}{\beta}+\beta \tag{8}
\end{gather*}
$$

Liouville partition function for the torus

- Take flat metric on the torus

$$
\hat{g}_{a b}(\tau, x)=\frac{1}{\tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \tag{9}\\
\tau_{1} & \tau_{1}^{2}+\tau_{2}^{2}
\end{array}\right)
$$

and fix volume $\delta\left(V-\int d^{2} x \sqrt{\hat{g}} e^{2 \beta \phi}\right)$

Liouville partition function for the torus

- Take flat metric on the torus

$$
\hat{g}_{a b}(\tau, x)=\frac{1}{\tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \tag{9}\\
\tau_{1} & \tau_{1}^{2}+\tau_{2}^{2}
\end{array}\right)
$$

and fix volume $\delta\left(V-\int d^{2} x \sqrt{\hat{g}} e^{2 \beta \phi}\right)$

- Then

$$
\begin{gathered}
Z^{g=1}(V) \propto \int \frac{d^{2} \tau}{\tau_{2}^{2}} F(\tau)^{c-1} \\
F(\tau)=\tau_{2}^{-1 / 2} e^{\pi \tau_{2} / 6} \prod_{n=1}^{\infty}\left|1-e^{2 \pi i n \tau}\right|^{-2} .
\end{gathered}
$$

Liouville partition function for the torus

- Take flat metric on the torus

$$
\hat{g}_{a b}(\tau, x)=\frac{1}{\tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \tag{9}\\
\tau_{1} & \tau_{1}^{2}+\tau_{2}^{2}
\end{array}\right)
$$

and fix volume $\delta\left(V-\int d^{2} x \sqrt{\hat{g}} e^{2 \beta \phi}\right)$

- Then

$$
\begin{gathered}
Z^{g=1}(V) \propto \int \frac{d^{2} \tau}{\tau_{2}^{2}} F(\tau)^{c-1} \\
F(\tau)=\tau_{2}^{-1 / 2} e^{\pi \tau_{2} / 6} \prod_{n=1}^{\infty}\left|1-e^{2 \pi i n \tau}\right|^{-2} .
\end{gathered}
$$

Liouville partition function for the torus

- Take flat metric on the torus

$$
\hat{g}_{a b}(\tau, x)=\frac{1}{\tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \tag{9}\\
\tau_{1} & \tau_{1}^{2}+\tau_{2}^{2}
\end{array}\right)
$$

and fix volume $\delta\left(V-\int d^{2} x \sqrt{\hat{g}} e^{2 \beta \phi}\right)$

- Then

$$
\begin{gathered}
Z^{g=1}(V) \propto \int \frac{d^{2} \tau}{\tau_{2}^{2}} F(\tau)^{c-1} \\
F(\tau)=\tau_{2}^{-1 / 2} e^{\pi \tau_{2} / 6} \prod_{n=1}^{\infty}\left|1-e^{2 \pi i n \tau}\right|^{-2}
\end{gathered}
$$

- Main goal of this project: Test whether this distribution of moduli also appears in discretized gravity, i.e. dynamical triangulations.

2D dynamical triangulation

- Discretize the pure gravity partition function $(d=c=0)$

$$
\begin{aligned}
Z(\mu) & =\int \frac{\mathcal{D g}}{\operatorname{vol}(\text { Diff })} e^{-\mu V} \\
\rightarrow \quad Z(\mu) & =\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} e^{-\mu N}
\end{aligned}
$$

2D dynamical triangulation

- Discretize the pure gravity partition function $(d=c=0)$

$$
\begin{aligned}
Z(\mu) & =\int \frac{\mathcal{D} g}{\operatorname{vol}(\text { Diff })} e^{-\mu V} \\
\rightarrow \quad Z(\mu) & =\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} e^{-\mu N}
\end{aligned}
$$

- $Z(\mu)$ is the generating function of the fixed volume partition function $Z(N)$.

$$
\begin{equation*}
Z(\mu)=\sum_{N=0}^{\infty} Z(N) e^{-\mu N} \tag{10}
\end{equation*}
$$

$Z(N)$ just counts inequivalent triangulations with N triangles

2D dynamical triangulation

- Discretize the pure gravity partition function ($d=c=0$)

$$
\begin{aligned}
Z(\mu) & =\int \frac{\mathcal{D} g}{\operatorname{vol}(D i f f)} e^{-\mu V} \\
\rightarrow \quad Z(\mu) & =\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} e^{-\mu N}
\end{aligned}
$$

- $Z(\mu)$ is the generating function of the fixed volume partition function $Z(N)$.

$$
\begin{equation*}
Z(\mu)=\sum_{N=0}^{\infty} Z(N) e^{-\mu N} \tag{10}
\end{equation*}
$$

$Z(N)$ just counts inequivalent triangulations with N triangles

- For genus g :

$$
\begin{equation*}
Z^{(g)}(N) \sim N^{(5 g-7) / 2} e^{\mu_{0} N} \quad \text { as } N \rightarrow \infty . \tag{11}
\end{equation*}
$$

2D dynamical triangulation - Monte Carlo simulations

- Fixed volume partition function

$$
\begin{equation*}
Z(N) \propto \sum_{T \in \mathcal{T}(N)} \frac{1}{C_{T}}=\frac{1}{N!} \sum_{\text {labelled } T \in \mathcal{T}(N)} 1 \tag{12}
\end{equation*}
$$

2D dynamical triangulation - Monte Carlo simulations

- Fixed volume partition function

$$
\begin{equation*}
Z(N) \propto \sum_{T \in \mathcal{T}(N)} \frac{1}{C_{T}}=\frac{1}{N!} \sum_{\text {labelled } T \in \mathcal{T}(N)} 1 . \tag{12}
\end{equation*}
$$

- If we have a method of producing random triangulations with uniform probability in \mathcal{T} we can approximate expectation values of observables.

2D dynamical triangulation - Monte Carlo simulations

- Fixed volume partition function

$$
\begin{equation*}
Z(N) \propto \sum_{T \in \mathcal{T}(N)} \frac{1}{C_{T}}=\frac{1}{N!} \sum_{\text {labelled } T \in \mathcal{T}(N)} 1 \tag{12}
\end{equation*}
$$

- If we have a method of producing random triangulations with uniform probability in \mathcal{T} we can approximate expectation values of observables.
- Monte Carlo simulation: start with any triangulation with N triangles and genus g. Perform a large number of flip moves on random edges. Resulting triangulation will have desired property.

2D dynamical triangulation - Monte Carlo simulations

- Fixed volume partition function

$$
\begin{equation*}
Z(N) \propto \sum_{T \in \mathcal{T}(N)} \frac{1}{C_{T}}=\frac{1}{N!} \sum_{\text {labelled } T \in \mathcal{T}(N)} 1 \tag{12}
\end{equation*}
$$

- If we have a method of producing random triangulations with uniform probability in \mathcal{T} we can approximate expectation values of observables.
- Monte Carlo simulation: start with any triangulation with N triangles and genus g. Perform a large number of flip moves on random edges. Resulting triangulation will have desired property.

- Use this to measure moduli distribution in $Z^{g=1}(N)$. More precisely we want to measure the fraction $P\left(\tilde{\tau}_{2}\right) \Delta \tilde{\tau}_{2}$ of randomly generated triangulations with τ_{2} between $\tilde{\tau}_{2}$ and $\tilde{\tau}_{2}+\Delta \tilde{\tau}_{2}$.

Measurement of modular parameter τ - continuum

- How do we determine τ for a metric $g_{a b}$ on the torus? Find periodic coordinates $x^{1}, x^{2} \in[0,1)$ such that $d s^{2}=\Omega^{2}(x) \hat{g}_{a b} d x^{a} d x^{b}$ for $\hat{g}_{a b}$ constant.

Measurement of modular parameter τ - continuum

- How do we determine τ for a metric $g_{a b}$ on the torus? Find periodic coordinates $x^{1}, x^{2} \in[0,1)$ such that $d s^{2}=\Omega^{2}(x) \hat{g}_{a b} d x^{a} d x^{b}$ for $\hat{g}_{a b}$ constant.
- How? The 1 -forms $\alpha^{1}=d x^{1}$ and $\alpha^{2}=d x^{2}$ are special: they are harmonic forms

$$
\begin{equation*}
\Delta \alpha^{i}=0, \quad \Delta=d \delta+\delta d \quad \text { (Hodge Laplacian) } \tag{13}
\end{equation*}
$$

d exterior derivative, δ its adjoint w.r.t. standard inner-product

$$
\begin{equation*}
\langle\phi, \psi\rangle=\int d^{2} x \sqrt{g} g^{a b} \phi_{a} \psi_{b} . \tag{14}
\end{equation*}
$$

Measurement of modular parameter τ - continuum

- How do we determine τ for a metric $g_{a b}$ on the torus? Find periodic coordinates $x^{1}, x^{2} \in[0,1)$ such that $d s^{2}=\Omega^{2}(x) \hat{g}_{a b} d x^{a} d x^{b}$ for $\hat{g}_{a b}$ constant.
- How? The 1 -forms $\alpha^{1}=d x^{1}$ and $\alpha^{2}=d x^{2}$ are special: they are harmonic forms

$$
\begin{equation*}
\Delta \alpha^{i}=0, \quad \Delta=d \delta+\delta d \quad \text { (Hodge Laplacian) } \tag{13}
\end{equation*}
$$

d exterior derivative, δ its adjoint w.r.t. standard inner-product

$$
\begin{equation*}
\langle\phi, \psi\rangle=\int d^{2} x \sqrt{g} g^{a b} \phi_{a} \psi_{b} . \tag{14}
\end{equation*}
$$

- They are the unique harmonic forms that satisfy $\int_{\gamma_{j}} \alpha^{i}=\delta_{j}^{i}$.

Measurement of modular parameter τ - continuum

- How do we determine τ for a metric $g_{a b}$ on the torus? Find periodic coordinates $x^{1}, x^{2} \in[0,1)$ such that $d s^{2}=\Omega^{2}(x) \hat{g}_{a b} d x^{a} d x^{b}$ for $\hat{g}_{a b}$ constant.
- How? The 1 -forms $\alpha^{1}=d x^{1}$ and $\alpha^{2}=d x^{2}$ are special: they are harmonic forms

$$
\begin{equation*}
\Delta \alpha^{i}=0, \quad \Delta=d \delta+\delta d \quad \text { (Hodge Laplacian) } \tag{13}
\end{equation*}
$$

d exterior derivative, δ its adjoint w.r.t. standard inner-product

$$
\begin{equation*}
\langle\phi, \psi\rangle=\int d^{2} x \sqrt{g} g^{a b} \phi_{a} \psi_{b} \tag{14}
\end{equation*}
$$

- They are the unique harmonic forms that satisfy $\int_{\gamma_{j}} \alpha^{i}=\delta_{j}^{i}$.
$-\tau=-\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}+i \sqrt{\frac{\left\langle\alpha^{1}, \alpha^{1}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}-\left(\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}\right)^{2}}$.

Measurement of τ on triangulation

- Recipe:
- Find 2 curves γ_{j} that generate fundamental group.
- Find the 2-dimensional kernel of Δ.
- Determine basis α_{j} such that $\int_{\gamma_{j}} \alpha^{i}=\delta_{j}^{i}$.
- Compute $\tau=-\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}+i \sqrt{\frac{\left\langle\alpha^{1}, \alpha^{1}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}-\left(\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}\right)^{2}}$.

Measurement of τ on triangulation

- Recipe:
- Find 2 curves γ_{j} that generate fundamental group.
- Find the 2-dimensional kernel of Δ.
- Determine basis α_{j} such that $\int_{\gamma_{j}} \alpha^{i}=\delta_{j}^{i}$.
- Compute $\tau=-\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}+i \sqrt{\frac{\left\langle\alpha^{1}, \alpha^{1}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}-\left(\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}\right)^{2}}$.
- We need discrete differential forms! We will borrow them from the theory of simplicial complexes.

Measurement of τ on triangulation

- Recipe:
- Find 2 curves γ_{j} that generate fundamental group.
- Find the 2-dimensional kernel of Δ.
- Determine basis α_{j} such that $\int_{\gamma_{j}} \alpha^{i}=\delta_{j}^{i}$.
- Compute $\tau=-\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}+i \sqrt{\frac{\left\langle\alpha^{1}, \alpha^{1}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}-\left(\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}\right)^{2}}$.
- We need discrete differential forms! We will borrow them from the theory of simplicial complexes.
- Once we have those ingredients we can do stuff like this:

Discrete differential forms

- In 2d triangulations we have
- Vertices: 0-simplices denoted by i,
- Edges: 1-simplices denoted by (ij),
- Triangles: 2-simplices denoted by (ijk).

Discrete differential forms

- In 2d triangulations we have
- Vertices: 0-simplices denoted by i,
- Edges: 1-simplices denoted by (ij),
- Triangles: 2-simplices denoted by (ijk).

- A discrete p-form ϕ assigns a real number ϕ_{σ} to each (oriented) p-simplex σ.

Discrete differential forms

- In 2d triangulations we have
- Vertices: 0-simplices denoted by i,
- Edges: 1-simplices denoted by (ij),
- Triangles: 2-simplices denoted by (ijk).

- A discrete p-form ϕ assigns a real number ϕ_{σ} to each (oriented) p-simplex σ.
- Exterior derivative on 1-forms: $(d \phi)_{(i j k)}=\phi_{(i j)}+\phi_{(j k)}+\phi_{(k i)}$
- Divergence on 1-forms: $(\delta \phi)_{j}=\sum_{\text {edges }(i j)} \phi_{(i j)}$

Discrete differential forms

- In 2d triangulations we have
- Vertices: 0-simplices denoted by i,
- Edges: 1-simplices denoted by (ij),
- Triangles: 2-simplices denoted by (ijk).

- A discrete p-form ϕ assigns a real number ϕ_{σ} to each (oriented) p-simplex σ.
- Exterior derivative on 1-forms: $(d \phi)_{(i j k)}=\phi_{(i j)}+\phi_{(j k)}+\phi_{(k i)}$
- Divergence on 1-forms: $(\delta \phi)_{j}=\sum_{\text {edges (ij) }} \phi_{(i j)}$
- More generally: $(d \psi)\left(\sigma_{p+1}\right)=\sum_{\sigma_{p} \in \sigma_{p+1}}(-1)^{\sigma_{p}} \psi\left(\sigma_{p}\right)$.
- δ adjoint of d w.r.t. $\langle\phi, \psi\rangle=\sum_{\sigma} \phi(\sigma) \psi(\sigma)$.

Discrete differential forms

- In 2d triangulations we have
- Vertices: 0-simplices denoted by i,
- Edges: 1-simplices denoted by (ij),
- Triangles: 2-simplices denoted by (ijk).

- A discrete p-form ϕ assigns a real number ϕ_{σ} to each (oriented) p-simplex σ.
- Exterior derivative on 1-forms: $(d \phi)_{(i j k)}=\phi_{(i j)}+\phi_{(j k)}+\phi_{(k i)}$
- Divergence on 1-forms: $(\delta \phi)_{j}=\sum_{\text {edges (ij) }} \phi_{(i j)}$
- More generally: $(d \psi)\left(\sigma_{p+1}\right)=\sum_{\sigma_{p} \in \sigma_{p+1}}(-1)^{\sigma_{p}} \psi\left(\sigma_{p}\right)$.
- δ adjoint of d w.r.t. $\langle\phi, \psi\rangle=\sum_{\sigma} \phi(\sigma) \psi(\sigma)$.
- $\Delta=d \delta+\delta d$ becomes a matrix of which we can determine the nullspace $\Delta \alpha=0(\Leftrightarrow d \alpha=0$ and $\delta \alpha=0)$

Determine γ_{j}

- To find curves γ_{j} that generate the fundamental group we grow a spanning tree:

Determine γ_{j}

- To find curves γ_{j} that generate the fundamental group we grow a spanning tree:

Determine γ_{j}

- To find curves γ_{j} that generate the fundamental group we grow a spanning tree:

Determine γ_{j}

- To find curves γ_{j} that generate the fundamental group we grow a spanning tree:

Determine γ_{j}

- To find curves γ_{j} that generate the fundamental group we grow a spanning tree:

- Find basis of discrete harmonic forms dual to γ_{j}, i.e. $\sum_{e \in \gamma_{j}} \alpha_{e}^{i}=\delta_{j}^{j}$.

Determine γ_{j}

- To find curves γ_{j} that generate the fundamental group we grow a spanning tree:

- Find basis of discrete harmonic forms dual to γ_{j}, i.e. $\sum_{e \in \gamma_{j}} \alpha_{e}^{i}=\delta_{j}^{j}$.
- Compute $\tau=-\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}+i \sqrt{\frac{\left\langle\alpha^{1}, \alpha^{1}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}-\left(\frac{\left\langle\alpha^{1}, \alpha^{2}\right\rangle}{\left\langle\alpha^{2}, \alpha^{2}\right\rangle}\right)^{2}}$.

Results for dynamical triangulations $(c=0)$

- Initial result for $N=32000$:

Results for dynamical triangulations $(c=0)$

- Initial result for $N=32000$:
- Not enough surfaces with large τ_{2} !
- Increasing N helps, but not fast improvement.

Results for dynamical triangulations $(c=0)$

- Initial result for $N=32000$:
- Not enough surfaces with large τ_{2} !
- Increasing N helps, but not fast improvement.

Length L of shortest loop

Results for dynamical triangulations $(c=0)$

- Initial result for $N=32000$:
- Not enough surfaces with large τ_{2} !
- Increasing N helps, but not fast improvement.
- Allow for shorter loops!

Length L of shortest loop

Results for dynamical triangulations $(c=0)$

- Initial result for $N=32000$:
- Not enough surfaces with large τ_{2} !
- Increasing N helps, but not fast improvement.
- Allow for shorter loops!

Length L of shortest loop

Example of a harmonic embedding

Dynamical triangulations coupled to $c=-2$ matter

- Partition function $Z(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}}$

Dynamical triangulations coupled to $c=-2$ matter

- Partition function $Z_{m}(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} Z_{m}(T)$.

Dynamical triangulations coupled to $c=-2$ matter

- Partition function $Z_{m}(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} Z_{m}(T)$.
- Take matter to be discretized embedding coordinates X^{i} in c dimensions

$$
Z_{m}(T)=\int d X \exp \left(-\sum_{s, t=1}^{N} X_{s}^{i} \Delta_{s t} X_{t}^{j} \delta_{i j}\right) \quad X:\{\text { triangles }\} \rightarrow \mathbb{R}^{c}
$$

$$
\Delta_{s t}= \begin{cases}3 & s=t \\ -1 & s, t \text { adjacent } \\ 0 & \text { else }\end{cases}
$$

Dynamical triangulations coupled to $c=-2$ matter

- Partition function $Z_{m}(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} Z_{m}(T)$.
- Take matter to be discretized embedding coordinates X^{i} in c dimensions

$$
\begin{aligned}
Z_{m}(T) & =\int d X \exp \left(-\sum_{s, t=1}^{N} X_{s}^{i} \Delta_{s t} X_{t}^{j} \delta_{i j}\right) \quad X:\{\text { triangles }\} \rightarrow \mathbb{R}^{c} \\
& \propto\left(\operatorname{det}^{\prime} \Delta\right)^{-c / 2}
\end{aligned}
$$

$$
\Delta_{s t}= \begin{cases}3 & s=t \\ -1 & s, t \text { adjacent } \\ 0 & \text { else }\end{cases}
$$

Dynamical triangulations coupled to $c=-2$ matter

- Partition function $Z_{m}(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} Z_{m}(T)$.
- Take matter to be discretized embedding coordinates X^{i} in c dimensions

$$
\begin{aligned}
Z_{m}(T) & =\int d X \exp \left(-\sum_{s, t=1}^{N} X_{s}^{i} \Delta_{s t} X_{t}^{j} \delta_{i j}\right) \quad X:\{\text { triangles }\} \rightarrow \mathbb{R}^{c} \\
& \propto\left(\operatorname{det}^{\prime} \Delta\right)^{-c / 2}
\end{aligned}
$$

$$
\Delta_{s t}= \begin{cases}3 & s=t \\ -1 & s, t \text { adjacent } \\ 0 & \text { else }\end{cases}
$$

- Kirchhoff's theorem: $\operatorname{det}^{\prime} \Delta=\mathcal{N}(T)$ Number $\mathcal{N}(T)$ of spanning trees on dual graph.

Dynamical triangulations coupled to $c=-2$ matter

- Partition function $Z_{m}(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} Z_{m}(T)$.
- Take matter to be discretized embedding coordinates X^{i} in c dimensions

$$
\begin{aligned}
Z_{m}(T) & =\int d X \exp \left(-\sum_{s, t=1}^{N} X_{s}^{i} \Delta_{s t} X_{t}^{j} \delta_{i j}\right) \quad X:\{\text { triangles }\} \rightarrow \mathbb{R}^{c} \\
& \propto\left(\operatorname{det}^{\prime} \Delta\right)^{-c / 2}
\end{aligned}
$$

$$
\Delta_{s t}= \begin{cases}3 & s=t \\ -1 & s, t \text { adjacent } \\ 0 & \text { else }\end{cases}
$$

- Kirchhoff's theorem: $\operatorname{det}^{\prime} \Delta=\mathcal{N}(T)$ Number $\mathcal{N}(T)$ of spanning trees on dual graph.
- Take formally $c=-2$:

$$
Z_{c=-2}(N)=\sum_{T \in \mathcal{T}} \frac{1}{C_{T}} \sum_{\text {spanningtrees }} 1
$$

Generating random $c=-2$ triangulations

- We don't need a random updating algorithm as for $c=0$, which is time-consuming. Direct generation of random triangulation with correct Boltzmann weight is possible!
- $Z_{c=-2}(N)=\sum_{\text {decorated triangulations }} 1$.

Generating random $c=-2$ triangulations

- We don't need a random updating algorithm as for $c=0$, which is time-consuming. Direct generation of random triangulation with correct Boltzmann weight is possible!
- $Z_{c=-2}(N)=\sum_{\text {decorated triangulations }} 1$.
- Genus-0 decorated triangulations are uniquely determined by a pair of planar trees:

Generating random $c=-2$ triangulations

- We don't need a random updating algorithm as for $c=0$, which is time-consuming. Direct generation of random triangulation with correct Boltzmann weight is possible!
- $Z_{c=-2}(N)=\sum_{\text {decorated triangulations }} 1$.
- Genus-0 decorated triangulations are uniquely determined by a pair of planar trees:

Generating random $c=-2$ triangulations

- We don't need a random updating algorithm as for $c=0$, which is time-consuming. Direct generation of random triangulation with correct Boltzmann weight is possible!
- $Z_{c=-2}(N)=\sum_{\text {decorated triangulations }} 1$.
- Genus-0 decorated triangulations are uniquely determined by a pair of planar trees:

Generating random $c=-2$ triangulations

- We don't need a random updating algorithm as for $c=0$, which is time-consuming. Direct generation of random triangulation with correct Boltzmann weight is possible!
- $Z_{c=-2}(N)=\sum_{\text {decorated triangulations }} 1$.
- Genus-0 decorated triangulations are uniquely determined by a pair of planar trees:

Generating random $c=-2$ triangulations

- We don't need a random updating algorithm as for $c=0$, which is time-consuming. Direct generation of random triangulation with correct Boltzmann weight is possible!
- $Z_{c=-2}(N)=\sum_{\text {decorated triangulations }} 1$.
- Genus-0 decorated triangulations are uniquely determined by a pair of planar trees:

- Both trees can be easily generated randomly.

Generating random $c=-2$ triangulations - Torus

Generating random $c=-2$ triangulations - Torus

- For a torus we need a graph with two cycles (a genus-1 unicellular map):

Generating random $c=-2$ triangulations - Torus

- For a torus we need a graph with two cycles (a genus-1 unicellular map):

- We can construct these from planar trees by identifying three vertices [Chapuy, 2011].

Examples of harmonic embeddings

$c=0$

$c=-2$

Results for $c=-2$ dynamical triangulations

- Smaller c means more regular. Data fits theory "perfectly" already at $N=8000$:

Results for $c=-2$ dynamical triangulations

- Smaller c means more regular. Data fits theory "perfectly" already at $N=8000$:

- For example we measure $P\left(\tau_{2}<1.5\right)=0.64067 \pm 0.00014$, while Liouville theory predicts

$$
\begin{equation*}
P\left(\tau_{2}<1.5\right)=\frac{\int_{\tau_{2}<1.5} \frac{d^{2} \tau}{\tau_{2}^{2}} F(\tau)^{c-1}}{\int \frac{d^{2} \tau}{\tau_{2}^{2}} F(\tau)^{c-1}}=0.640648 \ldots \tag{15}
\end{equation*}
$$

Conclusions and outlook

- Conclusions
- We checked numerically for $c=0$ and $c=-2$ that the measure defined by dynamical triangulations on moduli space (as $N \rightarrow \infty$) coincides with the measure from Liouville theory. This piece of evidence may be added to an extensive list of connections found previously.

Conclusions and outlook

- Conclusions
- We checked numerically for $c=0$ and $c=-2$ that the measure defined by dynamical triangulations on moduli space (as $N \rightarrow \infty$) coincides with the measure from Liouville theory. This piece of evidence may be added to an extensive list of connections found previously.
- The results also indicate that discrete differential geometry can work even for very wild triangulations.

Conclusions and outlook

- Conclusions
- We checked numerically for $c=0$ and $c=-2$ that the measure defined by dynamical triangulations on moduli space (as $N \rightarrow \infty$) coincides with the measure from Liouville theory. This piece of evidence may be added to an extensive list of connections found previously.
- The results also indicate that discrete differential geometry can work even for very wild triangulations.
- Outlook
- All techniques I discussed can be extended to higher genus. Actually we already have data for genus 2 (in terms of "period matrices"). But we have no theory! String theorists: please compute the moduli-integrand for the two-loop non-critical string partition function.

[^0]
Conclusions and outlook

- Conclusions
- We checked numerically for $c=0$ and $c=-2$ that the measure defined by dynamical triangulations on moduli space (as $N \rightarrow \infty$) coincides with the measure from Liouville theory. This piece of evidence may be added to an extensive list of connections found previously.
- The results also indicate that discrete differential geometry can work even for very wild triangulations.
- Outlook
- All techniques I discussed can be extended to higher genus. Actually we already have data for genus 2 (in terms of "period matrices"). But we have no theory! String theorists: please compute the moduli-integrand for the two-loop non-critical string partition function.
- The (fractal) properties of the harmonic embeddings are worth investigating.

[^1]
Conclusions and outlook

- Conclusions
- We checked numerically for $c=0$ and $c=-2$ that the measure defined by dynamical triangulations on moduli space (as $N \rightarrow \infty$) coincides with the measure from Liouville theory. This piece of evidence may be added to an extensive list of connections found previously.
- The results also indicate that discrete differential geometry can work even for very wild triangulations.
- Outlook
- All techniques I discussed can be extended to higher genus. Actually we already have data for genus 2 (in terms of "period matrices"). But we have no theory! String theorists: please compute the moduli-integrand for the two-loop non-critical string partition function.
- The (fractal) properties of the harmonic embeddings are worth investigating.
- The same moduli measurements are also used in CDT in $2+1$ dimensions ${ }^{1}$. We have more confidence now that these measurements make sense.

[^2]
[^0]: ${ }^{1}$ see e.g. TB, 'The effective kinetic term in CDT', arXiv:1110.5158

[^1]: ${ }^{1}$ see e.g. TB, 'The effective kinetic term in CDT', arXiv: 1110.5158

[^2]: ${ }^{1}$ see e.g. TB, 'The effective kinetic term in CDT', arXiv:1110.5158

