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We can write down formal partition function
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7 — 4n(g—1)k —uVigl
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» Becomes more interesting if we consider the partition function of 2d
gravity coupled to conformal matter X':

DgDX

2= | Soi(oi) &P (—omlX el = nViel) (3)

» Bosonic string in d-dimensional Euclidean space (a conformal field
theory with central charge ¢ = d)

SmlX, gl = / d*x\/gg®0,X 0pXI5;; (4)
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» How to tackle this partition function?

DgDX

7 — Wexp(—sm[X7g] —uVigl) (5)

» Non-critical string approach: fix conformal gauge g.p = €2°%g.p(7)
with Liouville field ¢ and moduli .

» Requiring the partition function to be independent of g leads to the
Liouville partition function

7 - / d7 D¢ DX J[g] exp (—Silg, 6] — Sm[X,2])  (6)
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Liouville partition function for the torus

» Take flat metric on the torus

Bap(7, x) = > (1 )t 2) (9)

T \TL Ti TT3
and fix volume 0 (V — [ d?xy/ge*’?)
» Then -

2
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» Main goal of this project: Test whether this distribution of moduli
also appears in discretized gravity, i.e. dynamical triangulations.



2D dynamical triangulation
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» Discretize the pure gravity partition
function (d = ¢ =0)
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» Z(u) is the generating function of the fixed volume partition
function Z(N).

=Y Z(N)e " (10)
N=0

Z(N) just counts inequivalent triangulations with N triangles

» For genus g:

Z@(N) ~ NCE=D/2emoN 55 N — 0. (11)
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2D dynamical triangulation - Monte Carlo simulations

» Fixed volume partition function

ZMx Y i:% S 1 (12)

C I
TeT(nvy T labelled TET(N)

» |If we have a method of producing random triangulations with
uniform probability in 7 we can approximate expectation values of
observables.

» Monte Carlo simulation: start with any triangulation with N
triangles and genus g. Perform a large number of flip moves on
random edges. Resulting triangulation will have desired property.

» Use this to measure moduli distribution in Z8=1(N). More precisely
we want to measure the fraction P(72)A7, of randomly generated
triangulations with 7, between 7> and 7, + AT».
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Measurement of modular parameter 7 - continuum

» How do we determine 7 for a metric gy, on the torus? Find periodic
coordinates x!, x? € [0,1) such that ds?> = Q2(x)g.pdx?dx? for &,
constant.

» How? The 1-forms a® = dx! and a® = dx? are special: they are
harmonic forms

Aa' =0, A=ds+dd (Hodge Laplacian) (13)

d exterior derivative, ¢ its adjoint w.r.t. standard inner-product

(6) = / PxEEP dsp. (14)

> They are the unique harmonic forms that
satisfy fv' of = 4.
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Measurement of 7 on triangulation

» Recipe:

> Find 2 curves ~; that generate fundamental group.
> Find the 2-dimensional kernel of A. '
> Determine basis «; such that f,y_ o =94

J

(ll az - Oél O/.l Otl a2 2
> Compute 7 = — {33} + \/ et — (e
> We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.

» Once we have those ingredients we can do stuff like this:
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» Edges: 1-simplices denoted by (i), i

> Vertices: 0-simplices denoted by i,

> Triangles: 2-simplices denoted by (ijk).
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Discrete differential forms

v

In 2d triangulations we have

k(o
(ijk)

(ki) (i)

» Edges: 1-simplices denoted by (i), i

> Vertices: 0-simplices denoted by i,

> Triangles: 2-simplices denoted by (ijk).

v

A discrete p-form ¢ assigns a real number ¢, to each (oriented)
p-simplex o.

v

Exterior derivative on 1-forms: (do) i) = ¢(ij) + (k) + (ki)
Divergence on 1-forms: (60); = > _cqges (i) P(i)

More generally: (dv))(0p+1) =32, c,,.,(=1)7"%(0p).

d adjoint of d w.r.t. (¢,9) = d(o)(o).

A = dd + dd becomes a matrix of which we can determine the
nullspace Aa =0 (& da =0 and da = 0)
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Determine ~;

» To find curves +; that generate the fundamental group we grow a
spanning tree:
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Determine ~;

» To find curves +; that generate the fundamental group we grow a
spanning tree:

o

» Find basis of discrete harmonic forms dual to v, i.e. Zee%— Qe = 0;.

1.2 2
» Compute 7 = —232132; + l\/ﬁiiig - (Ezlzz;) :




Results for dynamical triangulations (¢ = 0)
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Results for dynamical triangulations (¢ = 0)
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Example of a harmonic embedding
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Dynamical triangulations coupled to ¢ = —2 matter

» Partition function Z,(N) = ;o1 %TZm(T).
» Take matter to be discretized embedding coordinates X' in ¢
dimensions

N
Zn(T) = /dX exp < Z X;AstX{5U> X : {triangles} — R¢
s,t=1

x (det’ A)~¢/?

3 s=t
Ag = ¢ —1 s, t adjacent
0 else
» Kirchhoff's theorem: det’ A = N/(T)
Number A(T) of spanning trees on dual
graph.
» Take formally ¢ = —2:

Ze o= & Y 1

TeT T spanningtrees
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Generating random ¢ = —2 triangulations

» We don't need a random updating algorithm as for ¢ = 0, which is
time-consuming. Direct generation of random triangulation with
correct Boltzmann weight is possible!

> ZC:_2(N) 1.

» Genus-0 decorated triangulations are uniquely determined by a pair
of planar trees:

= Edecorated triangulations

18
15 9617

» Both trees can be easily generated randomly.
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Generating random ¢ = —2 triangulations - Torus

map):

» We can construct these from planar trees by identifying three
vertices [Chapuy, 2011].
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Results for ¢ = —2 dynamical triangulations

» Smaller ¢ means more regular. Data fits theory “perfectly” already
at N = 8000:
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Results for ¢ = —2 dynamical triangulations

» Smaller ¢ means more regular. Data fits theory “perfectly” already
at N = 8000:

7% Plry) r
S0 Prz)

> For example we measure P(7, < 1.5) = 0.64067 + 0.00014, while
Liouville theory predicts
2
Jryers SEF()
1o 7 —0.640648...  (15)
JEF()=

P(T2 < 15) =
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» Conclusions

> We checked numerically for c = 0 and ¢ = —2 that the measure
defined by dynamical triangulations on moduli space (as N — c0)
coincides with the measure from Liouville theory. This piece of
evidence may be added to an extensive list of connections found
previously.

> The results also indicate that discrete differential geometry can work
even for very wild triangulations.

» Qutlook

> All techniques | discussed can be extended to higher genus. Actually
we already have data for genus 2 (in terms of “period matrices”).
But we have no theory! String theorists: please compute the
moduli-integrand for the two-loop non-critical string partition
function.

> The (fractal) properties of the harmonic embeddings are worth
investigating.

> The same moduli measurements are also used in CDT in 2+1
dimensions'. We have more confidence now that these
measurements make sense.

lsee e.g. TB, ‘The effective kinetic term in CDT’, arXiv:1110.5158
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