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2D gravity and Liouville theory
I Classical pure gravity in 2d is not very interesting

SEH[g ] =

∫
d2x
√

g(κR + µ) = 4π(1− g)κ+ µ

∫
d2x
√

g . (1)

We can write down formal partition function

Z =
∞∑
g=0

e4π(g−1)κ

∫
Dg

vol(Diff )
e−µV [g ] (2)

I Becomes more interesting if we consider the partition function of 2d
gravity coupled to conformal matter X i :

Z =

∫
DgDX

vol(Diff )
exp (−Sm[X , g ]− µV [g ]) (3)

I Bosonic string in d-dimensional Euclidean space (a conformal field
theory with central charge c = d)

Sm[X , g ] =

∫
d2x
√

gg ab∂aX i∂bX jδij (4)
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I How to tackle this partition function?

Z =

∫
DgDX

vol(Diff )
exp (−Sm[X , g ]− µV [g ]) (5)

I Non-critical string approach: fix conformal gauge gab = e2βφĝab(τ)
with Liouville field φ and moduli τ .

I Requiring the partition function to be independent of ĝ leads to the
Liouville partition function

Z =

∫
dτ DĝφDĝX J[ĝ ] exp (−SL[ĝ , φ]− Sm[X , ĝ ]) (6)

SL[ĝ , φ] =
1

4π

∫
d2x

√
ĝ
(
φ∆φ+ QR̂φ+ µe2βφ

)
(7)

Q =

√
25− d

6
=

1

β
+ β (8)
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Liouville partition function for the torus

I Take flat metric on the torus

ĝab(τ, x) =
1

τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
(9)

and fix volume δ
(
V −

∫
d2x
√

ĝ e2βφ
)

Τ

-1 -0.5 0 0.5 1

0.5

1

1.5

2

I Then

Z g=1(V ) ∝
∫

d2τ

τ 2
2

F (τ)c−1

F (τ) = τ
−1/2
2 eπτ2/6

∞∏
n=1

∣∣1− e2πinτ
∣∣−2

.
1 2 3 4

Τ2

0.5

1.0

1.5

PHΤ2L

c=1

c=0

c=-1

c=-2

I Main goal of this project: Test whether this distribution of moduli
also appears in discretized gravity, i.e. dynamical triangulations.
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2D dynamical triangulation

I Discretize the pure gravity partition
function (d = c = 0)

Z (µ) =

∫
Dg

vol(Diff )
e−µV

→ Z (µ) =
∑
T∈T

1

CT
e−µN

I Z (µ) is the generating function of the fixed volume partition
function Z (N).

Z (µ) =
∞∑

N=0

Z (N)e−µN (10)

Z (N) just counts inequivalent triangulations with N triangles

I For genus g :

Z (g)(N) ∼ N(5g−7)/2eµ0N as N →∞. (11)
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2D dynamical triangulation - Monte Carlo simulations
I Fixed volume partition function

Z (N) ∝
∑

T∈T (N)

1

CT
=

1

N!

∑
labelled T∈T (N)

1. (12)

I If we have a method of producing random triangulations with
uniform probability in T we can approximate expectation values of
observables.

I Monte Carlo simulation: start with any triangulation with N
triangles and genus g . Perform a large number of flip moves on
random edges. Resulting triangulation will have desired property.

I Use this to measure moduli distribution in Z g=1(N). More precisely
we want to measure the fraction P(τ̃2)∆τ̃2 of randomly generated
triangulations with τ2 between τ̃2 and τ̃2 + ∆τ̃2.
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Measurement of modular parameter τ - continuum
I How do we determine τ for a metric gab on the torus? Find periodic

coordinates x1, x2 ∈ [0, 1) such that ds2 = Ω2(x)ĝabdxadxb for ĝab

constant.

I How? The 1-forms α1 = dx1 and α2 = dx2 are special: they are
harmonic forms

∆αi = 0, ∆ = dδ + δd (Hodge Laplacian) (13)

d exterior derivative, δ its adjoint w.r.t. standard inner-product

〈φ, ψ〉 =

∫
d2x
√

gg abφaψb. (14)

I They are the unique harmonic forms that
satisfy

∫
γj
αi = δij .

I τ = − 〈α
1,α2〉

〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.
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Τ

Γ1
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0.5

1

1.5
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Measurement of τ on triangulation

I Recipe:
I Find 2 curves γj that generate fundamental group.
I Find the 2-dimensional kernel of ∆.
I Determine basis αj such that

∫
γj
αi = δij .

I Compute τ = − 〈α1,α2〉
〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.

I We need discrete differential forms! We will borrow them from the
theory of simplicial complexes.

I Once we have those ingredients we can do stuff like this:
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Discrete differential forms

I In 2d triangulations we have

I Vertices: 0-simplices denoted by i ,

I Edges: 1-simplices denoted by (ij),

I Triangles: 2-simplices denoted by (ijk).

i

jk

HijLHkiL

HjkL

HijkL

I A discrete p-form φ assigns a real number φσ to each (oriented)
p-simplex σ.

I Exterior derivative on 1-forms: (dφ)(ijk) = φ(ij) + φ(jk) + φ(ki)

I Divergence on 1-forms: (δφ)j =
∑

edges (ij) φ(ij)

I More generally: (dψ)(σp+1) =
∑
σp∈σp+1

(−1)σpψ(σp).

I δ adjoint of d w.r.t. 〈φ, ψ〉 =
∑
σ φ(σ)ψ(σ).

I ∆ = dδ + δd becomes a matrix of which we can determine the
nullspace ∆α = 0 (⇔ dα = 0 and δα = 0)
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Determine γj

I To find curves γj that generate the fundamental group we grow a
spanning tree:

I Find basis of discrete harmonic forms dual to γj , i.e.
∑

e∈γj α
i
e = δij .

I Compute τ = − 〈α
1,α2〉

〈α2,α2〉 + i

√
〈α1,α1〉
〈α2,α2〉 −

(
〈α1,α2〉
〈α2,α2〉

)2

.
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Results for dynamical triangulations (c = 0)

I Initial result for N = 32000:

I Not enough surfaces with large τ2!

I Increasing N helps, but not fast
improvement.

I Allow for shorter loops!
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Example of a harmonic embedding



Dynamical triangulations coupled to c = −2 matter
I Partition function Z

m

(N) =
∑

T∈T
1
CT

Zm(T )

.

I Take matter to be discretized embedding coordinates X i in c
dimensions

Zm(T ) =

∫
dX exp

(
−

N∑
s,t=1

X i
s∆stX

j
t δij

)
X : {triangles} → Rc

∝ (det′∆)−c/2

∆st =


3 s = t

−1 s, t adjacent

0 else

I Kirchhoff’s theorem: det′∆ = N (T )
Number N (T ) of spanning trees on dual
graph.

I Take formally c = −2:

Zc=−2(N) =
∑
T∈T

1

CT

∑
spanningtrees

1
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Generating random c = −2 triangulations
I We don’t need a random updating algorithm as for c = 0, which is

time-consuming. Direct generation of random triangulation with
correct Boltzmann weight is possible!

I Zc=−2(N) =
∑

decorated triangulations 1.

I Genus-0 decorated triangulations are uniquely determined by a pair
of planar trees:

I Both trees can be easily generated randomly.
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Generating random c = −2 triangulations - Torus
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I For a torus we need a graph with two cycles (a genus-1 unicellular
map):

Γ1
Γ2

I We can construct these from planar trees by identifying three
vertices [Chapuy, 2011].
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Examples of harmonic embeddings

c = 0 c = −2



Results for c = −2 dynamical triangulations

I Smaller c means more regular. Data fits theory “perfectly” already
at N = 8000:
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I For example we measure P(τ2 < 1.5) = 0.64067± 0.00014, while
Liouville theory predicts

P(τ2 < 1.5) =

∫
τ2<1.5

d2τ
τ 2

2
F (τ)c−1∫

d2τ
τ 2

2
F (τ)c−1

= 0.640648 . . . (15)
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Conclusions and outlook

I Conclusions
I We checked numerically for c = 0 and c = −2 that the measure

defined by dynamical triangulations on moduli space (as N →∞)
coincides with the measure from Liouville theory. This piece of
evidence may be added to an extensive list of connections found
previously.

I The results also indicate that discrete differential geometry can work
even for very wild triangulations.

I Outlook
I All techniques I discussed can be extended to higher genus. Actually

we already have data for genus 2 (in terms of “period matrices”).
But we have no theory! String theorists: please compute the
moduli-integrand for the two-loop non-critical string partition
function.

I The (fractal) properties of the harmonic embeddings are worth
investigating.

I The same moduli measurements are also used in CDT in 2+1
dimensions1. We have more confidence now that these
measurements make sense.

1see e.g. TB, ‘The effective kinetic term in CDT’, arXiv:1110.5158
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