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1 Planar maps and the peeling process

1.1 Planar maps

A multigraph is a graph in which we allow edges to form loops and pairs of vertices may be connected

by multiple edges. We say a multigraph is properly embedded in the sphere (or plane) if it is drawn in

such a way that the vertices are all disjoint and the edges intersect only at vertices.

De�nition 1 (Planar map). A �nite planar map is a �nite connected planar multigraph which is properly
embedded in the sphere viewed up to orientation-preserving homeomorphisms.

We’ll always assume that our planar maps are rooted, meaning that an oriented edge is distinguished

as the root edge of the map. The vertex at the origin of the root edge will be called the root vertex, and the

face to the right of the root edge the root face. If m is a planar map, we denote by Vertices(m), Edges(m)
and Faces(m) respectively the vertices, edges, and faces of the map. For a vertex v (respectively face f )

we let deg(v ) (respectively deg( f )) be its degree, i.e. the number of incident edges with the convention

that an edge that is incident at both ends (respectively sides) is counted twice. The perimeter of a planar

map is the degree of its root face.

In these lectures we will exclusively deal with bipartite planar maps (although we comment on the

non-bipartite case in Remark 4), which is equivalent to demanding that all faces have even degree.

Figure 1: A bipartite rooted planar map with face degrees 2, 4, 4, 4, 6, 8 and perimeter 8.

∗
These lecture notes are mainly based on the papers [2] and [3]. For more details and proofs we advise the reader to consult

the “cours Peccot” lecture notes by Curien [6].
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1.2 Peeling process

A planar map with holes is a (rooted) planar map e with a distinguished set of faces, that we call the holes
of e, satisfying the following properties. The holes are required to be disjoint and simple, meaning that

no two corners of any of the holes share a vertex. Moreover, the root face is not allowed to be a hole.

One should think of the holes as unexplored regions in a planar map. Exploration of a hole h of

e (“explored region”) then corresponds to gluing inside h a planar map u (“unexplored region”) with

perimeter equal to deg(h), see �gure 2. This operation is well-de�ned for any such planar map u because

the hole is assumed to be simple. Moreover, if we specify by some (arbitrary but �xed) deterministic

algorithm a distinguished edge on the boundary of the hole h to which the root edge of u is to be glued,

then the operation is rigid in the sense that di�erent choices of u lead to di�erent results.

Figure 2: From left to right: a planar map e with two holes (darker shaded faces); two planar

maps with perimeters matching the degrees of the holes of e; the result of gluing. The map on

the left is a submap of the one on the right.

De�nition 2 (Submap). Given a planar map m and a planar map e with holes h1, . . . ,hk we say that e is
a submap of m, denoted e ⊂ m, i� there exist planar maps u1, . . . , uk such that m is obtained from e by
gluing ui into hole hi .

More generally, by allowing the maps ui to have holes we can make sense of e ⊂ e′ being a submap

of another map e′ with holes. The rigidity of the gluing operation implies that if e ⊂ m then the maps

u1, . . . , uk are uniquely de�ned.

For a submap e ⊂ m we denote by Active(e) ⊂ Edges(e) the set of (“active”) edges incident to a hole.

Given an active edge e ∈ Active(e), we are going to de�ne another map Peel(e, e,m) with holes such

that e ⊂ Peel(e, e,m) ⊂ m, and which we say is obtained from e by peeling the edge e . To this end let f

be the unique face of m that is incident to e (in m) but does not correspond to a face of e that is already

incident to e (in e). We distinguish to types of events:

• Event Ck : the face f is not a face of e and its degree is 2k . Then Peel(e, e,m) is obtained from e by

gluing the face f to e inside the hole (without further identi�cations of the edges of f ).

• Event Gk1,k2 : the face f is already present in e. In this case e is glued to another edge e ′ incident

to the same hole, namely the one incident (in e) to f that in m was identi�ed with e . The number

of edges strictly in between e and e ′ when following the boundary while keeping the hole on the

right (respectively left) is 2k1 (respectively 2k2).

In the event Gk1,k2 with k1,k2 > 0 the hole of e incident to e is divided into two holes of degrees 2k1 and

2k2.

Remark 1. We call an edge or a vertex inner if it is not incident to a hole. It is easily veri�ed that in each
case the number of inner edges increases by one, while the number of inner vertices increases only with the
event Gk1,k2 when k1 = 0 or k2 = 0 (by one or two).
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Figure 3: On the left a portion of a planar map m. On the right two events are shown resulting

from peeling the active edge indicated in orange (notice that here the outer face is a hole too).

By iterating this peeling operation we may explore the planar map m. To de�ne such an exploration

uniquely, suppose a peeling algorithm A is given that associates to any planar map e with holes an

element A(e) ∈ Active(e) ∪ {†}, where † is a cemetery point, which we interpret as the request to stop

the exploration.

Setting Peel(e, †,m) = e we are lead to de�ning

De�nition 3 (Peeling exploration). For a planar map m, the peeling exploration of m with algorithm A

is the in�nite sequence
e0 ⊂ e1 ⊂ · · · ⊂ m,

where ei+1 = Peel(ei ,A(ei ),m) for i ≥ 0, and e0 is the unique two-face map with a hole and root face of
degree equal to the perimeter of m.

Although we de�ne the peeling exploration as an in�nite sequence, it is easily seen that it stabilizes

after a �nite number of steps. Indeed, if the peeling algorithm never selects † when Active(e) is non-

empty then the number of steps n before the map is fully explored, i.e. en = m, is by Remark 1 exactly

the number n = |Edges(m) | of edges of m.

1.3 Targeted peeling process

For many applications it is useful to consider a peeling exploration of a planar map with some kind of

target ?. In fact, in these lectures we will encounter three kinds of targets: a marked vertex (? = •), a

marked face (? = �), or a “point at in�nity” (? = ∞). The latter case applies to in�nite planar maps

(of which we will see a formal de�nition later) which we require to have faces of �nite degree and to

be one-ended, meaning that the complement of any �nite submap has exactly one in�nite connected

component.

Let m? be such a planar map with a target and e ⊂ m? a submap. Then we may naturally associate

to e the �lled-in submap Fill(e,m?) in the following way. Recall that the maps ui to be glued into the

holes hi to obtain m? from e are well-de�ned by rigidity. For the types of targets we consider, at most

one of the maps ui contains the target. We de�ne Fill(e,m?) to be given by gluing ui into hi for each

of the maps ui not containing the target. The result is a planar map which either has a single hole or

contains the target and equals m?.
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De�nition 4 (Filled-in peeling exploration). For a planar mapm? with a target? ∈ {•,�,∞}, the peeling

exploration of m? with algorithm A is the in�nite sequence

e0 ⊂ e1 ⊂ · · · ⊂ m?,

where ei+1 = Fill(Peel(ei ,A(ei ),m?),m?) for i ≥ 0, and e0 is the unique two-face map with a hole and root
face of degree equal to the perimeter of m.

Let us consider the i’th peeling step ei+1 = Fill(Peel(ei ,A(ei ),m?),m?) assuming that A(ei ) , †.

Then we can identify (with a slight abuse of notation) the following events:

• Event Ck : corresponding to the discovery of a (unmarked) face of degree 2k ; no �lling-in occurs.

• Event Mk (only when ? = �): when the marked face is explored, then the remaining hole of

degree 2k is �lled in.

• Event Gk1,∗: peeling leads to event Gk1,k2 and the hole of degree 2k1 is �lled in.

• Event G∗,k2 : peeling leads to event Gk1,k2 and the hole of degree 2k2 is �lled in.

Figure 4: On the left a portion of an in�nite planar map m∞. On the right an event is shown

resulting from peeling the active edge indicated in orange.

A natural process associated to the �lled-in peeling exploration is the perimeter process (Pi ) obtained

by setting Pi equal to the half-degree of the unique hole of ei as long as ei , m?. If ei = m?, i.e. the

exploration has �nished, we will set by convention Pi = 0 in the case of a marked vertex and Pi = −k in

the case of a marked face of degree 2k . We then �nd

Pi+1 − Pi =



k − 1 on the event Ck (k ≥ 1)

−k − 1 on the events Gk,∗,G∗,k ,Mk (k ≥ 0).

In particular, the exploration stops precisely when (Pi ) takes its �rst non-positive value.

2 The perimeter process of a Boltzmann map

2.1 Boltzmann maps

We wish to apply the peeling exploration to a broad class of (bipartite) planar maps known as the

Boltzmann planar maps. Let q = (qi )i≥1 be a sequence of non-negative weights. We use it to put a

measure wq on the set M of (�nite, bipartite) planar maps by setting for m ∈ M

wq (m) =
∏

f ∈Faces(m)\{fr }

q
deg(f )/2,
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where fr is the root face of m. For ` ≥ 1 we let M(`) ⊂ M be the set of all maps with perimeter 2`, and

M
(`)
• the set of such maps with a marked vertex (also called pointed maps). Then we may introduce the

disk functions
W (`) (q) := wq (M

(`) ) and W (`)
• (q) := wq (M

(`)
• ).

For convenience we take M(0)
and M

(0)
• to contain a single degenerate planar map consisting of a single

vertex and no edges or faces, such that W (0) (q) = W (0)
• (q) = 1. We will simply write W (`)

and W (`)
•

when the sequence q is clear from the context.

For the purposes of these lectures we will use the following de�nition of admissibility:

De�nition 5 (Admissibility). The weight sequence q is said to be admissible ifW (`)
• (q) < ∞ for all ` ≥ 1

andW (`+1)
• (q)/W (`)

• (q) converges as ` → ∞.

Since W (`) (q) < W (`)
• (q) admissibility implies also that W (`) (q) < ∞, and therefore we may

normalizewq into probability measures on M(`)
and M

(`)
• , called the (unmarked and marked) Boltzmann

planar maps of perimeter 2`. We shall denote the corresponding distributions by P
(`)
q and P

(`)
•,q, i.e.

P
(`)
q (m) =

wq (m)

W (`) (q)
and P

(`)
•,q (m•) =

wq (m•)

W (`)
• (q)

. (1)

Remark 2. It can be shown that the admissibility condition of De�nition 5 is equivalent toW (`)
• < ∞ for

some ` ≥ 1, and one may even replaceW (`)
• < ∞ byW (`) < ∞. We will however not prove this here. See

e.g. [8] or [6].

2.2 The law of the perimeter process

Let us �x an admissible weight sequence q and a peeling algorithm A that never selects † unless the full

map is explored. We are going to consider the �lled-in peeling exploration of the Boltzmann map m•

with a marked vertex and perimeter 2` ≥ 2.

Proposition 1. Under P(`)• the �lled-in peeling exploration (ei )i≥0 of m• is a Markov chain. Conditionally
on the half-degree p of the hole of ei the probability of event Ck with k ≥ 1 occurring at the i’th peeling
step is

W
(p+k−1)
•

W
(p )
•

qk

while the events Gk,∗ and G∗,k with k ≥ 0 occur each with probability

W
(p−k−1)
•

W
(p )
•

W (k ) .

Conditionally on one of the latter events with k ≥ 1 the map used to �ll in the hole is a (unmarked)
Boltzmann map of perimeter 2k independent of ei .

Proof. Let us look at the �rst step e0 → e1 of the peeling exploration. Using rigidity the probability of

event Ck for k ≥ 1 is easily seen to be given by

P
(`)
• (Ck ) =

qk
∑
m′•∈M

(`+k−1)
•

wq (m
′
•)

W (`)
•

=
qkW

(`+k−1)
•

W (`)
•

. (2)

Similarly the probability of event G∗,k (respectively Gk,∗) for 0 ≤ k < p − 1 is

P
(`)
• (G∗,k ) =

∑
m′∈M(k ) wq (m

′)
∑
m′•∈M

(`−k−1)
•

wq (m
′
•)

W (`)
•

=
W (k )W (`−k−1)

•

W (`)
•

, (3)
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which shows that conditionally on G∗,k (respectively Gk,∗) the map m′ �lling in the hole of degree 2k is

an independent Boltzmann planar map of perimeter 2k . This shows the claimed properties for the �rst

step. Moreover, it follows from (2) (respectively (3)) that conditionally on the event Ck (respectively G∗,k
or Gk,∗) the unexplored part after the �rst peeling step is distributed as m• under P

(`+k−1)
• (respectively

P
(`−k−1)
• ). Hence the general result follows from iterating the calculation. �

In particular we �nd that the perimeter process (Pi ) is a Markov process with transition probabilities

P
(`)
• (Pi+1 = p + k |Pi = p > 0) =

W
(p+k )
•

W
p
•

·




qk+1 for 0 ≤ k

2W (−k−1)
for − l ≤ k < 0,

(4)

and Pi+1 = 0 whenever Pi = 0.

2.3 Intermezzo: Wiener-Hopf factorization

Before we continue studying the perimeter process, we need to discuss some generalities on random

walks on Z. Let ν be a probability measure on Z∪ {†} with ν (0) < 1, and (Xi ) a sequence of i.i.d. random

variables with law ν . For ` ∈ Z we introduce a random walk (Sn ) started at ` by setting

Sn := ` + X1 + · · · + Xn ,

with the convention that Sn = † if Xi = † for some i = 1, . . . ,n, and we denote the corresponding

probability by P` . If ν (Z) < 1 then the random walk is defective, which means that at each step the walk

has a probability of ν (†) to be killed (i.e. sent to a cemetery state †). If the walk is not defective, we say

it is proper.
The weak ascending ladder epochs (T ≥i ) of the walk (Sn ) correspond to the successive times at which

the walk attains its running maximum, i.e. iteratively we set T ≥
0
= 0 and

T ≥i+1 = inf {n > T ≥i : Sn ≥ ST ≥i
},

which is taken to be∞ when Sn < ST ≥i
or Sn = † for all n > T ≥i . The weak ascending ladder process (H ≥i )

is then given by H ≥i = ST ≥i
provided T ≥i < ∞ and H ≥i = † otherwise. Similarly we introduce the strict

descending ladder epochs (T <
i ) by setting T <

0
= 0 and

T <
i+1 = inf {n > T <

i : Sn < ST <
i
}.

The strict descending ladder process (H<
i ) is then given by H<

i = −ST <
i

provided T <
i < ∞ and H<

i = †

otherwise. Under P0 both (H ≥i ) and (H<
i ) are distributed as (possibly defective) random walks on Z

started from 0 with non-negative increments.

Figure 5: A walk (Sn ) started from 0 with its weak ascending and strict descending ladder

processes.
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The walk (Sn ) is said to drift to ±∞ respectively if limn→∞ Sn = ±∞ almost surely. If neither is the

case then (Sn ) is said to oscillate. It is easy to see that we have the following relations between the ladder

processes and the walk (Sn ):

(Sn ) defective ⇐⇒ (H ≥i ) defective, (H<
i ) defective

(Sn ) proper and drifting to∞ ⇐⇒ (H ≥i ) proper, (H<
i ) defective

(Sn ) proper and drifting to −∞ ⇐⇒ (H ≥i ) defective, (H<
i ) proper

(Sn ) proper and oscillating ⇐⇒ (H ≥i ) proper, (H<
i ) proper

(5)

We introduce the characteristic function ϕ (θ ) of (Sn ), and the probability generating functionsG≥ (z)

and G< (z) of the ladder processes by

ϕ (θ ) := E0[eiθS1] =
∞∑

k=−∞

ν (k )eikθ , G≥ (z) = E0[zH
≥
1 ], G< (z) = E0[zH

<
1 ]. (6)

The following relation between these three function will play an important role in analyzing the

perimeter process.

Proposition 2 (Wiener-Hopf factorization). The functions in (6) satisfy for θ ∈ R

1 − ϕ (θ ) = (1 −G≥ (eiθ )) (1 −G< (e−iθ )). (7)

Proof. Let us denote by ν ≥ (k ) := P0[H ≥
1
= k] and ν< (k ) := P0[H<

1
= k] the probability distributions of

the �rst weak ascending and strict descending ladder heights. Let us compute ν ≥ (k ) for k ≥ 0 as follows.

Either (Sn ) performs an initial jump of size k , with probability ν (k ), or it spends some time among the

negative integers before jumping to Sn = k at time n ≥ 2. In the latter case, let j ∈ {2, . . . ,n − 1} be its

last visit to −m := max{Si : 2 ≤ i < n} ≤ −1, i.e. its intermediate maximum. By decomposing the walk

at j it is not hard to see that we have the relation

ν ≥ (k ) = ν (k ) +
∑
m∈Z

ν< (m)ν ≥ (k +m). (k ≥ 0)

Similarly, the probability ν< (k ) for k > 0 easily follows from decomposing the walk at its �rst visit to

its minimumm := min{Si : 2 ≤ i < n} ≥ 0, leading to

ν< (k ) = ν (−k ) +
∑
m∈Z

ν< (k +m)ν ≥ (m). (k > 0)

It follows that

ϕ (θ ) =
∑
k≥0

ν (k )eikθ +
∑
k>0

ν (−k )e−ikθ

=
∑
k≥0

ν ≥ (k )eikθ +
∑
k>0

ν< (k )e−ikθ −
∑

κ,m∈Z

ν< (m)ν ≥ (k +m)eikθ

= G≥ (eiθ ) +G< (e−iθ ) −G< (e−iθ )G≥ (eiθ ) = 1 − (1 −G≥ (eiθ )) (1 −G< (e−iθ )).

�

2.4 An admissibility criterion

Let us return to the perimeter process (Pi ) of a Boltzmann planar map with a marked vertex and

perimeter 2`, whose law for admissible q is given by (4). Our admissibility assumption implies that there

exists a cq > 0 such that for all k ∈ Z,

lim

p→∞

W
(p+k )
•

W
(p )
•

= ckq . (8)
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Actually, sinceW
(p )
• includes at the very least the number of rooted plane trees with p edges, of which

there are 4
p+o (1)

, we know that cq ≥ 4. The transition probabilities (4) are seen to converge as the

perimeter becomes large, the limit being

ν (k ) = νq (k ) := lim

p→∞
P
(`)
• (Pi+1 = p + k |Pi = p) = c

k
q ·




qk+1 for k ≥ 0

2W (−k−1)
for k < 0.

(9)

By Fatou’s lemma ν de�nes a possibly defective probability measure on Z, putting us in the setting of

the last section. We introduce the random walk (Sn ) with law ν started at ` under the probability P`
accordingly.

In terms of the law ν we may rewrite the law of the perimeter process as

P
(`)
• (Pi+1 = p + k |Pi = p) =

h↓(p + k )

h↓(p)
ν (k ) for p ≥ 1,k ∈ Z, (10)

where we introduced the notation

h↓(`) :=W (`)
• c−`q 1{`≥0} . (11)

In particular h↓ is ν -harmonic on the positive integers:∑
k ∈Z

h↓(` + k )ν (k ) = h↓(`) for ` ≥ 1. (12)

According to Proposition 2 the characteristic function of S1 admits the Wiener-Hopf factorization

1 − ϕ (θ ) = (1 −G≥ (eiθ )) (1 −G< (e−iθ )). (13)

We will now prove

Lemma 1. If q is admissible then there exists a β ∈ [0, 1] such that

G< (z) = 1 −

√
1 − βz.

The proof will be a simple consequence of the following probabilistic interpretation of the good old

Tutte’s decomposition:

Lemma 2. If q is admissible then for p ≥ 1 we have

ν (−k − 1) =
1

2

∞∑
m=−∞

ν (m)ν (−k −m − 1)

Proof. Fix ` > k ≥ 1 and let m• be a pointed Boltzmann planar map with perimeter 2`. Let A be the

event that the removal of the root edge of m• leaves a pointed map to the left of the root edge with

half-perimeter ` − k − 1. By peeling the root edge we immediately �nd using Proposition 1 that

P
(`)
• (A) = P(`)• (G∗,k ) = C ν (−k − 1), C :=

1

2

h↓(` − k − 1)

h↓(`)
.

On the other hand we may choose to �rst peel the edge directly to the right of root edge, leading to a

half-perimeter P1, and only afterwards to peel the root edge (see �gure below). Then A occurs i� an

event G∗,k ′ is followed by G∗,k−k ′−1 for 0 ≤ k ′ < k or Ck ′ is followed by G∗,k+k ′−1 for k ′ ≥ 1. One easily

�nds

P
(`)
• (A and P1 = ` +m) =

C

2




ν (m)ν (−k −m − 1) + ν (−k −m − 1)ν (m) form ≥ 0

ν (m)ν (−k −m − 1) for − k + 1 ≤ m ≤ −1

0 form ≤ −k .

Summing overm gives desired result. �

8



Figure 6

Proof of Lemma 1. In terms of the characteristic function ϕ (θ ) Lemma 2 translates into

[eikθ ](1 − ϕ (θ ))2 = 0 for k ≤ −2,

where we use the notation [eikθ ]f (θ ) = 1

2π

∫
2π
0

f (θ )e−ikθ . By the Wiener-Hopf factorization this implies

[eikθ ](1 −G≥ (eiθ ))2 (1 −G< (e−iθ ))2 = 0 for k ≤ −2.

This can only occur when (1 −G< (e−iθ ))2 = 1 − βe−iθ for some β ∈ [0, 1], which implies the desired

formula for G< (z). �

Notice that (H<
i ) is proper i� G< (1) = 1, i.e. β = 1. If β < 1 then by (5) the walk (Si ) is either

defective or it drifts so∞. We will now see that this cannot happen.

Proposition 3. If q is admissible then G< (z) and h↓(l ) are given by the universal formulas

G< (z) = 1 −
√
1 − z and h↓(l ) = 4

−l
(
2l

l

)
1{l ≥0} .

Proof. If q is admissible, the Boltzmann planar map with a marked vertex and half-perimeter ` ≥ 1 is

a.s. �nite and therefore the perimeter process (Pi ) will a.s. hit zero in �nite time. Hence

1 =

∞∑
n=1

P
(`)
• (P1 > 0, P2 > 0, . . . , Pn−1 > 0, Pn = 0)

=
h↓(0)

h↓(`)

∞∑
n=1

P` (S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn = 0).

Since h↓(0) = 1, we observe that h↓(`) is the probability under P` that the walk (Sn ) hits {0, 1, 2, . . .} at

0 (before being killed). But also

h↓(`) = P0 ((H<
i ) visits ` before being killed) (14)

= [z`]
1

1 −G< (z)
= [z`]

1√
1 − βz

= 4
−l

(
2l

l

)
β l .

However (8) and (11) imply that h↓(` + 1)/h↓(`) → 1 as ` → ∞, and therefore we must have β = 1. �

In particular, it follows from (5) that the walk (Si ) is proper and either oscillates or drifts to −∞.

Remark 3. Using G≥ (eiθ ) = 1 − (1 − ϕ (θ ))/(1 −G< (e−iθ )) we deduce the explicit expression

G≥ (z) =
∑
p,k≥0

h↓(k ) ν (k + p) zp =
∑
p,k≥0

h↓(k ) qk+p+1 c
k+p
q zp

for the p.g.f. of the ascending ladder process.

9



Perhaps surprisingly Proposition 3 has a converse, in the sense that any random walk sharing this

strict descending ladder process arises from some admissible weight sequence q.

Theorem 1. If the �rst strict descending ladder step of a random walk (Yn ) with step distribution µ on Z
has p.g.f. z 7→ 1 −

√
1 − z then the sequence q given by

qk := µ (k − 1) (µ (−1)/2)k−1 (15)

is admissible and µ = νq.

Proof. First we deduce from the Wiener-Hopf factorization that µ (k ) > 0 for all k < 0. In particular, the

sequence q is well-de�ned.

Let us �x ` > 0 and a peel algorithm A. We will now iteratively construct a random peeling

exploration (without target) as in De�nition 3 starting with the unique two-face map e0 with a hole and

root face both of degree 2`. Given ei and the peel edge e = A(ei ), we specify that conditionally on the

degree 2p of the hole to which e is incident the events Ck and Gk1,k2 occur independently of ei with

probabilities

P(Ck |p) =
µ (k − 1)µ (−p − k )

µ (−p − 1)
, P(Gk1,k2 |p) =

µ (−k1 − 1)µ (−k2 − 1)

2µ (−p − 1)
. (16)

These probabilities indeed sum to 1 by a similar argument as before: the law of the descending ladder

process implies that the characteristic functionψ (θ ) of Y1 satis�es [eikθ ](1 −ψ (θ ))2 = 0 for k ≤ −2.

We claim that this peeling process terminates almost surely after a �nite number of steps, which

means that there exists a n > 0 such that en has no holes. If we denote the latter map by m = en then it

is clear that (ei ) is the peeling exploration of m with peeling algorithm A in the sense of De�nition 3.

In order to justify our claim, we introduce the function д which associates to a planar map e with

holes the quantity

д(e) = |e| +
∑

holes h of e

f ↓(deg(h)/2) with f ↓(p) :=
µ (−1)h↓(p)

µ (−p − 1)
, (17)

where |e| is the number of inner vertices of e, i.e. the vertices that are not incident to a hole. One may

check that (д(ei ))i determines a (positive) martingale with respect to the �ltration generated by the

sequence (ei ) above. Indeed, if the peel edge A(ei ) is incident to a hole h of degree 2p then

E(`)[д(ei+1) − д(ei ) |ei ]
(17)

= −f ↓(p) + E(`)



|ei+1 | − |ei | +
∑

holes h′ originating

from h

f ↓(deg(h′)/2)

���������

ei


= −f ↓(p) +

∑
k≥1

P(Ck |p) f
↓(p + k − 1) +

∑
k1+k2=p−1
k1,k2≥0

P(Gk1,k2 |p) ( f
↓(k1) + f ↓(k2))

(16)

= −f ↓(p) +
∑
k≥1

µ (k − 1)µ (−1)h↓(p + k − 1)

µ (−p − 1)
+ 2

p−1∑
k1=0

µ (k1 − p)µ (−1)h
↓(k1)

2µ (−p − 1)

=
µ (−1)

µ (−p − 1)
*
,
−h↓(p) +

∑
k ∈Z

µ (k )h↓(p + k )+
-
,

but the expression in parentheses vanishes because h↓ is µ-harmonic on Z>0.
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One may check that there exists a c > 0 such that 2P(G0,p−1 |p) = µ (−1)µ (−p)/µ (−p − 1) > c for all

p ≥ 1. This means that at each step of the exploration, before the last hole disappears, the number of

inner vertices increases with a probability at least c . Hence we have for any n ≥ 1 that

f ↓(`) = E(`)[д(en )] ≥ E
(`)
[|en |] =

n∑
i=1

E(`)[|ei | − |ei−1 |]

≥ c
n∑
i=1

P[ei has at least one hole] ≥ n c P[en has at least one hole].

But that means that the probability that the peeling algorithm has not terminated after n steps is O(n−1),

hence the number of steps is almost surely �nite.

Next using the rigidity of the peeling operations one may determine the probability of obtaining a

particular planar map m ∈ M(`)
in this way by taking the product of the probabilities in (16) for the

required steps. When doing this all factors µ (−p − 1) with p ≥ 1 cancel except for an overall 1/µ (−` − 1),

and one is left with a probability

P(m) =
2

µ (−` − 1)

(
µ (−1)

2

) |Vertices(m) | ∏
f ∈Faces(m)\{fr }

µ (deg( f )/2 − 1)

=
2

µ (−` − 1)

(
µ (−1)

2

)`+1 ∏
f ∈Faces(m)\{fr }

µ (deg( f )/2 − 1)

(
µ (−1)

2

)
deg(f )/2−1

,

where we used Euler’s formula to obtain the second equality. This probability indeed reproduces the

distribution P(`) (m) of (1) when using the identi�cation (15). In particular, we read o� that

W (`) (q) =
1

2

µ (−l − 1) (µ (−1)/2)−`−1 < ∞. (18)

From the considerations above it follows that the expected number of vertices of m is given by f ↓(`) =

W (`)
• (q)/W (`) (q), and therefore

W (`)
• (q) = f ↓(`)W (`) (q) = h↓(`) (µ (−1)/2)−`

is �nite as well. Since we also haveW (`+1)
• /W (`)

• → 2/µ (−1) = cq as ` → ∞, q is admissible. The fact

that νq (k ) = µ (k ) for k ∈ Z follows directly from combining (9) with (15) and (18). �

Remark 4 (Non-bipartite maps). For simplicity we have restricted ourselves here to the bipartite setting,
but it is straightforward to extend the mentioned results to non-bipartite planar maps. In that case, one
keeps track of the perimeter (P̂i ) (instead of the half-perimeter) and its corresponding random walk (Ŝi )

with step distribution ν̂ . Lemma 2 then becomes

ν̂ (−k − 2) =
1

2

∞∑
m=−∞

ν̂ (m)ν̂ (−k −m − 2) for k ≥ 1,

which implies that the p.g.f. Ĝ< (z) of the �rst strict descending ladder step must be of the form

(1 − Ĝ< (z))2 = (1 − βz) (1 + rz),

with −β < r ≤ β ≤ 1. Then ˆh↓(p) = [zp]1/
√
(1 − βz) (1 + rz) and its exponential growth determines that

β = 1. The di�erence with the bipartite case is thus that there is a one-parameter family, parametrized by
r ∈ (−1, 1), of possible descending ladder processes. Apart from that the results, including Theorem 1, go
through without change.

11



2.5 Boltzmann planar maps with a marked face

We denote by M
(`,m)
� the set of rooted planar map with a distinguished face of degree 2m di�erent from

the root face, which has degree 2p. To introduce a Boltzmann planar map with a marked face, we adapt

the weight wq to skip the marked face (denoted fm), i.e.

wq (m�) :=
∏

f ∈Faces(m�)\{fr,fm }

q
deg(f )/2.

IfW (`,m)
� (q) := wq (M

(`,m)
� ) is �nite, the distribution

P
(`,m)
� (m�) =

wq (m�)

W (`,m)
� (q)

de�nes the Boltzmann planar map m� with a marked face of degree 2m and perimeter 2`.

Proposition 4. If q is admissible thenW (`,m)
� (q) < ∞ for all `,m ≥ 1 and is given by

W (`,m)
� (q) =

1

2

Hm (`) c`+mq with Hm (`) =
`

` +m
h↓(`) h↓(m). (19)

The fact that 2m ·W (`,m)
� is symmetric in ` andm should not come as a surprise: if we distinguish

one of the 2m oriented edges that have the marked face on their right-hand side, then the marked face

and the root face play an equivalent role in the map.

Proof. Let us �x `,m ≥ 1 and a peel algorithm A. Then A induces a �lled-in peeling exploration on any

planar map with a marked face but also on pointed planar maps. If we denote by (Pi (m•)) the induced

perimeter process on a pointed map m•, then we claim there exists a 2-t0-1 mapping

Ψ :

{
m• ∈ M

(`+m)
• : Pi (m•) ∈ {0,m + 1,m + 2, . . .} for all i

}
→M

(`,m)
�

that preserves the weight in the sense that wq (Ψ(m•)) = wq (m•). This would imply that W (`,m)
� ≤

W (`+m)
• < ∞ and that, conditionally on Pi (m•) ∈ {0,m + 1,m + 2, . . .} for all i , Ψ(m•) under P

(`+m)
• is

distributed as m� under P
(`,m)
� .

This mapping Ψ is obtained by comparing the sequences of events (Ck , G∗,k , Gk,∗) in the �lled-in

peeling of both m• ∈ M
(`+m)
• and m• ∈ M

(`+m)
• . To be precise we set Ψ(m•) = m� provided that at each

peeling step ei → ei+1 (except the last one when ei+1 = m• respectively ei+1 = m�) the same event occurs

and that at each step the same map is used to �ll in a possible hole. Notice that then Pi (m�) = Pi (m•)−m

for all i ≥ 0. If the perimeters before the last step are respectively Pi (m•) = p and Pi (m�) = p −m > 0,

then the last events necessarily correspond to G∗,p−1 or Gp−1,∗ for m• and Mp−1 for m� (both leaving a

hole of degree p − 1). Rigidity then implies that this indeed gives a 2-to-1 mapping (the 2 coming from

the two options G∗,p−1 or Gp−1,∗ in the last step) provided we restrict to pointed map for which the

perimeter process satis�es Pi (m•) > m. Since Ψ preserves the set of (non-root, non-marked) faces it

also preserves the weight wq.

It remains to computeW (`,m)
� (q). We have

W (`,m)
� (q) =

∑
m�∈M

(`,k )
�

wq (m�) =
1

2

∑
m•∈M

(`+k )
•

wq (m•)1{Pi (m•)∈{0,m+1,m+2, ... } for all i }

=
1

2

W (`+m)
• P

(`+m)
• [Pi (m•) ∈ {0,m + 1,m + 2, . . .} for all i]

=
W (`+m)
•

2h↓(` +m)
P`+m [(Si ) hits {m,m − 1,m − 2, . . .} at 0]

=
1

2

c`+mq P` [(Si ) hits Z≤0 at −m] .

12



The last probability depends only on the strict descending ladder process (H<
i ), and is therefore inde-

pendent of q. We leave it as an exercise to show that this probability is indeed given by Hm (`) (Hint: for

`,k ≥ 0 we have P0[(H<
i ) visits `+k] =

∑k
m=0 P0[(H

<
i ) hits {`, `+1, . . .} at `+m]P0[(H<

i ) visits `−m],

which implies that Hm (`) has to satisfy h↓(` + k ) =
∑k
m=0Hm (`)h↓(` − m). Then use generating

functionology to �nd the unique solution.) �

A direct consequence of this proposition is that the law of the perimeter process (Pi ) associated to

the �lled-in peeling exploration of a Boltzmann planar map with a marked face of degree 2m is given by

P
(`,m)
� (Pi+1 = p + k |Pi = p) =

Hm (p + k )

Hm (p)
ν (k ) (p > 0,p + k > 0) (20)

while the process terminates (event Mp+m−1) with probability ν (−p −m)/Hm (p). In particular, it agrees

(up to �rst hitting of Z≤0) with the law of the random walk (Si ) under the conditional probability

P` ( · |(Si ) hits Z≤0 at −m).

2.6 In�nite Boltzmann planar maps

To study growth properties of, say, geodesic balls in random planar maps it is very convenient to

�rst consider a limit in which the planar maps become in�nitely large. One way to achieve this is by

conditioning a Boltzmann planar map to have a �xed number n of vertices or faces and then to take the

limit n → ∞ (in the appropriate local topology). This can certainly be done using enumerative methods,

but from the peeling exploration point of view such conditioning is not particularly natural. For �xed q,

the only free parameter we have introduced so far in our Boltzmann planar maps is the half-perimeter `.

It would be natural to look for a local limit by taking ` → ∞. However, keeping the root where it is, this

will lead to a map with a root face of in�nite degree. Instead we wish to examine our Boltzmann planar

map in a neighbourhood of another root edge uniformly sampled in the map. This can naturally be done

by considering a Boltzmann planar map of half-perimeter ` and a marked face of half-degree 1, which

we collapse to a marked edge in the usual way. Equivalently, we may consider a Boltzmann planar map

with a half-perimeter of 1 and a marked face of half-degreem, and consider the limitm → ∞.

Observe that for all p ≥ 1,

Hm (p + k )

Hm (p)

m→∞
−−−−−→

h↑(p + k )

h↑(p)
with h↑(p) := 2p · 4−p

(
2p

p

)
.

Proposition 5. If q is admissible then the following are equivalent:

(i) for all ` ≥ 1, the probability that the marked face of degree 2m of a Boltzmann planar map with
perimeter 2` is incident to the root edge approaches 0 asm → ∞;

(ii)
∑

k ∈Z h
↑(p + k )ν (k ) = h↑(p) for all p ≥ 1

(iii)
∑

k≥0 h
↑(k + 1)ν (k ) = 1.

(iv) (Si ) oscillates;

(v) νq (−k ) · k3/2 → 0 as k → ∞.

When any of these properties hold we call q critical.

Proof. Using that

Hm (p + k )

Hm (p)
=

p +m

p + k +m

h↑(p + k )

h↑(p)
≤ p

h↑(p + k )

h↑(p)
,
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dominated convergence implies that the probability that the marked face is encountered at the �rst

peeling step satis�es

1 − P
(`,m)
� (P1 > 0)

(20)

= 1 −

∞∑
k=−`+1

` +m

` + k +m

h↑(` + k )

h↑(`)
ν (k )

m→∞
−−−−−→ 1 −

∑
k ∈Z

h↑(` + k )

h↑(`)
ν (k ).

This proves the equivalence of (i) and (ii) for any half-perimeter `. Moreover, the equivalence with (v)

follows from the fact that the left-hand side is equal to

ν (−` −m)/Hm (`) ∼ ν (−` −m) · (` +m)3/2 asm → ∞.

Clearly (ii) implies (iii) by setting p = 1. Conversely, using that h↓ is ν-harmonic we have for p ≥ 1

that ∑
k ∈Z

(h↑(k + p + 1) − h↑(k + p))ν (k ) =
∑
k ∈Z

h↓(k + p)ν (k ) = h↓(p) = h↑(p + 1) − h↑(p).

Hence (iii) also implies (ii) by induction on p.

It remains to show the equivalence of (iii) and (iv). Recall that (Si ) oscillates i� (H ≥i ) is proper, i.e.

1 =
∑∞

`=0 P0 (H
≥
1
= `). Let us compute the latter probability as follows,

P0 (H ≥1 = `) =
∑
n≥1

P0 (S1, . . . Sn−1 < 0, Sn = `)

= ν (`) +
∑
k≥1

∑
n≥2

P0 (S1, . . . Sn−2 < 0, Sn−1 = −k ) · ν (` + k )

= ν (`) +
∑
k≥1

P0 ((H<
i ) visits k ) · ν (` + k )

(14)

=
∑
k ∈Z

h↓(k )ν (` + k ).

Hence, (Si ) oscillates i�

∑
l ≥0

∑
k ∈Z

h↓(k )ν (` + k ) =
∑
k≥0

*.
,

k∑
`=0

h↓(`)+/
-
ν (k ) =

∑
k ∈Z

h↑(k + 1)ν (k ) = 1,

which �nishes the proof. �

If m is a (rooted) planar map we denote by [m]r , r ≥ 0, the ball of radius r in m, given by the set of

vertices at graph distance at most r from the root vertex together with all edges joining those vertices.

One can put a distance on the space M of planar maps, by setting

dloc (m,m
′) =

1

1 + sup{r ≥ 0 : [m]r = [m′]r }

for any two planar maps m,m′ ∈ M. In words: the larger the neighbourhood of the root on which m

and m′ agree, the closer they are with respect to this distance. The space M with this distance is not

complete: its completion M contains both �nite maps and in�nite ones, which by construction can be

speci�ed as a sequence (mi ) of maps such that [mi ]r = [mj ]r for all 0 ≤ r ≤ i ≤ j. The distance dloc
induces a topology on M, which we call the local topology. For a sequence of random �nite maps, we

can therefore ask whether it possesses a distributional limit, the local limit, with respect to this topology.

In our case we wish to study the local limit of Boltzmann planar maps with a marked face of growing

degree. Judging by Proposition 5(i) we should better restrict to critical q, otherwise the limit will contain

a face of in�nite degree.
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Theorem 2. Suppose q is admissible and critical, and ` ≥ 1 �xed. There exists a probability distribution
P
(`)
∞ on in�nite planar mapsm∞ ∈ M, such that almost surelym∞ is one-ended and all its faces and vertices

have �nite degree, and such that m� under P
(`,m)
� converges in distribution in the local topology to m∞

under P(`)∞ asm → ∞.

Sketch of proof. We �x ` ≥ 1 and a peeling algorithm A (to be speci�ed below), and consider the �lled-in

peeling exploration (ei )i≥0 of m� under P
(`,m)
� . As a Markov chain (ei )i≥0 converges in law to a Markov

chain (e∞i )i≥0 asm → ∞, because the same is true for the transition probabilities as we have seen above.

Moreover, from Proposition 5(i) it follows that for all i ≥ 0 almost surely e∞i has a single hole, i.e. the

event Mk does not occur.

We want to de�ne m∞ ∈ M by specifying a sequence of maps that encompass balls of increasing

radius. To ensure this without too much work we choose our peeling algorithm A in such a way that

it always selects a peel edge that is incident to a vertex with minimal distance to the root vertex (as

measured by the graph distance). Then we claim that for r > 0 one can always �nd an ir > 0 such that

the minimal distance from the vertices incident to the hole of eir is larger than r . This follows from the

fact that at each step the probability that the vertex at minimal distance becomes an inner vertex (in the

event of G∗,k ) is uniformly bounded from below. The sequence (eir )r then de�nes a probability measure

P
(`)
∞ on m∞ ∈ M, which by the properties of (ei ) is easily seen to be one-ended and to have faces and

vertices of �nite degree.

Finally, to show that m� converges to m∞ in the local topology it su�ces to check that for any i > 0

and any planar map e with holes

P
(`,m)
� (ei = e)

m→∞
−−−−−→ P

(`)
∞ (e∞i = e).

But this is implied by the convergence of the Markov chain (ei )i≥0 to (e∞i )i≥0 asm → ∞. �

The proof also implies that the perimeter process of m∞ under P
(`)
∞ for the peeling exploration

induced by A is the large-m limit of that of m� under P
(`,m)
� , i.e.

P
(`)
∞ (Pi+1 = p + k |Pi = p) =

h↑(p + k )

h↑(p)
ν (k ). (21)

This corresponds exactly to the law of (Si ) under P` conditioned to stay positive (i.e. P` ( · |S1, . . . , Sn > 0)

as n → ∞), which we will sometimes denote by (S↑i ).

Remark 5. Let us check that our criteria for admissibility and criticality agree with those of [8], which
states that q is admissible i� there exists a positive solution x > 0 to fq (x ) = 1 − 1/x where

fq (x ) :=
∞∑
k=1

qk

(
2k − 1

k − 1

)
xk−1 = 2

∞∑
k=0

qk+1 h
↓(k + 1) (4x )k .

First of all we notice that if h↓ is νq-harmonic on Z>0 then such a solution is given by x = cq/4 = 1/(2ν (−1))

since 1 = 2h↓(1) = 2

∑∞
k=−1 ν (k )h

↓(k + 1) = 2ν (−1) + 2
∑∞

k=0 qk+1h
↓(k + 1)ckq . Conversely one may check

that if x > 0 is the smallest solution to fq (x ) = 1 − 1/x and one sets µ (k ) = qk+1 (4x )
k for k ≥ 0

and µ (−1) = 1/(2x ), then µ can be extended to a unique measure on Z for which h↓ is µ-harmonic by
recursively setting µ (−`) = h↓(`) −

∑∞
k=1−` ν (k )h

↓(` + k ) for ` = 2, 3, . . .. Finally the criticality condition∑∞
k=0 h

↑(k + 1)ν (k ) = 1 of Proposition 5(iii) is easily seen to be equivalent to x2 f ′q (x ) = 1 when x = cq/4 is
the smallest solution to fq (x ) = 1 − 1/x , which is the criticality criterion from [8].
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3 Scaling limit of the perimeter process

From the last section it should be clear that the perimeter process (Pi ) associated to the exploration of

a Boltzmann planar map m? with target, contains the crucial information about its geometry. Indeed,

conditionally on the (Pi ) the map m? can be obtained by iteratively performing one of the peeling

operations: at the i’th step if Pi+1 ≥ Pi then Ck occurs with k = Pi+1 − Pi + 1 and otherwise G∗,k
or Gk,∗ with equal probability when k = Pi − Pi+1 − 1 and the hole is �lled in with an independent

Boltzmann planar map of perimeter k . For each of the targets (•, �,∞) we have seen that the perimeter

process has the law of an h-transform of the random walk (Sn ) killed upon hitting Z≤0, corresponding

to conditioning the walk either to hit Z≤0 at a speci�c point or to avoid Z≤0.

To understand the asymptotics of the perimeter process a good starting point is to determine the

asymptotics of Sn as n → ∞, which in turn depends on the tail behaviour of the measure ν .

Proposition 6. If q is admissible and




subcritical
critical and

∑∞
k=1 k

3/2ν (k ) < ∞

critical and ν (k ) ∼ c · k−a for a ∈ ( 3
2
, 5
2
)




then ν (−k ) ∼ c ′·




k−3/2

k−5/2

k−a




and
P0 (S1 > k )

P0 (S1 < −k )
→




0

0

cos(πa)




Proof. To do. �

When q is critical and

∑∞
k=1 k

3/2ν (k ) < ∞ then we will say that q is generic critical, which encom-

passes all critical weight sequences q with �nite support and those for which qkc
k
q falls o� exponentially.

If ν (k ) ∼ k−a for a ∈ ( 3
2
, 5
2
) we say q is non-generic critical with parameter a. In each of the cases of

Proposition 6 we introduce the asymptotics

ν (−k ) ∼ pq k−a .

Remark 6. Proposition 6 does not assert the existence of such q for all values of a ∈ [3/2, 5/2]. However,
one such family of sequences may easily be realized by specifying that the weak ascending ladder process
is given by the p.g.f. G≥ (z) = 1 − c (1 − z)a−3/2. If one further �xes c such that ν (k ) = 0, namely
c = πΓ(a − 1/2)/Γ(a), then one obtains the measure

ν (k ) =

√
π

2|Γ(3/2 − a) |

Γ(3/2 − a + k )

Γ(3/2 + k )
1k,0, (k ∈ Z)

with corresponding admissible sequence q given by qk = ν (k − 1) (ν (−1)/2)k−1. As a → 5/2 this gives
qk =

1

12
1k=2, corresponding exactly to critical quadrangulations.

Proposition 7. In each of the cases of Proposition 6 we have the following convergence in distribution
under P0 in the Skorokhod topology,(

S bnt c

n1/(a−1)

)
t ≥0

(d)
−−−−→
n→∞

(
ϒa (pq t )

)
t ≥0
,

where ϒa (t ) is the stable Lévy process of index a − 1 and Lévy measure

Π(dx ) = cos(πa)
dx

xa
1{x>0} +

dx

|x |a
1{x<0} .

Proof. It is classical that the convergence is granted as soon as it holds at t = 1, for which we may rely

on a generalized central limit theorem (see e.g. [1, Theorem 8.3.1]). According to the latter together with

the asymptotics of Proposition 6, we have the convergence n−1/(a−1)Sn − bn → ϒa (pq) in distribution
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for a suitable sequence bn . It only remains to show that bn → 0. For a < 2 this is true in general since

no centering is required. For a > 2 the fact that (Si ) oscillates implies that it has zero mean and so does

ϒa (pq), hence bn → 0. The case a = 2 is more tricky, since it does require centering although is has

in�nite �rst moments. For this case we refer to [4, Proposition 2]. �

If q is critical (which excludes a = 3/2) then the perimeter process (Pi ) under P
(`)
∞ , i.e. the in�nite

Boltzmann map of perimeter 2`, is given by conditioning (Si ) under P` to stay positive. According to

the invariance principle of Caravenna & Chaumont [5] this implies that it converges to a stochastic

process ϒ↑a , which is the stable process ϒa conditioned to stay positive and started from 0, i.e.

*.
,

S↑
bnt c

n1/(a−1)
+/
-t ≥0

(d)
−−−−→
n→∞

(
ϒ↑a (pq t )

)
t ≥0
. (22)

In particular we get our �rst glimpse of the non-trivial growth properties of in�nite Boltzmann maps:

after n peeling steps the exploration frontier has a size of order n1/(a−1) .

4 Geometry

We wish to study distances in in�nite planar maps using a �lled-in peeling exploration. To this end we

should select a peeling algorithm A that explores the map by increasing distance and such that at any

time the points on the exploration frontier are all roughly at the same distance. This is hard to achieve

when one aims at the usual graph distance especially when the map contains faces of large degree, but

becomes straightforward when dealing with distances on the dual map.

In this lecture we will concentrate on a certain random distance, the �rst passage percolation distance,
which is particularly simple to analyze. If m∞ is an in�nite planar map, we denote by m

†
∞ its dual,

i.e. the map in which the roles of the faces and vertices are interchanged (see Figure 7). To each edge

e ∈ Edges(m†) we associate an independent random variable xe with an exponential distribution of mean

1, i.e. with density e−xdx . Then we may associate tom† a continuous length metric spaceX(m†∞, (xe )) by

viewing each edge as an interval [0,xe ] with the standard Euclidean metric and performing appropriate

identi�cations at the endpoints. This space has a natural origin corresponding to the vertex of m
†
∞ dual

to the root face of m∞ (the open dot in the top-right �gure of Figure 7), and each point of X(m†∞, (xe ))

has a well-de�ned distance to this origin. In particular, for t ∈ [0,∞) �xed, we may de�ne the submap

Ball
fpp

t (m∞) ⊂ m∞ by cutting open all the edges of m∞ for which the dual edge has at least one point in

X(m†∞, (xe )) at distance at least t (i.e. all the edges that are not completely blue in the top-right of �gure

7), and keeping only the connected component containing the root face. Moreover, using the �lling-in

operation of Section 1.3 we introduce the hull of the fpp-ball of radius t by

Ball

fpp

t (m∞) := Fill(Ballfppt (m∞),m∞) ⊂ m∞.

The main reason why we de�ne our fpp-ball in this slightly contrived way is the close connection

with the �lled-in peeling exploration associated to the uniform peel algorithm A, i.e. where A(e) is a

uniformly random element of Active(e).

Proposition 8. Let m∞ be a �xed in�nite planar map. The fpp-ball Ball
fpp

t (m∞) as function of t ∈ [0,∞)

jumps at times 0 = T0 < T1 < T2 < · · · and

• the law of
(
Ball

fpp

Ti (m∞)
)
i
is that of the uniform peeling exploration of m∞;
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Figure 7: Top row (left to right): an in�nite mapm∞; the map together with its dualm†; the subset

(blue) of points in the continuous length space associated to m† which are at distance less than t

from the root. Bottom row: the ball Ball
fpp

t (m∞) ⊂ m∞ of radius t ; its hull Ball

fpp

t (m∞) ⊂ m∞.

• conditionally on
(
Ball

fpp

Ti (m∞)
)
i
the di�erences ∆Ti = Ti+1 −Ti are independent and distributed as

exponential random variables with mean 1/(2Pi ).

Sketch of proof. The basic idea is the following: for i ≥ 0, conditionally on Ball

fpp

Ti (m∞) = ei , the next

time Ti+1 > Ti that the fpp-ball jumps is when one of the edges dual to Active(e) is fully explored (is

colored completely blue in Figure 7). For simplicity we disregard the fact that some edges in Active(e) are

identi�ed inm∞. Then, because of the memorylessness of the exponential distribution, at timeTi the size

of the unexplored part of each of those edges is independent and exponentially distributed (with mean 1).

It follows that the edge with the smallest unexplored part is uniform among the duals of Active(e) and

the size of its unexplored part is distributed as the minimum of 2Pi = |Active(e) | exponential variables,

which again is an exponential variable but with mean 1/(2Pi ). It can be seen that the identi�cation

of edges in Active(e) does not spoil this analysis, see [3, Proposition 2.3] or [6, Proposition 33] for

details. �

In particular we observe that, conditionally on the perimeter process (Pi ), the corresponding process

(Ti ) of fpp-distances is distributed as

Tn =
n−1∑
i=0

ei
2Pi

(n ≥ 0),

where (ei ) is a sequence of independent exponential random variables of mean 1.

Now let us take m∞ to be an in�nite Boltzmann map with perimeter 2 and critical weight sequence

q. Then we can easily estimate the expectation value E
(1)
∞ [Tn] using that (Pi ) under P

(1)
∞ is distributed as

(S↑i ) under P1.

Lemma 3. If q is critical then

E
(1)
∞ [∆Tn] =

∞∑
k=n+1

1

k
P1 (Sk = 0) and E

(1)
∞ [Tn]

n→∞
−−−−→

∞∑
k=1

P1 (Sk = 0).
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Proof. For n ≥ 0 we have

E
(1)
∞ [∆Tn] = E

(1)
∞

[
en
2Pn

]
= E1



1

2S↑n


=

∞∑
k=1

1

2k
P1 (S

↑
n = k )

=

∞∑
k=1

h↑(k )

2k h↑(1)
P1 (S1 > 0, . . . , Sn−1 > 0, Sn = k )

=

∞∑
k=1

h↓(k )P1 (S1 > 0, . . . , Sn−1 > 0, Sn = k )

=

∞∑
k=1

Pk ((Si ) hits Z≤0 at 0) P1 (S1 > 0, . . . , Sn−1 > 0, Sn = k )

= P1 ((Si ) hits Z≤0 at 0 strictly after time n).

Now we make use of a well-known cycle lemma: consider an arbitrary walk of k steps on Z starting

at 1 and ending at 0, then among the k walks obtained by cyclically permuting its increments there is

exactly one walk that stays positive up to the last step. This implies that

P1 (Sk = 0) = k P1 (S1 > 0, . . . , Sk−1 > 0, Sk = 0).

Hence,

E
(1)
∞ [∆Tn] =

∞∑
k=n+1

P1 (S1 > 0, . . . , Sk−1 > 0, Sk = 0) =
∞∑

k=n+1

1

k
P1 (Sk = 0).

This proves the �rst claim, while the second follows from summing over n (from 0 to∞). �

The second result says that the fpp-distanceT∞ := limn→∞Tn to a “point at in�nity” has expectation

value equal to the expected number of visits of (Sn ) to 0, which is �nite if and only if (Sn ) is transient.

For the weight sequences of Proposition 6 this happens precisely when a < 2. So for such weight

sequences the geometry (as de�ned by fpp-distance) of the in�nite Boltzmann map is quite degenerate:

for any t > 0 the fpp-ball Ball

fpp

t (m∞) has a positive probability of being in�nite!

On the other hand, if a > 2 then (22) together with a local limit theorem (see e.g. [7, Theorem 4.2.1])

P1 (Sk = 0) ∼ c · k−1/(a−1)

implies that

E
(1)
∞ [Tn] =

n−1∑
`=0

∞∑
k=`+1

1

k
P1 (Sk = 0) ∼ C · n

a−2
a−1 as n → ∞.

So far, we have not discussed the volume (in the sense of the number of vertices) explored in the

peeling exploration. Luckily there is a simple way to heuristically derive the scaling with n. For large

and �xed n, conditionally on Pn , with large probability the process (Pi ) has made at least one negative

jump of size k ≈ Pn before time n. On this event the explored map en contains at least the vertices of the

Boltzmann planar map of perimeter 2k �lling in the hole created by the jump. We have already seen

that the expected number E(k )[|m |] of vertices is given by

E(k )[|m |] =
W (k )
•

W (k )
= f ↓(k ) =

ν (−1)h↓(k )

ν (−k − 1)
∼ c · ka−1/2.

Hence, we should expect the number of vertices |en | to be of order (Pn )
a−1/2 ≈ n(a−1/2)/(a−1) .
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To summarize, after n uniform peeling steps the distance Tn , the perimeter Pn , and the volume |en |

scale as n → ∞ as

Tn ≈ n
a−2
a−1 , Pn ≈ n

1

a−1 , |en | ≈ n
a−1/2
a−1 .

A further time-change then yields

|Ball
fpp

t (m∞) | ≈ t
a−1/2
a−2 and |∂Ball

fpp

t (m∞) | ≈ t
1

a−2

for the volume and perimeter of the fpp-ball of radius t . For precise statements and the law of the scaling

limit, see [3, Section 4.1].

A Planar map editor

Perhaps the best way to get acquainted with the peeling exploration of planar maps is to try some

examples and to observe the e�ects of the various peeling operations. Unfortunately, as the reader may

have noticed, even with relatively small maps performing a gluing operation (Gk1,k2 ) by hand already

becomes tedious and error-prone. Luckily there is an automated solution in the form of a planar map
editor which can be accessed in the browser at:

1

http://www.nbi.dk/~budd/planarmap/examples/editor.html

To perform a peeling exploration, say, of a �nite planar map of perimeter 8 with the root face on the

outside:

• Select a corner of the displayed edge (which is the starting con�guration) and press «8» to produce

a face of degree 8.

• For convenience you can mark a root edge by selecting a corner and pressing «M».

• If you like you can give the hole (the bounded face) a di�erent color by selecting it, opening up

the SELECTION menu, and choosing a color where it says Fill.

• To perform an operation Ck with, say, k = 2 to explore a face of degree 2k = 4: choose a peel

edge by selecting a corner of the hole, then press «4».

• To perform a gluing operation Gk1,k2 : select two corners of the hole (hold «shift» to do so), then

press «G».

Of course, one may also treat the outer face as the hole, which is particularly convenient when exploring

an in�nite planar map, and the operations Ck and Gk1,k2 work similarly. The only thing one should

keep in mind is that the gluing operation depends on the order in which the two corners are selected:

gluing is always done clockwise, in the sense that the active edges that sit clockwise in between the �rst

and second corner become part of the “�nite” hole.

1
The planar map editor is not just a fun tool to practice peeling, but can also be used to produce quality vector �gures of

planar maps (like all the ones appearing in these lecture notes).
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Exercise Try to recreate the following planar maps by a peeling exploration, i.e. by only using the

digit keys and «G» (and «Ctrl-Z» to undo). For (a), (b) and (c), start with a hole of degree 8 as described

above. For (d), (e) and (f), start with a single edge, the root edge, and view the outer face as a hole of

degree 2. To increase the challenge let a colleague be your peel algorithm A, i.e. someone telling you

which edge should be peeled next.
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