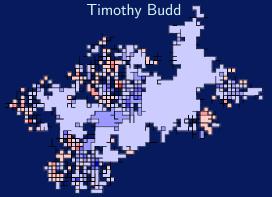
Lattice Paths, Combinatorics and Interactions CIRM - June 22, 2021

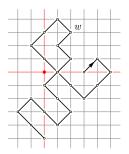
Winding of simple walks on the square lattice



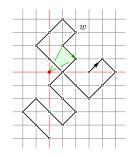
Based on arXiv:1709.04042

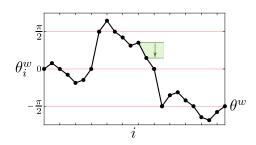
Radboud University Nijmegen t.budd@science.ru.nl, https://hef.ru.nl/~tbudd/

▶ Let w be a simple diagonal walk on $\mathbb{Z}^2 \setminus \{\text{origin}\}\$ of length $|w| \ge 0$.



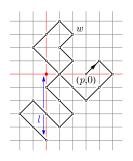
- ▶ Let w be a simple diagonal walk on $\mathbb{Z}^2 \setminus \{\text{origin}\}\$ of length $|w| \ge 0$.
- $\blacktriangleright \text{ Winding angle sequence } (\theta_0^w, \theta_1^w, \dots, \theta_{|w|}^w), \ \theta_0^w = 0, \ \theta^w \coloneqq \theta_{|w|}^w.$

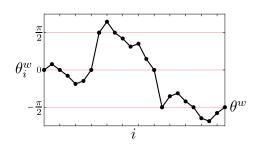




- ▶ Let w be a simple diagonal walk on $\mathbb{Z}^2 \setminus \{\text{origin}\}\$ of length $|w| \ge 0$.
- ▶ Winding angle sequence $(\theta_0^w, \theta_1^w, \dots, \theta_{|w|}^w)$, $\theta_0^w = 0$, $\theta^w := \theta_{|w|}^w$.
- ► Can we compute the following generating function?

$$W_{\ell,\rho}^{(\alpha)}(t) := \sum_{w} t^{|w|} 1_{\{w_0 = (\rho,0), |w_{|w|}| = \ell, \theta^w = \alpha\}}.$$
 $(\rho, \ell \ge 1, \alpha \in \frac{\pi}{2}\mathbb{Z})$





- ▶ Let w be a simple diagonal walk on $\mathbb{Z}^2 \setminus \{\text{origin}\}\$ of length $|w| \ge 0$.
- $\blacktriangleright \text{ Winding angle sequence } (\theta_0^w, \theta_1^w, \dots, \theta_{|w|}^w), \ \theta_0^w = 0, \ \theta^w \coloneqq \theta_{|w|}^w.$
- ▶ Can we compute the following generating function?

$$W_{\ell,p}^{(\alpha)}(t) := \sum_{w} t^{|w|} 1_{\{w_0 = (p,0), |w_{|w|}| = \ell, \theta^w = \alpha\}}.$$
 $(p, \ell \ge 1, \alpha \in \frac{\pi}{2}\mathbb{Z})$

Theorem (TB '17)

There exist formal power series

$$\hat{f}_m(z;t)$$
 $\in \mathbb{R}[\![z,t]\!],$ "eigenvectors" $W_m^{(lpha)}(t) = rac{2K(4t)}{\pi}q_{4t}^{m|lpha|/\pi} \in \mathbb{R}[\![t]\!],$ "eigenvalues"

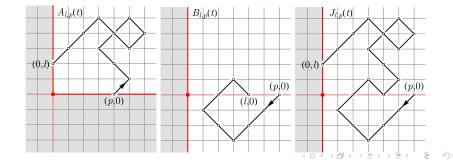
providing the eigendecomposition

$$\frac{1}{\ell p} W_{\ell,p}^{(\alpha)}(t) = \sum_{m=1}^{\infty} [z^{\ell}] \hat{f}_m(z;t) \ W_m^{(\alpha)}(t) \ [z^{p}] \hat{f}_m(z;t).$$

Building blocks

▶ Three types of building blocks: type *A*, *B*, *J*.

$$\sum_{m=1}^{\infty} A_{\ell,m}(t)B_{m,p}(t) = J_{\ell,p}(t).$$

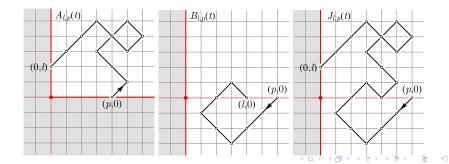


Building blocks

► Three types of building blocks: type *A*, *B*, *J*.

$$\sum_{m=1}^{\infty} A_{\ell,m}(t) B_{m,p}(t) = J_{\ell,p}(t).$$

Interpret $A_{\ell,p}(t)$, $B_{\ell,p}(t)$, $J_{\ell,p}(t)$ as elements of "infinite matrices": walk composition then corresponds to matrix multiplication

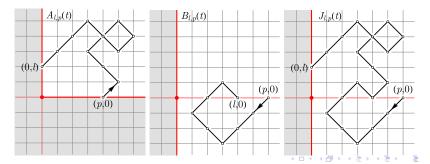


Building blocks

▶ Three types of building blocks: type *A*, *B*, *J*.

$$\sum_{m=1}^{\infty} A_{\ell,m}(t)B_{m,p}(t) = J_{\ell,p}(t).$$

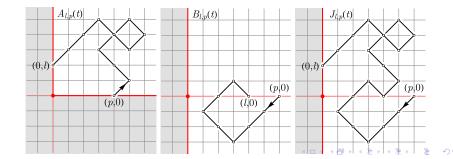
- Interpret $A_{\ell,p}(t)$, $B_{\ell,p}(t)$, $J_{\ell,p}(t)$ as elements of "infinite matrices": walk composition then corresponds to matrix multiplication
- ▶ To formalize this: fix $k = 4t \in (0,1)$ and choose convenient Hilbert space + basis.



Building blocks (operators)

▶ Let basis $(e_p)_{p=1}^{\infty}$ of $\ell^2(\mathbb{C})$ be such that $\langle e_\ell, e_p \rangle = p \, 1_{\{\ell=p\}}$ and let

$$\langle e_\ell, \mathsf{A}_k e_p \rangle = \ell p \, A_{\ell,p}(t), \quad \langle e_\ell, \mathsf{B}_k e_p \rangle = B_{\ell,p}(t), \quad \langle e_\ell, \mathsf{J}_k e_p \rangle = \ell \, J_{\ell,p}(t).$$

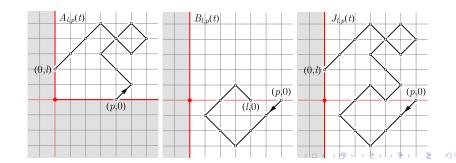


Building blocks (operators)

Let basis $(e_p)_{p=1}^{\infty}$ of $\ell^2(\mathbb{C})$ be such that $\langle e_\ell, e_p \rangle = p \, 1_{\{\ell=p\}}$ and let $\langle e_\ell, \mathsf{A}_k e_p \rangle = \ell p \, A_{\ell,p}(t), \quad \langle e_\ell, \mathsf{B}_k e_p \rangle = \mathcal{B}_{\ell,p}(t), \quad \langle e_\ell, \mathsf{J}_k e_p \rangle = \ell \, \mathcal{J}_{\ell,p}(t).$

▶ Then indeed $J_k = A_k B_k$:

$$\langle e_{\ell}, \mathsf{J}_k e_p \rangle = \ell \, J_{\ell,p}(t) = \ell \sum_{m=1}^{\infty} A_{\ell,m}(t) B_{m,p}(t) = \langle e_{\ell}, \mathsf{A}_k \mathsf{B}_k e_p \rangle$$



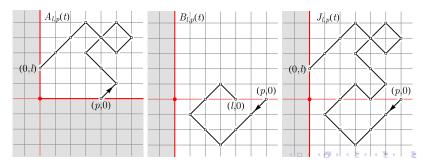
Building blocks (operators)

Let basis $(e_p)_{p=1}^{\infty}$ of $\ell^2(\mathbb{C})$ be such that $\langle e_\ell, e_p \rangle = p \, 1_{\{\ell=p\}}$ and let $\langle e_\ell, \mathsf{A}_k e_p \rangle = \ell p \, A_{\ell,p}(t), \quad \langle e_\ell, \mathsf{B}_k e_p \rangle = B_{\ell,p}(t), \quad \langle e_\ell, \mathsf{J}_k e_p \rangle = \ell \, J_{\ell,p}(t).$

▶ Then indeed $J_k = A_k B_k$:

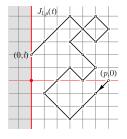
$$\langle e_{\ell}, \mathsf{J}_{k} e_{p} \rangle = \ell \, J_{\ell,p}(t) = \ell \sum_{m=1}^{\infty} A_{\ell,m}(t) B_{m,p}(t) = \langle e_{\ell}, \mathsf{A}_{k} \mathsf{B}_{k} e_{p} \rangle$$

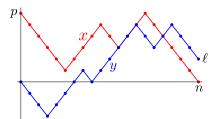
 \triangleright A_k, B_k, J_k are self-adjoint compact operators that commute: admit simultaneous eigendecomposition!



The operator J_k

$$J_{\ell,p}(t) = \sum_{n=1}^{\infty} t^n rac{p}{n} inom{n}{n-p} inom{n}{n-p} inom{n}{n-\ell \text{ nonnegative and even}}$$



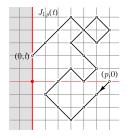


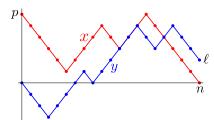
The operator J_k

$$J_{\ell,p}(t) = \sum_{n=1}^{\infty} t^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 1_{\{n-p \text{ and } n-\ell \text{ nonnegative and even}\}}$$

Not only is J_k self-adjoint, $\langle e_\ell, J_k e_\rho \rangle = \ell J_{\ell,\rho}(t)$, but also $J_k = R_k^{\dagger} R_k$ with (recall k = 4t)

$$\mathsf{R}_k e_p \coloneqq \sum_{n=1}^\infty e_n \left(\frac{k}{4}\right)^{n/2} \frac{p}{n} \binom{n}{\frac{n-p}{2}} \mathbb{1}_{\{n-p \ge 0 \text{ and even}\}}$$



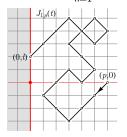


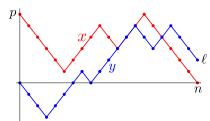
The operator J_k

$$J_{\ell,p}(t) = \sum_{n=1}^{\infty} t^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 1_{\{n-p \text{ and } n-\ell \text{ nonnegative and even}\}}$$

Not only is J_k self-adjoint, $\langle e_\ell, J_k e_p \rangle = \ell J_{\ell,p}(t)$, but also $J_k = \mathsf{R}_k^\dagger \mathsf{R}_k$ with (recall k = 4t)

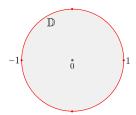
$$\mathsf{R}_k e_p \coloneqq \sum_{n=1}^\infty e_n \; \left(\frac{k}{4}\right)^{n/2} \frac{p}{n} \binom{n}{\frac{n-p}{2}} 1_{\{n-p \geq 0 \text{ and even}\}}$$
$$= \sum_{n=1}^\infty e_n \; [z^n] \psi_k(z)^p, \qquad \psi_k(z) \coloneqq \frac{1-\sqrt{1-k\,z^2}}{\sqrt{k}\,z}.$$





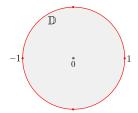
▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} \, g'(z) \mathrm{d}A(z)$$



▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

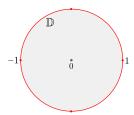
$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) dA(z) = \sum_{n=1}^{\infty} n \overline{[z^n] f(z)} [z^n] g(z).$$



▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) dA(z) = \sum_{n=1}^{\infty} n \overline{[z^n]f(z)} [z^n] g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ defined by $e_p(z) = z^p$ with $\langle e_\ell, e_p \rangle_{\mathcal{D}} = p \, 1_{\{\ell=p\}}$.

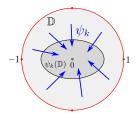


▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) dA(z) = \sum_{n=1}^{\infty} n \overline{[z^n] f(z)} [z^n] g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ defined by $e_p(z) = z^p$ with $\langle e_\ell, e_p \rangle_{\mathcal{D}} = p \, 1_{\{\ell = p\}}$.

$$R_k f = f \circ \psi_k, \qquad \psi_k(z) = \frac{1 - \sqrt{1 - k z^2}}{\sqrt{k} z}$$



▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

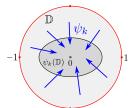
$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) dA(z) = \sum_{n=1}^{\infty} n \overline{[z^n] f(z)} [z^n] g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ defined by $e_p(z) = z^p$ with $\langle e_\ell, e_p \rangle_{\mathcal{D}} = p \, 1_{\{\ell = p\}}$.

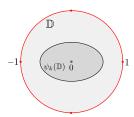
$$R_k f = f \circ \psi_k, \qquad \psi_k(z) = \frac{1 - \sqrt{1 - k z^2}}{\sqrt{k} z}$$

By conformal invariance of the Dirichlet inner product,

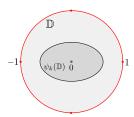
$$\langle f, \mathsf{J}_k g \rangle_{\mathcal{D}} = \left\langle f, \mathsf{R}_k^\dagger \mathsf{R}_k g \right\rangle_{\mathcal{D}} = \left\langle f \circ \psi_k, g \circ \psi_k \right\rangle_{\mathcal{D}} = \left\langle f, g \right\rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$



• $\langle f, \mathsf{J}_k g \rangle_{\mathcal{D}(\mathbb{D})} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}$: To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}$.



- ▶ $\langle f, J_k g \rangle_{\mathcal{D}(\mathbb{D})} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}$: To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.
- ► Look for a nice conformal mapping!

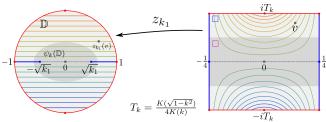


- ▶ $\langle f, J_k g \rangle_{\mathcal{D}(\mathbb{D})} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}$: To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.
- Look for a nice conformal mapping!
- ► The elliptic function

$$z_{k_1}(v) = \sqrt{k_1} \operatorname{sn}(4K(k_1)v, k_1) \qquad \left(k_1 = \frac{1 - \sqrt{1 - k^2}}{1 + \sqrt{1 - k^2}}\right)$$

determines isomorphisms $\mathcal{D}(\mathbb{D}) \to \mathcal{D}(\square)$ and $\mathcal{D}(\psi_k(\mathbb{D})) \to \mathcal{D}(\square)$:

$$\begin{split} \langle f,g \rangle_{\mathcal{D}(\mathbb{D})} &= \langle f \circ z_{k_1}, g \circ z_{k_1} \rangle_{\mathcal{D}(\square)} \\ \langle f,g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))} &= \langle f \circ z_{k_1}, g \circ z_{k_1} \rangle_{\mathcal{D}(\square)} \end{split} \\ \mathcal{D}(\square) &= \left\{ \begin{array}{ll} \mathbb{R} + i(-T_k,T_k) \xrightarrow{h} \mathbb{C} : \|h\|_{\mathcal{D}(\square)} < \infty \\ h(v+1) = h(v) = h(\frac{1}{2}-v), \ h(0) = 0 \end{array} \right\}. \end{split}$$



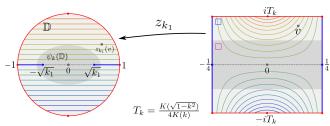
- ▶ $\langle f, J_k g \rangle_{\mathcal{D}(\mathbb{D})} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}$: To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.
- Look for a nice conformal mapping!
- ► The elliptic function

$$z_{k_1}(v) = \sqrt{k_1} \operatorname{sn}(4K(k_1)v, k_1) \qquad \left(k_1 = \frac{1 - \sqrt{1 - k^2}}{1 + \sqrt{1 - k^2}}\right)$$

determines isomorphisms $\mathcal{D}(\mathbb{D}) \to \mathcal{D}(\square)$ and $\mathcal{D}(\psi_k(\mathbb{D})) \to \mathcal{D}(\square)$:

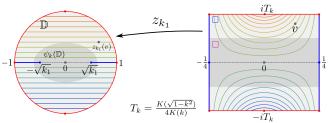
$$\begin{array}{ll} \langle f,g\rangle_{\mathcal{D}(\mathbb{D})} &= \langle f\circ z_{k_1},g\circ z_{k_1}\rangle_{\mathcal{D}(\square)} \\ \langle f,g\rangle_{\mathcal{D}(\psi_k(\mathbb{D}))} &= \langle f\circ z_{k_1},g\circ z_{k_1}\rangle_{\mathcal{D}(\square)} \end{array} \\ \mathcal{D}(\square) = \left\{ \begin{array}{ll} \mathbb{R} + i(-T_k,T_k) \xrightarrow{h} \mathbb{C} : \|h\|_{\mathcal{D}(\square)} < \infty \\ h(\nu+1) = h(\nu) = h(\frac{1}{2}-\nu), \, h(0) = 0 \end{array} \right\}.$$

Orthogonal basis for $\mathcal{D}(\square)$ and $\mathcal{D}(\square)$: $v \mapsto \cos(2\pi m(v + \frac{1}{4})) - \cos(\frac{1}{2}\pi m), \qquad m = 1, 2, ...$



▶ Orthonormal basis $(\hat{f}_m)_{m=1}^{\infty}$ of $\mathcal{D}(\mathbb{D})$ given by

$$\hat{f}_m(z) = \frac{f_m(z)}{\|f_m\|_{\mathcal{D}(\mathbb{D})}}, \quad f_m(z) = \cos(2\pi m(z_{k_1}^{-1}(z) + \frac{1}{4})) - \cos(\frac{1}{2}\pi m).$$

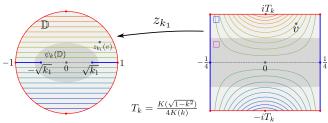


lackbox Orthonormal basis $(\hat{f}_m)_{m=1}^{\infty}$ of $\mathcal{D}(\mathbb{D})$ given by

$$\hat{f}_m(z) = \frac{f_m(z)}{\|f_m\|_{\mathcal{D}(\mathbb{D})}}, \quad f_m(z) = \cos(2\pi m(z_{k_1}^{-1}(z) + \frac{1}{4})) - \cos(\frac{1}{2}\pi m).$$

▶ So J_k has eigenvectors $(\hat{f}_m)_{m\geq 1}$ and eigenvalues

$$\frac{\langle f_m, f_m \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}}{\langle f_m, f_m \rangle_{\mathcal{D}(\mathbb{D})}} = \frac{\sinh(2m\pi T_k)}{\sinh(4m\pi T_k)} = \frac{1}{q_k^{m/2} + q_k^{-m/2}}, \qquad q_k = e^{-4\pi T_k} \quad \text{``nome''} \quad .$$



lackbrack Orthonormal basis $(\hat{f}_m)_{m=1}^{\infty}$ of $\mathcal{D}(\mathbb{D})$ given by

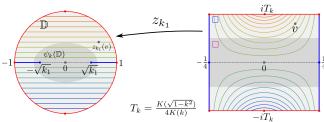
$$\hat{f}_m(z) = \frac{f_m(z)}{\|f_m\|_{\mathcal{D}(\mathbb{D})}}, \quad f_m(z) = \cos(2\pi m(z_{k_1}^{-1}(z) + \frac{1}{4})) - \cos(\frac{1}{2}\pi m).$$

▶ So J_k has eigenvectors $(\hat{f}_m)_{m\geq 1}$ and eigenvalues

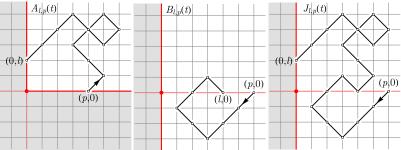
$$\frac{\langle f_m, f_m \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}}{\langle f_m, f_m \rangle_{\mathcal{D}(\mathbb{D})}} = \frac{\sinh(2m\pi T_k)}{\sinh(4m\pi T_k)} = \frac{1}{q_k^{m/2} + q_k^{-m/2}}, \qquad q_k = e^{-4\pi T_k} \text{ "nome"}.$$

▶ The generating function for *J*-type walks has eigendecomposition

$$\frac{1}{p}J_{\ell,p}(t) = \sum_{m=1}^{\infty} [z^{\ell}]\hat{f}_m(z;t) \; \frac{1}{q_k^{m/2} + q_k^{-m/2}} \; [z^p]\hat{f}_m(z;t).$$



▶ May work out eigenvalues of A_k and B_k too (same eigenvectors \hat{f}_m):



$$A_k: \frac{\pi}{2K(k)} \frac{m}{q_k^{-m/2} - q_k^{m/2}}$$

$$B_k: \frac{2K(k)}{\pi} \frac{1}{m} \frac{1-q_k^m}{1+q_k^m}$$

$$J_k: \frac{1}{q_k^{m/2} + q_k^{-m/2}}$$

▶ May work out eigenvalues of A_k and B_k too (same eigenvectors \hat{f}_m):



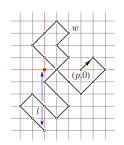
▶ Recall $W_{\ell,p}^{(\alpha)}(t) = \langle e_{\ell}, \mathsf{Y}_{k}^{(\alpha)} e_{p} \rangle$, $\alpha \in \frac{\pi}{2}\mathbb{Z}$, where

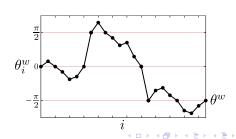
$$Y_k^{(\alpha)} = \sum_{N=0}^{\infty} \#\{\text{simple walks from 0 to } \alpha \text{ of length } N\} \cdot J_k^N B_k.$$

It has eigenvalues

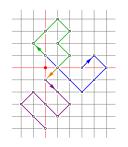
$$\mathsf{Y}_{k}^{(\alpha)}f_{m}=\frac{2K(k)}{\pi}\frac{1}{m}q_{k}^{m|\alpha|/\pi}f_{m}.$$

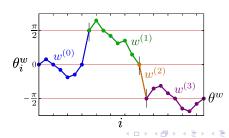
$$w$$
 is encoded by $\left\{\begin{array}{l} \text{a simple walk } (\alpha_j)_{j=0}^N \text{ on } \frac{\pi}{2}\mathbb{Z} \text{ from 0 to } \alpha \\ \text{a sequence } \underbrace{w^{(0)},\ldots,w^{(N-1)}}_{\text{type }J},\underbrace{w^{(N)}}_{\text{type }B} \text{ of "matching" walks} \end{array}\right.$



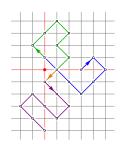


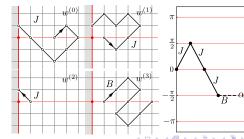
$$w$$
 is encoded by $\left\{\begin{array}{l} \text{a simple walk } (\alpha_j)_{j=0}^N \text{ on } \frac{\pi}{2}\mathbb{Z} \text{ from 0 to } \alpha\\ \text{a sequence } \underbrace{w^{(0)},\ldots,w^{(N-1)}}_{\text{type }J},\underbrace{w^{(N)}}_{\text{type }B} \text{ of "matching" walks} \end{array}\right.$





$$w$$
 is encoded by $\left\{\begin{array}{l} \text{a simple walk } (\alpha_j)_{j=0}^N \text{ on } \frac{\pi}{2}\mathbb{Z} \text{ from 0 to } \alpha \\ \text{a sequence } \underbrace{w^{(0)}, \ldots, w^{(N-1)}}_{\text{type }J}, \underbrace{w^{(N)}}_{\text{type }B} \text{ of "matching" walks} \end{array}\right.$



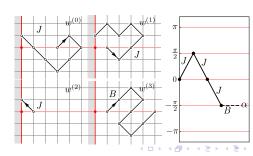


$$w$$
 is encoded by $\left\{\begin{array}{l} \text{a simple walk } (\alpha_j)_{j=0}^N \text{ on } \frac{\pi}{2}\mathbb{Z} \text{ from 0 to } \alpha \\ \text{a sequence } \underbrace{w^{(0)},\ldots,w^{(N-1)}}_{\text{type }J},\underbrace{w^{(N)}}_{\text{type }B} \text{ of "matching" walks} \end{array}\right.$

▶ Hence $W_{\ell,p}^{(\alpha)}(t) = \langle e_\ell, \mathsf{Y}_k^{(\alpha)} e_p \rangle$ where the operator $\mathsf{Y}_k^{(\alpha)}$ is given by

$$\mathsf{Y}_{k}^{(\alpha)} = \sum_{N=0}^{\infty} \#\{\text{simple walks from 0 to } \alpha \text{ of length } N\} \cdot \mathsf{J}_{k}^{N} \, \mathsf{B}_{k}.$$

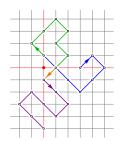


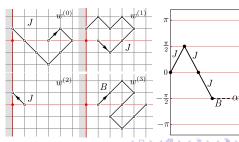


w is encoded by $\left\{\begin{array}{l} \text{a simple walk } (\alpha_j)_{j=0}^N \text{ on } \frac{\pi}{2}\mathbb{Z} \text{ from 0 to } \alpha \\ \text{a sequence } \underbrace{w^{(0)},\ldots,w^{(N-1)}}_{\text{type }J},\underbrace{w^{(N)}}_{\text{type }B} \text{ of "matching" walks} \end{array}\right.$

- ▶ Hence $W_{\ell,p}^{(\alpha)}(t) = \langle e_\ell, \mathsf{Y}_k^{(\alpha)} e_p \rangle$ where the operator $\mathsf{Y}_k^{(\alpha)}$ is given by
 - $Y_k^{(\alpha)} = \sum_{N=0}^{\infty} \#\{\text{simple walks from 0 to } \alpha \text{ of length } N\} \cdot J_k^N B_k.$
- lt has eigenvalues $Y_k^{(\alpha)}\hat{f}_m = \frac{2K(k)}{\pi m}q_k^{m|\alpha|/\pi}\hat{f}_m$, proving

$$\frac{1}{\ell p} W_{\ell,p}^{(\alpha)}(t) = \sum_{m=1}^{\infty} [z^{\ell}] \hat{f}_m(z;t) \; \frac{2K(4t)}{\pi m} q_{4t}^{m|\alpha|/\pi} \; [z^p] \hat{f}_m(z;t).$$

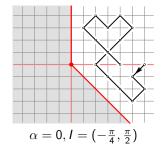


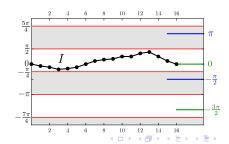


Reflection principle

▶ For $I = (\beta_-, \beta_+)$, $\beta_{\pm} \in \frac{\pi}{4}\mathbb{Z}$, $\alpha \in I \cap \frac{\pi}{2}\mathbb{Z}$ and p, ℓ even, let

$$W_{\ell,p}^{(\alpha,I)}(t) = \sum_{w} t^{|w|} 1_{\{w_0 = (p,0), \, |w_{|w|}| = \ell, \, \theta^w = \alpha, \, \theta^w_i \in I \text{ for } 1 \leq i < |w|\}} \cdot$$

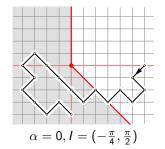


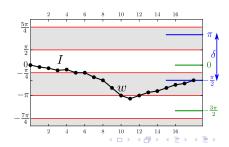


Reflection principle

For $I=(\beta_-,\beta_+)$, $\beta_\pm\in\frac{\pi}{4}\mathbb{Z}$, $\alpha\in I\cap\frac{\pi}{2}\mathbb{Z}$ and p,ℓ even, let $W_{\ell,p}^{(\alpha,l)}(t)=\sum_w t^{|w|}1_{\{w_0=(p,0),\,|w_{|w|}|=\ell,\,\theta^w=\alpha,\,\theta_i^w\in I\text{ for }1\leq i<|w|\}}.$

▶ If $\theta^w \notin I$, reflect $w \mapsto w'$ at first exit of I.

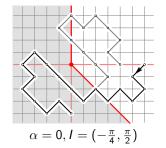


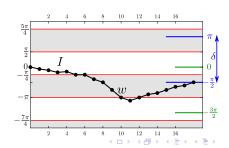


Reflection principle

For $I=(\beta_-,\beta_+)$, $\beta_\pm\in\frac{\pi}{4}\mathbb{Z}$, $\alpha\in I\cap\frac{\pi}{2}\mathbb{Z}$ and p,ℓ even, let $W_{\ell,p}^{(\alpha,l)}(t)=\sum_w t^{|w|}1_{\{w_0=(p,0),\,|w_{|w|}|=\ell,\,\theta^w=\alpha,\,\theta_i^w\in I\text{ for }1\leq i<|w|\}}.$

▶ If $\theta^w \notin I$, reflect $w \mapsto w'$ at first exit of I.





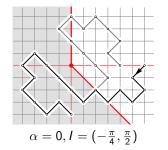
Reflection principle

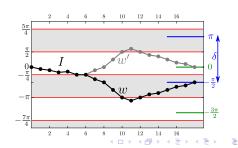
▶ For $I = (\beta_-, \beta_+)$, $\beta_{\pm} \in \frac{\pi}{4}\mathbb{Z}$, $\alpha \in I \cap \frac{\pi}{2}\mathbb{Z}$ and p, ℓ even, let

$$W_{\ell,\rho}^{(\alpha,l)}(t) = \sum_w t^{|w|} 1_{\{w_0 = (\rho,0),\, |w_{|w|}| = \ell,\, \theta^w = \alpha,\, \frac{\theta^w_i}{\ell} \in I \text{ for } 1 \leq i < |w|\}} \cdot$$

- ▶ If $\theta^w \notin I$, reflect $w \mapsto w'$ at first exit of I.
- ▶ If $\theta^w \in 2\beta_+ \alpha + \delta \mathbb{Z}$ then $\theta^{w'} \in \alpha + \delta \mathbb{Z}$, $\delta = 2(\beta_+ \beta_-)$.

$$W_{\ell,p}^{(lpha,l)}(t) = \sum_{n=-\infty}^{\infty} \left(W_{\ell,p}^{(lpha+n\delta)}(t) - W_{\ell,p}^{(2eta_+-lpha+n\delta)}(t)
ight).$$





Reflection principle

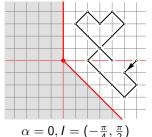
▶ For $I = (\beta_-, \beta_+)$, $\beta_{\pm} \in \frac{\pi}{4}\mathbb{Z}$, $\alpha \in I \cap \frac{\pi}{2}\mathbb{Z}$ and p, ℓ even, let

$$W_{\ell,p}^{(\alpha,l)}(t) = \sum_w t^{|w|} 1_{\{w_0 = (p,0), \, |w_{|w|}| = \ell, \, \theta^w = \alpha, \, \frac{\theta^w_i}{i} \in I \text{ for } 1 \leq i < |w|\}} \cdot$$

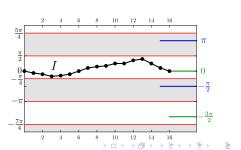
- ▶ If $\theta^w \notin I$, reflect $w \mapsto w'$ at first exit of I.
- ▶ If $\theta^{w} \in 2\beta_{+} \alpha + \delta \mathbb{Z}$ then $\theta^{w'} \in \alpha + \delta \mathbb{Z}$, $\delta = 2(\beta_{+} \beta_{-})$.

$$W_{\ell,p}^{(lpha,l)}(t) = \sum_{n=-\infty}^{\infty} \left(W_{\ell,p}^{(lpha+n\delta)}(t) - W_{\ell,p}^{(2eta_+-lpha+n\delta)}(t)
ight).$$

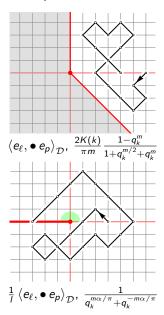
 $W_{\ell,n}^{(0,(-\pi/4,\pi/2))}(t) = \langle e_\ell, \mathsf{X} e_p \rangle_{\mathcal{D}} \text{ and } \mathsf{X} \text{ has e.v. } \frac{2K(k)}{\pi m} \frac{1 - q_k^m}{1 + q^{m/2} + q^m}.$

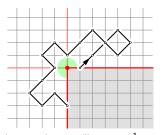


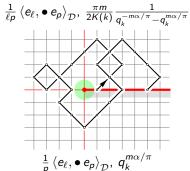
$$\alpha = 0, I = \left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$$



More examples See [TB,'17, Theorem 1] for the general case.



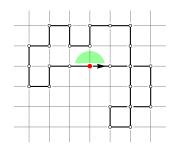


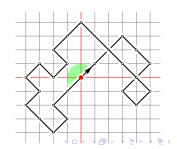


Application: Excursions

ightharpoonup Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$F^{(\alpha)}(t) \coloneqq \sum_{w \in \mathcal{E}} t^{|w|} 1_{\{\theta^w = \alpha\}}, \qquad \alpha \in \frac{\pi}{2} \mathbb{Z}.$$





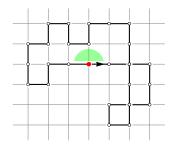
Application: Excursions

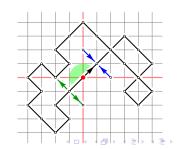
ightharpoonup Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$F^{(\alpha)}(t) := \sum_{w \in \mathcal{E}} t^{|w|} 1_{\{\theta^w = \alpha\}}, \qquad \alpha \in \frac{\pi}{2} \mathbb{Z}.$$

▶ By flipping the first and last step:

$$F^{(\alpha)}(t) = 4 \sum_{m,l,p=1}^{\infty} (-1)^{l+p+m+1} m W_{2l,2p}^{(|\alpha|+m\pi/2)}(t)$$





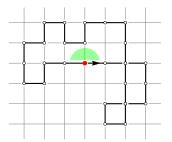
Application: Excursions

ightharpoonup Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$F^{(\alpha)}(t) := \sum_{w \in \mathcal{E}} t^{|w|} 1_{\{\theta^w = \alpha\}}, \qquad \alpha \in \frac{\pi}{2} \mathbb{Z}.$$

▶ By flipping the first and last step:

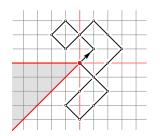
$$F^{(\alpha)}(t) = 4 \sum_{m,l,p=1}^{\infty} (-1)^{l+p+m+1} m W_{2l,2p}^{(|\alpha|+m\pi/2)}(t)$$
$$= \frac{2\pi}{K(k)} \sum_{n=1}^{\infty} \frac{q_k^n (1 - q_k^n)^2}{1 - q_k^{4n}} q_k^{2n|\alpha|/\pi}$$



Excursions in cones

▶ For $I = (\beta_-, \beta_+)$, $\beta_{\pm} \in \frac{\pi}{4}\mathbb{Z}$, $\alpha \in I \cap \frac{\pi}{2}\mathbb{Z}$, a reflection principle shows

$$\begin{split} F^{(\alpha,I)}(t) &\coloneqq \sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\{w_1 = (1,1), \; \theta^w = \alpha, \; \theta^w_i \in I \; \text{for all} \; i\}} \\ &= \frac{1}{4} \sum_{n \in \mathbb{Z}} \left(F^{(\alpha+n\delta)}(t) - F^{(2\beta_+ - \alpha + n\delta)}(t) \right), \quad \delta \coloneqq 2(\beta_+ - \beta_-) \end{split}$$



$$\alpha = -\pi/2$$

$$\beta_{-} = -\pi$$

$$\beta_{+} = 3\pi/4$$

Excursions in cones

▶ For $I = (\beta_-, \beta_+)$, $\beta_{\pm} \in \frac{\pi}{4}\mathbb{Z}$, $\alpha \in I \cap \frac{\pi}{2}\mathbb{Z}$, a reflection principle shows

$$\begin{split} F^{(\alpha,I)}(t) &\coloneqq \sum_{w \in \mathcal{E}} t^{|w|} \mathbf{1}_{\{w_1 = (1,1),\, \theta^w = \alpha,\, \theta^w_i \in I \text{ for all } i\}} \\ &= \frac{1}{4} \sum_{n \in \mathbb{Z}} \left(F^{(\alpha+n\delta)}(t) - F^{(2\beta_+ - \alpha + n\delta)}(t) \right), \quad \delta \coloneqq 2(\beta_+ - \beta_-) \\ &= \frac{\pi}{8\delta} \sum_{\sigma \in (0,\delta) \cap \frac{\pi}{2}\mathbb{Z}} \left(\cos \left(\frac{4\sigma\alpha}{\delta} \right) - \cos \left(\frac{4\sigma(2\beta_+ - \alpha)}{\delta} \right) \right) F\left(t, \frac{4\sigma}{\delta}\right), \end{split}$$

where

$$F(t,b) := \sum_{\alpha \in \frac{\pi}{2}\mathbb{Z}} F^{(\alpha)}(t) e^{ib\alpha} = \frac{1}{\cos\left(\frac{\pi b}{2}\right)} \left[1 - \frac{\pi \tan\left(\frac{\pi b}{4}\right)}{2K(k)} \frac{\theta_1'\left(\frac{\pi b}{4}, \sqrt{q_k}\right)}{\theta_1\left(\frac{\pi b}{4}, \sqrt{q_k}\right)} \right]$$

$$\alpha = -\pi/2$$

$$\beta_- = -\pi$$

$$\beta_+ = 3\pi/4$$

$$\alpha = -\pi/2$$

$$\beta_{-} = -\pi$$

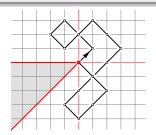
$$\beta_{+} = 3\pi/4$$

Theorem (TB, '17)

Excursions of winding angle α in a cone $I=(\beta_-,\beta_+)$ with $\beta_\pm\in\frac\pi4\mathbb{Z}$, $\alpha\in I\cap\frac\pi2\mathbb{Z}$, are enumerated by the finite sum

$$F^{(\alpha,l)}(t) = \frac{\pi}{8\delta} \sum_{\sigma \in (0,\delta) \cap \frac{\pi}{2}\mathbb{Z}} \left(\cos\left(\frac{4\sigma\alpha}{\delta}\right) - \cos\left(\frac{4\sigma(2\beta_{+} - \alpha)}{\delta}\right) \right) F\left(t, \frac{4\sigma}{\delta}\right).$$

- ▶ F(t,b) is algebraic if $b \in \mathbb{Q} \setminus \mathbb{Z}$ and transcendental if $b \in \mathbb{Z}$;
- $ightharpoonup F^{(\alpha,l)}(t)$ is transcendental only in the cases
 - $\beta_{\pm} \in \frac{\pi}{2}\mathbb{Z} + \frac{\pi}{4}$,
 - $\beta_{\pm} \in \pi \mathbb{Z} + \frac{\vec{\pi}}{2}$ and $\alpha \in \pi \mathbb{Z}$.



$$\alpha = -\pi/2$$

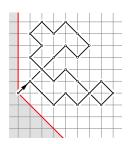
$$\beta_{-} = -\pi$$

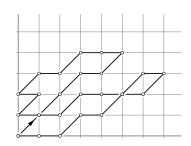
$$\beta_{+} = 3\pi/4$$

Example: Gessel's sequence

▶ Special algebraic case $\alpha = 0$, $I = (-\pi/2, \pi/4)$:

$$F^{(0,l)}(t) = \frac{1}{4}F\left(t,\frac{4}{3}\right) = \frac{1}{2}\left[\frac{\sqrt{3}\pi}{2K(4t)}\frac{\theta_1'\left(\frac{\pi}{3},\sqrt{q_k}\right)}{\theta_1\left(\frac{\pi}{3},\sqrt{q_k}\right)} - 1\right]$$





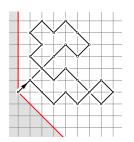
Example: Gessel's sequence

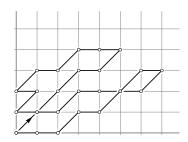
▶ Special algebraic case $\alpha = 0$, $I = (-\pi/2, \pi/4)$:

$$F^{(0,l)}(t) = rac{1}{4}F\left(t,rac{4}{3}
ight) = rac{1}{2}\left[rac{\sqrt{3}\pi}{2K(4t)}rac{ heta_1'\left(rac{\pi}{3},\sqrt{q_k}
ight)}{ heta_1\left(rac{\pi}{3},\sqrt{q_k}
ight)} - 1
ight]$$

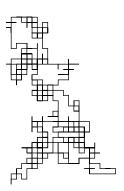
Agrees with Gessel's conjecture [Kauers, Koutschan, Zeilberger, '09], [Bostan, Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

$$F^{(0,l)}(t) = \sum_{n=0}^{\infty} t^{2n+2} \, 16^n \frac{(5/6)_n (1/2)_n}{(2)_n (5/3)_n}.$$

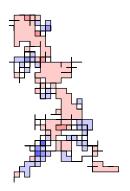




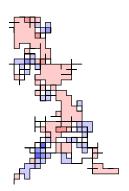
 \blacktriangleright Consider a uniform loop of length 2ℓ on $\mathbb{Z}^2.$



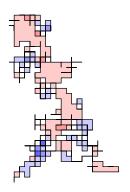
- ▶ Consider a uniform loop of length 2ℓ on \mathbb{Z}^2 .
- ► Color each square according to the total winding angle of the loop around it.



- ▶ Consider a uniform loop of length 2ℓ on \mathbb{Z}^2 .
- ► Color each square according to the total winding angle of the loop around it.
- For $n \neq 0$, what is the expected area of squares with winding angle $2\pi n$?



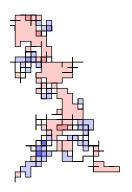
- ▶ Consider a uniform loop of length 2ℓ on \mathbb{Z}^2 .
- ► Color each square according to the total winding angle of the loop around it.
- For $n \neq 0$, what is the expected area of squares with winding angle $2\pi n$?



Theorem (TB, '17)

$$\mathbb{E}_{2\ell}[\textit{Area}_{2\pi n}] = rac{1}{inom{2\ell}{\ell}}^2 rac{2\ell}{n} [t^{2\ell}] rac{q_{4t}^{2n}}{1 - q_{4t}^{4n}}$$

- ▶ Consider a uniform loop of length 2ℓ on \mathbb{Z}^2 .
- ► Color each square according to the total winding angle of the loop around it.
- For $n \neq 0$, what is the expected area of squares with winding angle $2\pi n$?



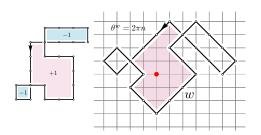
Theorem (TB, '17)

$$\mathbb{E}_{2\ell}[Area_{2\pi n}] = \frac{1}{\binom{2\ell}{\ell}^2} \frac{2\ell}{n} [t^{2\ell}] \frac{q_{4t}^{2n}}{1 - q_{4t}^{4n}} \overset{\ell \to \infty}{\sim} \frac{\ell}{2\pi n^2}$$

▶ Reproduces the analogous result $\frac{1}{2\pi n^2}$ for Brownian motion. [Comtet, Desbois, Ouvry, '90] [Yor, '80] [Garban, Trujillo Ferreras, '06]

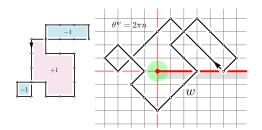
▶ Proof: the expected area is

$$\mathbb{E}_{2\ell}[\mathsf{Area}_{2\pi n}] = \frac{|\{w : w_0 = w_{2\ell} \in \mathbb{Z}_{\mathsf{odd}}^2, \, \theta^w = 2\pi n\}|}{\binom{2\ell}{\ell}^2}$$



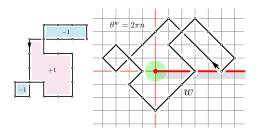
▶ Proof: the expected area is

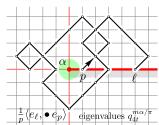
$$\begin{split} \mathbb{E}_{2\ell}[\mathsf{Area}_{2\pi n}] &= \frac{|\{w: w_0 = w_{2\ell} \in \mathbb{Z}_{\mathsf{odd}}^2, \, \theta^w = 2\pi n\}|}{\binom{2\ell}{\ell}^2} \\ &= \frac{2\ell}{n} \frac{|\{w: w_0 = w_{2\ell} = (p, 0), p \; \mathsf{odd}, \, \theta^w = 2\pi n, \, \theta^w_i > 0\}|}{\binom{2\ell}{\ell}^2} \end{split}$$



▶ Proof: the expected area is

$$\begin{split} \mathbb{E}_{2\ell}[\mathsf{Area}_{2\pi n}] &= \frac{|\{w: w_0 = w_{2\ell} \in \mathbb{Z}_{\mathsf{odd}}^2, \, \theta^w = 2\pi n\}|}{\binom{2\ell}{\ell}^2} \\ &= \frac{2\ell}{n} \frac{|\{w: w_0 = w_{2\ell} = (p, 0), p \; \mathsf{odd}, \, \theta^w = 2\pi n, \, \theta^w_i > 0\}|}{\binom{2\ell}{\ell}^2} \\ &= \frac{2\ell}{n} \frac{[t^{2\ell}] \sum_{m \; \mathsf{odd}} q_{4t}^{2mn}}{\binom{2\ell}{\ell}^2} = \frac{1}{\binom{2\ell}{\ell}^2} \frac{2\ell}{n} [t^{2\ell}] \frac{q_{4t}^{2n}}{1 - q_{4t}^{4n}}. \end{split}$$



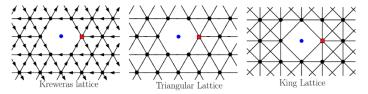


▶ Have we been lucky or is there an underlying principle?

- Have we been lucky or is there an underlying principle?
- ► Other types of walks with small steps admit closed-form counting by winding angle. See poster of Elvey Price: [Elvey Price, '20]



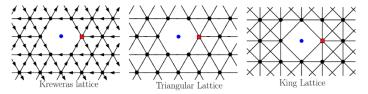
- Have we been lucky or is there an underlying principle?
- ► Other types of walks with small steps admit closed-form counting by winding angle. See poster of Elvey Price: [Elvey Price, '20]



▶ Take perspective of discrete harmonic functions: $h: \mathbb{Z}^2 \to \mathbb{C}$ is harmonic on $D \subset \mathbb{Z}^2$ if $\Delta h|_D = 0$ with

$$(\Delta h)(\mathbf{w}) = h(\mathbf{w}) - \sum_{\mathbf{z}} t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}).$$

- ▶ Have we been lucky or is there an underlying principle?
- ► Other types of walks with small steps admit closed-form counting by winding angle. See poster of Elvey Price: [Elvey Price, '20]



▶ Take perspective of discrete harmonic functions: $h: \mathbb{Z}^2 \to \mathbb{C}$ is harmonic on $D \subset \mathbb{Z}^2$ if $\Delta h|_D = 0$ with

$$(\Delta h)(\mathbf{w}) = h(\mathbf{w}) - \sum_{\mathbf{z}} t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}).$$

Closely related to lattice path counting: generating function of paths ending at w with weight t₂ per step z is harmonic (on suitable domain).

$$(\Delta h)(\mathbf{w}) = h(\mathbf{w}) - \sum_{\mathbf{z}} t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}).$$

► Introduce another operator

$$(Lh)(\mathbf{w}) = \sum_{\mathbf{z}} (\mathbf{z} \times \mathbf{w}) t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}), \qquad \mathbf{z} \times \mathbf{w} := z_1 w_2 - z_2 w_1.$$

$$(\Delta h)(\mathbf{w}) = h(\mathbf{w}) - \sum_{\mathbf{z}} t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}).$$

Introduce another operator

$$(Lh)(\mathbf{w}) = \sum_{\mathbf{z}} (\mathbf{z} \times \mathbf{w}) t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}), \qquad \mathbf{z} \times \mathbf{w} := z_1 w_2 - z_2 w_1.$$

lt commutes, $L\Delta = \Delta L$, with the discrete Laplacian:

$$\Delta h = 0 \implies \Delta L h = 0, \quad \Delta e^{\sigma L} h = 0.$$

$$(\Delta h)(\mathbf{w}) = h(\mathbf{w}) - \sum_{\mathbf{z}} t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}).$$

► Introduce another operator

$$(Lh)(\mathbf{w}) = \sum_{\mathbf{z}} (\mathbf{z} \times \mathbf{w}) t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}), \qquad \mathbf{z} \times \mathbf{w} := z_1 w_2 - z_2 w_1.$$

lt commutes, $L\Delta = \Delta L$, with the discrete Laplacian:

$$\Delta h = 0 \implies \Delta L h = 0, \quad \Delta e^{\sigma L} h = 0.$$

▶ Separation of variables: $f_{x,y}(\mathbf{w}) := x^{w_1} y^{w_2}, x, y \in \mathbb{C}$.

$$\Delta f_{x,y} = 0 \quad \iff \quad S(x,y) := \sum_{z} t_z x^{z_1} y^{z_2} = 1 \quad \iff \quad K(x,y) = 0.$$

$$(\Delta h)(\mathbf{w}) = h(\mathbf{w}) - \sum_{\mathbf{z}} t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}).$$

► Introduce another operator

$$(Lh)(\mathbf{w}) = \sum_{\mathbf{z}} (\mathbf{z} \times \mathbf{w}) t_{\mathbf{z}} h(\mathbf{w} - \mathbf{z}), \qquad \mathbf{z} \times \mathbf{w} := z_1 w_2 - z_2 w_1.$$

lt commutes, $L\Delta = \Delta L$, with the discrete Laplacian:

$$\Delta h = 0 \implies \Delta L h = 0, \quad \Delta e^{\sigma L} h = 0.$$

▶ Separation of variables: $f_{x,y}(\mathbf{w}) := x^{w_1}y^{w_2}$, $x, y \in \mathbb{C}$.

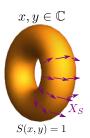
$$\Delta f_{x,y} = 0 \quad \iff \quad S(x,y) := \sum_{\mathbf{z}} t_{\mathbf{z}} x^{z_1} y^{z_2} = 1 \quad \iff \quad K(x,y) = 0.$$

This curve carries a natural Hamiltonian vector field

$$X_S := xy \left(\frac{\partial S}{\partial x} \frac{\partial}{\partial y} - \frac{\partial S}{\partial y} \frac{\partial}{\partial x} \right)$$
 such that $(Lf_{x,y})(\mathbf{w}) = X_S f_{x,y}(\mathbf{w})$.

Focus on small steps: $t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where S(x, y) = 1 has genus 1.

Focus on small steps: $t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where S(x, y) = 1 has genus 1.



- Focus on small steps: $t_{\nwarrow},t_{\uparrow},t_{\nearrow},t_{\rightarrow},t_{\searrow},t_{\downarrow},t_{\swarrow},t_{\leftarrow} \text{ and non-degenerate}$ cases where S(x, y) = 1 has genus 1.
- \triangleright X_S generates Hamiltonian flow that is periodic with period $2\pi\omega_S$.

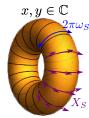
- Focus on small steps: $t \nwarrow, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where S(x,y)=1 has genus 1.
- $ightharpoonup X_S$ generates Hamiltonian flow that is periodic with period $2\pi\omega_S$.
- - S(x,y) = 1

 $x, y \in \mathbb{C}$

▶ So $e^{2\pi\omega_S L}h = h$ for any discrete harmonic function

$$h(\mathbf{w}) \in \operatorname{span}\{f_{x,y}(\mathbf{w}) : x,y \in \mathbb{C}, S(x,y) = 1\}.$$

- Focus on small steps: $t \nwarrow, t_\uparrow, t_\nearrow, t_\rightarrow, t_\searrow, t_\downarrow, t_\swarrow, t_\leftarrow$ and non-degenerate cases where S(x,y)=1 has genus 1.
- $ightharpoonup X_S$ generates Hamiltonian flow that is periodic with period $2\pi\omega_S$.



$$S(x,y) = 1$$

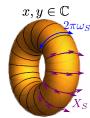
▶ So $e^{2\pi\omega_S L}h = h$ for any discrete harmonic function

$$h(\mathbf{w}) \in \operatorname{span}\{f_{x,y}(\mathbf{w}) : x,y \in \mathbb{C}, \ S(x,y) = 1\}.$$

▶ If steps have $\pi/2$ symmetry, i.e. S(x,y) = S(1/y,x),

$$(e^{\frac{\pi}{2}\omega_S L}h)(w_1, w_2) = h(-w_2, w_1) \rightarrow \text{rotation by } \frac{\pi}{2}!$$

- Focus on small steps: $t \searrow , t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where S(x,y)=1 has genus 1.
- $ightharpoonup X_S$ generates Hamiltonian flow that is periodic with period $2\pi\omega_S$.



$$S(x,y) = 1$$

 $lackbox{ So } e^{2\pi\omega_{S}L}h=h$ for any discrete harmonic function

$$h(\mathbf{w}) \in \operatorname{span}\{f_{x,y}(\mathbf{w}) : x,y \in \mathbb{C}, \ S(x,y) = 1\}.$$

▶ If steps have $\pi/2$ symmetry, i.e. S(x,y) = S(1/y,x),

$$(e^{\frac{\pi}{2}\omega_S L}h)(w_1, w_2) = h(-w_2, w_1) \rightarrow \text{rotation by } \frac{\pi}{2}!$$

The family of operators $e^{\alpha\omega_S L}$, $\alpha\in\mathbb{R}$, implement continuous "rotation" by angle α interpolating discrete symmetries!

▶ If we can rotate harmonic functions, we can describe them in polar coordinates:

$$h(\mathbf{w}) \leftrightarrow \hat{h}_{\alpha}(r) := (e^{\alpha \omega_{5} L} h)(r, 0), \quad r \in \mathbb{Z}_{>0}, \ \alpha \in \mathbb{R}$$

▶ If we can rotate harmonic functions, we can describe them in polar coordinates:

$$h(\mathbf{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r) := (e^{\alpha \omega_{S} L} h)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \ \alpha \in \mathbb{R}$$

▶ If $\Delta h = 0$, $(h(r,0))_{r\geq 0}$ determines $((L^2h)(r,0))_{r\geq 0}$:

$$(L^2h)(r,0) = t^2 r^2 h(r-2,2) + t t_t r(r-1)h(r-1,2) + \dots$$

If we can rotate harmonic functions, we can describe them in polar coordinates:

$$h(\mathbf{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r) := (e^{\alpha \omega_{S} L} h)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \ \alpha \in \mathbb{R}$$

▶ If $\Delta h = 0$, $(h(r,0))_{r\geq 0}$ determines $((L^2h)(r,0))_{r\geq 0}$:

$$(L^{2}h)(r,0) = t \sqrt{r^{2} h(r-2,2)} + t \sqrt{t} r(r-1)h(r-1,2) + \dots$$

= $-c_{-2} r(r-1)h(r-2,0) - c_{-1} r(2r-1)h(r-1,0) + c_{0} r^{2}h(r,0)$
- $c_{1}r(2r+1)h(r+1,0) - c_{2}r(r+1)h(r+2,0) =: (Dh(\cdot,0))(r).$

▶ If we can rotate harmonic functions, we can describe them in polar coordinates:

$$h(\mathbf{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r) := (e^{\alpha \omega_{S} L} h)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \ \alpha \in \mathbb{R}$$

▶ If $\Delta h = 0$, $(h(r,0))_{r\geq 0}$ determines $((L^2h)(r,0))_{r\geq 0}$:

$$(L^{2}h)(r,0) = t \sqrt[2]{r^{2}} h(r-2,2) + t \sqrt[4]{t} r(r-1)h(r-1,2) + \dots$$

= $-c_{-2} r(r-1)h(r-2,0) - c_{-1} r(2r-1)h(r-1,0) + c_{0} r^{2}h(r,0)$
- $c_{1}r(2r+1)h(r+1,0) - c_{2}r(r+1)h(r+2,0) =: (Dh(\cdot,0))(r).$

Harmonic function in polar coordinates satisfies

$$\frac{\partial^2}{\partial \alpha^2} \hat{h}_{\alpha}(r) = \omega_s^2 D \hat{h}_{\alpha}(r). \qquad \left[\text{compare Laplace eq.: } \frac{\partial^2 f}{\partial \alpha^2} = -r \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) \right]$$

If we can rotate harmonic functions, we can describe them in polar coordinates:

$$h(\mathbf{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r) := (e^{\alpha \omega_{S} L} h)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \ \alpha \in \mathbb{R}$$

▶ If $\Delta h = 0$, $(h(r,0))_{r\geq 0}$ determines $((L^2h)(r,0))_{r\geq 0}$:

$$(L^{2}h)(r,0) = t \sqrt[2]{r^{2}} h(r-2,2) + t \sqrt[4]{t} r(r-1)h(r-1,2) + \dots$$

= $-c_{-2} r(r-1)h(r-2,0) - c_{-1} r(2r-1)h(r-1,0) + c_{0} r^{2}h(r,0)$
- $c_{1}r(2r+1)h(r+1,0) - c_{2}r(r+1)h(r+2,0) =: (Dh(\cdot,0))(r).$

Harmonic function in polar coordinates satisfies

$$\frac{\partial^2}{\partial \alpha^2} \hat{h}_{\alpha}(r) = \omega_s^2 D \hat{h}_{\alpha}(r). \qquad \left[\text{compare Laplace eq.: } \frac{\partial^2 f}{\partial \alpha^2} = -r \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) \right]$$

Separation of variables (analogue of Bessel functions): $Dg_m(r) = m^2 g_m(r)$.

If we can rotate harmonic functions, we can describe them in polar coordinates:

$$h(\mathbf{w}) \leftrightarrow \hat{h}_{\alpha}(r) := (e^{\alpha \omega_{S} L} h)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \ \alpha \in \mathbb{R}$$

▶ If $\Delta h = 0$, $(h(r,0))_{r\geq 0}$ determines $((L^2h)(r,0))_{r\geq 0}$:

$$(L^{2}h)(r,0) = t \sqrt[2]{r^{2}} h(r-2,2) + t \sqrt[4]{t} r(r-1)h(r-1,2) + \dots$$

= $-c_{-2} r(r-1)h(r-2,0) - c_{-1} r(2r-1)h(r-1,0) + c_{0} r^{2}h(r,0)$
- $c_{1}r(2r+1)h(r+1,0) - c_{2}r(r+1)h(r+2,0) =: (Dh(\cdot,0))(r).$

Harmonic function in polar coordinates satisfies

$$\frac{\partial^2}{\partial \alpha^2} \hat{h}_{\alpha}(r) = \omega_s^2 D \hat{h}_{\alpha}(r). \qquad \left[\text{compare Laplace eq.: } \frac{\partial^2 f}{\partial \alpha^2} = -r \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) \right]$$

Separation of variables (analogue of Bessel functions): $Dg_m(r) = m^2 g_m(r)$.

In the diagonal simple walk case $(t_{\nearrow} = t_{\searrow} = t_{\swarrow} = t_{\nwarrow} = t)$, the "eigenvectors" $\hat{f}_m(z)$ provide the Bessel modes: $g_m(r) = r[z^r]\hat{f}_m(z)!$

Thanks for you attention! Comments?