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Combinatorial problem involving winding angles

> Let w be a simple diagonal walk on Z?\ {origin} of length |w| > 0.




Combinatorial problem involving winding angles

> Let w be a simple diagonal walk on Z?\ {origin} of length |w| > 0.

> Winding angle sequence (6, 6y, ..., 6}y,), 05" =0, 6 =6}y
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Combinatorial problem involving winding angles

> Let w be a simple diagonal walk on Z?\ {origin} of length |w| > 0.
> Winding angle sequence (6, 61", ..., 6}y,), 0 =0, 6" =0},

» Can we compute the following generating function?

We(,c,;)(t) = Z N = (p0), Wiy =t, 09=a}- (P € > 1,0 € 7))
w




Combinatorial problem involving winding angles

» Let w be a simple diagonal walk on Z?\ {origin} of length |w| > 0
» Winding angle sequence (6, 6y, .,0“’5‘,‘), 0y =0, 6% =0

[w|"
» Can we compute the following generating function?

Wé(f;)(t) = Z t‘w‘l{WO:(p,o), [Wiw||=¢, 0%=a}-
w

(p,l>1,a € F7Z)
Theorem (TB '17)
There exist formal power series
fn(z; 1) € R[z, t], “eigenvectors”
2K (4t all/m - .
W () = Lqﬂ‘ /™ e R[], eigenvalues
™m

providing the eigendecomposition

1

@y _ N=1AF (o o oz (.
i W (1) = (2 1fm(zit) WE(2) [2P)Fm(z: t).

m=1




Building blocks

» Three types of building blocks: type A, B, J.

i Ai,m(t)Bm,p(t) = Jﬁ,p(t)~

Al | \{i Byt J,p(t)} \Jﬁ\%
Be |50
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Building blocks

» Three types of building blocks: type A, B, J.

i Af,m(t)Bm,p(t) = Jé,p(t)~

> Interpret Ag p(t), Bep(t), Jop(t) as elements of “infinite matrices”:
walk composition then corresponds to matrix multiplication

| } | } Bily(t)




Building blocks

» Three types of building blocks: type A, B, J.
oo
Y Avm(t)Bmp(t) = Jep(t).
m=1

> Interpret Ag p(t), Bep(t), Jop(t) as elements of “infinite matrices”:
walk composition then corresponds to matrix multiplication

> To formalize this: fix k = 4t € (0,1) and choose convenient Hilbert
space + basis.

Bl p(t)

Alp(t)




Building blocks (operators)

> Let basis (e,)52; of £2(C) be such that (e, e,) = plys—py and let

<elaAkep> = gpAZ,p(t)a <eZ7 Bkep> = Bl,p(t)a <e£a Jkep> = eJé,p(t)'

<~
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Building blocks (operators)

> Let basis (e,)52; of £>(C) be such that (e, e,) = ply—p} and let
(e, Akep) = LpArp(t), (er,Biep) = Byp(t), (er,Juep) = £ Jpp(2).
» Then indeed J, = A, By:

(er, Jkep) = L Jpp(t) = £ Arm(t)Bmp(t) = (er, AkByey)

m=1
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Building blocks (operators)
> Let basis (e,)52; of £>(C) be such that (e, e,) = ply—p} and let
(ec, Akep) = LpArp(t), (er,Brep) = Bep(t), (er, Juep) =€ p(t).
» Then indeed J, = A, By:
(er, Jkep) = L Jpp(t) = £ Arm(t)Bmp(t) = (er, AkByey)
m=1

> Ay, By, Jx are self-adjoint compact operators that commute: admit

simultaneous eigendecomposition!
(RO |

Al | 5{» Bil,(H)
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The operator Ji

oo
p( n n
JE,P(t) = Z t" E (n—p) (n—é) l{n — p and n — ¢ nonnegative and even}
2

n=1
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The operator Ji
> 2P n n
JE,P(t) = Z t E (n—p) (n—@) l{n — p and n — ¢ nonnegative and even}
n=1 2 2

> Not only is Ji self-adjoint, (e, Jxep) = £ Jp p(t), but also Ji, = R};Rk
with (recall k = 4t)

) k n/2 p n
Rkep = Zen (4) n(,,p)]-{n—pZOand even}

n=1 2

Jip(1)

D
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The operator Ji
> 2P n n
JE,P(t) = Z t E (n—p) (n—@) l{n — p and n — ¢ nonnegative and even}
n=1 2 2

> Not only is Ji self-adjoint, (e, Jxep) = £ Jp p(t), but also Ji, = R};Rk
with (recall k = 4t)

o0 k n/2 p n
Rkep = Zen (4) n(,,p)]-{n—pZOand even}
2

n=1
= 1—V1I—kz2
=D e W) () =
py kz
Jip(1)
P
X
()] ¢
(»0) Y




Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(. g)p = / F2) &/ (2)4A(2)



Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(f.&)p = /D (2)g'(2)dA(z) = Y _ n[2"]f(2) [z"]g(2).



Dirichlet space D
» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)
(f.8)p = /D f(2)g'(2)dA(z) = ) n[2"If(2) [2"]g(2).
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> Basis ()52, defined by e,(z) = zP with (es, &5), = plis—py-



Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(f.&)p = /D (2)g'(2)dA(z) = Y _ n[2"]f(2) [z"]g(2).

> Basis ()52, defined by e,(z) = zP with (es, &5), = plis—py-
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Rif = f oy, Yi(z) = NCE




Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(f.&)p = /D (2)g'(2)dA(z) = Y _ n[2"]f(2) [z"]g(2).

> Basis ()52, defined by e,(z) = zP with (es, &5), = plis—py-

— /1 = 2
Rif = f oy, Yi(z) = #

» By conformal invariance of the Dirichlet inner product,

(f,Jkg)p = <f7 RZng>D = (f othk, g 0 Vi)p = (f, &) D(wy(D))-




> (f,Jkg)pm) = (f, &) D(wi()): To diagonalize Ji it suffices to find a
basis (fy) that is orthogonal w.r.t. both (:,-)pmy and (-, ) pw,(D))-




> (f,Jkg)pm) = (f, &) D(wi()): To diagonalize Ji it suffices to find a
basis (fy) that is orthogonal w.r.t. both (:,-)pmy and (-, ) pw,(D))-
» Look for a nice conformal mapping!




> (f,Jkg)pm) = (f, &) D(wi()): To diagonalize Ji it suffices to find a
basis (fy) that is orthogonal w.r.t. both (:,-)pmy and (-, ) pw,(D))-

» Look for a nice conformal mapping!

» The elliptic function

2k, (v) = Vkisn(4K (ki) v, ki) (kl 11%)

determines isomorphisms D(D) — D(0) and D(¢« (D)) — D(O):

(f,g)p(D) = (f o zk,, 8 © Zky ) p(D) D(D):{ R+i(~Te. Ti) & C : [lhlpo) < oo }
(f,8) D)) = (f o 2i,8 0 z1)p(0) h(v +1) = h(v) = h(3 —v). h(0) =0

iTy

-1

e
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> (f,Jkg)pm) = (f, &) D(wi()): To diagonalize Ji it suffices to find a
basis (fy) that is orthogonal w.r.t. both (:,-)pmy and (-, ) pw,(D))-

» Look for a nice conformal mapping!

» The elliptic function

2k, (v) = Vkisn(4K (ki) v, ki) (kl 11%)

determines isomorphisms D(D) — D(0) and D(¢« (D)) — D(O):
(f,g)pm) = (f ozx,8 0 z4)p(O) D(D):{ R+ (=T, Te) 2 C « |[hllpoy < 0o }
(f,8) D)) = (f 021,80 z1)D(O) h(v +1) = h(v) = h(3 —v), h(0) =0

» Orthogonal basis for D(0) and D(0):

v - cos(2rm(v + 1)) — cos(37m), m=12...
iTy
D ’
v
a)

1 - 1 1 1
VA i —v ] 7% 4 0 4

T, = KWIF) N\

IK(F)



» Orthonormal basis (f,,)%2_; of D(ID) given by

Pulz) = - ml2)

fmn(z) = cos(27rm(z,;1(z) + 1)) — cos(3mm).

[l D)

11}
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» Orthonormal basis (f,,)%2_; of D(ID) given by

fn(z) =

» So Ji has eigenvectors (l?m)mzl and eigenvalues

fm(2)

[l D)

fmn(z) = cos(27rm(z,;1(z) + 1)) — cos(3mm).

<fm7 fm>D(’¢'k(D)) - Sinh(2mﬂ—Tk) B 1 o 6747‘-7—[(
(s ) D(D) sinh(4mnTy) ~ g2 4 g 2 e
iTe
Zky i 7
O
-1 ) | l
S 1 . 4
Ty = K (4\1/(?) / \\

=Ty,



» Orthonormal basis (f,,)%2_; of D(ID) given by

fm(2)
[l D)

fn(z) = fmn(z) = cos(27rm(z,;1(z) + 1)) — cos(3mm).

» So Ji has eigenvectors (l?m)mzl and eigenvalues

(fms fm) D(w(0))  Sinh(2mm Tj) 1 g = e 47T

(fm, fm) D(D) ~ sinh(4mmTy) th("/2 + q;m/y “nome”

» The generating function for J-type walks has eigendecomposition

1 A~
Ldep(t) = Z[z]f zit) ———prs [2P1fm(z: 1)
+qk
i1},
(ﬂ— i y
O
-1 1 -1 1
B4 i —v/] 7% 4 0 4
|\
= sgem | LZ\




> May work out eigenvalues of A, and By too (same eigenvectors fy,):

Ally(d) ‘+\+ Bt J;,,(t)} \ } | }
- X
(0D | 0, } }
yaun } ‘<p0)
(pl0) } }
~A
Ak 2K7Ek) qk—m/zm_q;n/z Ji: qm/2+1q e




> May work out eigenvalues of A, and By too (same eigenvectors fy,):

A p(t)} \ | Bil,(t) Jilp(t)

|
~(0.D | ( ‘
A |
(pl0)
\
\
\ \
. s m 2K(k) 1 1—q;
Ak 2K(K) o "2 g Bu © mitqT

> Recall W (1) = (e, Y{"e,), o € ZZ, where

Y = 3" #{simple walks from 0 to a of length N} - J} By.
N=0

It has eigenvalues

Y, =

2K(K) 1 mjal/n
( )*qk' g
m

m



Putting the building blocks together

a simple walk (a;), on 37 from 0 to «

w is encoded by { (0) NZ1)  (N)

a sequence w ,...,W( wN) of “matching” walks
—~—

type J type B
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a simple walk (a;), on 37 from 0 to «

w is encoded by { a sequence W(O), ey W(N_l)7 wN) of “matching” walks
N~
type J type B
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Putting the building blocks together
' a simple walk (a;), on 37 from 0 to «
w is encoded by { a sequence W(O), ...,W(N_l)7 wN) of “matching” walks
—_——

type J type B




Putting the building blocks together

a simple walk (a;), on 37 from 0 to «

. 2
w is encoded by { a sequence W(O), ey W(N_l)7 wN) of “matching” walks
—~—
type J type B

» Hence We(z)(t) = (e, Y!?e,) where the operator Y{*) is given by

yie) = Z #{simple walks from 0 to « of length N} - J¥ B,.
N=0

|| 1)

A A
'ig\ﬁ) et T\
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Putting the building blocks together

a simple walk (a;), on 37 from 0 to «

w is encoded by { a sequence w(o), ey W(N_l), wN) of “matching” walks
—~—
type J type B

» Hence Wz(z)(t) = (e, Y!?e,) where the operator Y{*) is given by

Y = 3" #{simple walks from 0 to a of length N} - J} By.
N=0

» |t has eigenvalues Yf(a))?m = 2Kk gmlal/m £

——> ) 'm, proving

‘p Tam

| JRC ‘+‘ (1) Wi
RN FNGRZS G

SOMINGRENT
S L e TN
N o

1 @ > 7 m|a|/m 7
ZW(e) = Y[ V(2 ) GV (2] (21 ¢).
m=1

k)

=)




Reflection principle
» For | = (B_,B+), B+ € FZ, a € INTZ and p, even, let

a,l
W( ) Zt‘ ‘l{WO (P,0), |Ww| =2, 0" =c, 0¥ €l for 1<i<|w]}-

w

J‘»

ol




Reflection principle
» For | = (B_,B+), B+ € FZ, a € INTZ and p, even, let

.
W D(t) = D ot (0.0, [y [ =t 0= at, 97 for 11w}

w

> If 0V ¢ I, reflect w — w' at first exit of /.

2 4 6 8 10 12 14 16
o -
1
™
fd
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Uty o —0
_r
4 | =
2
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Reflection principle
» For | = (B_,B+), B+ € FZ, a € INTZ and p, even, let

.
W D(t) = D ot (0.0, [y [ =t 0= at, 97 for 11w}

w

> If 0V ¢ I, reflect w — w' at first exit of /.

2 4 6 8 10 12 14 16
o -
1
™
fd
2 I S
Uty o —0
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4 | =
2
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Reflection principle
» For | = (B_,B+), B+ € FZ, a € INTZ and p, even, let

J
We(,‘: )(t) = Z t‘w‘l{wo:(p,O), |Wiw) | =€, 0% =cr, 87 €1 for 1<i<|w|}

w

> If 0V ¢ I, reflect w — w' at first exit of .
> If 0% € 26, — a + 07 then % € o+ 07, 6 = 2(By — ).
a, > a+nd —a+nd
WD) = 30 (W) - wi ().

n=—o0

g

/
/




Reflection principle
» For | = (B_,B+), B+ € FZ, a € INTZ and p, even, let

N
WZ(,‘:; )(t) = Z t‘w‘ 1{Wo:(p,0), [Wiw| =2, 0¥v=a, 0¥ €l for 1<i<|w|}-

w

> If 0V ¢ I, reflect w — w' at first exit of .
> If 0¥ € 28, — a + 0Z then 0% € o+ 67, § = 2(B; — B_).

N - nd —a+nd
Wi = 3 (Wi - Wi )
n=—o0
> We(’(:;(fw/4,7r/2))(t) — (er, X&), and X has e.v. 2K(k)  1—gqf

m 1+q,’("/2+q‘r<n'

| |
} + } 2 4 6 8 10 12 14 16
—_—
N ‘




More examp|eS See [TB,’17, Theorem 1] for the general case.

m™m
7 (er, ® ep)p, 2K(K) g ma/m _qmal™




Application: Excursions

» Consider set £ of excursions from the origin (rectilinear or diagonal).

F(a Z thll{gw_a}, o€ gZ.

we€




Application: Excursions

» Consider set £ of excursions from the origin (rectilinear or diagonal).
F(a Z thll{gw_a}, a € gZ
we€

» By flipping the first and last step:

oo

—4 Z (_1)I+p+m+lm W(Ilaz\:mﬁ/?)( t)




Application: Excursions
» Consider set £ of excursions from the origin (rectilinear or diagonal).
[0 w ™
F(e) ;8 tl |1{9w_a}, a € EZ

» By flipping the first and last step:

oo

4 Z (_1)I+p+m+lmW(I|a2\:m7f/2)()

T
2

—~~
~

-
Il

n\2
— qk) 2n|a|/m
4n k




Excursions in cones
» For | = (B_,B4), B+ € §Z, a € IN T Z, a reflection principle shows

FlD(t) = Z t‘w‘l{wlz(l,l),OW:a,H}”el for all i}
weE

= 330 (Fesm(e) - Fes et 5 =2, — 6

neZ




Excursions in cones

» For | = (B_,B4), B+ € §Z, a € IN T Z, a reflection principle shows
F(a ! ) = Z t‘w‘l{wlz(l,l),OW:a 0¥ el for all i}

W€5
( a+n<5 _ F@By—a+nd) (t)) 6= 2(ﬁ+ — B—)

nEZ
(26: <cos (4050[) — cos (40(26;_0[))> F (t, 4;) )

where

F(t,b):= > F)(t)eP = ! l1—

ez cos (Z2)




Theorem (TB, '17)

Excursions of winding angle o in a cone | = (f_, 34) with f1 € 77Z,
a € I N 57, are enumerated by the finite sum

doa 40(28+ — ) 4o
F(O‘vl) — W —_ e Solo 4 F — | .
(t) 8 Z cos| — cos 5 t, =
0€(0,0)NSZ
» F(t,b) is algebraic if b € Q \ Z and transcendental if b € Z;
» F(@)(t) is transcendental only in the cases

o L €T+ T,
o frenZ+ % and o € TZ.

> a=—-7/2



Example: Gessel's sequence

» Special algebraic case « =0, | = (—7/2,7/4):
1 4 1 \/§7T o’ ( qk)
FONp=ZF(¢.2) =2 113
(t) A 3 2

-1

2K(4t) 61 (%, /a)




Example: Gessel's sequence

» Special algebraic case « =0, | = (—7/2,7/4):
Fon =37 (3) =3 oo i)
4 3 2 [ 2K(4t) 0, (5, VaK)

> Agrees with Gessel's conjecture [Kauers, Koutschan, Zeilberger, '09], [Bostan,
Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

-1

n+2 1o (5/6)n(1/2)n
F, /) th +2 16 2) o




Application: winding of a random loop

» Consider a uniform loop of length 2¢ on Z2.

o




Application: winding of a random loop

» Consider a uniform loop of length 2¢ on Z2.

» Color each square according to the total
winding angle of the loop around it.

i:F_




Application: winding of a random loop

» Consider a uniform loop of length 2¢ on Z2. £

» Color each square according to the total HE
winding angle of the loop around it.

» For n # 0, what is the expected area of F—
squares with winding angle 27n? '




Application: winding of a random loop

» Consider a uniform loop of length 2/ on Z2. i:F_ H

» Color each square according to the total
winding angle of the loop around it.

» For n # 0, what is the expected area of F—
squares with winding angle 27n? '

Theorem (TB, '17)

1 25[2@] q4t
(e) — i

Eov[Areazs,] =




Application: winding of a random loop

» Consider a uniform loop of length 2¢ on Z2. i:F_
» Color each square according to the total
winding angle of the loop around it.
» For n+# 0, what is the expected area of e i
squares with winding angle 27n?

Theorem (TB, '17)

1 2 [ 25] q4t @7\/00 {4

Eov[Areazs,] =
¥ ) ~ i 2mn?

» Reproduces the analogous result 5— for Brownian motion. [Comtet,
Desbois, Ouvry, '90] [Yor, '80] [Garban, Truyllo Ferreras '06]



» Proof: the expected area is

: = 72, 6% =2
Eo¢[Areassy] = [{w: wo = War € Zogg, |

(3’




» Proof: the expected area is
Hw : wo = wyy € Z2yy, 0% = 2mn}|
()’
I

2 H{w :wp = wye = (p,0), p odd, 8" = 2mn, 8 > 0}|

Exe[Areas,,] =

n (3’




» Proof: the expected area is
Hw : wo = wyy € Z2yy, 0% = 2mn}|
()’
I

2 H{w :wp = wye = (p,0), p odd, 8" = 2mn, 8 > 0}|

Eo¢[Areassy] =

n 20\ 2
(%)
— 2_£ [t2é] Zm odd q‘%t”nn _ 1 2_€[t2€] qz%? )
oy G A 2t

1 .
;<8Zy.ep> eigenvalues g ;a r




Diagonalization in closed form: luck?

» Have we been lucky or is there an underlying principle?
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» Have we been lucky or is there an underlying principle?
» Other types of walks with small steps admit closed-form counting by
winding angle. See poster of Elvey Price: [Elvey Price, '20]
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» Take perspective of discrete harmonic functions: h: Z? — C is
harmonic on D C Z? if Ah|p = 0 with

(Ah)(w) = h(w) = > th(w — z).



Diagonalization in closed form: luck?

» Have we been lucky or is there an underlying principle?

» Other types of walks with small steps admit closed-form counting by
winding angle. See poster of Elvey Price: [Elvey Price, '20]

A /

Kreweras lattice Triangular Lattice King Lattice

» Take perspective of discrete harmonic functions: h: Z? — C is
harmonic on D C Z? if Ah|p = 0 with

(Ah)(w) = h(w) = > th(w — z).

» Closely related to lattice path counting: generating function of paths
ending at w with weight t, per step z is harmonic (on suitable
domain).



A curious operator

(Ah)(w Z t,h(w — z).

» Introduce another operator

(Lh)(w) = Z(z X w) t;h(w — z), ZX W =Z1Wy — 2wy,

z



A curious operator

(Ah)(w) = h(w) — Z t,h(w — z).

» Introduce another operator

(Lh)(w):Z(zx w) t,h(w — z), ZX W =Z1Wy — 2wy,
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» It commutes, LA = AL, with the discrete Laplacian:

Ah=0 = ALh=0, Ae’th=0.



A curious operator

(Ah)(w) Z t,h(w — z)

» Introduce another operator

(Lh)(w):Z(zx w) t,h(w — z), ZX W =Z1Wy — 2wy,

z

» It commutes, LA = AL, with the discrete Laplacian:
Ah=0 = ALh=0, Ae’th=0.
» Separation of variables: f, ,(w) :=x"1y"?, x,y € C.

=0 <<= S(xy)= Z t,x?y? =1 <«<— K(x,y)=0.



A curious operator

(Ah)(w) Z t,h(w — z)

» Introduce another operator

(Lh)(w):Z(zx w) t,h(w — z), ZX W =Z1Wy — 2wy,

z

» It commutes, LA = AL, with the discrete Laplacian:
Ah=0 = ALh=0, Ae’th=0.
» Separation of variables: f, ,(w) :=x"1y"?, x,y € C.

Af,, =0 <<= S(x,y)= Z t,x?y? =1 <«<— K(x,y)=0.

» This curve carries a natural Hamiltonian vector field

050 0§90

Xs = x ((‘?Xay - 8)/8) such that (Lf,)(w) = Xsfy,(w).



The case of genus 1: rotations?

» Focus on small steps:
tx_, ty, ta, ty, B, ty, £, t and non-degenerate
cases where S(x, y) = 1 has genus 1.

S(:c,y) =1



The case of genus 1: rotations?

» Focus on small steps:
tx_, ty, ta, ty, B, ty, £, t and non-degenerate
cases where S(x, y) = 1 has genus 1.
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If steps have /2 symmetry, i.e. S(x,y) = S(1/y,x),

(egwsLh)(wl, wo) = h(—wa,w;)  — rotation by 7!

The family of operators e®“st, o € R, implement continuous “rotation”

by angle « interpolating discrete symmetries! J
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> Separation of variables (analogue of Bessel functions):

Dgm(r) = m?gm(r).

In the diagonal simple walk case (t » =t =t = tx_=1t), the
“eigenvectors’ fn(z) provide the Bessel modes: gm(r) = r[z"]fm(2)! J




Thanks for you attention!
Comments?



