Winding of simple walks on the square lattice

Radboud University Nijmegen
t.budd@science.ru.nl, https://hef.ru.nl/~tbudd/

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.
- Winding angle sequence $\left(\theta_{0}^{w}, \theta_{1}^{w}, \ldots, \theta_{|w|}^{w}\right), \theta_{0}^{w}=0, \theta^{w}:=\theta_{|w|}^{w}$.

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.
- Winding angle sequence $\left(\theta_{0}^{w}, \theta_{1}^{w}, \ldots, \theta_{|w|}^{w}\right), \theta_{0}^{w}=0, \theta^{w}:=\theta_{|w|}^{w}$.
- Can we compute the following generating function?

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

Combinatorial problem involving winding angles

- Let w be a simple diagonal walk on $\mathbb{Z}^{2} \backslash\{$ origin $\}$ of length $|w| \geq 0$.
- Winding angle sequence $\left(\theta_{0}^{w}, \theta_{1}^{w}, \ldots, \theta_{|w|}^{w}\right), \theta_{0}^{w}=0, \theta^{w}:=\theta_{|w|}^{w}$.
- Can we compute the following generating function?

$$
W_{\ell, p}^{(\alpha)}(t):=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha\right\}} . \quad\left(p, \ell \geq 1, \alpha \in \frac{\pi}{2} \mathbb{Z}\right)
$$

Theorem (TB '17)

There exist formal power series

$$
\begin{array}{lll}
\hat{f}_{m}(z ; t) & \in \mathbb{R} \llbracket z, t \rrbracket, & \text { "eigenvectors" } \\
\mathrm{W}_{m}^{(\alpha)}(t)=\frac{2 K(4 t)}{\pi m} q_{4 t}^{m|\alpha| / \pi} & \in \mathbb{R} \llbracket t \rrbracket, & \text { "eigenvalues" }
\end{array}
$$

providing the eigendecomposition

$$
\frac{1}{\ell p} W_{\ell, p}^{(\alpha)}(t)=\sum_{m=1}^{\infty}\left[z^{\ell}\right] \hat{f}_{m}(z ; t) \quad W_{m}^{(\alpha)}(t)\left[z^{p}\right] \hat{f}_{m}(z ; t)
$$

Building blocks

- Three types of building blocks: type A, B, J.

$$
\sum_{m=1}^{\infty} A_{\ell, m}(t) B_{m, p}(t)=J_{\ell, p}(t)
$$

Building blocks

- Three types of building blocks: type A, B, J.

$$
\sum_{m=1}^{\infty} A_{\ell, m}(t) B_{m, p}(t)=J_{\ell, p}(t)
$$

- Interpret $A_{\ell, p}(t), B_{\ell, p}(t), J_{\ell, p}(t)$ as elements of "infinite matrices": walk composition then corresponds to matrix multiplication

Building blocks

- Three types of building blocks: type A, B, J.

$$
\sum_{m=1}^{\infty} A_{\ell, m}(t) B_{m, p}(t)=J_{\ell, p}(t)
$$

- Interpret $A_{\ell, p}(t), B_{\ell, p}(t), J_{\ell, p}(t)$ as elements of "infinite matrices": walk composition then corresponds to matrix multiplication
- To formalize this: fix $k=4 t \in(0,1)$ and choose convenient Hilbert space + basis.

Building blocks (operators)

- Let basis $\left(e_{p}\right)_{p=1}^{\infty}$ of $\ell^{2}(\mathbb{C})$ be such that $\left\langle e_{\ell}, e_{p}\right\rangle=p 1_{\{\ell=p\}}$ and let

$$
\left\langle e_{\ell}, \mathrm{A}_{k} e_{p}\right\rangle=\ell p A_{\ell, p}(t), \quad\left\langle e_{\ell}, \mathrm{B}_{k} e_{p}\right\rangle=B_{\ell, p}(t), \quad\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)
$$

Building blocks (operators)

- Let basis $\left(e_{p}\right)_{p=1}^{\infty}$ of $\ell^{2}(\mathbb{C})$ be such that $\left\langle e_{\ell}, e_{p}\right\rangle=p 1_{\{\ell=p\}}$ and let

$$
\left\langle e_{\ell}, A_{k} e_{p}\right\rangle=\ell p A_{\ell, p}(t), \quad\left\langle e_{\ell}, B_{k} e_{p}\right\rangle=B_{\ell, p}(t), \quad\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)
$$

- Then indeed $J_{k}=A_{k} B_{k}$:

$$
\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)=\ell \sum_{m=1}^{\infty} A_{\ell, m}(t) B_{m, p}(t)=\left\langle e_{\ell}, \mathrm{A}_{k} \mathrm{~B}_{k} e_{p}\right\rangle
$$

Building blocks (operators)

- Let basis $\left(e_{p}\right)_{p=1}^{\infty}$ of $\ell^{2}(\mathbb{C})$ be such that $\left\langle e_{\ell}, e_{p}\right\rangle=p 1_{\{\ell=p\}}$ and let

$$
\left\langle e_{\ell}, A_{k} e_{p}\right\rangle=\ell p A_{\ell, p}(t), \quad\left\langle e_{\ell}, B_{k} e_{p}\right\rangle=B_{\ell, p}(t), \quad\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)
$$

- Then indeed $J_{k}=A_{k} B_{k}$:

$$
\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)=\ell \sum_{m=1}^{\infty} A_{\ell, m}(t) B_{m, p}(t)=\left\langle e_{\ell}, \mathrm{A}_{k} \mathrm{~B}_{k} e_{p}\right\rangle
$$

$\rightarrow \mathrm{A}_{k}, \mathrm{~B}_{k}, \mathrm{~J}_{k}$ are self-adjoint compact operators that commute: admit simultaneous eigendecomposition!

The operator J_{k}

$$
J_{\ell, p}(t)=\sum_{n=1}^{\infty} t^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 1_{\{n-p \text { and } n-\ell \text { nonnegative and even }\}}
$$

The operator J_{k}

$$
J_{\ell, p}(t)=\sum_{n=1}^{\infty} t^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 1_{\{n-p \text { and } n-\ell \text { nonnegative and even }\}}
$$

- Not only is J_{k} self-adjoint, $\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)$, but also $J_{k}=\mathrm{R}_{k}^{\dagger} \mathrm{R}_{k}$ with (recall $k=4 t$)

$$
\mathrm{R}_{k} \mathrm{e}_{p}:=\sum_{n=1}^{\infty} e_{n}\left(\frac{k}{4}\right)^{n / 2} \frac{p}{n}\binom{n}{\frac{n-p}{2}} 1_{\{n-p \geq 0 \text { and even }\}}
$$

The operator J_{k}

$$
J_{\ell, p}(t)=\sum_{n=1}^{\infty} t^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 1_{\{n-p \text { and } n-\ell \text { nonnegative and even }\}}
$$

- Not only is J_{k} self-adjoint, $\left\langle e_{\ell}, J_{k} e_{p}\right\rangle=\ell J_{\ell, p}(t)$, but also $J_{k}=\mathrm{R}_{k}^{\dagger} \mathrm{R}_{k}$ with (recall $k=4 t$)

$$
\begin{aligned}
\mathrm{R}_{k} e_{p} & :=\sum_{n=1}^{\infty} e_{n}\left(\frac{k}{4}\right)^{n / 2} \frac{p}{n}\binom{n}{\frac{n-p}{2}} 1_{\{n-p \geq 0 \text { and even }\}} \\
& =\sum_{n=1}^{\infty} e_{n}\left[z^{n}\right] \psi_{k}(z)^{p}, \quad \psi_{k}(z):=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
\end{aligned}
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ defined by $e_{p}(z)=z^{p}$ with $\left\langle e_{\ell}, e_{p}\right\rangle_{\mathcal{D}}=p 1_{\{\ell=p\}}$.

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ defined by $e_{p}(z)=z^{p}$ with $\left\langle e_{\ell}, e_{p}\right\rangle_{\mathcal{D}}=p 1_{\{\ell=p\}}$.

$$
\mathrm{R}_{k} f=f \circ \psi_{k}, \quad \psi_{k}(z)=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ defined by $e_{p}(z)=z^{p}$ with $\left\langle e_{\ell}, e_{p}\right\rangle_{\mathcal{D}}=p 1_{\{\ell=p\}}$.

$$
\mathrm{R}_{k} f=f \circ \psi_{k}, \quad \psi_{k}(z)=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
$$

- By conformal invariance of the Dirichlet inner product,

$$
\left\langle f, J_{k} g\right\rangle_{\mathcal{D}}=\left\langle f, \mathrm{R}_{k}^{\dagger} R_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

$-\left\langle f, J_{k} g\right\rangle_{\mathcal{D}(\mathbb{D})}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}$: To diagonalize J_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.

- $\left\langle f, J_{k} g\right\rangle_{\mathcal{D}(\mathbb{D})}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}$: To diagonalize J_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.
- Look for a nice conformal mapping!

$-\left\langle f, J_{k} g\right\rangle_{\mathcal{D}(\mathbb{D})}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}$: To diagonalize J_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.
- Look for a nice conformal mapping!
- The elliptic function

$$
z_{k_{1}}(v)=\sqrt{k_{1}} \operatorname{sn}\left(4 K\left(k_{1}\right) v, k_{1}\right) \quad\left(k_{1}=\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)
$$

determines isomorphisms $\mathcal{D}(\mathbb{D}) \rightarrow \mathcal{D}(\square)$ and $\mathcal{D}\left(\psi_{k}(\mathbb{D})\right) \rightarrow \mathcal{D}(\square)$:
$\begin{array}{ll}\langle f, g\rangle_{\mathcal{D}(\mathbb{D})} & =\left\langle f \circ z_{k_{1}}, g \circ z_{k_{1}}\right\rangle_{\mathcal{D}(\square)} \\ \langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} & =\left\langle f \circ z_{k_{1}}, g \circ z_{k_{1}}\right\rangle_{\mathcal{D}(\square)}\end{array} \quad \mathcal{D}(\square)=\left\{\begin{array}{l}\mathbb{R}+i\left(-T_{k}, T_{k}\right) h \mathbb{C}:\|h\|_{(\square)}<\infty \\ h(v+1)=h(v)=h\left(\frac{1}{2}-v\right), h(0)=0\end{array}\right\}$.

$-\left\langle f, J_{k} g\right\rangle_{\mathcal{D}(\mathbb{D})}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}$: To diagonalize J_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.

- Look for a nice conformal mapping!
- The elliptic function

$$
z_{k_{1}}(v)=\sqrt{k_{1}} \operatorname{sn}\left(4 K\left(k_{1}\right) v, k_{1}\right) \quad\left(k_{1}=\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)
$$

determines isomorphisms $\mathcal{D}(\mathbb{D}) \rightarrow \mathcal{D}(\square)$ and $\mathcal{D}\left(\psi_{k}(\mathbb{D})\right) \rightarrow \mathcal{D}(\square)$:

$$
\begin{array}{ll}
\langle f, g\rangle_{\mathcal{D}(\mathbb{D})} & =\left\langle f \circ z_{k_{1}}, g \circ z_{k_{1}}\right\rangle_{\mathcal{D}(\square)} \\
\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} & =\left\langle f \circ z_{k_{1}}, g \circ z_{k_{1}}\right\rangle_{\mathcal{D}(\square)}
\end{array} \quad \mathcal{D}(\square)=\left\{\begin{array}{l}
\mathbb{R}+i\left(-T_{k}, T_{k}\right) \xrightarrow{h} \stackrel{\mathbb{C}}{ }:\|h\|_{\mathcal{D}(\square)}<\infty \\
h(v+1)=h(v)=h\left(\frac{1}{2}-v\right), h(0)=0
\end{array}\right\} .
$$

- Orthogonal basis for $\mathcal{D}(\square)$ and $\mathcal{D}(\square)$:

$$
v \mapsto \cos \left(2 \pi m\left(v+\frac{1}{4}\right)\right)-\cos \left(\frac{1}{2} \pi m\right), \quad m=1,2, \ldots
$$

- Orthonormal basis $\left(\hat{f}_{m}\right)_{m=1}^{\infty}$ of $\mathcal{D}(\mathbb{D})$ given by

$$
\hat{f}_{m}(z)=\frac{f_{m}(z)}{\left\|f_{m}\right\|_{\mathcal{D}(\mathbb{D})}}, \quad f_{m}(z)=\cos \left(2 \pi m\left(z_{k_{1}}^{-1}(z)+\frac{1}{4}\right)\right)-\cos \left(\frac{1}{2} \pi m\right) .
$$

- Orthonormal basis $\left(\hat{f}_{m}\right)_{m=1}^{\infty}$ of $\mathcal{D}(\mathbb{D})$ given by

$$
\hat{f}_{m}(z)=\frac{f_{m}(z)}{\left\|f_{m}\right\|_{\mathcal{D}(\mathbb{D})}}, \quad f_{m}(z)=\cos \left(2 \pi m\left(z_{k_{1}}^{-1}(z)+\frac{1}{4}\right)\right)-\cos \left(\frac{1}{2} \pi m\right) .
$$

- So J_{k} has eigenvectors $\left(\hat{f}_{m}\right)_{m \geq 1}$ and eigenvalues

$$
\frac{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}}{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}(\mathbb{D})}}=\frac{\sinh \left(2 m \pi T_{k}\right)}{\sinh \left(4 m \pi T_{k}\right)}=\frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}, \quad q_{k}=e^{-4 \pi T_{k}} \text { "nome" } .
$$

- Orthonormal basis $\left(\hat{f}_{m}\right)_{m=1}^{\infty}$ of $\mathcal{D}(\mathbb{D})$ given by

$$
\hat{f}_{m}(z)=\frac{f_{m}(z)}{\left\|f_{m}\right\|_{\mathcal{D}(\mathbb{D})}}, \quad f_{m}(z)=\cos \left(2 \pi m\left(z_{k_{1}}^{-1}(z)+\frac{1}{4}\right)\right)-\cos \left(\frac{1}{2} \pi m\right) .
$$

- So J_{k} has eigenvectors $\left(\hat{f}_{m}\right)_{m \geq 1}$ and eigenvalues

$$
\frac{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}}{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}(\mathbb{D})}}=\frac{\sinh \left(2 m \pi T_{k}\right)}{\sinh \left(4 m \pi T_{k}\right)}=\frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}, \quad q_{k}=e^{-4 \pi T_{k}} \text { "nome" } .
$$

- The generating function for J-type walks has eigendecomposition

$$
\frac{1}{p} J_{\ell, p}(t)=\sum_{m=1}^{\infty}\left[z^{\ell}\right] \hat{f}_{m}(z ; t) \frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}\left[z^{p}\right] \hat{f}_{m}(z ; t) .
$$

- May work out eigenvalues of A_{k} and B_{k} too (same eigenvectors \hat{f}_{m}):

$\mathrm{A}_{k}: \frac{\pi}{2 K(k)} \frac{m}{q_{k}^{-m / 2}-q_{k}^{m / 2}}$

$\mathrm{B}_{k}: \frac{2 K(k)}{\pi} \frac{1}{m} \frac{1-q_{k}^{m}}{1+q_{k}^{m}}$

$J_{k}: \frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}$
- May work out eigenvalues of A_{k} and B_{k} too (same eigenvectors \hat{f}_{m}):

$\mathrm{A}_{k}: \frac{\pi}{2 K(k)} \frac{m}{q_{k}^{-m / 2}-q_{k}^{m / 2}}$
$\mathrm{B}_{k}: \frac{2 K(k)}{\pi} \frac{1}{m} \frac{1-q_{k}^{m}}{1+q_{k}^{m}}$
$J_{k}: \frac{1}{q_{k}^{m / 2}+q_{k}^{-m / 2}}$
- Recall $W_{\ell, p}^{(\alpha)}(t)=\left\langle e_{\ell}, Y_{k}^{(\alpha)} e_{p}\right\rangle, \alpha \in \frac{\pi}{2} \mathbb{Z}$, where

$$
Y_{k}^{(\alpha)}=\sum_{N=0}^{\infty} \#\{\text { simple walks from } 0 \text { to } \alpha \text { of length } N\} \cdot J_{k}^{N} B_{k} \text {. }
$$

It has eigenvalues

$$
Y_{k}^{(\alpha)} f_{m}=\frac{2 K(k)}{\pi} \frac{1}{m} q_{k}^{m|\alpha| / \pi} f_{m}
$$

Putting the building blocks together

w is encoded by $\left\{\begin{array}{l}\text { a simple walk }\left(\alpha_{j}\right)_{j=0}^{N} \text { on } \frac{\pi}{2} \mathbb{Z} \\ \text { a sequence } \underbrace{w^{(0)}, \ldots, w^{(N-1)}}_{\text {type } J}, \underbrace{w^{(N)} 0 \text { to } \alpha}_{\text {type } B} \text { of "matching" walks }\end{array}\right.$

Putting the building blocks together

w is encoded by $\left\{\begin{array}{l}\text { a simple walk }\left(\alpha_{j}\right)_{j=0}^{N} \text { on } \frac{\pi}{2} \mathbb{Z} \\ \text { a sequence } \underbrace{w^{(0)}, \ldots, w^{(N-1)}}_{\text {type } J}, \underbrace{w^{(N)}}_{\text {type } B} \text { of "matching" walks } \alpha\end{array}\right.$

Putting the building blocks together

w is encoded by $\left\{\begin{array}{l}\text { a simple walk }\left(\alpha_{j}\right)_{j=0}^{N} \text { on } \frac{\pi}{2} \mathbb{Z} \\ \text { a sequence } \underbrace{w^{(0)}, \ldots, w^{(N-1)}}_{\text {type } J}, \underbrace{w^{(N)} 0 \text { to } \alpha}_{\text {type } B} \text { of "matching" walks }\end{array}\right.$

Putting the building blocks together

w is encoded by $\left\{\begin{array}{l}\text { a simple walk }\left(\alpha_{j}\right)_{j=0}^{N} \text { on } \frac{\pi}{2} \mathbb{Z} \text { from } 0 \text { to } \alpha \\ \text { a sequence } \underbrace{w^{(0)}, \ldots, w^{(N-1)}}_{\text {type } J}, \underbrace{w^{(N)}}_{\text {type } B} \text { of "matching" walks }\end{array}\right.$

- Hence $W_{\ell, p}^{(\alpha)}(t)=\left\langle e_{\ell}, Y_{k}^{(\alpha)} e_{p}\right\rangle$ where the operator $Y_{k}^{(\alpha)}$ is given by

$$
\mathrm{Y}_{k}^{(\alpha)}=\sum_{N=0}^{\infty} \#\{\text { simple walks from } 0 \text { to } \alpha \text { of length } N\} \cdot J_{k}^{N} \mathrm{~B}_{k}
$$

Putting the building blocks together

w is encoded by $\left\{\begin{array}{l}\text { a simple walk }\left(\alpha_{j}\right)_{j=0}^{N} \text { on } \frac{\pi}{2} \mathbb{Z} \text { from } 0 \text { to } \alpha \\ \text { a sequence } w^{(0)}\end{array}\right.$
w is encoded by $\{$ a sequence $\underbrace{w^{(0)}, \ldots, w^{(N-1)}}_{\text {type } J}, \underbrace{w^{(N)}}_{\text {type } B}$ of "matching" walks

- Hence $W_{\ell, p}^{(\alpha)}(t)=\left\langle e_{\ell}, Y_{k}^{(\alpha)} e_{p}\right\rangle$ where the operator $\mathrm{Y}_{k}^{(\alpha)}$ is given by

$$
Y_{k}^{(\alpha)}=\sum_{N=0}^{\infty} \#\{\text { simple walks from } 0 \text { to } \alpha \text { of length } N\} \cdot J_{k}^{N} B_{k}
$$

- It has eigenvalues $Y_{k}^{(\alpha)} \hat{f}_{m}=\frac{2 K(k)}{\pi m} q_{k}^{m|\alpha| / \pi} \hat{f}_{m}$, proving

$$
\frac{1}{\ell p} W_{\ell, p}^{(\alpha)}(t)=\sum_{m=1}^{\infty}\left[z^{\ell}\right] \hat{f}_{m}(z ; t) \frac{2 K(4 t)}{\pi m} q_{4 t}^{m|\alpha| / \pi}\left[z^{p}\right] \hat{f}_{m}(z ; t)
$$

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}} .
$$

$$
\alpha=0, I=\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, l)}(t)=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}}
$$

- If $\theta^{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, I)}(t)=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}}
$$

- If $\theta^{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, I)}(t)=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}}
$$

- If $\theta^{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.
- If $\theta^{w} \in 2 \beta_{+}-\alpha+\delta \mathbb{Z}$ then $\theta^{w^{\prime}} \in \alpha+\delta \mathbb{Z}, \delta=2\left(\beta_{+}-\beta_{-}\right)$.

$$
W_{\ell, p}^{(\alpha, I)}(t)=\sum_{n=-\infty}^{\infty}\left(W_{\ell, p}^{(\alpha+n \delta)}(t)-W_{\ell, p}^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right)
$$

$$
\alpha=0, I=\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

Reflection principle

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$ and p, ℓ even, let

$$
W_{\ell, p}^{(\alpha, I)}(t)=\sum_{w} t^{|w|} 1_{\left\{w_{0}=(p, 0),\left|w_{|w|}\right|=\ell, \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for } 1 \leq i<|w|\right\}}
$$

- If $\theta^{w} \notin I$, reflect $w \mapsto w^{\prime}$ at first exit of I.
- If $\theta^{w} \in 2 \beta_{+}-\alpha+\delta \mathbb{Z}$ then $\theta^{w^{\prime}} \in \alpha+\delta \mathbb{Z}, \delta=2\left(\beta_{+}-\beta_{-}\right)$.

$$
W_{\ell, p}^{(\alpha, I)}(t)=\sum_{n=-\infty}^{\infty}\left(W_{\ell, p}^{(\alpha+n \delta)}(t)-W_{\ell, p}^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right)
$$

$-W_{\ell, p}^{(0,(-\pi / 4, \pi / 2))}(t)=\left\langle e_{\ell}, X e_{p}\right\rangle_{\mathcal{D}}$ and X has e.v. $\frac{2 K(k)}{\pi m} \frac{1-q_{k}^{m}}{1+q_{k}^{m / 2}+q_{k}^{m}}$.

$$
\alpha=0, I=\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

More examples see [TB,'17, Theorem 1] for the general case.

$\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{2 K(k)}{\pi m} \frac{1-q_{k}^{m}}{1+q_{k}^{m / 2}+q_{k}^{m}}$

$\frac{1}{l}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{1}{q_{k}^{m \alpha / \pi}+q_{k}^{-m \alpha / \pi}}$

$\frac{1}{\ell p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, \frac{\pi m}{2 K(k)} \frac{1}{q_{k}^{-m \alpha / \pi}-q_{k}^{m \alpha / \pi}}$

$\frac{1}{p}\left\langle e_{\ell}, \bullet e_{p}\right\rangle_{\mathcal{D}}, q_{k}^{m \alpha / \pi}$

Application: Excursions

- Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$
F^{(\alpha)}(t):=\sum_{w \in \mathcal{E}} t^{|\omega|} 1_{\left\{\theta^{w}=\alpha\right\}}, \quad \alpha \in \frac{\pi}{2} \mathbb{Z} .
$$

Application: Excursions

- Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$
F^{(\alpha)}(t):=\sum_{w \in \mathcal{E}} t^{|w|} 1_{\left\{\theta^{w}=\alpha\right\}}, \quad \alpha \in \frac{\pi}{2} \mathbb{Z} .
$$

- By flipping the first and last step:

$$
F^{(\alpha)}(t)=4 \sum_{m, l, p=1}^{\infty}(-1)^{l+p+m+1} m W_{2 l, 2 p}^{||\alpha|+m \pi / 2)}(t)
$$

Application: Excursions

- Consider set \mathcal{E} of excursions from the origin (rectilinear or diagonal).

$$
F^{(\alpha)}(t):=\sum_{w \in \mathcal{E}} t^{|w|} 1_{\left\{\theta^{w}=\alpha\right\}}, \quad \alpha \in \frac{\pi}{2} \mathbb{Z} .
$$

- By flipping the first and last step:

$$
\begin{aligned}
F^{(\alpha)}(t) & =4 \sum_{m, l, p=1}^{\infty}(-1)^{l+p+m+1} m W_{2 l, 2 p}^{(|\alpha|+m \pi / 2)}(t) \\
& =\frac{2 \pi}{K(k)} \sum_{n=1}^{\infty} \frac{q_{k}^{n}\left(1-q_{k}^{n}\right)^{2}}{1-q_{k}^{4 n}} q_{k}^{2 n|\alpha| / \pi}
\end{aligned}
$$

Excursions in cones

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$, a reflection principle shows

$$
\begin{aligned}
F^{(\alpha, l)}(t) & :=\sum_{w \in \mathcal{E}} t^{|w|} 1_{\left\{w_{1}=(1,1), \theta^{w}=\alpha, \theta_{i}^{w} \in I \text { for all } i\right\}} \\
& =\frac{1}{4} \sum_{n \in \mathbb{Z}}\left(F^{(\alpha+n \delta)}(t)-F^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right), \quad \delta:=2\left(\beta_{+}-\beta_{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

Excursions in cones

- For $I=\left(\beta_{-}, \beta_{+}\right), \beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}, \alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$, a reflection principle shows

$$
\begin{aligned}
F^{(\alpha, I)}(t) & :=\sum_{w \in \mathcal{E}} t^{|w|} 1_{\left\{w_{1}=(1,1), \theta^{w}=\alpha, \theta_{i}^{w} \in I\right. \text { for all i\}}} \\
& =\frac{1}{4} \sum_{n \in \mathbb{Z}}\left(F^{(\alpha+n \delta)}(t)-F^{\left(2 \beta_{+}-\alpha+n \delta\right)}(t)\right), \quad \delta:=2\left(\beta_{+}-\beta_{-}\right) \\
& =\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right),
\end{aligned} \text { where } \quad \text {, }
$$

$$
F(t, b):=\sum_{\alpha \in \frac{\pi}{2} \mathbb{Z}} F^{(\alpha)}(t) e^{i b \alpha}=\frac{1}{\cos \left(\frac{\pi b}{2}\right)}\left[1-\frac{\pi \tan \left(\frac{\pi b}{4}\right)}{2 K(k)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q_{k}}\right)}\right]
$$

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

Theorem (TB, '17)

Excursions of winding angle α in a cone $I=\left(\beta_{-}, \beta_{+}\right)$with $\beta_{ \pm} \in \frac{\pi}{4} \mathbb{Z}$, $\alpha \in I \cap \frac{\pi}{2} \mathbb{Z}$, are enumerated by the finite sum

$$
F^{(\alpha, I)}(t)=\frac{\pi}{8 \delta} \sum_{\sigma \in(0, \delta) \cap \frac{\pi}{2} \mathbb{Z}}\left(\cos \left(\frac{4 \sigma \alpha}{\delta}\right)-\cos \left(\frac{4 \sigma\left(2 \beta_{+}-\alpha\right)}{\delta}\right)\right) F\left(t, \frac{4 \sigma}{\delta}\right) .
$$

- $F(t, b)$ is algebraic if $b \in \mathbb{Q} \backslash \mathbb{Z}$ and transcendental if $b \in \mathbb{Z}$;
- $F^{(\alpha, l)}(t)$ is transcendental only in the cases
- $\beta_{ \pm} \in \frac{\pi}{2} \mathbb{Z}+\frac{\pi}{4}$,
- $\beta_{ \pm} \in \pi \mathbb{Z}+\frac{\pi}{2}$ and $\alpha \in \pi \mathbb{Z}$.

$$
\begin{aligned}
\alpha & =-\pi / 2 \\
\beta_{-} & =-\pi \\
\beta_{+} & =3 \pi / 4
\end{aligned}
$$

Example: Gessel's sequence

- Special algebraic case $\alpha=0, I=(-\pi / 2, \pi / 4)$:

$$
F^{(0, l)}(t)=\frac{1}{4} F\left(t, \frac{4}{3}\right)=\frac{1}{2}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}-1\right]
$$

Example: Gessel's sequence

- Special algebraic case $\alpha=0, I=(-\pi / 2, \pi / 4)$:

$$
F^{(0, l)}(t)=\frac{1}{4} F\left(t, \frac{4}{3}\right)=\frac{1}{2}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q_{k}}\right)}-1\right]
$$

- Agrees with Gessel's conjecture [Kauers, Koutschan, Zeilberger, '09], [Bostan, Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

$$
F^{(0, l)}(t)=\sum_{n=0}^{\infty} t^{2 n+2} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}
$$

Application: winding of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.

Application: winding of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- Color each square according to the total winding angle of the loop around it.

Application: winding of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- Color each square according to the total winding angle of the loop around it.
- For $n \neq 0$, what is the expected area of squares with winding angle $2 \pi n$?

Application: winding of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- Color each square according to the total winding angle of the loop around it.
- For $n \neq 0$, what is the expected area of squares with winding angle $2 \pi n$?

Theorem (TB, '17)

$$
\mathbb{E}_{2 \ell}\left[\text { Area }_{2 \pi n}\right]=\frac{1}{\binom{2 \ell}{\ell}^{2}} \frac{2 \ell}{n}\left[t^{2 \ell}\right] \frac{q_{4 t}^{2 n}}{1-q_{4 t}^{4 n}}
$$

Application: winding of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- Color each square according to the total winding angle of the loop around it.
- For $n \neq 0$, what is the expected area of squares with winding angle $2 \pi n$?

Theorem (TB, '17)

$$
\mathbb{E}_{2 \ell}\left[\text { Area }_{2 \pi n}\right]=\frac{1}{\binom{2 \ell}{\ell}^{2}} \frac{2 \ell}{n}\left[t^{2 \ell}\right] \frac{q_{4 t}^{2 n}}{1-q_{4 t}^{4 n}} \stackrel{\ell \rightarrow \infty}{\sim} \frac{\ell}{2 \pi n^{2}}
$$

- Reproduces the analogous result $\frac{1}{2 \pi n^{2}}$ for Brownian motion. [Comtet, Desbois, Ouvry, '90] [Yor, '80] [Garban, Trujillo Ferreras, '06]
- Proof: the expected area is

$$
\mathbb{E}_{2 \ell}\left[\text { Area }_{2 \pi n}\right]=\frac{\left|\left\{w: w_{0}=w_{2 \ell} \in \mathbb{Z}_{\text {odd }}^{2}, \theta^{w}=2 \pi n\right\}\right|}{\binom{2 \ell}{\ell}^{2}}
$$

- Proof: the expected area is

$$
\begin{aligned}
\mathbb{E}_{2 \ell}\left[\text { Area }_{2 \pi n}\right] & =\frac{\left|\left\{w: w_{0}=w_{2 \ell} \in \mathbb{Z}_{\mathrm{odd}}^{2}, \theta^{w}=2 \pi n\right\}\right|}{\binom{2 \ell}{\ell}^{2}} \\
& =\frac{2 \ell}{n} \frac{\mid\left\{w: w_{0}=w_{2 \ell}=(p, 0), p \text { odd }, \theta^{w}=2 \pi n, \theta_{i}^{w}>0\right\} \mid}{\binom{2 \ell}{\ell}^{2}}
\end{aligned}
$$

- Proof: the expected area is

$$
\begin{aligned}
\mathbb{E}_{2 \ell}\left[\text { Area }_{2 \pi n}\right] & =\frac{\left|\left\{w: w_{0}=w_{2 \ell} \in \mathbb{Z}_{\mathrm{odd}}^{2}, \theta^{w}=2 \pi n\right\}\right|}{\binom{2 \ell}{\ell}^{2}} \\
& =\frac{2 \ell}{n} \frac{\mid\left\{w: w_{0}=w_{2 \ell}=(p, 0), p \text { odd }, \theta^{w}=2 \pi n, \theta_{i}^{w}>0\right\} \mid}{\binom{2 \ell}{\ell}^{2}} \\
& =\frac{2 \ell}{n} \frac{\left[t^{2 \ell}\right] \sum_{m \text { odd }} q_{4 t}^{2 m n}}{\binom{2 \ell}{\ell}^{2}}=\frac{1}{\binom{2 \ell}{\ell}^{2}} \frac{2 \ell}{n}\left[t^{2 \ell}\right] \frac{q_{4 t}^{2 n}}{1-q_{4 t}^{4 n}}
\end{aligned}
$$

Diagonalization in closed form: luck?

- Have we been lucky or is there an underlying principle?

Diagonalization in closed form: luck?

- Have we been lucky or is there an underlying principle?
- Other types of walks with small steps admit closed-form counting by winding angle. See poster of Elvey Price: [Elvey Price, '20]

Diagonalization in closed form: luck?

- Have we been lucky or is there an underlying principle?
- Other types of walks with small steps admit closed-form counting by winding angle. See poster of Elvey Price: [Elvey Price, '20]

- Take perspective of discrete harmonic functions: $h: \mathbb{Z}^{2} \rightarrow \mathbb{C}$ is harmonic on $D \subset \mathbb{Z}^{2}$ if $\left.\Delta h\right|_{D}=0$ with

$$
(\Delta h)(\boldsymbol{w})=h(\boldsymbol{w})-\sum_{z} t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z}) .
$$

Diagonalization in closed form: luck?

- Have we been lucky or is there an underlying principle?
- Other types of walks with small steps admit closed-form counting by winding angle. See poster of Elvey Price: [Elvey Price, '20]

- Take perspective of discrete harmonic functions: $h: \mathbb{Z}^{2} \rightarrow \mathbb{C}$ is harmonic on $D \subset \mathbb{Z}^{2}$ if $\left.\Delta h\right|_{D}=0$ with

$$
(\Delta h)(\boldsymbol{w})=h(\boldsymbol{w})-\sum_{z} t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z}) .
$$

- Closely related to lattice path counting: generating function of paths ending at \boldsymbol{w} with weight $t_{\boldsymbol{z}}$ per step \boldsymbol{z} is harmonic (on suitable domain).

A curious operator

$$
(\Delta h)(\boldsymbol{w})=h(\boldsymbol{w})-\sum_{\boldsymbol{z}} t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z})
$$

- Introduce another operator

$$
(L h)(\boldsymbol{w})=\sum_{\boldsymbol{z}}(\boldsymbol{z} \times \boldsymbol{w}) t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z}), \quad \boldsymbol{z} \times \boldsymbol{w}:=z_{1} w_{2}-z_{2} w_{1}
$$

A curious operator

$$
(\Delta h)(\boldsymbol{w})=h(\boldsymbol{w})-\sum_{\boldsymbol{z}} t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z})
$$

- Introduce another operator

$$
(L h)(\boldsymbol{w})=\sum_{\boldsymbol{z}}(\boldsymbol{z} \times \boldsymbol{w}) t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z}), \quad \boldsymbol{z} \times \boldsymbol{w}:=z_{1} w_{2}-z_{2} w_{1}
$$

- It commutes, $L \Delta=\Delta L$, with the discrete Laplacian:

$$
\Delta h=0 \quad \Longrightarrow \quad \Delta L h=0, \quad \Delta e^{\sigma L} h=0
$$

A curious operator

$$
(\Delta h)(\boldsymbol{w})=h(\boldsymbol{w})-\sum_{z} t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z}) .
$$

- Introduce another operator

$$
(L h)(\boldsymbol{w})=\sum_{z}(\boldsymbol{z} \times \boldsymbol{w}) t_{\mathbf{z}} h(\boldsymbol{w}-\boldsymbol{z}), \quad \boldsymbol{z} \times \boldsymbol{w}:=z_{1} w_{2}-z_{2} w_{1} .
$$

- It commutes, $L \Delta=\Delta L$, with the discrete Laplacian:

$$
\Delta h=0 \quad \Longrightarrow \quad \Delta L h=0, \quad \Delta e^{\sigma L} h=0 .
$$

- Separation of variables: $f_{x, y}(\boldsymbol{w}):=x^{w_{1}} y^{w_{2}}, x, y \in \mathbb{C}$.

$$
\Delta f_{x, y}=0 \quad \Longleftrightarrow \quad S(x, y):=\sum_{z} t_{z} x^{z_{1}} y^{z_{2}}=1 \quad \Longleftrightarrow \quad K(x, y)=0
$$

A curious operator

$$
(\Delta h)(\boldsymbol{w})=h(\boldsymbol{w})-\sum_{z} t_{\boldsymbol{z}} h(\boldsymbol{w}-\boldsymbol{z}) .
$$

- Introduce another operator

$$
(L h)(\boldsymbol{w})=\sum_{z}(\boldsymbol{z} \times \boldsymbol{w}) t_{\mathbf{z}} h(\boldsymbol{w}-\boldsymbol{z}), \quad \boldsymbol{z} \times \boldsymbol{w}:=z_{1} w_{2}-z_{2} w_{1} .
$$

- It commutes, $L \Delta=\Delta L$, with the discrete Laplacian:

$$
\Delta h=0 \quad \Longrightarrow \quad \Delta L h=0, \quad \Delta e^{\sigma L} h=0 .
$$

- Separation of variables: $f_{x, y}(\boldsymbol{w}):=x^{w_{1}} y^{w_{2}}, x, y \in \mathbb{C}$.

$$
\Delta f_{x, y}=0 \quad \Longleftrightarrow \quad S(x, y):=\sum_{z} t_{z} x^{z_{1}} y^{z_{2}}=1 \quad \Longleftrightarrow \quad K(x, y)=0
$$

- This curve carries a natural Hamiltonian vector field

$$
X_{S}:=x y\left(\frac{\partial S}{\partial x} \frac{\partial}{\partial y}-\frac{\partial S}{\partial y} \frac{\partial}{\partial x}\right) \quad \text { such that } \quad\left(L f_{x, y}\right)(\boldsymbol{w})=X_{S} f_{x, y}(\boldsymbol{w}) .
$$

The case of genus 1: rotations?

- Focus on small steps:
$t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where $S(x, y)=1$ has genus 1 .

$$
x, y \in \mathbb{C}
$$

The case of genus 1: rotations?

- Focus on small steps:
$t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where $S(x, y)=1$ has genus 1 .

$$
x, y \in \mathbb{C}
$$

The case of genus 1: rotations?

- Focus on small steps:
$t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where $S(x, y)=1$ has genus 1 .
- X_{S} generates Hamiltonian flow that is periodic with period $2 \pi \omega_{S}$.

The case of genus 1: rotations?

- Focus on small steps:
$t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where $S(x, y)=1$ has genus 1 .
- X_{S} generates Hamiltonian flow that is periodic with period $2 \pi \omega_{S}$.
- So $e^{2 \pi \omega_{s} L} h=h$ for any discrete harmonic function

$$
h(\boldsymbol{w}) \in \operatorname{span}\left\{f_{x, y}(\boldsymbol{w}): x, y \in \mathbb{C}, S(x, y)=1\right\} .
$$

The case of genus 1: rotations?

- Focus on small steps:
$t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where $S(x, y)=1$ has genus 1 .
- X_{S} generates Hamiltonian flow that is periodic with period $2 \pi \omega_{S}$.

- So $e^{2 \pi \omega_{s} L} h=h$ for any discrete harmonic function

$$
h(\boldsymbol{w}) \in \operatorname{span}\left\{f_{x, y}(\boldsymbol{w}): x, y \in \mathbb{C}, S(x, y)=1\right\}
$$

- If steps have $\pi / 2$ symmetry, i.e. $S(x, y)=S(1 / y, x)$,

$$
\left(e^{\frac{\pi}{2} \omega_{s} L} h\right)\left(w_{1}, w_{2}\right)=h\left(-w_{2}, w_{1}\right) \quad \rightarrow \text { rotation by } \frac{\pi}{2}!
$$

The case of genus 1: rotations?

- Focus on small steps:
$t_{\nwarrow}, t_{\uparrow}, t_{\nearrow}, t_{\rightarrow}, t_{\searrow}, t_{\downarrow}, t_{\swarrow}, t_{\leftarrow}$ and non-degenerate cases where $S(x, y)=1$ has genus 1 .
- X_{S} generates Hamiltonian flow that is periodic with period $2 \pi \omega_{S}$.

- So $e^{2 \pi \omega_{s} L} h=h$ for any discrete harmonic function

$$
h(\boldsymbol{w}) \in \operatorname{span}\left\{f_{x, y}(\boldsymbol{w}): x, y \in \mathbb{C}, S(x, y)=1\right\}
$$

- If steps have $\pi / 2$ symmetry, i.e. $S(x, y)=S(1 / y, x)$,

$$
\left(e^{\frac{\pi}{2} \omega_{s} L} h\right)\left(w_{1}, w_{2}\right)=h\left(-w_{2}, w_{1}\right) \quad \rightarrow \text { rotation by } \frac{\pi}{2}!
$$

The family of operators $e^{\alpha \omega_{s} L}, \alpha \in \mathbb{R}$, implement continuous "rotation" by angle α interpolating discrete symmetries!

Polar decomposition

- If we can rotate harmonic functions, we can describe them in polar coordinates:

$$
h(\boldsymbol{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r):=\left(e^{\alpha \omega_{s} L} h\right)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \alpha \in \mathbb{R}
$$

Polar decomposition

- If we can rotate harmonic functions, we can describe them in polar coordinates:

$$
h(\boldsymbol{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r):=\left(e^{\alpha \omega_{s} L} h\right)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \alpha \in \mathbb{R}
$$

- If $\Delta h=0,(h(r, 0))_{r \geq 0}$ determines $\left(\left(L^{2} h\right)(r, 0)\right)_{r \geq 0}$:

$$
\left(L^{2} h\right)(r, 0)=t_{\searrow}^{2} r^{2} h(r-2,2)+t_{\searrow} t_{\downarrow} r(r-1) h(r-1,2)+\ldots
$$

Polar decomposition

- If we can rotate harmonic functions, we can describe them in polar coordinates:

$$
h(\boldsymbol{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r):=\left(e^{\alpha \omega_{s} L} h\right)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \alpha \in \mathbb{R}
$$

- If $\Delta h=0,(h(r, 0))_{r \geq 0}$ determines $\left(\left(L^{2} h\right)(r, 0)\right)_{r \geq 0}$:

$$
\begin{aligned}
& \left(L^{2} h\right)(r, 0)=t_{\searrow}^{2} r^{2} h(r-2,2)+t_{\searrow} t_{\downarrow} r(r-1) h(r-1,2)+\ldots \\
& =-c_{-2} r(r-1) h(r-2,0)-c_{-1} r(2 r-1) h(r-1,0)+c_{0} r^{2} h(r, 0) \\
& \quad-c_{1} r(2 r+1) h(r+1,0)-c_{2} r(r+1) h(r+2,0)=:(D h(\cdot, 0))(r) .
\end{aligned}
$$

Polar decomposition

- If we can rotate harmonic functions, we can describe them in polar coordinates:

$$
h(\boldsymbol{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r):=\left(e^{\alpha \omega_{s} L} h\right)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \alpha \in \mathbb{R}
$$

- If $\Delta h=0,(h(r, 0))_{r \geq 0}$ determines $\left(\left(L^{2} h\right)(r, 0)\right)_{r \geq 0}$:

$$
\begin{aligned}
& \left(L^{2} h\right)(r, 0)=t_{\searrow}^{2} r^{2} h(r-2,2)+t_{\searrow} t_{\downarrow} r(r-1) h(r-1,2)+\ldots \\
& \quad=-c_{-2} r(r-1) h(r-2,0)-c_{-1} r(2 r-1) h(r-1,0)+c_{0} r^{2} h(r, 0) \\
& \quad-c_{1} r(2 r+1) h(r+1,0)-c_{2} r(r+1) h(r+2,0)=:(D h(\cdot, 0))(r) .
\end{aligned}
$$

- Harmonic function in polar coordinates satisfies

$$
\frac{\partial^{2}}{\partial \alpha^{2}} \hat{h}_{\alpha}(r)=\omega_{s}^{2} D \hat{h}_{\alpha}(r) . \quad\left[\text { compare Laplace eq. }: \frac{\partial^{2} f}{\partial \alpha^{2}}=-r \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)\right]
$$

Polar decomposition

- If we can rotate harmonic functions, we can describe them in polar coordinates:

$$
h(\boldsymbol{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r):=\left(e^{\alpha \omega_{s} L} h\right)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \alpha \in \mathbb{R}
$$

- If $\Delta h=0,(h(r, 0))_{r \geq 0}$ determines $\left(\left(L^{2} h\right)(r, 0)\right)_{r \geq 0}$:

$$
\begin{aligned}
& \left(L^{2} h\right)(r, 0)=t_{\searrow}^{2} r^{2} h(r-2,2)+t_{\searrow} t_{\downarrow} r(r-1) h(r-1,2)+\ldots \\
& \quad=-c_{-2} r(r-1) h(r-2,0)-c_{-1} r(2 r-1) h(r-1,0)+c_{0} r^{2} h(r, 0) \\
& \quad-c_{1} r(2 r+1) h(r+1,0)-c_{2} r(r+1) h(r+2,0)=:(D h(\cdot, 0))(r) .
\end{aligned}
$$

- Harmonic function in polar coordinates satisfies

$$
\frac{\partial^{2}}{\partial \alpha^{2}} \hat{h}_{\alpha}(r)=\omega_{s}^{2} D \hat{h}_{\alpha}(r) . \quad\left[\text { compare Laplace eq.: } \frac{\partial^{2} f}{\partial \alpha^{2}}=-r \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)\right]
$$

- Separation of variables (analogue of Bessel functions): $D g_{m}(r)=m^{2} g_{m}(r)$.

Polar decomposition

- If we can rotate harmonic functions, we can describe them in polar coordinates:

$$
h(\boldsymbol{w}) \quad \leftrightarrow \quad \hat{h}_{\alpha}(r):=\left(e^{\alpha \omega_{s} L} h\right)(r, 0), \quad r \in \mathbb{Z}_{\geq 0}, \alpha \in \mathbb{R}
$$

- If $\Delta h=0,(h(r, 0))_{r \geq 0}$ determines $\left(\left(L^{2} h\right)(r, 0)\right)_{r \geq 0}$:

$$
\begin{aligned}
& \left(L^{2} h\right)(r, 0)=t_{\searrow}^{2} r^{2} h(r-2,2)+t_{\searrow} t_{\downarrow} r(r-1) h(r-1,2)+\ldots \\
& \quad=-c_{-2} r(r-1) h(r-2,0)-c_{-1} r(2 r-1) h(r-1,0)+c_{0} r^{2} h(r, 0) \\
& \quad-c_{1} r(2 r+1) h(r+1,0)-c_{2} r(r+1) h(r+2,0)=:(D h(\cdot, 0))(r) .
\end{aligned}
$$

- Harmonic function in polar coordinates satisfies

$$
\frac{\partial^{2}}{\partial \alpha^{2}} \hat{h}_{\alpha}(r)=\omega_{s}^{2} D \hat{h}_{\alpha}(r) . \quad\left[\text { compare Laplace eq.: } \frac{\partial^{2} f}{\partial \alpha^{2}}=-r \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)\right]
$$

- Separation of variables (analogue of Bessel functions):

$$
D g_{m}(r)=m^{2} g_{m}(r)
$$

In the diagonal simple walk case $\left(t_{\nearrow}=t_{\searrow}=t_{\swarrow}=t_{\nwarrow}=t\right)$, the "eigenvectors" $\hat{f}_{m}(z)$ provide the Bessel modes: $g_{m}(r)=r\left[z^{r}\right] \hat{f}_{m}(z)$!

Thanks for you attention!
 Comments?

