The effective kinetic term in CDT

Timothy Budd

collaboration with Renate Loll

Institute for Theoretical Physics Utrecht University

LOOPS 11, May 24, 2011

- Brief intro to CDT in $2+1$ dimensions
- CDT on a sphere
- Conformal mode problem
- Possible solution
- Test 1: Moduli measurement for CDT on torus
- Test 2: Extrinsic curvature at a boundary
- Conclusions

Introduction to CDT in $2+1$ dimensions

- Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries,

$$
Z=\int[\mathcal{D} g] e^{-S[g]} \quad \rightarrow \quad Z_{C D T}=\sum_{\text {triangulations } T} e^{-S_{C D T}[T]}
$$

Introduction to CDT in $2+1$ dimensions

- Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries,

$$
Z=\int[\mathcal{D} g] e^{-S[g]} \quad \rightarrow \quad Z_{C D T}=\sum_{\text {triangulations } T} e^{-S_{C D T}[T]}
$$

- CDT configuration consists of equal size tetrahedra. Sum over inequivalent ways of putting them together.
- Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries,

$$
Z=\int[\mathcal{D} g] e^{-S[g]} \quad \rightarrow \quad Z_{C D T}=\sum_{\text {triangulations } T} e^{-S_{C D T}[T]}
$$

- CDT configuration consists of equal size tetrahedra. Sum over inequivalent ways of putting them together.
- "Causal" means triangulation has a foliation by 2D spatial triangulations.
- $S_{C D T}=k_{3} N_{3}-k_{0} N_{0}$

- Causal Dynamical Triangulation is a regularization of the Euclidean path integral over geometries,

$$
Z=\int[\mathcal{D} g] e^{-S[g]} \quad \rightarrow \quad Z_{C D T}=\sum_{\text {triangulations } T} e^{-S_{C D T}[T]}
$$

- CDT configuration consists of equal size tetrahedra. Sum over inequivalent ways of putting them together.
- "Causal" means triangulation has a foliation by 2D spatial triangulations.
- $S_{C D T}=k_{3} N_{3}-k_{0} N_{0}$

- Use Monte Carlo techniques to evaluate expectation values.
- Well described by

$$
S_{e f f}[V]=\int d t\left(c_{0} \frac{\dot{V}^{2}}{V}-c_{1} V\right)
$$

with $c_{0}, c_{1}>0$.

- Well described by

$$
S_{e f f}[V]=\int d t\left(c_{0} \frac{\dot{V}^{2}}{V}-c_{1} V\right)
$$

with $c_{0}, c_{1}>0$.

- If we evaluate Euclidean Einstein-Hilbert action $\int d^{3} \times \sqrt{g}(-R+2 \Lambda)$ on spherical cosmology $d s^{2}=d t^{2}+V(t) d \Omega^{2}$,

$$
\begin{equation*}
S_{E H}[V]=-\kappa \int d t\left(\frac{\dot{V}^{2}}{V}-2 \Lambda V\right) . \tag{1}
\end{equation*}
$$

Minus-sign difference!

- Well described by

$$
S_{e f f}[V]=\int d t\left(c_{0} \frac{\dot{V}^{2}}{V}-c_{1} V\right)
$$

with $c_{0}, c_{1}>0$.

- If we evaluate Euclidean Einstein-Hilbert action $\int d^{3} \times \sqrt{g}(-R+2 \Lambda)$ on spherical cosmology $d s^{2}=d t^{2}+V(t) d \Omega^{2}$,

$$
\begin{equation*}
S_{E H}[V]=-\kappa \int d t\left(\frac{\dot{V}^{2}}{V}-2 \Lambda V\right) . \tag{1}
\end{equation*}
$$

Minus-sign difference!

- Can we understand why we get $S_{\text {eff }}$ and not $S_{E H}$?
- Well described by

$$
S_{e f f}[V]=\int d t\left(c_{0} \frac{\dot{V}^{2}}{V}-c_{1} V\right)
$$

with $c_{0}, c_{1}>0$.

- If we evaluate Euclidean Einstein-Hilbert action $\int d^{3} \times \sqrt{g}(-R+2 \Lambda)$ on spherical cosmology $d s^{2}=d t^{2}+V(t) d \Omega^{2}$,

$$
\begin{equation*}
S_{E H}[V]=-\kappa \int d t\left(\frac{\dot{V}^{2}}{V}-2 \Lambda V\right) . \tag{1}
\end{equation*}
$$

Minus-sign difference!

- Can we understand why we get $S_{\text {eff }}$ and not $S_{E H}$?
- $S_{\text {eff }}$ is bounded below (for fixed 3-volume), $S_{E H}$ is not.

Conformal mode problem

- Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.
- Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.
- Metric in proper-time form, $d s^{2}=d t^{2}+g_{a b}(t, x) d x^{a} d x^{b}$. Then

$$
\begin{equation*}
S_{E H}=\kappa \int d t \int d^{2} \times \sqrt{g}\left(\frac{1}{4} \dot{g}_{a b} \mathcal{G}^{a b c d} \dot{g}_{c d}-R+2 \Lambda\right) \tag{2}
\end{equation*}
$$

where $\mathcal{G}^{\text {abcd }}$ is the Wheeler-DeWitt metric,

$$
\begin{equation*}
\mathcal{G}^{a b c d}=\frac{1}{2}\left(g^{a c} g^{b d}+g^{a d} g^{b c}\right)-g^{a b} g^{c d} . \tag{3}
\end{equation*}
$$

- Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.

■ Metric in proper-time form, $d s^{2}=d t^{2}+g_{a b}(t, x) d x^{a} d x^{b}$. Then

$$
\begin{equation*}
S_{E H}=\kappa \int d t \int d^{2} \times \sqrt{g}\left(\frac{1}{4} \dot{g}_{a b} \mathcal{G}^{a b c d} \dot{g}_{c d}-R+2 \Lambda\right) \tag{2}
\end{equation*}
$$

where $\mathcal{G}^{\text {abcd }}$ is the Wheeler-DeWitt metric,

$$
\begin{equation*}
\mathcal{G}^{a b c d}=\frac{1}{2}\left(g^{a c} g^{b d}+g^{a d} g^{b c}\right)-g^{a b} g^{c d} . \tag{3}
\end{equation*}
$$

- Indefinite metric! Positive definite on traceless directions, negative definite on trace/conformal direction in superspace.
- Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.

■ Metric in proper-time form, $d s^{2}=d t^{2}+g_{a b}(t, x) d x^{a} d x^{b}$. Then

$$
\begin{equation*}
S_{E H}=\kappa \int d t \int d^{2} \times \sqrt{g}\left(\frac{1}{4} \dot{g}_{a b} \mathcal{G}^{a b c d} \dot{g}_{c d}-R+2 \Lambda\right) \tag{2}
\end{equation*}
$$

where $\mathcal{G}^{\text {abcd }}$ is the Wheeler-DeWitt metric,

$$
\begin{equation*}
\mathcal{G}^{a b c d}=\frac{1}{2}\left(g^{a c} g^{b d}+g^{a d} g^{b c}\right)-g^{a b} g^{c d} . \tag{3}
\end{equation*}
$$

- Indefinite metric! Positive definite on traceless directions, negative definite on trace/conformal direction in superspace.
- CDT is a (well-defined) statistical system, therefore it better be described by a bounded action!
- Need some alternative to EH to compare too.

Solution: consider different kinetic term?

- Adding higher order R-terms to $S_{E H}$ will not help: to get a stable minimum we need a non-local action or we have to break general covariance.
- Adding higher order R-terms to $S_{E H}$ will not help: to get a stable minimum we need a non-local action or we have to break general covariance.
- CDT seems to have a preferred time-slicing á la Hořava-Lifshitz. If we require our action to be invariant only under foliation-preserving diffeomorphisms, the most general allowed ultralocal kinetic term is

$$
\begin{equation*}
\mathcal{G}_{\lambda}^{a b c d}=\frac{1}{2}\left(g^{a c} g^{b d}+g^{a d} g^{b c}\right)-\lambda g^{a b} g^{c d} \tag{4}
\end{equation*}
$$

- Adding higher order R-terms to $S_{E H}$ will not help: to get a stable minimum we need a non-local action or we have to break general covariance.
- CDT seems to have a preferred time-slicing á la Hořava-Lifshitz. If we require our action to be invariant only under foliation-preserving diffeomorphisms, the most general allowed ultralocal kinetic term is

$$
\begin{equation*}
\mathcal{G}_{\lambda}^{a b c d}=\frac{1}{2}\left(g^{a c} g^{b d}+g^{a d} g^{b c}\right)-\lambda g^{a b} g^{c d} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
\lambda=1 & \rightarrow \text { general covariance, } \\
\lambda<1 / 2 & \rightarrow \text { positive definite. }
\end{aligned}
$$

■ Adding higher order R-terms to $S_{E H}$ will not help: to get a stable minimum we need a non-local action or we have to break general covariance.
■ CDT seems to have a preferred time-slicing á la Hořava-Lifshitz. If we require our action to be invariant only under foliation-preserving diffeomorphisms, the most general allowed ultralocal kinetic term is

$$
\begin{equation*}
\mathcal{G}_{\lambda}^{a b c d}=\frac{1}{2}\left(g^{a c} g^{b d}+g^{a d} g^{b c}\right)-\lambda g^{a b} g^{c d} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
\lambda=1 & \rightarrow \text { general covariance, } \\
\lambda<1 / 2 & \rightarrow \text { positive definite. }
\end{aligned}
$$

- Two independent test of this ansatz.
- Compare kinetic term of traceless d.o.f to trace/conformal d.o.f.
- Spatial volume $V(t)$ is a conformal degree of freedom. Need an observable measuring a traceless degree of freedom: measuring shape.
- Compare kinetic term of traceless d.o.f to trace/conformal d.o.f.
- Spatial volume $V(t)$ is a conformal degree of freedom. Need an observable measuring a traceless degree of freedom: measuring shape.
- Torus! There is a 2 parameter family of conformal equivalence classes of metrics on the torus, parametrized by the moduli parameter $\tau=\tau_{1}+i \tau_{2}$.
- Compare kinetic term of traceless d.o.f to trace/conformal d.o.f.
- Spatial volume $V(t)$ is a conformal degree of freedom. Need an observable measuring a traceless degree of freedom: measuring shape.
- Torus! There is a 2 parameter family of conformal equivalence classes of metrics on the torus, parametrized by the moduli parameter $\tau=\tau_{1}+i \tau_{2}$.
- Given a 2D triangulation of the torus, we can find τ by constructing a periodic harmonic embedding in the plane.

- The modified kinetic term restricted to V and τ reads,

$$
\begin{equation*}
\kappa \int d t\left(\left(\frac{1}{2}-\lambda\right) \frac{\dot{V}^{2}}{V}+\frac{1}{2 A[g]} \frac{\dot{\tau}_{1}^{2}+\dot{\tau}_{2}^{2}}{\tau_{2}^{2}}\right), \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
A[g]=\frac{\int d^{2} x \sqrt{g} \exp \left(2 \Delta^{-1} R\right)}{\left(\int d^{2} x \sqrt{g} \exp \left(\Delta^{-1} R\right)\right)^{2}} \tag{6}
\end{equation*}
$$

- The modified kinetic term restricted to V and τ reads,

$$
\begin{equation*}
\kappa \int d t\left(\left(\frac{1}{2}-\lambda\right) \frac{\dot{V}^{2}}{V}+\frac{1}{2 A[g]} \frac{\dot{\tau}_{1}^{2}+\dot{\tau}_{2}^{2}}{\tau_{2}^{2}}\right), \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
A[g]=\frac{\int d^{2} x \sqrt{g} \exp \left(2 \Delta^{-1} R\right)}{\left(\int d^{2} x \sqrt{g} \exp \left(\Delta^{-1} R\right)\right)^{2}} \tag{6}
\end{equation*}
$$

- Can deduce prefactors from data by considering $\langle V(t) V(t+\Delta t)\rangle$ and $\left\langle\tau_{i}(t) \tau_{j}(t+\Delta t)\right\rangle$ as $\Delta t \rightarrow 0$.
- The modified kinetic term restricted to V and τ reads,

$$
\begin{equation*}
\kappa \int d t\left(\left(\frac{1}{2}-\lambda\right) \frac{\dot{V}^{2}}{V}+\frac{1}{2 A[g]} \frac{\dot{\tau}_{1}^{2}+\dot{\tau}_{2}^{2}}{\tau_{2}^{2}}\right), \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
A[g]=\frac{\int d^{2} x \sqrt{g} \exp \left(2 \Delta^{-1} R\right)}{\left(\int d^{2} x \sqrt{g} \exp \left(\Delta^{-1} R\right)\right)^{2}} \tag{6}
\end{equation*}
$$

- Can deduce prefactors from data by considering $\langle V(t) V(t+\Delta t)\rangle$ and $\left\langle\tau_{i}(t) \tau_{j}(t+\Delta t)\right\rangle$ as $\Delta t \rightarrow 0$.
- Comparison with ansatz:

- The modified kinetic term restricted to V and τ reads,

$$
\begin{equation*}
\kappa \int d t\left(\left(\frac{1}{2}-\lambda\right) \frac{\dot{V}^{2}}{V}+\frac{1}{2 A[g]} \frac{\dot{\tau}_{1}^{2}+\dot{\tau}_{2}^{2}}{\tau_{2}^{2}}\right), \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
A[g]=\frac{\int d^{2} x \sqrt{g} \exp \left(2 \Delta^{-1} R\right)}{\left(\int d^{2} x \sqrt{g} \exp \left(\Delta^{-1} R\right)\right)^{2}} \tag{6}
\end{equation*}
$$

- Can deduce prefactors from data by considering $\langle V(t) V(t+\Delta t)\rangle$ and $\left\langle\tau_{i}(t) \tau_{j}(t+\Delta t)\right\rangle$ as $\Delta t \rightarrow 0$.
- Comparison with ansatz:

Extrinsic curvature at a boundary

- To test our ansatz more locally we consider the extrinsic curvature at a fixed spatial boundary. According to our ansatz

$$
\begin{equation*}
\left\langle K_{a b}(x) K_{c d}(y)\right\rangle-\left\langle K_{a b}(x)\right\rangle\left\langle K_{c d}(y)\right\rangle \propto \delta(x-y) \mathcal{G}_{a b c d}^{(\lambda)} \tag{7}
\end{equation*}
$$

Extrinsic curvature at a boundary

■ To test our ansatz more locally we consider the extrinsic curvature at a fixed spatial boundary. According to our ansatz

$$
\begin{equation*}
\left\langle K_{a b}(x) K_{c d}(y)\right\rangle-\left\langle K_{a b}(x)\right\rangle\left\langle K_{c d}(y)\right\rangle \propto \delta(x-y) \mathcal{G}_{a b c d}^{(\lambda)} \tag{7}
\end{equation*}
$$

■ In CDT: $K_{a b}$ has support on the edges and is proportional to the number of tetrahedra $N(e)$ connected the edge e.

Extrinsic curvature at a boundary

- To test our ansatz more locally we consider the extrinsic curvature at a fixed spatial boundary. According to our ansatz

$$
\begin{equation*}
\left\langle K_{a b}(x) K_{c d}(y)\right\rangle-\left\langle K_{a b}(x)\right\rangle\left\langle K_{c d}(y)\right\rangle \propto \delta(x-y) \mathcal{G}_{a b c d}^{(\lambda)} \tag{7}
\end{equation*}
$$

■ In CDT: $K_{a b}$ has support on the edges and is proportional to the number of tetrahedra $N(e)$ connected the edge e.

■ Measure correlation functions

$$
\left\langle N(e) N\left(e^{\prime}\right)\right\rangle-\langle N(e)\rangle\left\langle N\left(e^{\prime}\right)\right\rangle \approx\left(\mathcal{G}_{\lambda}+\Delta\right)^{-1}
$$

Extrinsic curvature at a boundary

- To test our ansatz more locally we consider the extrinsic curvature at a fixed spatial boundary. According to our ansatz

$$
\begin{equation*}
\left\langle K_{a b}(x) K_{c d}(y)\right\rangle-\left\langle K_{a b}(x)\right\rangle\left\langle K_{c d}(y)\right\rangle \propto \delta(x-y) \mathcal{G}_{a b c d}^{(\lambda)} \tag{7}
\end{equation*}
$$

■ In CDT: $K_{a b}$ has support on the edges and is proportional to the number of tetrahedra $N(e)$ connected the edge e.

■ Measure correlation functions

$$
\left\langle N(e) N\left(e^{\prime}\right)\right\rangle-\langle N(e)\rangle\left\langle N\left(e^{\prime}\right)\right\rangle \approx\left(\mathcal{G}_{\lambda}+\Delta\right)^{-1}
$$

Conclusions

Conclusions

■ Directly comparing CDT at effective level to the Einstein-Hilbert action is problematic due to the conformal mode problem.

■ Directly comparing CDT at effective level to the Einstein-Hilbert action is problematic due to the conformal mode problem.

- EH with a modified kinetic term as in Hořava-Lifshitz gravity describes both the torus minisuperspace and extrinsic curvature at the boundary well.

■ Directly comparing CDT at effective level to the Einstein-Hilbert action is problematic due to the conformal mode problem.

- EH with a modified kinetic term as in Hořava-Lifshitz gravity describes both the torus minisuperspace and extrinsic curvature at the boundary well.
- Now that we seem to understand the kinetic term well, we can try to find the full minisuperspace action. Those results are under way.

■ Directly comparing CDT at effective level to the Einstein-Hilbert action is problematic due to the conformal mode problem.

- EH with a modified kinetic term as in Hořava-Lifshitz gravity describes both the torus minisuperspace and extrinsic curvature at the boundary well.
- Now that we seem to understand the kinetic term well, we can try to find the full minisuperspace action. Those results are under way.

These and other results to appear on arXiv soon.
Thanks!

