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Introduction to CDT in 2+1 dimensions

Causal Dynamical Triangulation is a regularization of the Euclidean
path integral over geometries,

Z =

∫
[Dg ]e−S[g ] → ZCDT =

∑
triangulationsT

e−SCDT [T ].

CDT configuration consists of equal size tetrahedra. Sum over
inequivalent ways of putting them together.

”Causal” means triangulation has a
foliation by 2D spatial
triangulations.

SCDT = k3N3 − k0N0

Use Monte Carlo techniques to evaluate expectation values.
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CDT with spatial topology of a sphere

Well described by

Seff [V ] =

∫
dt

(
c0
V̇ 2

V
− c1V

)
,

with c0, c1 > 0.
t

<V>

If we evaluate Euclidean Einstein-Hilbert action
∫
d3x
√
g(−R + 2Λ)

on spherical cosmology ds2 = dt2 + V (t)dΩ2,

SEH [V ] = −κ
∫

dt

(
V̇ 2

V
− 2ΛV

)
. (1)

Minus-sign difference!

Can we understand why we get Seff and not SEH ?

Seff is bounded below (for fixed 3-volume), SEH is not.
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Conformal mode problem

Euclidean EH action in 2+1D (and 3+1D) is unbounded from below.

Metric in proper-time form, ds2 = dt2 + gab(t, x)dxadxb. Then

SEH = κ

∫
dt

∫
d2x
√
g

(
1

4
ġabGabcd ġcd − R + 2Λ

)
(2)

where Gabcd is the Wheeler-DeWitt metric,

Gabcd =
1

2

(
g acgbd + g adgbc

)
− g abg cd . (3)

Indefinite metric! Positive definite on traceless directions, negative
definite on trace/conformal direction in superspace.

CDT is a (well-defined) statistical system, therefore it better be
described by a bounded action!

Need some alternative to EH to compare too.
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Solution: consider different kinetic term?

Adding higher order R-terms to SEH will not help: to get a stable
minimum we need a non-local action or we have to break general
covariance.

CDT seems to have a preferred time-slicing á la Hǒrava-Lifshitz. If
we require our action to be invariant only under foliation-preserving
diffeomorphisms, the most general allowed ultralocal kinetic term is

Gabcd
λ =

1

2

(
g acgbd + g adgbc

)
− λg abg cd . (4)

λ = 1 → general covariance,

λ < 1/2 → positive definite.

Two independent test of this ansatz.
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CDT with spatial topology of the torus

Compare kinetic term of traceless d.o.f to trace/conformal d.o.f.

Spatial volume V (t) is a conformal degree of freedom. Need an
observable measuring a traceless degree of freedom: measuring
shape.

Torus! There is a 2 parameter family of conformal equivalence
classes of metrics on the torus, parametrized by the moduli
parameter τ = τ1 + iτ2.

Given a 2D triangulation of the torus, we can find τ by constructing
a periodic harmonic embedding in the plane.

→

Τ
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The modified kinetic term restricted to V and τ reads,

κ

∫
dt

(
(

1

2
− λ)

V̇ 2

V
+

1

2A[g ]

τ̇ 21 + τ̇ 22
τ 22

)
, (5)

with

A[g ] =

∫
d2x
√
g exp(2∆−1R)(∫

d2x
√
g exp(∆−1R)

)2 . (6)

Can deduce prefactors from data by considering 〈V (t)V (t + ∆t)〉
and 〈τi (t)τj (t + ∆t)〉 as ∆t → 0.

Comparison with ansatz:
PSfrag replacements

k0
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λ

λ
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Extrinsic curvature at a boundary

To test our ansatz more locally we consider the extrinsic curvature
at a fixed spatial boundary. According to our ansatz

〈Kab(x)Kcd (y)〉 − 〈Kab(x)〉〈Kcd (y)〉 ∝ δ(x − y)G(λ)abcd . (7)

In CDT: Kab has support on the edges and
is proportional to the number of
tetrahedra N(e) connected the edge e.

Measure correlation functions
〈N(e)N(e′)〉 − 〈N(e)〉〈N(e′)〉 ≈ (Gλ + ∆)−1.
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Conclusions

Directly comparing CDT at effective level to the Einstein-Hilbert
action is problematic due to the conformal mode problem.

EH with a modified kinetic term as in Hǒrava-Lifshitz gravity
describes both the torus minisuperspace and extrinsic curvature at
the boundary well.

Now that we seem to understand the kinetic term well, we can try to
find the full minisuperspace action. Those results are under way.

These and other results to appear on arXiv soon.

Thanks!
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