
Lie Algebras in Particle Physics (NWI-NM101B)

Problem sheet #1: Introduction to groups and representations

Tutorial on Thursday 14 April 2022

Exercise 1.1: Isomorphic definitions of the cyclic group

Different instances of a group can give rise to the same abstract group structure,
meaning that they are isomorphic as groups. In this exercise you will verify this
by constructing some explicit isomorphisms.

a) Show that for any positive integer n the following three groups are isomorphic by identifying
explicit isomorphisms.

– the set Zn := {0, 1, 2, . . . , n− 1} equipped with addition modulo n;

– the set Cn of cyclic permutations on {0, 1, 2, . . . , n− 1} equipped with composition;

– the nth roots of unity Un := {z ∈ C : zn = 1} equipped with multiplication.

b) Are these isomorphisms unique?

Exercise 1.2: Direct sum and tensor product representations

An important tool in constructing new representations of a group is via the direct
sum and the tensor product of two (or more) representations. Here you will recall
their construction and check the representation axioms.

Let V be an N -dimensional vector space with basis |v1〉, . . . , |vN 〉 and W an M -dimensional vector
space with basis |w1〉, . . . , |wM 〉. By definition, the direct sum V ⊕W and the tensor product V ⊗W
are the vector spaces defined by specifying their basis as follows:

Direct sum V ⊕W has basis |v1〉, . . . , |vN 〉, |w1〉, . . . , |wM 〉,
Tensor product V ⊗W has basis |v1, w1〉, |v1, w2〉, . . . , |vN , wM−1〉, |vN , wM 〉.

Given two representations D1 : G→ GL(V ) and D2 : G→ GL(W ) of the same group G, the direct
sum representation D1 ⊕D2 : G→ GL(V1 ⊕ V2) is defined on its basis elements via

(D1 ⊕D2)(g)|vi〉 = D1(g)|vi〉, (D1 ⊕D2)(g)|wi〉 = D2(g)|wi〉.

The tensor product representation D1 ⊗ D2 : G → GL(V1 ⊗ V2) is defined on its basis elements
|vi, wj〉 ≡ |vi〉 ⊗ |wj〉 via

(D1 ⊗D2)(g)|vi, wj〉 = (D1(g)|vi〉)⊗ (D2(g)|wj〉).

a) Show that these are indeed valid representations.

b) What are the dimensions of these representations?

Let us consider the group G = {e, a, b} of order 3 with 1-dimensional representation D1 : G →
GL(C) given by

D1(e) = 1, D1(a) = e2πi/3, D1(a) = e4πi/3
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and D2 : G→ GL(C3) the 3-dimensional regular representation

D2(e) =

1 0 0
0 1 0
0 0 1

 , D2(a) =

0 0 1
1 0 0
0 1 0

 , D2(b) =

0 1 0
0 0 1
1 0 0

 .

c) Determine explicit matrices for the representations D1 ⊕D2 and D1 ⊗D2.

Exercise 1.3: Unitary representations

Unitary representations are often easier to work with than arbitrary representa-
tions. Luckily, any representation of a finite group can be turned into a unitary
one by a similarity transformation. At least, this was claimed so in the lecture.
Here you will prove this fact.

Recall that the standard Hermitian inner product on CN is given by 〈v|w〉 =
∑N

i=1 viwi and that
for any N ×N matrix A, 〈v|Aw〉 = 〈A†v|w〉. Let us verify that every representation D(g) : G →
GL(CN ) of a finite group G is equivalent to a unitary representation. To do this we introduce the
N ×N matrix

S =
∑
g∈G

D(g)†D(g). (3.1)

a) Show that S is Hermitian, S† = S.

This implies that S is diagonalizable with real eigenvalues λi: S = U−1ΛU with U unitary (U †U =
1) and Λ = diag(λ1, . . . , λN ) a real diagonal matrix.

b) Show that all eigenvalues of S are positive.
Hint : Let vi be a normalized eigenvector of S with eigenvalue λi and compute 〈vi|Svi〉.

c) Using the diagonal form of S, construct the square-root X = S1/2 and show that X is
Hermitian.

d) Verify that the similarity transformationD′(g) = XD(g)X−1 defines a unitary representation
D′ : G→ GL(CN ) .
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Lie Algebras in Particle Physics (NWI-NM101B)

Problem sheet #2(graded): Lie groups and Lie algebras

Tutorial on Thursday 21 April 2022.

This is one of 3 graded assignments contributing to a bonus point on the exam.
Solutions should be submitted digitally before 13:30 on 28 April via Brightspace Assignments.

Exercise 2.1: Lie algebras and the Jacobi identity (3 points)

Verifying the Jacobi identity and a first encounter with the adjoint representation,
which will be the subject of Chapter 5.

Consider the Lie algebra g of an n-dimensional matrix Lie group G with generators ξ1, . . . , ξn that
satisfy

[ξa, ξb] = fabcξc , (1.1)

where fabc are the structure constants and we use Einstein’s summation convention over repeated
indices.

a) Use that the Lie bracket is implemented as a commutator [X,Y ] = XY − Y X to prove the
Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for X,Y, Z ∈ g.

b) Setting X = ξa, Y = ξb and Z = ξc in the Jacobi identity as above, show that

fbcdfade + fcadfbde + fabdfcde = 0 . (1.2)

c) The structure constants allow one to define the adjoint representation Dadj : g→ Cn×n of g
with generators Dadj(ξa) = Ta where Ta are the matrices with entries given by

[Ta]bc = facb (a, b, c = 1, . . . , n). (1.3)

Show with the help of (1.2) that this indeed satisfies the requirement of a representation,
namely that

[Ta, Tb] = fabcTc .
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Exercise 2.2: Non-abelian gauge theories (4 points)

In this exercise we will see how Lie groups and Lie algebras feature in non-abelian
gauge theories and you will prove that the gauge field action is gauge invariant.

The vector potential Aµ(x) in gauge theory is a covariant 4-vector field that takes values in the
Lie algebra su(N). This means that Aµ(x) = Aaµ(x)ξa where ξa, a = 1, . . . , N2 − 1, is a basis of
generators of SU(N) and the components Aaµ(x) are real fields1. The generators satisfy commu-
tation relations [ξa, ξb] = fabcξc where the basis is chosen such that structure constants fabc are
completely antisymmetric. A gauge transformation is a smooth mapping U : R4 → SU(N), i.e.
a space-dependent unitary matrix U(x) ∈ SU(N). Under such a gauge transformation the vector
potential transforms as

Aµ(x) → A′µ(x) = U(x)Aµ(x)U †(x) + U(x)∂µU
†(x) . (2.1)

Suppose ψ(x) = (ψ1(x), . . . , ψn(x)) is an N -component field that transforms as

ψ(x) → ψ′(x) = U(x)ψ(x). (2.2)

For any quantity that transforms like this, we introduce the gauge-covariant derivative via

Dµ := ∂µ +Aµ(x). (2.3)

a) Show that the covariant derivative of ψ(x) transforms in the same way as ψ(x) itself, i.e.

Dµψ(x) → D′µψ
′(x) = U(x)Dµψ(x). (2.4)

Hint: use U †U = 1 to determine how ∂µU(x)† and ∂µU(x) are related.

From this it follows that also higher-order covariant derivates transform the same way as (2.2),
e.g.

D′µD
′
νψ
′(x) = U(x)DµDνψ(x). (2.5)

b) Defining the field strength Fµν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ, Aν ], prove that

[Dµ, Dν ]ψ(x) = Fµν(x)ψ(x) . (2.6)

c) The components F aµν of the field strength are defined via Fµν = F aµνξa. Prove that

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x) + fabcA

b
µ(x)Acν(x) . (2.7)

d) Use (2.6) to show that the field strength transforms as

Fµν(x)→ F ′µν(x) = U(x)Fµν(x)U †(x) . (2.8)

Hint: Combine
[
D′µ, D

′
ν

]
ψ′(x) = F ′µν(x)ψ′(x) with (2.5).

e) The action of the gauge field in flat Minkowski space is defined by

S[A] = −1

2

∫
d4x ηαµηβν Tr[FαβFµν ] , (2.9)

where the trace is over the Lie algebra matrix elements. Show that it is invariant under
gauge transformations, i.e. S[A] = S[A′].

1Note that in the gauge theory literature the notation T a is often used instead of ξa and the structure constants
are denoted with upper indices fabc instead of lower indices fabc, but this makes no difference.
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Exercise 2.3: The Lie group SU(2) (3 points)

For us this is perhaps the most important Lie group, the representations of which
will be subject of the next lecture. Here you will get to know the underlying
manifold and determine the structure constants.

Recall from the lecture notes that the Lie group SU(2) and the Lie algebra su(2) are given by

SU(2) =
{
U ∈ C2×2 : U †U = 1, detU = 1

}
. (3.1)

su(2) =
{
X ∈ C2×2 : X† = −X, trX = 0

}
. (3.2)

a) Show that

SU(2) =

{(
α −β̄
β ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
. (3.3)

Hint: first use detU = 1 to show that U−1 =

(
δ −γ
−β α

)
if U =

(
α γ
β δ

)
.

b) Argue that the manifold underlying SU(2) is (diffeomorphic to) the 3-sphere

S3 = {~x ∈ R4 : ‖~x‖ = 1}.

The Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.4)

satisfy
σa σb = δab 1 + iεabc σc , (3.5)

where εabc is the completely antisymmetric tensor with ε123 = 1.

c) Argue that iσa, a = 1, 2, 3, forms a basis of su(2).

d) Using the conventional normalization ξa = − i
2σa, show that

[ξa, ξb] = εabc ξc, a, b, c = 1, 2, 3. (3.6)

Hence, the structure constants of su(2) are fabc = εabc.
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Lie Algebras in Particle Physics (NWI-NM101B)

Problem sheet #3: Representations of su(2)

Tutorial on Thursday 28 April 2021.

Exercise 3.1: Matrix representations of su(2)

Practice obtaining explicit matrices from the highest-weight construction of rep-
resentations of su(2).

Recall that the generators X1, X2, X3 of SU(2) in any representation obey the commutation rela-
tions

[Xa, Xb] = εabcXc . (1.1)

Here εabc is the totally antisymmetric symbol with ε123 = 1. The irreducible representations of
su(2) are labeled by the spin j = 0, 12 , 1,

3
2 , . . . . Each representation acts on a (2j+ 1)-dimensional

orthonormal basis |j,m〉 with m = −j,−j + 1, . . . , j − 1, j. In the lectures we derived that J3 and
J± = (J1 ± iJ2)/

√
2, Ja ≡ iXa, act on this basis via

J3|j,m〉 = m|j,m〉, J+|j,m〉 =
√

1
2(j +m+ 1)(j −m) |j,m+ 1〉, J− = (J+)†. (1.2)

The matrices corresponding to the generators Xa in the spin-j representation are given by

[Xa]m′,m =
〈
j,m′

∣∣Xa |j,m〉 . (1.3)

a) Construct explicitly the matrix representation Xa for j = 1.

b) Construct explicitly the matrix representation Xa for j = 3
2 .

c) Demonstrate in both cases that (1.1) is satisfied in the case a = 1, b = 2.
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Exercise 3.2: Tensor representations of su(2)

Tensor representations are ubiquitous in particle physics: if one particle trans-
forms in one representation and a second particle in another representation, then
the state describing the pair of particles naturally transforms in the tensor rep-
resentation of both. Here you will investigate in the case of su(2) how such
representations decompose into irreducible components.

The tensor product of two irreducible representations of su(2) with spins j and j′ determines a
new representation that acts on the linear space spanned by the (2j + 1) · (2j′ + 1) basis elements

|j,m〉 ⊗
∣∣j′,m′〉 , m = −j,−j + 1, . . . , j, m′ = −j′,−j′ + 1, . . . , j′. (2.1)

The generators (using the Hermitian Ja = iXa instead of skew-Hermitian generators Xa) act on
these basis states via

Ja
(
|j,m〉 ⊗

∣∣j′,m′〉) = (Ja |j,m〉)⊗
∣∣j′,m′〉+ |j,m〉 ⊗

(
Ja
∣∣j′,m′〉) . (2.2)

Typically this representation is not irreducible, but can be decomposed as a direct sum of irre-
ducible representations. Denoting by Dj the spin-j representation of su(2), it can be shown that
the tensor product representation decomposes as

Dj ⊗Dj′
∼= D|j−j′| ⊕D|j−j′|+1 ⊕ · · · ⊕Dj+j′ , (2.3)

meaning that each irrep with spin |j − j′|, . . . , j + j′ occurs exactly once. For example the tensor
product of D1

2
and D1 decomposes as

D1
2
⊗D1

∼= D3
2
⊕D1

2
. (2.4)

To find the subspaces on which the irreducible representations act, it is convenient to consider the
highest weights states (|j, j〉 in the spin-j representation) and to use the lowering operator J− to
construct the remaining states.

a) Demonstrate that the dimensions of the representations on both sides of (2.3) agree.

b) Using (2.2), show that for the basis (2.1) the third component of the spin satisfies the sum
rule

J3
(
|j,m〉 ⊗

∣∣j′,m′〉) = (m+m′)
(
|j,m〉 ⊗

∣∣j′,m′〉) . (2.5)

c) The state
∣∣1
2 ,

1
2

〉
⊗ |1, 1〉 is said to be the state with the highest weight, because it has the

highest value of the third component of the spin. We therefore claim it belongs to the spin-32
representation of (2.4) and we denote the state by∣∣3

2 ,
3
2

〉
≡
∣∣1
2 ,

1
2

〉
⊗ |1, 1〉 . (2.6)

Using (2.2), compute the states
∣∣3
2 ,

1
2

〉
,
∣∣3
2 ,−

1
2

〉
and

∣∣3
2 ,−

3
2

〉
in terms of the product states

by applying the operator J− respectively one, two and three times to (2.6).

d) The four states
∣∣3
2 ,m

〉
form a basis for the spin-32 representation in (2.4), corresponding to an

invariant subspace of the tensor product basis (2.1). We are left with only a two-dimensional
subspace which we want to arrange in the j = 1

2 representation of (2.4). Define∣∣1
2 ,

1
2

〉
=
√

2
3

∣∣1
2 ,−

1
2

〉
⊗ |1, 1〉 −

√
1
3

∣∣1
2 ,

1
2

〉
⊗ |1, 0〉 . (2.7)

Show that (2.7) satisfies
J3
∣∣1
2 ,

1
2

〉
= 1

2

∣∣1
2 ,

1
2

〉
, (2.8)

and that is it is perpendicular to the states of the spin-32 representation.

e) Using (2.2), apply the operator J− to (2.7) to obtain the last state
∣∣1
2 ,−

1
2

〉
.
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Exercise 3.3: Isospin and branching ratios

Exploring consequences of SU(2)-isospin symmetry in baryon decay.

Particles with the same spin and similar mass may be grouped into isospin multiplets which
transform in irreducible representations of su(2). Examples are the:

nucleon-doublet: (p, n)

pion-triplet: (π+, π0, π−)

delta-quadruplet: (∆++,∆+,∆0,∆−)

a) Consider the decay

|∆++〉 → |p, π+〉 ≡ |p〉 ⊗ |π+〉. (3.1)

The isospin quantum numbers associated with the highest-weight states are

J3|∆++〉 =
3

2
|∆++〉 , J3|p〉 =

1

2
|p〉 , J3|π+〉 = |π+〉 . (3.2)

Use the action of the generator J3 on product states to show that the decay (3.1) preserves
the isospin quantum number.

b) Consider the 6 different nucleon-pion states

|p, π+〉 , |p, π0〉 , |p, π−〉 ,
|n, π+〉 , |n, π0〉 , |n, π−〉 . (3.3)

which are all eigenstates of J3. Compute the corresponding J3-eigenvalues. Use these eigen-
values to determine the irreducible su(2) representations which are contained in the nucleon-
pion states (3.3).

c) Use your results from Exercise 4.2(c) to determine the result of the decay of |∆+〉, |∆0〉, and
|∆−〉.

d) The branching ratios for the |∆+〉-decay and |∆0〉-decay channels are defined as

Γ(∆+ → n, π+)

Γ(∆+ → p, π0)
≈ | 〈n, π

+|∆+〉 |2

| 〈p, π0|∆+〉 |2
, (3.4)

Γ(∆0 → p, π−)

Γ(∆0 → n, π0)
≈ | 〈p, π

−|∆0〉 |2

| 〈n, π0|∆0〉 |2
. (3.5)

Use your result in c) to compute these branching ratios based on the isospin algebra. You
may assume that the particle states are orthonormal.

Page 3 of 3



Lie Algebras in Particle Physics (NWI-NM101B)

Problem sheet #4(graded): Adjoint representation

Tutorial on Thursday 12 May 2022.

This is one of 3 graded assignments contributing to a bonus point on the exam.
Solutions should be submitted digitally before 13:30 on 19 May via Brightspace Assignments.

Exercise 4.1: Compact Lie algebras of small dimension (2 points)

Why is the Lie algebra su(2) ubiquitous? In this exercise you will find out that
it is the only compact Lie algebra of dimension at most three.

Suppose g is an n-dimensional matrix Lie algebra with basis ξ1, . . . , ξn and structure constants fabc.
Recall from the lecture that g is compact if and only if the Cartan-Killing metric γab = fadcfbcd
is negative-definite. In that case the basis can be chosen such that γab = −cδab for any desired
positive real number c, and as a consequence that fabc is completely antisymmetric.

a) Argue that the dimension n of a compact Lie algebra g must be at least 3.
Hint: Explain that the structure constants would vanish for n < 3.

b) Show that every three-dimensional compact Lie algebra g is isomorphic to su(2), meaning
that one can find a basis ξ1, ξ2, ξ3 of g such that [ξa, ξb] = εabcξc.
Hint : parametrize the possible structure constants fabc and plug them into γab = fadcfbcd.
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Exercise 4.2: The adjoint representation of su(2) is so(3) (4 points)

In the previous exercise you argued that there is only one compact 3-dimensional
Lie algebra, so su(2) and so(3) which are both compact and 3-dimensional must be
equivalent. Here you will discover that so(3) arises as the adjoint representation
of su(2). On the level of Lie groups we will see that SU(2) and SO(3) are not
quite isomorphic.

Recall the structure constants fabc = εabc, a = 1, 2, 3, for the Lie algebra su(2).

a) Determine the explicit matrices Ta of the adjoint representation ([Ta]bc = facb).

b) Recall from the lecture notes that in the spin-j representation C = 1
2j(j + 1)1. Compute

the Casimir operator C = γabTaTb of the adjoint representation to check that the adjoint
representation is equivalent to the spin-1 representation of su(2).

c) Show that the generators Ta are also the generators of so(3) in its defining representation.

Recall that at the level of the Lie group SU(2) the adjoint representation D : SU(2)→ GL(su(2))
is given by D(g)|X〉 = |gXg−1〉 with X ∈ su(2) and g ∈ SU(2).

d) Show that D preserves the scalar product 〈X|X ′〉 ≡ −2 tr(XX ′), i.e. 〈D(g)X|D(g)X ′〉 =
〈X|X ′〉.

The standard generators Xa = −i
2 σa with σa the Pauli matrices form and orthonormal basis for

this scalar product, 〈Xa|Xb〉 = δab.

e) Show that the matrix elements [D(g)]ab = 〈Xa|D(g)|Xb〉 of D(g) in this basis determine an
orthogonal matrix in SO(3). Hint: use D(g)|Xb〉 = [D(g)]ab|Xa〉 and e).

We may therefore interpret the adjoint representation as a mapping D : SU(2)→ SO(3).

f) Show that D : SU(2)→ SO(3) is not quite an isomorphism by computing D(−1).

The adjoint representation D : SU(2)→ SO(3) takes any value in SO(3) exactly twice: SU(2) is a
“double cover” of SO(3). The fact that SO(3) is slightly smaller than SU(2) has the consequence
that it admits only a subset of the irreps of SU(2): the spin-j representations for j = 0, 1, 2, . . ..
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Exercise 4.3: The Lorentz group SO(1, 3) and its Lie algebra (4 points)

The Lorentz group and its representations are or great importance in quantum
field theory. It is non-compact and therefore not part of the families of Lie groups
we focus on in this course, but should not go untouched! Hence this exercise.

In class we have seen that the orthogonal group SO(N) corresponds to the subset of real linear
maps GL(N,R) that leave the N -dimensional Euclidean inner product invariant (and excluding
reflections). In this exercise we generalize this to the Lorentz group SO(1, 3) that leaves the
Minkowski metric invariant, i.e. if vµ and wν are 4-vectors we consider the inner product

〈v, w〉 := vµ ηµν w
ν , η = diag(−1, 1, 1, 1), µ, ν = 0, 1, 2, 3. (3.1)

The Lorentz group SO(1, 3) is defined to be the set of matrices Λ (with matrix elements [Λ]αβ) in

GL(R4) such that 〈v′, w′〉 = 〈v, w〉 where v′µ = [Λ]µνv
ν . Pay attention that placement of indices

in this exercise matters: ηµν and its inverse are used to raise and lower indices.

a) Show that the Lie algebra so(1, 3) of the Lorentz group is given by

so(1, 3) =
{
J ∈ R4×4 : [J ]µν = −ηνβ [J ]βαη

αµ
}

(3.2)

and that by lowering indices the latter condition is equivalent to [J ]αβ = −[J ]βα.

b) Argue that a basis of the Lie algebra so(1, 3) is given by the generators Jµν , 0 ≤ µ < ν ≤ 3,
defined by [Jµν ]αβ = δµα δνβ − δ

µ
βδ

ν
α. What is the dimension of so(3, 1) based on this?

c) Compute explicitly the Lorentz transformations [Λ]µν generated by J01 and J12, i.e. Λ =

etJ
01

and Λ = etJ
12

respectively. Do they correspond to a rotation or a boost?

d) Verify that these generators satisfy[
Jµν , Jαβ

]
= ηναJµβ − ηµαJνβ − ηνβJµα + ηµβJνα. (3.3)

e) Suppose you have a set of 4× 4 matrices γµ, µ = 0, 1, 2, 3 satisfying the Clifford algebra

{ γµ , γν } := γµ γν + γν γµ = 2 ηµν 1. (3.4)

Show that the generators
Sµν := 1

4 [ γµ , γν ] (3.5)

also satisfies (3.3) and thus also furnish a representation of the Lorentz group. (Remark:
This is the representation which acts on Dirac spinors, as you may recall from Quantum
Mechanics 3)

f) Let us introduce the generators J̃i and Ki of spatial rotations and boosts as

J̃i := 1
2εijkJjk, Ki := J0i, i, j, k = 1, 2, 3. (3.6)

These can be reorganized in the complex linear combinations

A±i = 1
2(J̃i ± iKi), (3.7)

which may be interpreted as the generators of the complexified Lie Algebra so(1, 3)C (see
Remark 5.1 in the lecture notes). Show using (3.3) that A+

i and A−i both satisfy the su(2)
commutation relations,

[A±i , A
±
j ] = εijkA

±
k , [A+

i , A
−
j ] = 0. (3.8)

This shows that so(1, 3)C decomposes as a double copy so(1, 3)C = su(2)C ⊕ su(2)C, which conve-
niently allows one to construct irreps of the Lorentz group in terms of those of su(2).
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Lie Algebras in Particle Physics (NWI-NM101B)

Problem sheet #5: Root systems

Tutorial on Tuesday 17 May 2022, 15:30 - 17:15.

Exercise 5.1: Reconstructing the su(3) algebra from its roots

In the lecture we have seen how to associate a root system to a Lie algebra, and
we claimed without proof that this root system contains all information of the Lie
algebra. In this exercise we will explore how to reconstruct the Lie algebra su(3)
from its (simple) roots.

The simple roots of su(3) are given by

α̂1 = (12 ,
1
2

√
3), α̂2 = (12 ,−

1
2

√
3). (1.1)

a) Use successive Weyl reflections (α, β)→ β−2α·βα·αα to determine a full set of roots {α1, α2, . . .}.
Draw the root system.

b) Based on the root system, what is the dimension of su(3)?

By construction the commutators involving one or more Cartan generators Hi are given by

[Hi, Eαk ] = αkiEαk , [Hi, Hj ] = 0. (1.2)

In the lecture we have seen that to a root αk we may associate an su(2)-subalgebra generated by
Ek3 = |αk|−2αkiHi and Ek± = |αk|−1E±αk , meaning that they satisfy

[Ek+, E
k
−] = Ek3 , [Ek3 , E

k
±] = ±Ek±. (1.3)

To reconstruct the full Lie algebra it thus remains to determine the commutators [Eαk , Eαl ] for
linearly independent roots αk and αl.

c) Show that in the adjoint representation HiE
k
+|Eαl〉 = (αki + αli)E

k
+|Eαl〉 meaning that if

[Eαk
, Eαl

] 6= 0 then |[Eαk
, Eαl

]〉 has root αk + αl.

d) For fixed k the adjoint action of Ek3 and Ek± on su(3) determines a representation of the
su(2)-algebra (1.3) which is reducible. Argue on the basis of the root diagram that the
representation decomposes into a direct sum of one spin-0, one spin-1, and two spin-1/2
irreps. (It is sufficient to explain this for a single, conveniently chosen root index k.)

e) Use your knowledge of su(2) representations to determine the commutator of Eαk (again for
a convenient choice of k) with all other generators Eα1 , Eα2 , . . . up to phase factors (|η| = 1).
Use that the states |Eαl〉 are normalized, 〈Eαl |Eαl〉 = 1.
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Exercise 5.2: From rotations in a Hilbert space to spin-j irreps

The way we derived the irreps of su(2) is quite similar to how the spectrum of
the hydrogen atom is derived in a quantum mechanics course. In this exercise
you will find out how these problems are connected.

Let’s consider the quantum-mechanical wave function ψ(x) of a (spinless) particle in a spherically
symmetric potential. To simplify matters we ignore the radial dependence and consider the Hilbert
space H of wave functions ψ : S2 → C where S2 = {x ∈ R3 : ‖x‖ = 1} is the unit 2-sphere. Note
that H is a vector space since if ψ1, ψ2 ∈ H then ψ(x) = λ1ψ1(x) + λ2ψ2(x) for λ1, λ2 ∈ C
determines another wave function ψ ∈ H by the “superposition principle”. It carries a natural
representation D : SO(3)→ GL(H) of the 3-dimensional rotation group SO(3) via

(D(g)ψ)(~x) = ψ(gT~x), (2.1)

implementing the rotational symmetry of the system.

a) Check that D indeed satisfies the requirements of a representation.

b) A basis of generators of SO(3) is given by [ξa]bc = −εabc, a, b, c = 1, 2, 3. Show that the
corresponding generators Xa in representation D are the differential operators

X̂a = εabc xc
∂

∂xb
. (2.2)

c) Why do we sometimes say in quantum mechanics that angular momentum (~L = ~x × ~p)
generates rotations?

d) Show that (2.2) indeed satisfies [X̂a, X̂b] = εabcX̂c. It is sufficient to show this for the
particular case a = 1, b = 2.

e) Explain that the Casimir operator is given by C = −1
2(X̂2

1 + X̂2
2 + X̂2

3 ).

The spherical Laplacian ∆S2 : H → H is the operator given by (∆S2ψ)(x) = ∆ψ
(
x
|x|

)
for x ∈ S2

in terms of the standard three-dimensional Laplacian ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
.

f) Show that the Casimir operator in this representation is given by C = 1
2∆S2 .

Hint : Verify first that ∂a
xb
|x| = |x|2δab−xaxb

|x|3 and ∆ xb
|x| = −2 xb

|x|3 .

g) As you may know the spherical harmonics Y m
l (x) for integers l,m satisfying l ≥ 0 and

−l ≤ m ≤ l form a basis of H and ∆S2Y m
l = `(` + 1). Explain based on this fact how the

representation D decomposes into irreducible representations of SO(3).
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Lie Algebras in Particle Physics (NWI-NM101B)

Problem sheet #6(graded): flavor-SU(3) and Dynkin diagrams

Tutorial on Thursday 2 & 9 June 2022.

This is one of 3 graded assignments contributing to a bonus point on the exam.
Solutions should be submitted digitally before 15:00 on Tuesday 14 June 2022

via Brightspace Assignments.

Exercise 6.1: Mesons and su(3) flavor symmetry (5 Points)

In this exercise you will put to practice your tensor representation skills in order
to construct the meson states from the constituent quarks in the quark model.

The su(3) flavor symmetry is an approximate symmetry in particle physics that mixes the states of
three lightest quarks (up, down and strange). The single-quark states |u〉, |d〉, |s〉 transform under
the fundamental representation 3 = (1, 0), while the anti-quark states |ū〉, |d̄〉, |̄s〉 transform under
the anti-fundamental representation 3̄ = (0, 1). The weights of these states can be read off from
the corresponding weight diagrams.

A basis for the tensor representation 3⊗ 3̄, describing bound states of a quark and an anti-quark,
is given by the states |qq̄′〉 ≡ |q〉 ⊗ |q̄′〉 for q, q′ = u,d, s. Recall that a generator X ∈ su(3) acts on
such a tensor state via

X|qq̄′〉 = (X|q〉)⊗ |q̄′〉+ |q〉 ⊗ (X|q̄′〉). (1.1)

a) Use (1.1) to determine the weights of the nine basis states of 3⊗ 3̄ and draw them in a weight
diagram:

b) Recall that the charge Q is related to H1 and H2 via Q = I3 + 1
2Y = H1 + 1√

3
H2. Draw

the lines of constant integer charge in the above diagram. Identify the charged pion states
|π+〉, |π−〉 (with no strange constituent) and kaon states |K+〉, |K−〉.
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The roots of su(3) are α1 = (1, 0), α2 = (12 ,
1
2

√
3), α3 = (−1

2 ,
1
2

√
3) (as well as their negatives) and

the corresponding raising/lowering generators are

E±α1 =
1√
2

(T1 ± iT2), E±α2 =
1√
2

(T4 ± iT5), E±α3 =
1√
2

(T6 ± iT7). (1.2)

The fundamental and anti-fundamental representations are given by Ta = 1
2λa respectively Ta =

−1
2λ
∗
a, where λa are the Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .

(1.3)

c) Show that

E−α1 |u〉 =
1√
2
|d〉, E−α1 |d̄〉 = − 1√

2
|ū〉, E−α2 |u〉 =

1√
2
|s〉, E−α2 |̄s〉 = − 1√

2
|ū〉. (1.4)

d) How can we understand these relations in terms of su(2)-subalgebras?

e) Use (1.1) to determine E−α1 |π+〉 and E−α2 |K+〉. Show that the following orthonormal linear
combinations

|π0〉 =
1√
2

(
|dd̄〉 − |uū〉

)
, |η0〉 =

1√
6

(
|uū〉+ |dd̄〉 − 2|ss̄〉

)
(1.5)

therefore belong to the octet representation 8 in the decomposition 3⊗ 3̄ = 8⊕ 1.

f) Show that the only remaining normalized state |η′〉 = 1√
3
(|uū〉+ |dd̄〉+ |ss̄〉) is su(3)-invariant

and therefore spans the trivial representation 1.
Hint: For an arbitrary generator X of su(3), X|qa〉 = [X]ca|qc〉 and X|q̄a〉 = [X]∗ca|q̄c〉 with
[X]ca the matrix elements of X in the fundamental representation (q1 = u, q2 = d, q3 = s).
Use (1.1) to show that X|η′〉 = 0.
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Exercise 6.2: The group G2 (2 Points)

Reconstructing the root system from a Dynkin diagram.

The Dynkin diagram for the group G2 is

a) Determine α̂1 if we use the convention that α̂2 = (0, 1) (recall that a simple root has to be
positive).

b) Consecutively apply Weyl reflections to the simple roots to obtain the complete root system.
Draw the corresponding root diagram.

c) Deduce the dimension of G2 from b).

Exercise 6.3: Disconnected Dynkin diagram (3 Points)

In this exercise you will verify that the decomposition of a Dynkin diagram into
connected components corresponds to the decomposition of a compact Lie algebra
into a direct sum of simple compact Lie algebras.

In the lectures we have seen that a compact Lie algebra g is uniquely encoded in its Dynkin
diagram. Now suppose the Dynkin diagram is not connected.

a) Show that the roots of g decompose into two orthogonal subsets {αi} ∪ {βj}, αi · βj = 0.
Hint: First argue that such a decomposition happens for the simple roots and then use Weyl
reflections to explain that the same is true for all roots.

b) Show that {Eαi , αikHk} and {Eβj , β
j
kHk} both span invariant subalgebras of g.

Hint: What commutators do you need to check? Make use of the known commutation
relations among the operators Eαi and Hk.

Hence g is not simple, but decomposes as a direct sum of two compact Lie algebras. Recall that
so(4) is a compact Lie algebra of rank 2 and that its root system is given by

Φ = {(1, 1), (1,−1), (−1, 1), (−1,−1)}. (3.1)

c) Draw the Dynkin diagram of so(4).

d) Argue that so(4) is not simple, but decomposes as a direct sum so(4) ' su(2)⊕ su(2).
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