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Given metric spaces (S , d) and
(S ′, d ′), their Gromov-Hausdorff
distance is

dGH((S , d), (S ′, d ′)) =
1
2 inf

R
sup
xRx′

yRy ′

|d(x , y)− d ′(x ′, y ′)|,

with the inf over correspondences
R, i.e. R ⊂ S × S ′ with each
element of S and S ′ appearing at
least once in the relation.
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Properties of the Brownian sphere:

I Topology of S2 a.s.
[Le Gall, Paulin, ’08;, Miermont, ’08]

I Hausdorff dimension 4 a.s.
[Le Gall, ’07]

I Spectral dimension 2 a.s
[Gwynne, Miller, ’18]

I Universal scaling limit of
I p-angulations, p ≥ 3 [Le

Gall, ’11; Albenque, ’18+]

I general maps with fixed
number of edges
[Bettinelli, Jacob, Miermont, ’14]

I bipartite maps with
prescribed degrees
[Marzouk, ’17]

I etc. . .
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Liouville Quantum Gravity
I Any natural random Riemannian metric on a disk (or sphere)?

I Addressed already in ’80s in the context of string theory [Polyakov,

Knizhnik, Zamolodchikov, David, Distler, Kawai, . . . , ’80s].
I Uniformization: can parametrize as a conformal rescaling of a fixed

flat metric on D
eγh(z)(dx2 + dy2) (z=x+iy)

I Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with
covariance given by the Dirichlet Green’s function
G (z1, z2) = log |z1 − z1|+ O(1). More precisely

Cov((h, f1)∇, (h,f2)∇) = (f1, f2)∇ := 1
2π

∫
D
∇f1(z) · ∇f2(z)dz .

I h is a distribution! How to exponentiate?
I Regularize: let hε(z) be average of h on circle of radius ε, then

εγ
2/2eγhε(z)dxdy

weak−−−→
ε→0

µLQG “Liouville measure”

[Høegh-Krohn ’71; Kahane, ’85, Duplantier, Sheffield, ’11]
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How about other values of
γ 6=

√
8/3?

or

“How to escape the Brownian
universality class?”













Outline

I Intro to planar maps and Boltzmann
distributions

I Peeling exploration

I Geometrical properties (beyond Brownian)

I Towards geometry of maps with an O(n) loop
model



Planar maps
I A planar map m is a connected planar (multi)graph together with a

proper embedding in S2

viewed up to (orientation-preserving)
homeomorphisms.

I Always take planar maps to be rooted.

I A face of m is a region bounded by edges. Its degree is the number
of bounding edges.

I Only consider bipartite maps: all faces of even degree.

I The face to the right of the root is the root face. Its degree is the
perimeter of m.

I Think of m as a tessellation of the 2p-gon by (equilateral) polygons.
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Boltzmann planar maps

I Mp = {rooted, bipartite planar maps of perimeter 2p}.

I For q = (q1, q2, . . .) ≥ 0 define measure wq(m) =
∏

faces f q deg(f )
2

.

I q admissible iff W (p)(q) := wq(Mp) <∞ for all p ≥ 1.

I If q is admissible then wq( · |Mp) defines the q-Boltzmann planar
map m(p) of perimeter 2p.

I q is critical if it admissible and Var|m(p)| =∞.
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Scaling limit of the graph distance
I Using bijections with trees, the Gromov-Hausdorff scaling limits of

the graph distance are well-understood. Distinguish:
I generic critical q: Var(degree of typical face) <∞
I non-generic critical q of index α ∈ (1, 2): fine-tuning

qk ∼ C κk k−α−1/2 such that P(degree of typical face > k) ∼ k−α.

Theorem (Bettinelli, Miermont, ’15)

If q is generic critical (and degrees exponentially bounded), then(
m(p), p−1/2dgraph(·, ·)

)
(d)−−−→

p→∞
Brownian disk of perimeter 1

Theorem (Le Gall, Miermont, ’11; Marzouk, ’18)

If q is non-generic critical of index α ∈ (1, 2), then(
m(p), |m(p)|− 1

2α dgraph(·, ·)
)

(d)−−−−−−→
|m(p)|→∞

α-stable map

with a.s. Hausdorff dimension 2α ∈ (2, 4).
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Relation to the O(n) loop model

I Rigid O(n) loop model: Draw disjoint loops
that intersect quadrangles through opposite
sides. [Borot, Bouttier, Guitter, ’11]

I Assign weight to map with loops by

wn,g ,q(m) = n# g#
∏

reg. faces f

q deg(f )
2

for n, g ,q > 0 fixed.

I If admissible, wn,g ,q(Mloop
p ) <∞, then it

defines the (n, g ,q)-Boltzmann
loop-decorated map m(p).

I For n ∈ (0, 2), the system exhibits four
phases as p →∞: [Borot, Bouttier, Guitter, ’11]

[TB, Chen, ’18]

I subcritical: treelike/only see boundary
I pure gravity: microscopic loops
I dilute critical: self-avoiding loops
I dense critical: self-touching loops
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I The gasket of a loop-decorated map is the
map exterior to all loops.

I It is distributed as a q̂-Boltzmann planar
map, with q̂k = qk + n g2k wn,g ,q(Mloop

k ).

I q̂ is admissible iff (n, g , q) is.
I q̂ is non-generic critical with index
α = 3

2
− 1

π
arccos n

2
∈ (1, 3/2)

iff (n, g , q) is dense critical.
I q̂ is non-generic critical with index
α = 3

2
+ 1

π
arccos n

2
∈ (3/2, 2)

iff (n, g , q) is dilute critical.
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Simulation: dilute quadrangulation (q2 > 0,q1 = q3 = . . . = 0),
p = 50, n = 0.6



Simulation: dilute quadrangulation (q2 > 0,q1 = q3 = . . . = 0),
p = 40, n = 0.3



Simulation: dilute quadrangulation (q2 > 0,q1 = q3 = . . . = 0),
p = 40, n = 0.3



Look at dual graph distances
I The dual map of a non-generic critical Boltzmann planar map

supports vertices of high degree.

I Opportunity to obtain new universality classes that do have topology
of S2.

I No tree bijections available: use peeling exploration!
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Peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, . . . ]

I A planar map with holes e is a planar map with a set of
distinguished, simple, disjoint faces (the “holes”).

I Submap: e ⊂ m iff the holes can be filled in by maps to obtain m.

I Peeling exploration: associate to a map m a deterministic sequence
e0 ⊂ e1 ⊂ · · · ⊂ m of growing submaps.

I Fix peel algorithm A that selects an edge A(e) incident to hole of e.
I ei+1 is minimal submap, ei ⊂ ei+1 ⊂ m, such that A(ei ) not incident

to hole: reveals new face of m or glues pair of edges on the hole.
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I For a q-Boltzmann planar map m(p) and e fixed, conditionally on
e ⊂ m the maps filling in the holes of e are distributed as
independent Boltzmann planar maps.

I Hence (ei ) is a Markov process with transition probabilities
(W (p) = wq(M(p))):
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Targeted peeling exploration
I If the map m• ∈M(p)

• has a marked vertex, one may track the hole
containing the vertex

and its half-degree (Pi ), the perimeter process.

I For a pointed q-Boltzmann planar map m
(p)
•

I As `→∞ it takes the law of a random walk on Z with distribution

P(Pi+1 = `+ k|Pi = `)→ ν(k) :=

{
qk+1κ

−k k ≥ 0

2W (−k−1) κ−k k < 0
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ν(k) =

{
qk+1κ

−k k ≥ 0

2W (−k−1)κ−k k < 0

I Let (Si ) be a random walk of law ν.

I How are (Si ) and (Pi ) related?

Proposition (TB, ’15; TB, Curien, ’17)

I Pp

[
(Si ) hits Z≤0 at 0

]
= h↓(p) := 4−p

(
2p
p

)
independent of q.

I (Pi )
(d)
= (Si ) conditioned to hit Z≤0 at 0.

I q→ ν defines a bijection

{q admissible} ←→
{
ν : Pp

[
(Si ) hits Z≤0 at 0

]
= h↓(p)

}
I q critical ←→ ν centered

I q non-generic critical of index α ∈ (1, 2) ←→ (Si ) in the basin of
attraction of an (α− 1

2 )-stable process: ν(±k) ∼ c±k
−α−1/2.
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Infinite Boltzmann planar maps
I Benjamini-Schramm-type local limit:

I Let q be critical and condition a q-BPM to have n vertices.
I Then the laws of neighbourhoods of the root converge in distribution

as n→∞ to those of a unique random infinite map:
[Björnberg, Stefánsson, ’14] [Stephenson, ’14]

the infinite Boltzmann planar map m∞.

I Finite submaps of m∞ have a distinguished hole containing ∞.
I Peeling exploration targeting ∞ has perimeter process (Pi ).

Theorem (TB ’15)

For q critical the perimeter process (Pi ) has the law of the random walk
(Si ) conditioned to stay positive.
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Targeted peeling of infinite Boltzmann maps

Proposition (TB, Curien, ’16)

If q is non-generic critical of index α ∈ (1, 2) then the perimeter process
of m∞ satisfies the scaling limit (in the sense of Skorokhod)(

Pbλtc

λ1/(α−1/2)

)
t≥0

(d)−−−−→
λ→∞

c (S↑t )t≥0,

where (S↑t ) is an (α− 1/2)-stable Lévy process started at 0 and
conditioned to stay positive.
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Dual graph distance
I To explore the map by increasing dual graph distance

, peel by layers:

A(en) = left-most edge incident to face at minimal distance.

Theorem (TB, Curien, ’16; TB, Curien, Marzouk, ’17)

If q is non-generic of index α ∈ (1, 2), then

|Ballr | ≈
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α
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For α > 3
2 scaling limits for λ

−α
α−3/2 |Ballλr | and λ

−1
α−3/2 |∂Ballλr | are known.
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If q is non-generic of index α ∈ (1, 2), then
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For α > 3
2 scaling limits for λ

−α
α−3/2 |Ballλr | and λ

−1
α−3/2 |∂Ballλr | are known.
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Simulations: dense case

α = 1.3



Simulations: dense case

α = 1.3

Theorem (TB, Curien, ’16)

When α < 3/2 the map and its dual both contain infinitely many cut
vertices separating root from ∞.



Simulations: dense case

α = 1.3



Simulations: dense case

α = 1.2



Simulations: Cauchy case

α = 3/2

Theorem (TB, Curien, Marzouk ’17)

Again infinitely many cut vertices, but their number grows only like
log log(volume).
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Simulations: dilute case
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Simulations: dilute case

α = 1.85



Simulations: dilute case

α = 1.95


