Mark Kac seminar @ Utrecht, The Netherlands - 07-12-2018

# Geometry of random planar maps

**Timothy Budd** 

Based partly on joint work with N. Curien, C. Marzouk t.budd@science.ru.nl
http://hef.ru.nl/~tbudd/













◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで





æ











◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣。

 $\mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$ 



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



Given metric spaces (S, d) and (S', d'), their Gromov-Hausdorff distance is

 $d_{\rm GH}((S, d), (S', d')) = \frac{1}{2} \inf_{\substack{R \\ x R x' \\ y R y'}} \sup_{\substack{x R x' \\ y R y'}} |d(x, y) - d'(x', y')|,$ 

with the inf over correspondences R, i.e.  $R \subset S \times S'$  with each element of S and S' appearing at least once in the relation.





Given metric spaces (S, d) and (S', d'), their Gromov-Hausdorff distance is

 $d_{\rm GH}((S, d), (S', d')) = \frac{1}{2} \inf_{\substack{R \\ x R x' \\ y R y'}} \sup_{\substack{x R x' \\ y R y'}} |d(x, y) - d'(x', y')|,$ 

with the inf over correspondences R, i.e.  $R \subset S \times S'$  with each element of S and S' appearing at least once in the relation.





Properties of the Brownian sphere:

► Topology of *S*<sup>2</sup> a.s.

(日)

[Le Gall, Paulin, '08;, Miermont, '08]



Properties of the Brownian sphere:

- Topology of S<sup>2</sup> a.s.
   [Le Gall, Paulin, '08;, Miermont, '08]
- Hausdorff dimension 4 a.s. [Le Gall, '07]
- Spectral dimension 2 a.s [Gwynne, Miller, '18]

・ロト ・ 一下・ ・ ヨト ・



Properties of the Brownian sphere:

- Topology of S<sup>2</sup> a.s.
   [Le Gall, Paulin, '08;, Miermont, '08]
- Hausdorff dimension 4 a.s. [Le Gall, '07]
- Spectral dimension 2 a.s [Gwynne, Miller, '18]
- Universal scaling limit of
  - ▶ *p*-angulations, *p* ≥ 3 [Le Gall, '11; Albenque, '18+]
  - general maps with fixed number of edges
    - [Bettinelli, Jacob, Miermont, '14]
  - bipartite maps with prescribed degrees [Marzouk, '17]

イロン 不通 と 不同 と 不同 と

• etc. . .



 $\mathcal{O}\mathcal{A}\mathcal{O}$ 



< 🗗

> Any natural random Riemannian metric on a disk (or sphere)?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov,

Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].





(日)、(四)、(E)、(E)、(E)

- Any natural random Riemannian metric on a disk (or sphere)?
- ► Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].
- $\blacktriangleright$  Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on  $\mathbb D$

$$e^{\gamma h(z)} (\mathrm{d} x^2 + \mathrm{d} y^2) \qquad (z = x + i y)$$





・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Any natural random Riemannian metric on a disk (or sphere)?
- ► Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].
- $\blacktriangleright$  Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on  $\mathbb D$

$$e^{\gamma h(z)} (\mathrm{d}x^2 + \mathrm{d}y^2) \qquad (z = x + iy)$$

► Take *h* to be a Gaussian Free Field (GFF), i.e. *h* is Gaussian with covariance given by the Dirichlet Green's function  $G(z_1, z_2) = \log |z_1 - z_1| + O(1).$ More precisely  $Cov((h, f_1)_{\nabla}, (h, f_2)_{\nabla}) = (f_1, f_2)_{\nabla} := \frac{1}{2\pi} \int_{\mathbb{D}} \nabla f_1(z) \cdot \nabla f_2(z) dz.$ 







- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].
- $\blacktriangleright$  Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on  $\mathbb D$

$$e^{\gamma h(z)} (\mathrm{d}x^2 + \mathrm{d}y^2) \qquad (z = x + iy)$$

- Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with covariance given by the Dirichlet Green's function
   G(z<sub>1</sub>, z<sub>2</sub>) = log |z<sub>1</sub> - z<sub>1</sub>| + O(1). More precisely
   Cov((h, f<sub>1</sub>)<sub>∇</sub>, (h, f<sub>2</sub>)<sub>∇</sub>) = (f<sub>1</sub>, f<sub>2</sub>)<sub>∇</sub> := 1/2π ∫<sub>D</sub> ∇f<sub>1</sub>(z) · ∇f<sub>2</sub>(z)dz.
   h is a distribution. How to exponentiate?
- h is a distribution! How to exponentiate?







- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].
- $\blacktriangleright$  Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on  $\mathbb D$

$$e^{\gamma h(z)} (\mathrm{d}x^2 + \mathrm{d}y^2) \qquad (z = x + iy)$$

- Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with covariance given by the Dirichlet Green's function
   G(z<sub>1</sub>, z<sub>2</sub>) = log |z<sub>1</sub> z<sub>1</sub>| + O(1). More precisely
   Cov((h, f<sub>1</sub>)<sub>∇</sub>, (h, f<sub>2</sub>)<sub>∇</sub>) = (f<sub>1</sub>, f<sub>2</sub>)<sub>∇</sub> := 1/2π ∫<sub>D</sub> ∇f<sub>1</sub>(z) · ∇f<sub>2</sub>(z)dz.
   h is a distribution! How to exponentiate?
- ▶ Regularize: let  $h_{\epsilon}(z)$  be average of *h* on circle of radius  $\epsilon$ , then

$$\epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(z)} dx dy \xrightarrow[\epsilon \to 0]{\text{weak}} \mu_{LQG}$$
 "Liouville measure"

[Høegh-Krohn '71; Kahane, '85, Duplantier, Sheffield, '11]

$$\longrightarrow \mathbb{D}$$









#### Couple the geometry to a critical statistical system!











### Outline

 Intro to planar maps and Boltzmann distributions

Peeling exploration

Geometrical properties (beyond Brownian)

 Towards geometry of maps with an O(n) loop model









### Planar maps



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

► A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup>



### Planar maps



A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.




A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.





- A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.





- ► A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- ► A face of m is a region bounded by edges. Its degree is the number of bounding edges.





- ► A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of m is a region bounded by edges. Its degree is the number of bounding edges.
- Only consider bipartite maps: all faces of even degree.





- ► A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of m is a region bounded by edges. Its degree is the number of bounding edges.
- Only consider bipartite maps: all faces of even degree.
- The face to the right of the root is the root face. Its degree is the perimeter of m.





- ► A planar map m is a connected planar (multi)graph together with a proper embedding in S<sup>2</sup> viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of m is a region bounded by edges. Its degree is the number of bounding edges.
- Only consider bipartite maps: all faces of even degree.
- ► The face to the right of the root is the root face. Its degree is the perimeter of m.
- ▶ Think of m as a tessellation of the 2*p*-gon by (equilateral) polygons.



-

•  $\mathcal{M}_p = \{$ rooted, bipartite planar maps of perimeter  $2p\}$ .





- $\mathcal{M}_p = \{$ rooted, bipartite planar maps of perimeter  $2p\}$ .
- For  $\mathbf{q} = (q_1, q_2, \ldots) \ge 0$  define measure  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_{\text{faces } f} q_{\frac{\deg(f)}{2}}$ .





- $\mathcal{M}_p = \{\text{rooted, bipartite planar maps of perimeter } 2p\}.$
- For  $\mathbf{q} = (q_1, q_2, \ldots) \ge 0$  define measure  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_{\text{faces } f} q_{\frac{\deg(f)}{2}}$ .
- **q** admissible iff  $W^{(p)}(\mathbf{q}) \coloneqq w_{\mathbf{q}}(\mathcal{M}_p) < \infty$  for all  $p \ge 1$ .





- $\mathcal{M}_p = \{$ rooted, bipartite planar maps of perimeter  $2p\}$ .
- For  $\mathbf{q} = (q_1, q_2, \ldots) \ge 0$  define measure  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_{\text{faces } f} q_{\frac{\deg(f)}{2}}$ .
- **q** admissible iff  $W^{(p)}(\mathbf{q}) := w_{\mathbf{q}}(\mathcal{M}_p) < \infty$  for all  $p \ge 1$ .
- ▶ If **q** is admissible then  $w_{\mathbf{q}}(\cdot | \mathcal{M}_p)$  defines the **q**-Boltzmann planar map  $\mathfrak{m}^{(p)}$  of perimeter 2p.





- $\mathcal{M}_p = \{$ rooted, bipartite planar maps of perimeter  $2p\}$ .
- For  $\mathbf{q} = (q_1, q_2, \ldots) \ge 0$  define measure  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_{\text{faces } f} q_{\frac{\deg(f)}{2}}$ .
- ▶ **q** admissible iff  $W^{(p)}(\mathbf{q}) := w_{\mathbf{q}}(\mathcal{M}_p) < \infty$  for all  $p \ge 1$ .
- ▶ If **q** is admissible then  $w_{\mathbf{q}}(\cdot | \mathcal{M}_p)$  defines the **q**-Boltzmann planar map  $\mathfrak{m}^{(p)}$  of perimeter 2p.
- **q** is critical if it admissible and  $\operatorname{Var}(\mathfrak{m}^{(p)}) = \infty$ .



## Scaling limit of the graph distance

- Using bijections with trees, the Gromov-Hausdorff scaling limits of the graph distance are well-understood. Distinguish:

- generic critical q: Var(degree of typical face)  $< \infty$
- non-generic critical **q** of index  $\alpha \in (1,2)$ : fine-tuning
  - $q_k \sim C \kappa^k k^{-\alpha-1/2}$  such that  $\mathbb{P}(\text{degree of typical face} > k) \sim k^{-\alpha}$ .

## Scaling limit of the graph distance

- Using bijections with trees, the Gromov-Hausdorff scaling limits of the graph distance are well-understood. Distinguish:

- generic critical q:  $Var(degree of typical face) < \infty$
- non-generic critical **q** of index  $\alpha \in (1, 2)$ : fine-tuning
  - $q_k \sim C \, \kappa^k \, k^{-lpha-1/2}$  such that  $\mathbb{P}( ext{degree of typical face} > k) \sim k^{-lpha}.$

#### Theorem (Bettinelli, Miermont, '15)

If  ${\bf q}$  is generic critical (and degrees exponentially bounded), then

$$\left(\mathfrak{m}^{(p)}, p^{-1/2} d_{graph}(\cdot, \cdot)\right) \xrightarrow[p \to \infty]{(\mathrm{d})} Brownian disk of perimeter 1$$

## Scaling limit of the graph distance

Using bijections with trees, the Gromov-Hausdorff scaling limits of the graph distance are well-understood. Distinguish:



- generic critical q: Var(degree of typical face)  $< \infty$
- ▶ non-generic critical **q** of index  $\alpha \in (1, 2)$ : fine-tuning
  - $q_k \sim C \, \kappa^k \, k^{-lpha 1/2}$  such that  $\mathbb{P}( ext{degree of typical face} > k) \sim k^{-lpha}.$

#### Theorem (Bettinelli, Miermont, '15)

If  ${\boldsymbol{q}}$  is generic critical (and degrees exponentially bounded), then

$$\left(\mathfrak{m}^{(p)}, p^{-1/2} d_{graph}(\cdot, \cdot)\right) \xrightarrow[p \to \infty]{(\mathrm{d})} Brownian \ disk \ of \ perimeter \ 1$$

Theorem (Le Gall, Miermont, '11; Marzouk, '18)

If **q** is non-generic critical of index  $\alpha \in (1,2)$ , then

$$\left(\mathfrak{m}^{(p)}, |\mathfrak{m}^{(p)}|^{-\frac{1}{2\alpha}} d_{graph}(\cdot, \cdot)\right) \xrightarrow[|\mathfrak{m}^{(p)}| \to \infty]{(\mathrm{d})} \alpha$$
-stable map

with a.s. Hausdorff dimension  $2\alpha \in (2, 4)$ .



(日) (個) (目) (目) (目) (目)



 Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]





(日) (個) (目) (目) (目) (目)

- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \bigotimes} g^{\#} \prod_{\text{reg. faces } f} q_{\frac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \mathfrak{m}} g^{\# \square} \prod_{\text{reg. faces } f} q_{rac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.

If admissible, w<sub>n,g,q</sub>(M<sup>loop</sup><sub>p</sub>) < ∞, then it defines the (n,g,q)-Boltzmann loop-decorated map m<sup>(p)</sup>.





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \mathfrak{m}} g^{\# \square} \prod_{\text{reg. faces } f} q_{rac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.

If admissible, w<sub>n,g,q</sub>(M<sup>loop</sup><sub>p</sub>) < ∞, then it defines the (n,g,q)-Boltzmann loop-decorated map m<sup>(p)</sup>.

For n ∈ (0, 2), the system exhibits four phases as p → ∞: [Borot, Bouttier, Guitter, '11] [TB, Chen, '18]

- subcritical: treelike/only see boundary
- pure gravity: microscopic loops
- dilute critical: self-avoiding loops
- dense critical: self-touching loops





- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \mathfrak{m}} g^{\# \square} \prod_{\text{reg. faces } f} q_{rac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.

- If admissible, w<sub>n,g,q</sub>(M<sup>loop</sup><sub>p</sub>) < ∞, then it defines the (n,g,q)-Boltzmann loop-decorated map m<sup>(p)</sup>.
- For n ∈ (0, 2), the system exhibits four phases as p → ∞: [Borot, Bouttier, Guitter, '11] [TB, Chen, '18]
  - subcritical: treelike/only see boundary
  - pure gravity: microscopic loops
  - dilute critical: self-avoiding loops
  - dense critical: self-touching loops







- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \mathfrak{m}} g^{\#} \prod_{\text{reg. faces } f} q_{\frac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.

 The gasket of a loop-decorated map is the map exterior to all loops.



◆□> ◆□> ◆豆> ◆豆> □豆

- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \mathfrak{m}} g^{\#} \prod_{\text{reg. faces } f} q_{\frac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.

- The gasket of a loop-decorated map is the map exterior to all loops.
- ► It is distributed as a  $\hat{\mathbf{q}}$ -Boltzmann planar map, with  $\hat{q}_k = q_k + n g^{2k} w_{n,g,\mathbf{q}} (\mathcal{M}_k^{\text{loop}}).$



- Rigid O(n) loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$w_{n,g,\mathbf{q}}(\mathfrak{m}) = n^{\# \mathfrak{m}} g^{\#} \prod_{\text{reg. faces } f} q_{\frac{\deg(f)}{2}}$$

for  $n, g, \mathbf{q} > 0$  fixed.

- The gasket of a loop-decorated map is the map exterior to all loops.
- ► It is distributed as a  $\hat{\mathbf{q}}$ -Boltzmann planar map, with  $\hat{q}_k = q_k + n g^{2k} w_{n,g,\mathbf{q}} (\mathcal{M}_k^{\text{loop}}).$ 
  - $\hat{\mathbf{q}}$  is admissible iff  $(n, g, \mathbf{q})$  is.
  - $\hat{\mathbf{q}}$  is non-generic critical with index  $\alpha = \frac{3}{2} \frac{1}{\pi} \arccos \frac{n}{2} \in (1, 3/2)$ iff  $(n, g, \mathbf{q})$  is dense critical.
  - $\hat{\mathbf{q}}$  is non-generic critical with index  $\alpha = \frac{3}{2} + \frac{1}{\pi} \arccos \frac{n}{2} \in (3/2, 2)$ iff  $(n, g, \mathbf{q})$  is dilute critical.













## Look at dual graph distances

The dual map of a non-generic critical Boltzmann planar map supports vertices of high degree.





(日)、

э

## Look at dual graph distances

The dual map of a non-generic critical Boltzmann planar map supports vertices of high degree.



 Opportunity to obtain new universality classes that do have topology of S<sup>2</sup>.



## Look at dual graph distances

The dual map of a non-generic critical Boltzmann planar map supports vertices of high degree.



 Opportunity to obtain new universality classes that do have topology of S<sup>2</sup>.



No tree bijections available: use peeling exploration!



A planar map with holes e is a planar map with a set of distinguished, simple, disjoint faces (the "holes").







► A planar map with holes e is a planar map with a set of distinguished, simple, disjoint faces (the "holes").



▶ Submap:  $e \subset m$  iff the holes can be filled in by maps to obtain m.



A planar map with holes e is a planar map with a set of distinguished, simple, disjoint faces (the "holes").



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Submap:  $e \subset m$  iff the holes can be filled in by maps to obtain m.



► A planar map with holes e is a planar map with a set of distinguished, simple, disjoint faces (the "holes").



▶ Submap:  $e \subset m$  iff the holes can be filled in by maps to obtain m.



▶ Peeling exploration: associate to a map  $\mathfrak{m}$  a deterministic sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \cdots \subset \mathfrak{m}$  of growing submaps.



► A planar map with holes ¢ is a planar map with a set of distinguished, simple, disjoint faces (the "holes").



▶ Submap:  $e \subset m$  iff the holes can be filled in by maps to obtain m.



▶ Peeling exploration: associate to a map  $\mathfrak{m}$  a deterministic sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \cdots \subset \mathfrak{m}$  of growing submaps.

Fix peel algorithm  $\mathcal{A}$  that selects an edge  $\mathcal{A}(\mathfrak{e})$  incident to hole of  $\mathfrak{e}$ .



➤ A planar map with holes e is a planar map with a set of distinguished, simple, disjoint faces (the "holes").



▶ Submap:  $e \subset m$  iff the holes can be filled in by maps to obtain m.



- ▶ Peeling exploration: associate to a map  $\mathfrak{m}$  a deterministic sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \cdots \subset \mathfrak{m}$  of growing submaps.
  - ▶ Fix peel algorithm A that selects an edge A(𝔅) incident to hole of 𝔅.
  - e<sub>i+1</sub> is minimal submap, e<sub>i</sub> ⊂ e<sub>i+1</sub> ⊂ m, such that A(e<sub>i</sub>) not incident to hole: reveals new face of m or glues pair of edges on the hole.





For a q-Boltzmann planar map m<sup>(p)</sup> and e fixed, conditionally on e ⊂ m the maps filling in the holes of e are distributed as independent Boltzmann planar maps.

<ロト <回ト < 注ト < 注ト


For a q-Boltzmann planar map m<sup>(p)</sup> and e fixed, conditionally on e ⊂ m the maps filling in the holes of e are distributed as independent Boltzmann planar maps.

<ロト <回ト < 注ト < 注ト



For a q-Boltzmann planar map m<sup>(p)</sup> and e fixed, conditionally on e ⊂ m the maps filling in the holes of e are distributed as independent Boltzmann planar maps.

Hence (\varepsilon\_i) is a Markov process with transition probabilities (W<sup>(p)</sup> = w<sub>q</sub>(M<sup>(p)</sup>)):



If the map m<sub>●</sub> ∈ M<sub>●</sub><sup>(p)</sup> has a marked vertex, one may track the hole containing the vertex





If the map m<sub>•</sub> ∈ M<sup>(p)</sup><sub>•</sub> has a marked vertex, one may track the hole containing the vertex and its half-degree (P<sub>i</sub>), the perimeter process.



If the map m<sub>•</sub> ∈ M<sub>•</sub><sup>(p)</sup> has a marked vertex, one may track the hole containing the vertex and its half-degree (P<sub>i</sub>), the perimeter process.



▶ For a pointed **q**-Boltzmann planar map  $\mathfrak{m}_{\bullet}^{(p)}$ 



▶ If the map  $\mathfrak{m}_{\bullet} \in \mathcal{M}^{(p)}_{\bullet}$  has a marked vertex, one may track the hole containing the vertex and its half-degree  $(P_i)$ , the perimeter process.



• As  $\ell \to \infty$  it takes the law of a random walk on  $\mathbb Z$  with distribution  $\mathbb{P}(P_{i+1} = \ell + k | P_i = \ell) \to \nu(k) \coloneqq \begin{cases} q_{k+1} \kappa^{-k} & k \ge 0\\ 2W^{(-k-1)} \kappa^{-k} & k < 0 \end{cases}$ 

 $k \ge 0$ 

$$u(k)=egin{cases} q_{k+1}\kappa^{-k}&k\geq 0\ 2W^{(-k-1)}\kappa^{-k}&k<0 \end{cases}$$

• Let  $(S_i)$  be a random walk of law  $\nu$ .



・ロト ・四ト ・ヨト ・ヨト

$$u(k) = egin{cases} q_{k+1}\kappa^{-k} & k \geq 0 \ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

▶ Let (S<sub>i</sub>) be a random walk of law ν.
▶ How are (S<sub>i</sub>) and (P<sub>i</sub>) related?



<ロト <回ト < 注ト < 注ト

э

$$u(k) = egin{cases} q_{k+1}\kappa^{-k} & k \geq 0 \ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- Let  $(S_i)$  be a random walk of law  $\nu$ .
- How are  $(S_i)$  and  $(P_i)$  related?



- ▶  $\mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p) := 4^{-p} \binom{2p}{p} \text{ independent of } \mathbf{q}.$
- $(P_i) \stackrel{\text{(d)}}{=} (S_i)$  conditioned to hit  $\mathbb{Z}_{\leq 0}$  at 0.

$$\nu(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0\\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- Let  $(S_i)$  be a random walk of law  $\nu$ .
- How are  $(S_i)$  and  $(P_i)$  related?



- ▶  $\mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p) := 4^{-p} \binom{2p}{p} \text{ independent of } \mathbf{q}.$
- $(P_i) \stackrel{\text{(d)}}{=} (S_i)$  conditioned to hit  $\mathbb{Z}_{\leq 0}$  at 0.
- $\mathbf{q} \rightarrow \nu$  defines a bijection

 $\{\mathbf{q} \text{ admissible}\} \longleftrightarrow \{\nu : \mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p)\}$ 

$$\nu(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0\\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- Let  $(S_i)$  be a random walk of law  $\nu$ .
- How are  $(S_i)$  and  $(P_i)$  related?



- ▶  $\mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p) := 4^{-p} \binom{2p}{p} \text{ independent of } \mathbf{q}.$
- $(P_i) \stackrel{\text{(d)}}{=} (S_i)$  conditioned to hit  $\mathbb{Z}_{\leq 0}$  at 0.
- $\mathbf{q} \rightarrow \nu$  defines a bijection

 $\{\mathbf{q} \text{ admissible}\} \longleftrightarrow \{\nu : \mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p)\}$ 

▶ **q** critical  $\longleftrightarrow \nu$  centered

$$\nu(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0\\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- Let  $(S_i)$  be a random walk of law  $\nu$ .
- How are  $(S_i)$  and  $(P_i)$  related?



- ▶  $\mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p) := 4^{-p} \binom{2p}{p} \text{ independent of } \mathbf{q}.$
- $(P_i) \stackrel{(d)}{=} (S_i)$  conditioned to hit  $\mathbb{Z}_{\leq 0}$  at 0.
- $\mathbf{q} \rightarrow \nu$  defines a bijection

 $\{\mathbf{q} \text{ admissible}\} \longleftrightarrow \{\nu : \mathbb{P}_p[(S_i) \text{ hits } \mathbb{Z}_{\leq 0} \text{ at } 0] = h^{\downarrow}(p)\}$ 

- ▶ **q** critical  $\longleftrightarrow \nu$  centered
- q non-generic critical of index α ∈ (1,2) ↔ (S<sub>i</sub>) in the basin of attraction of an (α <sup>1</sup>/<sub>2</sub>)-stable process: ν(±k) ~ c<sub>±</sub>k<sup>-α-1/2</sup>.

- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - Then the laws of neighbourhoods of the root converge in distribution as n → ∞ to those of a unique random infinite map:

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_{\infty}$ .





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - Then the laws of neighbourhoods of the root converge in distribution as n→∞ to those of a unique random infinite map:

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_\infty.$ 

 $\blacktriangleright$  Finite submaps of  $\mathfrak{m}_\infty$  have a distinguished hole containing  $\infty.$ 





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - ▶ Then the laws of neighbourhoods of the root converge in distribution as  $n \to \infty$  to those of a unique random infinite map:

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_\infty.$ 

- $\blacktriangleright$  Finite submaps of  $\mathfrak{m}_\infty$  have a distinguished hole containing  $\infty.$
- Peeling exploration targeting  $\infty$  has perimeter process ( $P_i$ ).







- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - ▶ Then the laws of neighbourhoods of the root converge in distribution as  $n \to \infty$  to those of a unique random infinite map:

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_\infty.$ 

- $\blacktriangleright$  Finite submaps of  $\mathfrak{m}_\infty$  have a distinguished hole containing  $\infty.$
- Peeling exploration targeting  $\infty$  has perimeter process ( $P_i$ ).





- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - ► Then the laws of neighbourhoods of the root converge in distribution as  $n \to \infty$  to those of a unique random infinite map:

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_\infty.$ 

- $\blacktriangleright$  Finite submaps of  $\mathfrak{m}_\infty$  have a distinguished hole containing  $\infty.$
- Peeling exploration targeting  $\infty$  has perimeter process ( $P_i$ ).







- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - ► Then the laws of neighbourhoods of the root converge in distribution as  $n \to \infty$  to those of a unique random infinite map:

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_\infty.$ 

- $\blacktriangleright$  Finite submaps of  $\mathfrak{m}_\infty$  have a distinguished hole containing  $\infty.$
- Peeling exploration targeting  $\infty$  has perimeter process ( $P_i$ ).





- Benjamini-Schramm-type local limit:
  - Let **q** be critical and condition a **q**-BPM to have *n* vertices.
  - ► Then the laws of neighbourhoods of the root converge in distribution as n→∞ to those of a unique random infinite map:
    [0] The second sec

[Björnberg, Stefánsson, '14] [Stephenson, '14]

the infinite Boltzmann planar map  $\mathfrak{m}_\infty.$ 

- $\blacktriangleright$  Finite submaps of  $\mathfrak{m}_\infty$  have a distinguished hole containing  $\infty.$
- Peeling exploration targeting  $\infty$  has perimeter process ( $P_i$ ).



#### Theorem (TB '15)

For **q** critical the perimeter process  $(P_i)$  has the law of the random walk  $(S_i)$  conditioned to stay positive.

























(日)、







・ロト ・聞ト ・ヨト ・ヨト







・ロト ・聞ト ・ヨト ・ヨト







(日)、













▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで







<ロト <回ト < 注ト < 注ト













э







э



7



#### Proposition (TB, Curien, '16)

If **q** is non-generic critical of index  $\alpha \in (1,2)$  then the perimeter process of  $\mathfrak{m}_{\infty}$  satisfies the scaling limit (in the sense of Skorokhod)

$$\left(\frac{P_{\lfloor \lambda t \rfloor}}{\lambda^{1/(\alpha-1/2)}}\right)_{t \ge 0} \xrightarrow[\lambda \to \infty]{(\mathrm{d})} c\,(S_t^{\uparrow})_{t \ge 0},$$

where  $(S_t^{\uparrow})$  is an  $(\alpha - 1/2)$ -stable Lévy process started at 0 and conditioned to stay positive.



#### Proposition (TB, Curien, '16)

If **q** is non-generic critical of index  $\alpha \in (1,2)$  then the perimeter process of  $\mathfrak{m}_{\infty}$  satisfies the scaling limit (in the sense of Skorokhod)

$$\left(\frac{P_{\lfloor \lambda t \rfloor}}{\lambda^{1/(\alpha-1/2)}}\right)_{t \ge 0} \xrightarrow[\lambda \to \infty]{(\mathrm{d})} c\,(S_t^{\uparrow})_{t \ge 0},$$

where  $(S_t^{\uparrow})$  is an  $(\alpha - 1/2)$ -stable Lévy process started at 0 and conditioned to stay positive.

### Dual graph distance

► To explore the map by increasing dual graph distance



・ロト ・聞ト ・ヨト ・ヨト

э.



### Dual graph distance

► To explore the map by increasing dual graph distance



э

イロト イポト イヨト イヨト



## Dual graph distance

► To explore the map by increasing dual graph distance, peel by layers.

 $\mathcal{A}(\mathfrak{e}_n) =$ left-most edge incident to face at minimal distance.




► To explore the map by increasing dual graph distance, peel by layers:

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► To explore the map by increasing dual graph distance, peel by layers.

 $\mathcal{A}(\mathfrak{e}_n) =$ left-most edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers.

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers.

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers.

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers:

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers.

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers:

 $\mathcal{A}(\mathfrak{e}_n) = \mathsf{left}\mathsf{-most}$  edge incident to face at minimal distance.





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► To explore the map by increasing dual graph distance, peel by layers:

 $\mathcal{A}(\mathfrak{e}_n) =$ left-most edge incident to face at minimal distance.





► To explore the map by increasing dual graph distance, peel by layers:

 $\mathcal{A}(\mathfrak{e}_n) =$ left-most edge incident to face at minimal distance.

5 Theorem (TB, Curien, '16; TB, Curien, Marzouk, '17) If **q** is non-generic of index  $\alpha \in (1, 2)$ , then  $|Ball_r| \approx \begin{cases} r^{\frac{\alpha}{\alpha-3/2}} & \frac{3}{2} < \alpha < 2\\ e^{\frac{3\pi}{\sqrt{2}}\sqrt{r}} & \alpha = \frac{3}{2} \\ e^{c\,r} & 1 < \alpha < \frac{3}{2} \end{cases}, \quad |\partial Ball_r| \approx \begin{cases} r^{\frac{1}{\alpha-3/2}} & \frac{3}{2} < \alpha < 2\\ e^{\pi\sqrt{2}\sqrt{r}} & \alpha = \frac{3}{2} \\ e^{c'\,r} & 1 < \alpha < \frac{3}{2} \end{cases}$ For  $\alpha > \frac{3}{2}$  scaling limits for  $\lambda^{\frac{-\alpha}{\alpha-3/2}}|Ball_{\lambda r}|$  and  $\lambda^{\frac{-1}{\alpha-3/2}}|\partial Ball_{\lambda r}|$  are known.

|       | $1 < \alpha < \frac{3}{2}$    | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | $\approx n$            | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |

|       | $1 < \alpha < \frac{3}{2}$    | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | $\approx n$            | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

|       | $1 < \alpha < \frac{3}{2}$    | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | pprox n                | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

|       | $  1 < \alpha < \frac{3}{2}$  | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | pprox n                | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
| _     | I                             |                        |                               |
|       | •                             |                        |                               |
| r+1   |                               |                        |                               |
|       | • • •                         | r                      | • • • •                       |

|       | $1 < \alpha < \frac{3}{2}$      | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|---------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{\alpha-1/2}}$ | pprox n                | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                                 |                        |                               |
|       |                                 |                        |                               |
|       |                                 |                        |                               |
|       |                                 |                        |                               |
|       |                                 |                        | і I                           |
|       | $\bigwedge$                     |                        |                               |



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

|       | $1 < \alpha < \frac{3}{2}$    | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | pprox n                | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
| • • • |                               |                        |                               |
|       | $\frown$                      |                        |                               |

r+1 r

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

|       | $1 < \alpha < \frac{3}{2}$    | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | pprox n                | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |



|       | $1 < \alpha < \frac{3}{2}$    | $\alpha = \frac{3}{2}$ | $\frac{3}{2} < \alpha < 2$    |
|-------|-------------------------------|------------------------|-------------------------------|
| $P_n$ | $pprox n^{rac{1}{lpha-1/2}}$ | pprox n                | $pprox n^{rac{1}{lpha-1/2}}$ |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |
|       |                               |                        |                               |



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ









▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで





 $\leftarrow P$ -

 $\overline{r}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



|                |                               | $  1 < \alpha < \frac{3}{2}$  | $\alpha = \frac{3}{2}$                                 | $\frac{3}{2} < \alpha < 2$                                                   |
|----------------|-------------------------------|-------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| -              | $P_n$                         | $pprox n^{rac{1}{lpha-1/2}}$ | $\approx n$                                            | $pprox n^{rac{1}{lpha-1/2}}$                                                |
| Steps<br>layer | to complete of perim. $P$     | $\approx P^{\alpha - 1/2}$    | $pprox rac{P}{\log P}$                                | $\approx P$                                                                  |
| aft            | Distance<br>er <i>n</i> steps |                               | $\sum_{i=0}^n \frac{\log P_i}{P_i} \approx (\log n)^2$ | $\sum_{i=0}^{n} \frac{1}{P_i} \approx n^{\frac{\alpha - 3/2}{\alpha - 1/2}}$ |
|                |                               |                               |                                                        |                                                                              |



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



◆□> ◆□> ◆三> ◆三> ・三 のへの



 $1 < \alpha < \frac{3}{2}$  $\frac{3}{2} < \alpha < 2$  $\alpha = \frac{3}{2}$  $\approx n^{\frac{1}{\alpha - 1/2}}$  $\approx n^{\frac{1}{\alpha - 1/2}}$  $\approx n$  $P_n$  $\approx P^{\alpha - 1/2}$  $\approx \frac{P}{\log P}$ Steps to complete  $\approx P$ layer of perim. P $\sum_{i=0}^n \frac{\log P_i}{P_i} \approx (\log n)^2 \left| \sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{\alpha - 3/2}{\alpha - 1/2}} \right|$ Distance after *n* steps  $\approx 1$  $\underset{(\mathbb{E}\mathcal{Z} > 0)}{\approx} e^{\mathcal{Z}}$  $\approx 1$ P'/P $\approx e^{cr}$  $\approx e^{\pi\sqrt{2}\sqrt{r}}$  $pprox r^{rac{1}{lpha-3/2}}$  $|\partial \text{Ball}_r|$ r



|                                          | $  1 < \alpha < \frac{3}{2}$                          | $\alpha = \frac{3}{2}$                                   | $\frac{3}{2} < \alpha < 2$                                             |
|------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| $P_n$                                    | $pprox n^{rac{1}{lpha-1/2}}$                         | pprox n                                                  | $pprox n^{rac{1}{lpha-1/2}}$                                          |
| Steps to complete<br>layer of perim. $P$ | $\approx P^{\alpha - 1/2}$                            | $pprox rac{P}{\log P}$                                  | $\approx P$                                                            |
| Distance after $n$ steps                 |                                                       | $\sum_{i=0}^{n} \frac{\log P_i}{P_i} \approx (\log n)^2$ | $\sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{\alpha-3/2}{\alpha-1/2}}$ |
| P'/P                                     | $pprox e^{\mathcal{Z}}_{(\mathbb{E}\mathcal{Z} > 0)}$ | $\approx 1$                                              | $\approx 1$                                                            |
| $ \partial \mathrm{Ball}_r $             | $\approx e^{cr}$                                      | $\approx e^{\pi\sqrt{2}\sqrt{r}}$                        | $\approx r^{\frac{1}{\alpha-3/2}}$                                     |
| $ \operatorname{Ball}_r $                | $e^{c'r}$                                             | $e^{\frac{3\pi\sqrt{\tau}}{\sqrt{2}}}r$                  | $r^{\frac{\alpha}{\alpha-3/2}}r$                                       |

・ロト・日本・モート モー うへぐ



 $1 < \alpha < \frac{3}{2}$  $\frac{3}{2} < \alpha < 2$  $\alpha = \frac{3}{2}$  $pprox n^{rac{1}{lpha-1/2}}$  $\approx n^{\frac{1}{\alpha-1/2}}$  $\approx n$  $P_n$  $\approx P^{\alpha - 1/2}$  $\approx \frac{P}{\log P}$ Steps to complete  $\approx P$ layer of perim. PDistance  $\sum_{i=0}^n \frac{\log P_i}{P_i} \approx (\log n)^2 \Bigg| \quad \sum_{i=0}^n \frac{1}{P_i} \approx n^{\frac{\alpha - 3/2}{\alpha - 1/2}}$ after *n* steps  $\approx 1$  $\underset{(\mathbb{E}\mathcal{Z} > 0)}{\approx} e^{\mathcal{Z}}$  $\approx 1$ P'/P $\approx e^{cr}$  $\approx e^{\pi\sqrt{2}\sqrt{r}}$  $pprox r^{rac{1}{\alpha-3/2}}$  $|\partial \text{Ball}_r|$  $3\pi\sqrt{2}$  $r^{\frac{\alpha}{\alpha-3/2}}$  $\rho c'r$  $|\text{Ball}_r|$ rScaling limit

◆□> ◆□> ◆三> ◆三> 三三 のへぐ

 $\alpha = 1.3$ 



 $\alpha = 1.3$ 



#### Theorem (TB, Curien, '16)

When  $\alpha < 3/2$  the map and its dual both contain infinitely many cut vertices separating root from  $\infty$ .

 $\alpha = 1.3$ 







 $\alpha = 1.2$ 



#### Simulations: Cauchy case





## Simulations: Cauchy case





#### Theorem (TB, Curien, Marzouk '17)

Again infinitely many cut vertices, but their number grows only like log log(volume).

## Simulations: dilute case



 $\alpha = 1.8$ 



## Simulations: dilute case

 $\alpha = 1.8$ 




## Simulations: dilute case

 $\alpha = 1.85$ 





## Simulations: dilute case

 $\alpha = 1.95$ 

