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distance is
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R xRx’
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with the inf over correspondences
R,ie. RC S x S with each
element of S and S’ appearing at
least once in the relation.
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Brownian sphere

Convergence in distribution
w.r.t. Gromov-Hausdorff
n—0o0 topology on metric spaces
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Properties of the Brownian sphere:

» Topology of S? a.s.
[Le Gall, Paulin, '08;, Miermont, '08]

» Hausdorff dimension 4 a.s.
[Le Gall, '07]

» Spectral dimension 2 a.s
[Gwynne, Miller, '18]
» Universal scaling limit of
> p-angulations, p > 3 [Le
Gall, '11; Albenque, '18+]
> general maps with fixed
number of edges
[Bettinelli, Jacob, Miermont, '14]
> bipartite maps with
prescribed degrees
[Marzouk, '17]
> etc...
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Any natural random Riemannian metric on a disk (or sphere)?
Addressed already in '80s in the context of string theory [Polyakov,
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e”h(z)(dx2 + dyz) (z=x+iy)
Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with
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Any natural random Riemannian metric on a disk (or sphere)?
Addressed already in '80s in the context of string theory [Polyakov,
Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].

Uniformization: can parametrize as a conformal rescaling of a fixed
flat metric on D

e”h(z)(dx2 + dyz) (z=x+iy)

Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with
covariance given by the Dirichlet Green's function
G(z1,2) = log |z1 — z1| + O(1). More precisely

Cov((h, fi)v,(hh)v) = (h, h)v = %/DV&(Z)Vfg(z)dz.

h is a distribution! How to exponentiate?
Regularize: let h.(z) be average of h on circle of radius ¢, then

2 k uy . "
/27 @dxdy Ea—()—) pLqe  “Liouville measure
€E—>

[Hgegh-Krohn '71; Kahane, '85, Duplantier, Sheffield, '11]
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Quantum Loewner Evolution
[Miller, Sheffield, '16]
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Brownian sphere LQG,

Quantum Loewner Evolution
[Miller, Sheffield, '16]

B —

Uniformization
[Gwynne, Miller, Sheffield, '18]

How about other values of
§,°r' v # 1/8/3? A Conjectured
n—oo top KO 1 convergence of

or ! measure on §2

[Le

“How to escape the Brownian
universality class?”
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Couple the geometry to a critical statistical system!

Uniformization of
A Riemannian metric
A%
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Outline

» Intro to planar maps and Boltzmann
distributions

> Peeling exploration

» Geometrical properties (beyond Brownian)

» Towards geometry of maps with an O(n) loop
model
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» A planar map m is a connected planar (multi)graph together with a
proper embedding in S viewed up to (orientation-preserving)
homeomorphisms.

» Always take planar maps to be rooted.

> A face of m is a region bounded by edges. Its degree is the number
of bounding edges.

» Only consider bipartite maps: all faces of even degree.

> The face to the right of the root is the root face. Its degree is the
perimeter of m.
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Planar maps

» A planar map m is a connected planar (multi)graph together with a
proper embedding in S viewed up to (orientation-preserving)
homeomorphisms.

» Always take planar maps to be rooted.

> A face of m is a region bounded by edges. Its degree is the number
of bounding edges.

» Only consider bipartite maps: all faces of even degree.

> The face to the right of the root is the root face. Its degree is the
perimeter of m.

» Think of m as a tessellation of the 2p-gon by (equilateral) polygons.

perimeter 2p

T

4o
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» M, = {rooted, bipartite planar maps of perimeter 2p}.
For g = (g1, G2, ...) > 0 define measure wg(m) = [ [(,ces f Geeatrs -
2
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q admissible iff W(P)(q) := wq(M,) < oo for all p > 1.

If q is admissible then wq( - | M) defines the g-Boltzmann planar
map m(P) of perimeter 2p.
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Boltzmann planar maps

» M, = {rooted, bipartite planar maps of perimeter 2p}.
For g = (g1, G2, ...) > 0 define measure wg(m) = [ [(,ces f Geeatrs -
2

q admissible iff W(P)(q) := wq(M,) < oo for all p > 1.

If q is admissible then wq( - | M) defines the g-Boltzmann planar
map m(P) of perimeter 2p.

v

v

v

> q is critical if it admissible and Var|m(P)| = co.

SNy



Scaling limit of the graph distance

» Using bijections with trees, the Gromov-Hausdorff scaling limits of
the graph distance are well-understood. Distinguish:
> generic critical q: Var(degree of typical face) < co
> non-generic critical q of index a € (1,2): fine-tuning
gk ~ C k¥ k=212 such that P(degree of typical face > k) ~ k™.
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Scaling limit of the graph distance Al

» Using bijections with trees, the Gromov-Hausdorff scaling limits of A
the graph distance are well-understood. Distinguish:

> generic critical q: Var(degree of typical face) < co
> non-generic critical q of index a € (1,2): fine-tuning
gk ~ C k¥ k=212 such that P(degree of typical face > k) ~ k™°.
Theorem (Bettinelli, Miermont, '15)

If q is generic critical (and degrees exponentially bounded), then

(m(p), p_l/zdgraph(-, )) pi%) Brownian disk of perimeter 1

Theorem (Le Gall, Miermont, '11; Marzouk, '18)

If q is non-generic critical of index « € (1,2), then

(m(p), |m(P)|~ 2% graph(*s .)> — 9D ostable map

|m(P)| = o0

with a.s. Hausdorff dimension 2a € (2,4).




Stable map

non-generic Boltzmann map

[Courtesy of N. Curien]

macroscopic holes
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» Rigid O(n) loop model: Draw disjoint loops
that intersect quadrangles through opposite
sides. [Borot, Bouttier, Guitter, '11]

» Assign weight to map with loops by

Wp,g,q(M) = ’7#%3#E H qaestr)

reg. faces f

for n,g,q > 0 fixed.

> If admissible, wp g q(M°P) < oo, then it
defines the (n, g, q)-Boltzmann
loop-decorated map m(P).

» For n € (0,2), the system exhibits four
phases as p — 00! [Borot, Bouttier, Guitter, '11]
[TB, Chen, '18]

> subcritical: treelike/only see boundary
> pure gravity: microscopic loops

> dilute critical: self-avoiding loops

> dense critical: self-touching loops

Subcritical q
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Relation to the O(n) loop model

» Rigid O(n) loop model: Draw disjoint loops
that intersect quadrangles through opposite
sides. [Borot, Bouttier, Guitter, '11]

> Assign weight to map with loops by

Wn,g,q(m) = n# g H qes(n)
reg. faces f
for n,g,q > 0 fixed.
» The gasket of a loop-decorated map is the
map exterior to all loops.
» It is distributed as a §-Boltzmann planar
map, with §x = g, + ng2* ng)q(/\/ll,fop).
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Relation to the O(n) loop model

» Rigid O(n) loop model: Draw disjoint loops
that intersect quadrangles through opposite
sides. [Borot, Bouttier, Guitter, '11]

> Assign weight to map with loops by

Wp,g,q(m) = '7#%{9’9(7éE H qdeg()

reg. faces f

for n,g,q > 0 fixed.

» The gasket of a loop-decorated map is the
map exterior to all loops.
» It is distributed as a §-Boltzmann planar
A I
map, with Gk = qx + n g2 wy g q(MP).
> § is admissible iff (n, g, q) is.
> § is non-generic critical with index
a=32—Larccos 2 €(1,3/2)
iff (n, g, q) is dense critical.
> § is non-generic critical with index
a=32+ Larccos 2 € (3/2,2)
iff (n, g, q) is dilute critical. @ = + g% Wi g q(MPP)




Simulation: dilute quadrangulation (g2 > 0,g1 =¢g3 = ...
p=50,n=0.6
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supports vertices of high degree.
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Look at dual graph distances %

» The dual map of a non-generic critical Boltzmann planar map
supports vertices of high degree.

A/

» Opportunity to obtain new universality classes that do have topology
of S2.

» No tree bijections available: use peeling exploration!
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» A planar map with holes ¢ is a planar map with a set of
distinguished, simple, disjoint faces (the “holes”).
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Peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

» A planar map with holes ¢ is a planar map with a set of
distinguished, simple, disjoint faces (the “holes”).
» Submap: ¢ C m iff the holes can be filled in by maps to obtain m.

¥ %

» Peeling exploration: associate to a map m a deterministic sequence
¢g C e; C --+ C m of growing submaps.
> Fix peel algorithm A that selects an edge .A(¢) incident to hole of e.
> ¢;41 is minimal submap, ¢; C ¢i11 C m, such that A(e;) not incident
to hole: reveals new face of m or glues pair of edges on the hole.
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» For a g-Boltzmann planar map m(®) and ¢ fixed, conditionally on
¢ C m the maps filling in the holes of ¢ are distributed as
independent Boltzmann planar maps.

> Hence (¢;) is a Markov process with transition probabilities
(W) = wq(M(P))):

@O

1W(£+k) w k=1 p7 (1=k)

Transition probability: ~Zk+
P v WD Q)




Targeted peeling exploration

> If the map m, € M(.P) has a marked vertex, one may track the hole
containing the vertex
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Targeted peeling exploration
> If the map m, €

M(P has a marked vertex, one may track the hole
contalnmg the vertex and its half-degree (P ), the perimeter process.
Py = P =5 0

> For a pointed g- Boltzmann planar map me

m,
(p)

Py = P = — —w

i+1 = {+ k| 0= W E>0 Wi

k<0



Targeted peeling exploration

> If the map m, € M(P has a marked vertex, one may track the hole
containing the vertex and its half-degree (P
Py=4

the perimeter process.
¢o €1

» For a pointed q-Boltzmann planar map me

(p)
@t 1W (0+k)
Pa=t+kP=0= w0

W( —k— I)W(“'k)

k<0
» As { — oo it takes the law of a random walk on Z with distribution
Q1k " k>0
P(Pit1 =L+ k|P; = 1) = v(k) = W (—k=1) .~k

k<0

=



—k
Qk+1K k>0
k p—
v(k) {2W(k%k k<0

> Let (S;) be a random walk of law v.




v(k) = 1k~ k20
Wk =k k<0

. N ,
» Let (S;) be a random walk of law v. .| = ¢ \/ N
» How are (S;) and (P;) related? '



—k ¢
dk+1k k>0 s P
K) = 4 ,
v(k) {ZW(kl)/-@k k<0 P

> Let (S;) be a random walk of law v.
» How are (S;) and (P;) related?

Proposition (TB, '15; TB, Curien, '17)
> P,[(Si) hits Z<g at 0] = h+(p) = 4‘P(2:) independent of q.

> (P) 2 (S:) conditioned to hit Zo at 0.




Wi = St k20 7
QWkDk k<0 Y

> Let (S;) be a random walk of law v.
» How are (S;) and (P;) related?

Proposition (TB, '15; TB, Curien, '17)
» P, [(5,-) hits Z<o at 0] = h*(p) = 4*P(2:) independent of q.

> (P) = (Si) conditioned to hit Z<y at 0.

> q — v defines a bijection

{q admissible} < {v : P,[(S;) hits Z<o at 0] = h*(p)}

=
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> Let (S;) be a random walk of law v.
» How are (S;) and (P;) related?

Proposition (TB, '15; TB, Curien, '17)
» P, [(5,-) hits Z<o at 0] = h*(p) = 4*P(2:) independent of q.

> (P) = (Si) conditioned to hit Z<y at 0.

> q — v defines a bijection
{q admissible} < {v : P,[(S;) hits Z<o at 0] = h*(p)}

» q critical <— v centered

=




l/(k) — qk+1“<‘_k k 2 0 pj B
2W(k—Dg—k k<0 .

> Let (S;) be a random walk of law v.
» How are (S;) and (P;) related?

Proposition (TB, '15; TB, Curien, '17)
» P, [(5,-) hits Z<o at 0] = h*(p) = 4**’(2:) independent of q.

> (P) = (Si) conditioned to hit Z<y at 0.

q — v defines a bijection

v

{q admissible} < {v : P,[(S;) hits Z<o at 0] = h*(p)}

v

q critical <— v centered

v

attraction of an (o — 1)-stable process: v(k) ~ cyk=71/2.

q non-generic critical of index o € (1,2) <— (S;) in the basin of

=T




Infinite Boltzmann planar maps %

» Benjamini-Schramm-type local limit:
> Let q be critical and condition a ¢-BPM to have n vertices.
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» Benjamini-Schramm-type local limit:
> Let q be critical and condition a ¢-BPM to have n vertices.
> Then the laws of neighbourhoods of the root converge in distribution
as n — oo to those of a unique random infinite map:
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\\

(©.9)

Theorem (TB '15)

For q critical the perimeter process (P;) has the law of the random walk
() conditioned to stay positive.
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Targeted peeling of infinite Boltzmann maps

Proposition (TB, Curien, '16)

If q is non-generic critical of index « € (1,2) then the perimeter process
of my, satisfies the scaling limit (in the sense of Skorokhod)

P (d) +
<,\1/(a—1/2) R —— c(S¢)eo0,

where (S]) is an (oo — 1/2)-stable Lévy process started at 0 and
conditioned to stay positive.

e




Targeted peeling of infinite Boltzmann maps

P;

Proposition (TB, Curien, '16)
If q is non-generic critical of index « € (1,2) then the perimeter process
of my, satisfies the scaling limit (in the sense of Skorokhod)

< P\.)\tj ) (d) c (5;)t>0
>0 B

\/(a—1/2) oo

where (S1) is an (oo — 1/2)-stable Lévy process started at 0 and
conditioned to stay positive.
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Dual graph distance L
» To explore the map by increasing dual graph distance, peel by layers: 1Y

A(e,) = left-most edge incident to face at minimal distance.

Theorem (TB, Curien, '16; TB, Curien, Marzouk, '17)
If q is non-generic of index « € (1,2), then

a=s2 3 —Ls 3
P2 L @< 2 ro=3/2 5<a<?2
P~ 3z r 3 a 71'\/5\/; 3
|Ba/l,| ~ ev2 o= 5 |aBa//,| ~ e o = 5
e’ l<a<3 e’ l<a<?3

For o> 3 scaling limits for AT |Bally,| and AT |0Bally,| are known.

v
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Asymptotic growth (rs curien

1<oz<%

\G][oV]

, '16] [TB, Curien, Marzouk, '17]

%<a<2

Py

Steps to complete

layer of perim. P

r+1

1
~ no—1/2

~ Pa—1/2

&
T3

Q

O
o

1
~ no—1/2

~ P
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, '16] [TB, Curien, Marzouk, '17]

l<a<3 a=3 S<ca<2
1
P ~ nao—1/2 ~n ~ no—-1/2
n
Steps to complete ~ a— 1/2 P
layer of perim. P ~ P ~ m ~ P
Distance " lo P, "1 a—3/2
after 1 steps ]g: ~ (1Ogn)2 — ~po-i/2
=0 v i=0 ¢
r+1
-~ P— r
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, '16] [TB, Curien, Marzouk, '17]

3 — 3 3
I<a<g a=3 s <a<?2
1
A~ no-1/3 AN A P12
Pn n« n
Steps t let - pa—1/2 P
smsemnes |~ P ~ s ~ P
Distance | P, "1 a—3/2
after 1 steps O]g:)_ ~ (1Ogn)2 & A naie
=0 v i=0 ¢
P'/P e ~1 ~ 1
(EZ >0)
)]
r+1
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, '16] [TB, Curien, Marzouk, '17]

3 _ 3 3
I<a<g a=3 s <a<?2
1
~ pa=1/2 ~n ~ na-i
Pn n« n
Steps t let - pa—1/2 P
s |~ P ~olp | ~P
Distance n log P; ) "1 a—3/2
after 1 steps 2 2 ~ (logn) ; _1 ~npa-1/2
P/p| =~e® ~ 1 ~ 1
(EZ > 0)
1
|OBall,.| ~ e’ ~ eTV2VT ~ ra-3/2
r r "
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3 — 3
l<a< 5 a =3
; n
~ —1/2 ~
P, ANt/
Steps t let a—1/2 P
e I e e ~ P
Distance n log P; 9 "o a—3/2
.« e ~ — pa—1i/
after n steps 2 2 (logn) i:OR noa—1/2
P/p| =~e® ~1 ~1
(EZ > 0)
0Ball,| | =~ "
|Ball,.| r




Asymptotic growth (rs curien

, '16] [TB, Curien, Marzouk, '17]

3 _ 3 3
I<a<g a=3 s <a<?2
1
P ~ na——1/2 ~ N ~ na—1/2
n
Steps t et a—1/2 P
e I e e ~ P
Distance " P, "1 a—3/2
after n steps e Z OIgD_ ~ (logn)? Z—_zna_m
=0 7 i=0 " "
P/p| =~e®
(EZ > 0)
|0Ball, | ~ e
|Ball, | .

Scaling limit
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Simulations: dense case
a=1.3

Theorem (TB, Curien, '16)

When o < 3/2 the map and its dual both contain infinitely many cut
vertices separating root from co.
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Simulations: Cauchy case e
a=23/2

Again infinitely many cut vertices, but their number grows only like
log log(volume).

oae
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