Mark Kac seminar @ Utrecht, The Netherlands - 07-12-2018

Geometry of random planar maps

Brownian sphere

Brownian sphere

Given metric spaces (S, d) and (S^{\prime}, d^{\prime}), their Gromov-Hausdorff distance is

$$
\begin{aligned}
& d_{\mathrm{GH}}\left((S, d),\left(S^{\prime}, d^{\prime}\right)\right)= \\
& \frac{1}{2} \inf _{R} \sup _{\substack{x x^{\prime} \\
y R y^{\prime}}}\left|d(x, y)-d^{\prime}\left(x^{\prime}, y^{\prime}\right)\right|,
\end{aligned}
$$

with the inf over correspondences R, i.e. $R \subset S \times S^{\prime}$ with each element of S and S^{\prime} appearing at least once in the relation.

Brownian sphere

Given metric spaces (S, d) and (S^{\prime}, d^{\prime}), their Gromov-Hausdorff distance is

$$
\begin{aligned}
& d_{\mathrm{GH}}\left((S, d),\left(S^{\prime}, d^{\prime}\right)\right)= \\
& \frac{1}{2} \inf _{R} \sup _{\substack{x x^{\prime} \\
y R y^{\prime}}}\left|d(x, y)-d^{\prime}\left(x^{\prime}, y^{\prime}\right)\right|,
\end{aligned}
$$

with the inf over correspondences R, i.e. $R \subset S \times S^{\prime}$ with each element of S and S^{\prime} appearing at least once in the relation.

Brownian sphere

Brownian sphere

Properties of the Brownian sphere:

- Topology of S^{2} a.s.
[Le Gall, Paulin, '08;, Miermont, '08]
- Hausdorff dimension 4 a.s.
[Le Gall, '07]
- Spectral dimension 2 a.s
[Gwynne, Miller, '18]

Brownian sphere

Properties of the Brownian sphere:

- Topology of S^{2} a.s.
[Le Gall, Paulin, '08;, Miermont, '08]
- Hausdorff dimension 4 a.s.
[Le Gall, '07]
- Spectral dimension 2 a.s
[Gwynne, Miller, '18]
- Universal scaling limit of
- p-angulations, $p \geq 3$ [Le Gall, '11; Albenque, '18+]
- general maps with fixed number of edges
[Bettinelli, Jacob, Miermont, '14]
- bipartite maps with prescribed degrees
[Marzouk, '17]
- etc...

Brownian sphere

Brownian sphere

$\mathrm{LQG}_{\gamma=\sqrt{8 / 3}}$

Liouville Quantum Gravity

- Any natural random Riemannian metric on a disk (or sphere)?

Liouville Quantum Gravity

- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].

Liouville Quantum Gravity

- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, '80s].
- Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on \mathbb{D}

$$
e^{\gamma h(z)}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) \quad(z=x+i y)
$$

Liouville Quantum Gravity

- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].
- Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on \mathbb{D}

$$
e^{\gamma h(z)}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) \quad(z=x+i y)
$$

- Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with covariance given by the Dirichlet Green's function $G\left(z_{1}, z_{2}\right)=\log \left|z_{1}-z_{1}\right|+O(1)$. More precisely

$$
\operatorname{Cov}\left(\left(h, f_{1}\right)_{\nabla},\left(h, f_{2}\right)_{\nabla}\right)=\left(f_{1}, f_{2}\right)_{\nabla}:=\frac{1}{2 \pi} \int_{\mathbb{D}} \nabla f_{1}(z) \cdot \nabla f_{2}(z) \mathrm{d} z
$$

Liouville Quantum Gravity

- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, '80s].
- Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on \mathbb{D}

$$
e^{\gamma h(z)}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) \quad(z=x+i y)
$$

- Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with covariance given by the Dirichlet Green's function $G\left(z_{1}, z_{2}\right)=\log \left|z_{1}-z_{1}\right|+O(1)$. More precisely

$$
\operatorname{Cov}\left(\left(h, f_{1}\right)_{\nabla},\left(h, f_{2}\right)_{\nabla}\right)=\left(f_{1}, f_{2}\right)_{\nabla}:=\frac{1}{2 \pi} \int_{\mathbb{D}} \nabla f_{1}(z) \cdot \nabla f_{2}(z) \mathrm{d} z
$$

- h is a distribution! How to exponentiate?

Liouville Quantum Gravity

- Any natural random Riemannian metric on a disk (or sphere)?
- Addressed already in '80s in the context of string theory [Polyakov, Knizhnik, Zamolodchikov, David, Distler, Kawai, ..., '80s].
- Uniformization: can parametrize as a conformal rescaling of a fixed flat metric on \mathbb{D}

$$
e^{\gamma h(z)}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) \quad(z=x+i y)
$$

- Take h to be a Gaussian Free Field (GFF), i.e. h is Gaussian with covariance given by the Dirichlet Green's function $G\left(z_{1}, z_{2}\right)=\log \left|z_{1}-z_{1}\right|+O(1)$. More precisely

$$
\operatorname{Cov}\left(\left(h, f_{1}\right)_{\nabla},\left(h, f_{2}\right)_{\nabla}\right)=\left(f_{1}, f_{2}\right)_{\nabla}:=\frac{1}{2 \pi} \int_{\mathbb{D}} \nabla f_{1}(z) \cdot \nabla f_{2}(z) \mathrm{d} z
$$

- h is a distribution! How to exponentiate?
- Regularize: let $h_{\epsilon}(z)$ be average of h on circle of radius ϵ, then

$$
\epsilon^{\gamma^{2} / 2} e^{\gamma h_{\epsilon}(z)} \mathrm{d} x \mathrm{~d} y \underset{\epsilon \rightarrow 0}{\text { weak }} \mu_{\mathrm{LQG}} \quad \text { "Liouville measure" }
$$

[Høegh-Krohn '71; Kahane, '85, Duplantier, Sheffield, '11]

Brownian sphere

$\mathrm{LQG}_{\gamma=\sqrt{8 / 3}}$

Brownian sphere

Brownian sphere

Couple the geometry to a critical statistical system!

Random metric space

Outline

- Intro to planar maps and Boltzmann distributions

- Peeling exploration
- Geometrical properties (beyond Brownian)
- Towards geometry of maps with an $O(n)$ loop model

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2}

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of \mathfrak{m} is a region bounded by edges. Its degree is the number of bounding edges.

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of \mathfrak{m} is a region bounded by edges. Its degree is the number of bounding edges.
- Only consider bipartite maps: all faces of even degree.

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of \mathfrak{m} is a region bounded by edges. Its degree is the number of bounding edges.
- Only consider bipartite maps: all faces of even degree.
- The face to the right of the root is the root face. Its degree is the perimeter of \mathfrak{m}.

Planar maps

- A planar map \mathfrak{m} is a connected planar (multi)graph together with a proper embedding in S^{2} viewed up to (orientation-preserving) homeomorphisms.
- Always take planar maps to be rooted.
- A face of \mathfrak{m} is a region bounded by edges. Its degree is the number of bounding edges.
- Only consider bipartite maps: all faces of even degree.
- The face to the right of the root is the root face. Its degree is the perimeter of \mathfrak{m}.
- Think of \mathfrak{m} as a tessellation of the $2 p$-gon by (equilateral) polygons.

Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.

Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\operatorname{deg}(f)}{2}}$.

Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\operatorname{deg}(f)}{2}}$.
- \mathbf{q} admissible iff $W^{(p)}(\mathbf{q}):=w_{\mathbf{q}}\left(\mathcal{M}_{p}\right)<\infty$ for all $p \geq 1$.

Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\operatorname{deg}(f)}{2}}$.
- \mathbf{q} admissible iff $W^{(p)}(\mathbf{q}):=w_{\mathbf{q}}\left(\mathcal{M}_{p}\right)<\infty$ for all $p \geq 1$.
- If \mathbf{q} is admissible then $w_{\mathbf{q}}\left(\cdot \mid \mathcal{M}_{p}\right)$ defines the \mathbf{q}-Boltzmann planar map $\mathfrak{m}^{(p)}$ of perimeter $2 p$.

Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\operatorname{deg}(f)}{2}}$.
- \mathbf{q} admissible iff $W^{(p)}(\mathbf{q}):=w_{\mathbf{q}}\left(\mathcal{M}_{p}\right)<\infty$ for all $p \geq 1$.
- If \mathbf{q} is admissible then $w_{\mathbf{q}}\left(\cdot \mid \mathcal{M}_{p}\right)$ defines the \mathbf{q}-Boltzmann planar map $\mathfrak{m}^{(p)}$ of perimeter $2 p$.
- \mathbf{q} is critical if it admissible and $\operatorname{Var}\left|\mathfrak{m}^{(p)}\right|=\infty$.

Scaling limit of the graph distance

- Using bijections with trees, the Gromov-Hausdorff scaling limits of the graph distance are well-understood. Distinguish:
- generic critical $\mathbf{q}: \operatorname{Var}$ (degree of typical face) $<\infty$
- non-generic critical \mathbf{q} of index $\alpha \in(1,2)$: fine-tuning $q_{k} \sim C \kappa^{k} k^{-\alpha-1 / 2}$ such that $\mathbb{P}($ degree of typical face $>k) \sim k^{-\alpha}$.

Scaling limit of the graph distance

- Using bijections with trees, the Gromov-Hausdorff scaling limits of the graph distance are well-understood. Distinguish:
- generic critical q: Var (degree of typical face) $<\infty$
- non-generic critical \mathbf{q} of index $\alpha \in(1,2)$: fine-tuning $q_{k} \sim C \kappa^{k} k^{-\alpha-1 / 2}$ such that $\mathbb{P}($ degree of typical face $>k) \sim k^{-\alpha}$.

Theorem (Bettinelli, Miermont, '15)

If \mathbf{q} is generic critical (and degrees exponentially bounded), then

$$
\left(\mathfrak{m}^{(p)}, p^{-1 / 2} d_{\text {graph }}(\cdot, \cdot)\right) \xrightarrow[p \rightarrow \infty]{(\mathrm{d})} \text { Brownian disk of perimeter } 1
$$

Scaling limit of the graph distance

- Using bijections with trees, the Gromov-Hausdorff scaling limits of the graph distance are well-understood. Distinguish:
- generic critical q: $\operatorname{Var}($ degree of typical face) $<\infty$
- non-generic critical \mathbf{q} of index $\alpha \in(1,2)$: fine-tuning $q_{k} \sim C \kappa^{k} k^{-\alpha-1 / 2}$ such that $\mathbb{P}($ degree of typical face $>k) \sim k^{-\alpha}$.

Theorem (Bettinelli, Miermont, '15)

If \mathbf{q} is generic critical (and degrees exponentially bounded), then

$$
\left(\mathfrak{m}^{(p)}, p^{-1 / 2} d_{\text {graph }}(\cdot, \cdot)\right) \xrightarrow[p \rightarrow \infty]{(\mathrm{d})} \text { Brownian disk of perimeter } 1
$$

Theorem (Le Gall, Miermont, '11; Marzouk, '18)

If \mathbf{q} is non-generic critical of index $\alpha \in(1,2)$, then

$$
\left(\mathfrak{m}^{(p)},\left|\mathfrak{m}^{(p)}\right|^{-\frac{1}{2 \alpha}} d_{g r a p h}(\cdot, \cdot)\right) \xrightarrow[\left|\mathfrak{m}^{(p)}\right| \rightarrow \infty]{(\mathrm{d})} \alpha \text {-stable map }
$$

with a.s. Hausdorff dimension $2 \alpha \in(2,4)$.

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \Upsilon} \mathcal{O}^{\# \square} \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{}}
$$

for $n, g, \mathbf{q}>0$ fixed.

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \aleph_{g} \# \square \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}}
$$

for $n, g, \mathbf{q}>0$ fixed.

- If admissible, $w_{n, g, \mathbf{q}}\left(\mathcal{M}_{p}^{\text {loop }}\right)<\infty$, then it defines the (n, g, \mathbf{q})-Boltzmann loop-decorated map $\mathfrak{m}^{(p)}$.

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \aleph_{g} \# \square \prod_{f} q_{\frac{\operatorname{deg}(f)}{2}}}
$$

for $n, g, \mathbf{q}>0$ fixed.

- If admissible, $w_{n, g, \mathbf{q}}\left(\mathcal{M}_{p}^{\text {loop }}\right)<\infty$, then it defines the (n, g, \mathbf{q})-Boltzmann loop-decorated map $\mathfrak{m}^{(p)}$.
- For $n \in(0,2)$, the system exhibits four phases as $p \rightarrow \infty$: [Borot, Bouttier, Guitter, '11] [TB, Chen, '18]
- subcritical: treelike/only see boundary
- pure gravity: microscopic loops
- dilute critical: self-avoiding loops
- dense critical: self-touching loops

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\#} \bigcap_{g} \# \square \quad \prod \quad q_{\frac{\operatorname{deg}(f)}{2}}
$$

for $n, g, \mathbf{q}>0$ fixed.

- If admissible, $w_{n, g, \mathbf{q}}\left(\mathcal{M}_{p}^{\text {loop }}\right)<\infty$, then it defines the (n, g, \mathbf{q})-Boltzmann loop-decorated map $\mathfrak{m}^{(p)}$.
- For $n \in(0,2)$, the system exhibits four phases as $p \rightarrow \infty$: [Borot, Bouttier, Guitter, '11] [TB, Chen, '18]
- subcritical: treelike/only see boundary
- pure gravity: microscopic loops
- dilute critical: self-avoiding loops

- dense critical: self-touching loops

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\#} \aleph_{g} \# \square \prod_{f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

for $n, g, \mathbf{q}>0$ fixed.

- The gasket of a loop-decorated map is the map exterior to all loops.

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\#} \bigodot^{\# \#} \prod_{1} q_{\frac{\operatorname{deg}(f)}{2}}
$$ for $n, g, \mathbf{q}>0$ fixed.

- The gasket of a loop-decorated map is the map exterior to all loops.
- It is distributed as a $\hat{\mathbf{q}}$-Boltzmann planar map, with $\hat{q}_{k}=q_{k}+n g^{2 k} w_{n, g, \mathbf{q}}\left(\mathcal{M}_{k}^{\text {loop }}\right)$.

Relation to the $O(n)$ loop model

- Rigid $O(n)$ loop model: Draw disjoint loops that intersect quadrangles through opposite sides. [Borot, Bouttier, Guitter, '11]
- Assign weight to map with loops by

$$
w_{n, \boldsymbol{g}, \mathbf{q}}(\mathfrak{m})=n^{\#} \sim_{g} \# \square \quad \prod_{\frac{\operatorname{deg}(f)}{2}}
$$ for $n, g, \mathbf{q}>0$ fixed.

- The gasket of a loop-decorated map is the map exterior to all loops.
- It is distributed as a $\hat{\mathbf{q}}$-Boltzmann planar map, with $\hat{q}_{k}=q_{k}+n g^{2 k} w_{n, g, \mathbf{q}}\left(\mathcal{M}_{k}^{\text {loop }}\right)$.
- $\hat{\mathbf{q}}$ is admissible iff (n, g, \mathbf{q}) is.
- $\hat{\mathbf{q}}$ is non-generic critical with index
$\alpha=\frac{3}{2}-\frac{1}{\pi} \arccos \frac{n}{2} \in(1,3 / 2)$ iff (n, g, \mathbf{q}) is dense critical.
- $\hat{\mathbf{q}}$ is non-generic critical with index $\alpha=\frac{3}{2}+\frac{1}{\pi} \arccos \frac{n}{2} \in(3 / 2,2)$ iff (n, g, \mathbf{q}) is dilute critical.

Simulation: dilute quadrangulation $\left(q_{2}>0, q_{1}=q_{3}=\ldots=0\right)$,

$$
p=50, n=0.6
$$

Simulation: dilute quadrangulation $\left(q_{2}>0, q_{1}=q_{3}=\ldots=0\right)$,

$$
p=40, n=0.3
$$

Simulation: dilute quadrangulation $\left(q_{2}>0, q_{1}=q_{3}=\ldots=0\right)$,

$$
p=40, n=0.3
$$

Look at dual graph distances

- The dual map of a non-generic critical Boltzmann planar map supports vertices of high degree.

Look at dual graph distances

- The dual map of a non-generic critical Boltzmann planar map supports vertices of high degree.

- Opportunity to obtain new universality classes that do have topology of S^{2}.

Look at dual graph distances

- The dual map of a non-generic critical Boltzmann planar map supports vertices of high degree.

- Opportunity to obtain new universality classes that do have topology of S^{2}.

- No tree bijections available: use peeling exploration!

Peeling exploration [Watabiki, Angel, Curien, Le Gall, тB, ...]

- A planar map with holes \mathfrak{e} is a planar map with a set of distinguished, simple, disjoint faces (the "holes").

Peeling exploration [Watabiki, Angel, Curien, Le Gall, тв, ...]

- A planar map with holes \mathfrak{e} is a planar map with a set of distinguished, simple, disjoint faces (the "holes").
- Submap: $\mathfrak{e} \subset \mathfrak{m}$ iff the holes can be filled in by maps to obtain \mathfrak{m}.

Peeling exploration [Watabiki, Angel, Curien, Le Gall, тв, ...]

- A planar map with holes \mathfrak{e} is a planar map with a set of distinguished, simple, disjoint faces (the "holes").
- Submap: $\mathfrak{e} \subset \mathfrak{m}$ iff the holes can be filled in by maps to obtain \mathfrak{m}.

Peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

- A planar map with holes \mathfrak{e} is a planar map with a set of distinguished, simple, disjoint faces (the "holes").
- Submap: $\mathfrak{e} \subset \mathfrak{m}$ iff the holes can be filled in by maps to obtain \mathfrak{m}.

- Peeling exploration: associate to a map \mathfrak{m} a deterministic sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \cdots \subset \mathfrak{m}$ of growing submaps.

Peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

- A planar map with holes \mathfrak{e} is a planar map with a set of distinguished, simple, disjoint faces (the "holes").
- Submap: $\mathfrak{e} \subset \mathfrak{m}$ iff the holes can be filled in by maps to obtain \mathfrak{m}.

- Peeling exploration: associate to a map \mathfrak{m} a deterministic sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \cdots \subset \mathfrak{m}$ of growing submaps.
- Fix peel algorithm \mathcal{A} that selects an edge $\mathcal{A}(\mathfrak{e})$ incident to hole of \mathfrak{e}.

Peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

- A planar map with holes \mathfrak{e} is a planar map with a set of distinguished, simple, disjoint faces (the "holes").
- Submap: $\mathfrak{e} \subset \mathfrak{m}$ iff the holes can be filled in by maps to obtain \mathfrak{m}.

- Peeling exploration: associate to a map \mathfrak{m} a deterministic sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \cdots \subset \mathfrak{m}$ of growing submaps.
- Fix peel algorithm \mathcal{A} that selects an edge $\mathcal{A}(\mathfrak{e})$ incident to hole of \mathfrak{e}.
- \mathfrak{e}_{i+1} is minimal submap, $\mathfrak{e}_{i} \subset \mathfrak{e}_{i+1} \subset \mathfrak{m}$, such that $\mathcal{A}\left(\mathfrak{e}_{i}\right)$ not incident to hole: reveals new face of \mathfrak{m} or glues pair of edges on the hole.

- For a \mathbf{q}-Boltzmann planar map $\mathfrak{m}^{(p)}$ and \mathfrak{e} fixed, conditionally on $\mathfrak{e} \subset \mathfrak{m}$ the maps filling in the holes of \mathfrak{e} are distributed as independent Boltzmann planar maps.

- For a \mathbf{q}-Boltzmann planar map $\mathfrak{m}^{(p)}$ and \mathfrak{e} fixed, conditionally on $\mathfrak{e} \subset \mathfrak{m}$ the maps filling in the holes of \mathfrak{e} are distributed as independent Boltzmann planar maps.

- For a \mathbf{q}-Boltzmann planar map $\mathfrak{m}^{(p)}$ and \mathfrak{e} fixed, conditionally on $\mathfrak{e} \subset \mathfrak{m}$ the maps filling in the holes of \mathfrak{e} are distributed as independent Boltzmann planar maps.
- Hence $\left(\mathfrak{e}_{i}\right)$ is a Markov process with transition probabilities $\left(W^{(p)}=w_{\mathbf{q}}\left(\mathcal{M}^{(p)}\right)\right):$

Transition probability: $\frac{q_{k+1} W^{(l+k)}}{W^{(l)}} \quad \frac{W^{(k-1)} W^{(l-k)}}{W^{(l)}}$

Targeted peeling exploration

- If the map $\mathfrak{m}_{\bullet} \in \mathcal{M}_{\bullet}^{(p)}$ has a marked vertex, one may track the hole containing the vertex

Targeted peeling exploration

- If the map $\mathfrak{m}_{\bullet} \in \mathcal{M}_{\bullet}^{(p)}$ has a marked vertex, one may track the hole containing the vertex and its half-degree $\left(P_{i}\right)$, the perimeter process.

Targeted peeling exploration

- If the map $\mathfrak{m}_{\bullet} \in \mathcal{M}_{\bullet}^{(p)}$ has a marked vertex, one may track the hole containing the vertex and its half-degree $\left(P_{i}\right)$, the perimeter process.

- For a pointed \mathbf{q}-Boltzmann planar map $\mathfrak{m}_{\boldsymbol{e}}^{(\rho)}$

Targeted peeling exploration

- If the map $\mathfrak{m}_{\bullet} \in \mathcal{M}_{\bullet}^{(p)}$ has a marked vertex, one may track the hole containing the vertex and its half-degree $\left(P_{i}\right)$, the perimeter process.

- For a pointed \mathbf{q}-Boltzmann planar map $\mathfrak{m}_{\boldsymbol{e}}^{(p)}$

- As $\ell \rightarrow \infty$ it takes the law of a random walk on \mathbb{Z} with distribution

$$
\mathbb{P}\left(P_{i+1}=\ell+k \mid P_{i}=\ell\right) \rightarrow \nu(k):= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- Let $\left(S_{i}\right)$ be a random walk of law ν.

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- Let $\left(S_{i}\right)$ be a random walk of law ν.

- How are $\left(S_{i}\right)$ and $\left(P_{i}\right)$ related?

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- Let $\left(S_{i}\right)$ be a random walk of law ν.

- How are $\left(S_{i}\right)$ and $\left(P_{i}\right)$ related?

Proposition (TB, '15; TB, Curien, '17)

- $\mathbb{P}_{p}\left[\left(S_{i}\right)\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$]=h^{\downarrow}(p):=4^{-p}\binom{2 p}{p}$ independent of \mathbf{q}.
- $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(S_{i}\right)$ conditioned to hit $\mathbb{Z}_{\leq 0}$ at 0 .

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- Let $\left(S_{i}\right)$ be a random walk of law ν.

- How are $\left(S_{i}\right)$ and $\left(P_{i}\right)$ related?

Proposition (TB, '15; TB, Curien, '17)

- $\mathbb{P}_{p}\left[\left(S_{i}\right)\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$]=h^{\downarrow}(p):=4^{-p}\binom{2 p}{p}$ independent of \mathbf{q}.
- $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(S_{i}\right)$ conditioned to hit $\mathbb{Z}_{\leq 0}$ at 0 .
- $\mathbf{q} \rightarrow \nu$ defines a bijection
$\{\mathbf{q}$ admissible $\} \longleftrightarrow\left\{\nu: \mathbb{P}_{p}\left[\left(S_{i}\right)\right.\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$\left.]=h^{\downarrow}(p)\right\}$

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- Let $\left(S_{i}\right)$ be a random walk of law ν.

- How are $\left(S_{i}\right)$ and $\left(P_{i}\right)$ related?

Proposition (TB, '15; TB, Curien, '17)

- $\mathbb{P}_{p}\left[\left(S_{i}\right)\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$]=h^{\downarrow}(p):=4^{-p}\binom{2 p}{p}$ independent of \mathbf{q}.
- $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(S_{i}\right)$ conditioned to hit $\mathbb{Z}_{\leq 0}$ at 0 .
- $\mathbf{q} \rightarrow \nu$ defines a bijection
$\{\mathbf{q}$ admissible $\} \longleftrightarrow\left\{\nu: \mathbb{P}_{p}\left[\left(S_{i}\right)\right.\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$\left.]=h^{\downarrow}(p)\right\}$
- q critical $\longleftrightarrow \nu$ centered

$$
\nu(k)= \begin{cases}q_{k+1} \kappa^{-k} & k \geq 0 \\ 2 W^{(-k-1)} \kappa^{-k} & k<0\end{cases}
$$

- Let $\left(S_{i}\right)$ be a random walk of law ν.

- How are $\left(S_{i}\right)$ and $\left(P_{i}\right)$ related?

Proposition (TB, '15; TB, Curien, '17)

- $\mathbb{P}_{p}\left[\left(S_{i}\right)\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$]=h^{\downarrow}(p):=4^{-p}\binom{2 p}{p}$ independent of \mathbf{q}.
- $\left(P_{i}\right) \stackrel{(\mathrm{d})}{=}\left(S_{i}\right)$ conditioned to hit $\mathbb{Z}_{\leq 0}$ at 0 .
- $\mathbf{q} \rightarrow \nu$ defines a bijection
$\{\mathbf{q}$ admissible $\} \longleftrightarrow\left\{\nu: \mathbb{P}_{p}\left[\left(S_{i}\right)\right.\right.$ hits $\mathbb{Z}_{\leq 0}$ at 0$\left.]=h^{\downarrow}(p)\right\}$
- q critical $\longleftrightarrow \nu$ centered
- q non-generic critical of index $\alpha \in(1,2) \longleftrightarrow\left(S_{i}\right)$ in the basin of attraction of an $\left(\alpha-\frac{1}{2}\right)$-stable process: $\nu(\pm k) \sim c_{ \pm} k^{-\alpha-1 / 2}$.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.
- Finite submaps of \mathfrak{m}_{∞} have a distinguished hole containing ∞.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.
- Finite submaps of \mathfrak{m}_{∞} have a distinguished hole containing ∞.
- Peeling exploration targeting ∞ has perimeter process $\left(P_{i}\right)$.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.
- Finite submaps of \mathfrak{m}_{∞} have a distinguished hole containing ∞.
- Peeling exploration targeting ∞ has perimeter process $\left(P_{i}\right)$.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.
- Finite submaps of \mathfrak{m}_{∞} have a distinguished hole containing ∞.
- Peeling exploration targeting ∞ has perimeter process $\left(P_{i}\right)$.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.
- Finite submaps of \mathfrak{m}_{∞} have a distinguished hole containing ∞.
- Peeling exploration targeting ∞ has perimeter process $\left(P_{i}\right)$.

Infinite Boltzmann planar maps

- Benjamini-Schramm-type local limit:
- Let \mathbf{q} be critical and condition a \mathbf{q}-BPM to have n vertices.
- Then the laws of neighbourhoods of the root converge in distribution as $n \rightarrow \infty$ to those of a unique random infinite map:
[Björnberg, Stefánsson, '14] [Stephenson, '14]
the infinite Boltzmann planar map \mathfrak{m}_{∞}.
- Finite submaps of \mathfrak{m}_{∞} have a distinguished hole containing ∞.
- Peeling exploration targeting ∞ has perimeter process $\left(P_{i}\right)$.

Theorem (TB '15)

For \mathbf{q} critical the perimeter process $\left(P_{i}\right)$ has the law of the random walk $\left(S_{i}\right)$ conditioned to stay positive.

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Targeted peeling of infinite Boltzmann maps

Proposition (TB, Curien, '16)

If \mathbf{q} is non-generic critical of index $\alpha \in(1,2)$ then the perimeter process of \mathfrak{m}_{∞} satisfies the scaling limit (in the sense of Skorokhod)

$$
\left(\frac{P_{\lfloor\lambda t\rfloor}}{\lambda^{1 /(\alpha-1 / 2)}}\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})} c\left(S_{t}^{\uparrow}\right)_{t \geq 0}
$$

where $\left(S_{t}^{\uparrow}\right)$ is an ($\alpha-1 / 2$)-stable Lévy process started at 0 and conditioned to stay positive.

Targeted peeling of infinite Boltzmann maps

Proposition (TB, Curien, '16)

If \mathbf{q} is non-generic critical of index $\alpha \in(1,2)$ then the perimeter process of \mathfrak{m}_{∞} satisfies the scaling limit (in the sense of Skorokhod)

$$
\left(\frac{P_{\lfloor\lambda t\rfloor}}{\lambda^{1 /(\alpha-1 / 2)}}\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})} c\left(S_{t}^{\uparrow}\right)_{t \geq 0},
$$

where $\left(S_{t}^{\uparrow}\right)$ is an ($\alpha-1 / 2$)-stable Lévy process started at 0 and conditioned to stay positive.

Dual graph distance

- To explore the map by increasing dual graph distance

Dual graph distance

- To explore the map by increasing dual graph distance

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers. $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers. $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers. $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers:

$$
\mathcal{A}\left(\mathfrak{e}_{n}\right)=\text { left-most edge incident to face at minimal distance. }
$$

Dual graph distance

- To explore the map by increasing dual graph distance, peel by layers: $\mathcal{A}\left(\mathfrak{e}_{n}\right)=$ left-most edge incident to face at minimal distance.

Theorem (TB, Curien, '16; TB, Curien, Marzouk, '17)
If \mathbf{q} is non-generic of index $\alpha \in(1,2)$, then

$$
\left|B a \|_{r}\right| \approx\left\{\begin{array}{lr}
r^{\frac{\alpha}{\alpha-3 / 2}} & \frac{3}{2}<\alpha<2 \\
e^{\frac{3 \pi}{\sqrt{2}} \sqrt{r}} & \alpha=\frac{3}{2} \\
e^{c r} & 1<\alpha<\frac{3}{2}
\end{array}, \quad\left|\partial B a \|_{r}\right| \approx\left\{\begin{array}{rr}
r^{\frac{1}{\alpha-3 / 2}} & \frac{3}{2}<\alpha<2 \\
e^{\pi \sqrt{2} \sqrt{r}} & \alpha=\frac{3}{2} \\
e^{c^{\prime} r} & 1<\alpha<\frac{3}{2}
\end{array} .\right.\right.
$$

For $\alpha>\frac{3}{2}$ scaling limits for $\left.\lambda^{\frac{-\alpha}{\alpha-3 / 2}} \right\rvert\,$ Ball $\lambda_{\lambda r} \mid$ and $\left.\lambda^{\frac{-1}{\alpha-3 / 2}} \right\rvert\, \partial$ Ball $\lambda_{\lambda r} \mid$ are known.

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

$$
r+1
$$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$
s.amplete			
	$\approx P^{\alpha-1 / 2}$	$\approx \frac{P}{\log P}$	$\approx P$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$
Distance arter n steps	\ldots	$\approx \frac{P}{\log P}$	$\approx P$
		$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{\alpha-3 / 2}{\alpha-1 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$
Distance after n steps	\cdots	$\approx \frac{P}{\log P}$	$\approx P$
P^{\prime} / P	$\underset{\left(\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}}\right.}{\approx(\log n)^{2}}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{\alpha-3 / 2}{\alpha-1 / 2}}$	
$(\mathbb{E} \mathcal{Z}>0)$	≈ 1	≈ 1	

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$
s to complete er of perim. P	$\approx P^{\alpha-1 / 2}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance fter n steps		$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{\alpha-3 / 2}{\alpha-1 / 2}}$
P^{\prime} / P	$\underset{(\mathbb{E} \mathcal{Z}>0)}{\approx}$	≈ 1	≈ 1
$\partial \mathrm{Ball}_{r} \mid$	$\approx e^{c r}$	$\approx e^{\pi \sqrt{2} \sqrt{r}}$	$\approx r^{\frac{1}{\alpha-3 / 2}}$

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

	$1<\alpha<\frac{3}{2}$	$\alpha=\frac{3}{2}$	$\frac{3}{2}<\alpha<2$
P_{n}	$\approx n^{\frac{1}{\alpha-1 / 2}}$	$\approx n$	$\approx n^{\frac{1}{\alpha-1 / 2}}$
ps to complete er of perim. P	$\approx P^{\alpha-1 / 2}$	$\approx \frac{P}{\log P}$	$\approx P$
Distance after n steps		$\sum_{i=0}^{n} \frac{\log P_{i}}{P_{i}} \approx(\log n)^{2}$	$\sum_{i=0}^{n} \frac{1}{P_{i}} \approx n^{\frac{\alpha-3 / 2}{\alpha-1 / 2}}$
P^{\prime} / P	$\underset{\left(\underset{\mathbb{E} \mathcal{Z}}{\approx} e^{\mathcal{Z}}\right.}{ }$	≈ 1	≈ 1
$\partial \mathrm{Ball}_{r} \mid$	$\approx e^{c r}$	$\approx e^{\pi \sqrt{2} \sqrt{r}}$	$\approx r^{\frac{1}{\alpha-3 / 2}}$
$\mathrm{Ball}_{r} \mid$			

Asymptotic growth [TB, Curien, '16] [TB, Curien, Marzouk, '17]

Simulations: dense case

$\alpha=1.3$

Simulations: dense case

$\alpha=1.3$

Theorem (TB, Curien, '16)
When $\alpha<3 / 2$ the map and its dual both contain infinitely many cut vertices separating root from ∞.

Simulations: dense case
$\alpha=1.3$

Simulations: dense case
$\alpha=1.2$

Simulations: Cauchy case

$$
\alpha=3 / 2
$$

Simulations: Cauchy case

$\alpha=3 / 2$

Theorem (TB, Curien, Marzouk '17)
Again infinitely many cut vertices, but their number grows only like $\log \log$ (volume).

Simulations: dilute case

$$
\alpha=1.8
$$

Simulations: dilute case

$$
\alpha=1.8
$$

Simulations: dilute case

$$
\alpha=1.85
$$

Simulations: dilute case

$$
\alpha=1.95
$$

