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Introduction: Gessel sequence

> In 2001 Ira Gessel conjectured the number
of walks with 2n steps € {N,S, SW, NE}
in the quadrant starting and ending at 0 to
be

0 (5/6)n(1/2)n _
16 NONGE 2,11,85,782, ...




Introduction: Gessel sequence

> In 2001 Ira Gessel conjectured the number
of walks with 2n steps € {N,S, SW, NE}
in the quadrant starting and ending at 0 to
be

0 (5/6)n(1/2)n _
16 NONGE 2,11,85,782, ...

» Proving this turned out to be a notoriously difficult problem, but by
now we have. ..
> ...a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
> ...a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
> ...an elementary (algebraic) proof. [Bousquet-Mélou, '15]



Introduction: Gessel sequence

> In 2001 Ira Gessel conjectured the number
of walks with 2n steps € {N,S, SW, NE}
in the quadrant starting and ending at 0 to
be

0 (5/6)n(1/2)n _
16 NONGE 2,11,85,782, ...

» Proving this turned out to be a notoriously difficult problem, but by
now we have. . .

> ...a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
> ...a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
> ...an elementary (algebraic) proof. [Bousquet-Mélou, '15]

» As we will see, counting walks by winding angle provides a natural
alternative route.
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Introduction: Winding angle of a walk

» To a walk w on Z? avoiding 0 we can
naturally associate a winding angle

[wl

OW = Z K(W,'_]_7 0, W,').
i=1

» Extends unambiguously to excursions
from the origin.

» Natural interpretation as walks in the
universal cover of Z? \ {0}.

» Main goal today is to determine the GF
for simple excursions from origin

F(t,b) = Z tIwl g 0w

= 4t2 4 (12 + 4e P2 1 4eP2)t* 4. .
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The general idea: decompose into a
sequence of walks on the slit plane.
Denote by H(P)(t) the GF for
walks (p,0) — (—/,0) that hit the
slit from above (counted by t'neth).
This GF can be deduced from
[Bousquet-Mélou, Schaeffer, '00].

HUP) = LH(P.D) 5o introduce symmetric “matrix” H:= (\/IH(P”))
P P p,I>1

Then /22N(1N), counts composite walks (p,0) — (+/,0) that
alternate between axes N times.

To incorporate a weight e in GF just replace 2 — e®™ 4 e=b7,

N - 2 cos(mh)H
> e = [P > (2eos(rb))" (H),, = Vt (/—2(()%)

such walks



Relation with planar maps

» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.



Relation with planar maps

» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.




Relation with planar maps

» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.




Relation with planar maps
» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.
» WPN(qy,qs,...) is the GF for planar maps with outer degree
p > 1, a marked face of degree / > 1, weighted by [ [, cc Gdegree-




Relation with planar maps
» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.
» WPN(qy,qs,...) is the GF for planar maps with outer degree
p > 1, a marked face of degree | > 1, weighted by [ [, cc Gdegree-




Relation with planar maps
» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.
» WPN(qy,qs,...) is the GF for planar maps with outer degree
p > 1, a marked face of degree | > 1, weighted by Hfaces Qdegree-




Relation with planar maps
» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.
» WPN(qy,qs,...) is the GF for planar maps with outer degree
p > 1, a marked face of degree / > 1, weighted by [ [, s Gdegree-
» For quasi-bipartite maps (g1 = g3 = --- = 0) it takes a universal
form (see e.g. [Collet, Fusy, '12])
p!

12 pa)) PN/ -
W = 5 qeae) () "N T

T ip+1




Relation with planar maps

» Planar map = a multigraph properly embedded in the plane up to
homeomorphism. Take it to be rooted on the outer face.

» WPN(qy,qs,...) is the GF for planar maps with outer degree
p > 1, a marked face of degree / > 1, weighted by [ [, s Gdegree-

» For quasi-bipartite maps (g1 = g3 = --- = 0) it takes a universal
form (see e.g. [Collet, Fusy, '12])

1 2 (p+1)/2 !
(p,/) _ - & = p
w Ip+la(l)a(p)<4) a(p) : BNE
> Remarkably H(P)(t) = W(p’l)‘ 11162
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(0,0) — (k — 2,0) above or below x-axis.




A bijective explanation g

Proposition |
For any step set & C %VT there exists a bijection
oD {&S-walks (p,0) — (—/,0) hitting slit from above}

"G-walk-decorated maps” with root face degree p
and marked face degree |

4

» A G-walk-decorated map is a rooted planar map with a marked face
together with. ..
» for each face (except root or marked) of degree k an excursion
(0,0) — (k — 2,0) above or below x-axis.
» for each vertex an excursion (0,0) — (—2,0) above x-axis

)
% Iz INZ( VAN
@ — \ +\
© e
BZN
A

| 7
258 N




A bijective explanation

Proposition
For any step set & C %}'T there exists a bijection

P - {S-walks (p,0) — (—/,0) hitting slit from above}

"S-walk-decorated maps” with root face degree p
and marked face degree |

4

» A G-walk-decorated map is a rooted planar map with a marked face
together with. ..
» for each face (except root or marked) of degree k an excursion
(0,0) — (k — 2,0) above or below x-axis.
» for each vertex an excursion (0,0) — (—2,0) above x-axis
- oy A~ 57, I
» Substituting in +
W(P-)(q;) the GFs

AN \ | N 2
= (S0 (%)

leads to H(P:(t).
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S et — ﬁg@ cos(mb))" (H") , = \/? (%),ﬁ

such walks

» Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, | carrying a weight

(2 COS(?Tb))#|00ps+l H Qdegree

regular faces



» Rigid O(n) model: a planar map + disjoint
loops, that intersect solely quadrangles
through opposite sides. Enumerated with

Weight n#loopsg#loop faces H Gaegree

regular faces

> An exact solution of a closely related model was first obtained by
[Eynard, Kristjansen, '95] in terms of elliptic functions.
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Planar maps coupled to a rigid O(n) loop model

Rigid O(n) model: a planar map + disjoint
loops, that intersect solely quadrangles
through opposite sides. Enumerated with

Weight n#loopsg#loop faces H Gaegree

regular faces

An exact solution of a closely related model was first obtained by
[Eynard, Kristjansen, '95] in terms of elliptic functions.

Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11]
for this “rigid" setting.

Recently in [Borot, Bouttier, Duplantier, '16] (for trianguiations) €Xact statistics for
the nesting of loops was obtained, i.e. distribution of # loops
surrounding a marked vertex/face.

Importantly: the form of the GF Q(Pv’)(n,g,q) is universal and is not
affected by suppressing loops that do not surround the marked face.

S
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» We know that (with n = 2 cos(wb) and appropriate g,q)
pIES \f( ) > xPx 6PN (n, g.q)
p,I>1

p,I>1
> Adapting GF from [Borot, Bouttier, Duplantier, '16] and computing a series
expansion:
s 1 cos(2rmv(xy)) x1% cos(2mmv(xy))

:42

— qm + q—m —n m(q—m _ qm)

where g = q(4t) = t* + 8t* + - - - is the nome of modulus 4t and

V() 1= cd  ox/ ) (K (0)), o) = LY 108

8t2

Proposition (Diagonalization of #)

H = UT A, - U in the sense of operators on (?(R) with

. 1 4p
Ny =diag| ——— , Upp = | ————— [xP] cos(2mm v(x
o= ding s ) -+ Unp =\ P os(2mm v(x)

4.
=
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Refinement: increase winding angle resolution

» Up to now: decomposed walk into
sequence of walks on slit plane,
each numerated by \/BH,,.

» Why not decompose into walks on
half plane?

'(o 1)

» Denote GF for half-plane walks
(p,0) — (0,/) by \/?jp/. Then

4H
I +2H

=QRINIT+T2H), JT=

. . 1
» Hence J has same eigenmodes as H but eigenvalues are e
instead of ﬁ Such operations g — /g on elliptic functions

are well-known as “Landen transformations” .
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Winding angle of excursions
» Wish to enumerate excursions from origin

by length and winding angle:

F(t,b) := Z tlwlgb 0w

w

=482 4 (12 +4e P2 1 4e®P2)th 4. .

» Flip last step away from last axis
intersection, and first step oppositely.

» 0, now measures angle to penultimate < \/‘77
axis intersection. T + T

» This maps excursions 4-to-2 onto sequences of half-plane walks with
p =1 =2 and a restriction on first and last step.

» Enumerated by

N 1
F(t,b) =2 Z (2cos (Z2)) Z (fl)pﬂ\/?(jlv)zp,z/
N>1 p,1>0
7'rb

:sec(”—b) 1-— ﬂtan(%) Tm/a)
2K (4) GI(FTb?\/a)

2
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Theorem (Excursions in the 7F-cone.)

For any set of integers —n < m—n < p < m < n the generating function

Fn,m.p(t) for excursions from the origin with winding angle % staying

strictly inside angular region (EX2="m EXMr) is given by
n—1

1

Fn,m,p(t) = H Z(e_zl'ﬂ'T _ e—2i7‘r’"7k) F (t, %)
k=1

~p

(n,m,p) = (5,2,—1)
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For any set of integers —n < m—n < p < m < n the generating function
Fn,m.p(t) for excursions from the origin with winding angle % staying
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Theorem (Excursions in the ZF-cone.)

For any set of integers —n < m — n < p < m < n the generating function
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Application: walks in cones %

Theorem (Excursions in the 7F-cone.)

For any set of integers —n < m—n < p < m < n the generating function

Fn,m.p(t) for excursions from the origin with winding angle % staying

strictly inside angular region (EX2="m EXMr) is given by
n—1

1 —2im & —2jm 1k
Frma(t) = 22 (6775 — M%) F (¢, %),

k=1

T,

(n7 m7 p) =

» The proof uses the reflection
principle.

» Thanks to a hint of Killian
Raschel: for b € Q, F(t,b) is ———
expressible in Jacobi elliptic M\

p p 1

functions at rational angles,

which are algebraic. 7]— “I




Application: walks in cones
Theorem (Excursions in the 7F-cone.)

For any set of integers —n < m—n < p < m < n the generating function
Fn,m.p(t) for excursions from the origin with winding angle % staying

strictly inside angular region (EX2="m EXMr) is given by
1 n—1 I -
Fn,m,P(t) = H Z(e 2imy e 2 )F (tv 4_:) s

k=1
which is algebraic, i.e. P(t, Fpmp(t)) =0 for some P(t,x) € Z[t, x].

(n7 m7 p) =
» The proof uses the reflection
principle.
» Thanks to a hint of Killian
Raschel: for b € Q, F(t,b) is ———
expressible in Jacobi elliptic M\
p p 1

functions at rational angles,

which are algebraic. 7]— _—I
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enumerated by
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Application: walks in cones (Gessel case)

» Special case: (n,m,p) = (3,2,0)
» Gessel-type excursions in the quadrant are
enumerated by

1 1
afa20(t) = 5 F(t, 3)

1 [ V3r 6i(5.v3) 1]

T 22 | 2K(4t) 61(%,/9)
=142t +11t* +85t% 4 - - -,

which is an algebraic series.




Application: walks in cones (Gessel case)

» Special case: (n,m,p) = (3,2,0)

» Gessel-type excursions in the quadrant are
enumerated by

%2’:372,0&) = %F(t,g)
1 [ V3r 64(3,vA@ 1]
T 2K(4t) 61(5,/9)

=1+42t> +11t* +85t° +-- -,

which is an algebraic series.

» Can reproduce the known formula

ZF" 16" 52? Séi gltz [2F1<— IR ¢ (4t)2) - 1].

by checking that both solve same algebraic equation.



Further questions

» Generating functions for walks with full control on the endpoint?

» Other walks with small steps?

» Finally, here is an interpretation of the nome g as function of the
elliptic modulus k. Why is it so simple?

g(k) = lim P SRW on Z2 reaches winding angle nm 1/n

n—oco before geometric time with parameter k




Further questions

» Generating functions for walks with full control on the endpoint?

» Other walks with small steps?

» Finally, here is an interpretation of the nome g as function of the
elliptic modulus k. Why is it so simple?

g(k) = lim P SRW on Z2 reaches winding angle nm 1/n

n—oco before geometric time with parameter k

Thanks for your attention!




Another application: hyperbolic secant law

> Recall \/B((2H)"), enumerates
walks (p,0) — (£/,0) that alternate
between half-axes N times.
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Another application: hyperbolic secant law

> Recall ﬁ((2H)N)1, enumerates

walks (1,0) — (=£/,0) that alternate -
between half-axes N times. —

» Then T/
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enumerates all walks alternating
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> Recall \/;((27-[)”)1, enumerates I
walks (1,0) — (+£/,0) that alternate —t
between half-axes N times. T T

» Then Z_
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enumerates all walks alternating S AN
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Another application: hyperbolic secant IawI %

> Recall \/7((27-[) )1/ enumerates I

walks (1,0) — (£/,0) that alternate ~|» A

between half-axes N times.

» Then <_
e Dis1 LAY — (2H)V ), S
enumerates all walks alternating
exactly N times.

T el gl ) — 4t°°s(”b/2) S cosM(mb) 37 ((200)" - (2H) )y,
w N>0 1>1 \ﬂ

1 T i 2e/™(k+3)  cn(b K(4t),4t)
C1-4t2K(4t) = gkt gk 14t




Another application: hyperbolic secant law

> Recall ﬁ((%‘i)”)ll enumerates

walks (1,0) — (&/,0) that alternate ~ ''P | j
between half-axes N times.

» Then
2 s g7 (@H)Y = (2H)V ),
enumerates all walks alternating
exactly N times.

w imb(| % |+3) _ 4tcos(mb/2) 1 N N+1
t"e RN cos™ (wb) 2H 2H
2 a2 D (@ - @

i3

L2 R —

1 T i 2e/™(k+3)  cn(b K(4t),4t)
C 1-4t2K(4t) — gktrp gk 1-4t

Theorem (Winding angle of SRW on Z? around (—1, 1))
If n, > 1 is a geometric RV with parameter 0 < p < 1 then
sech(m(k +3)T) _ K(v1-p?)

Pl <t <UD = 5 e+ )T T K




