Journées de combinatoire de Bordeaux, LaBRI January 25th, 2017

Winding of walks on the square lattice

Timothy Budd

IPhT, CEA-Saclay
timothy.budd@cea.fr, http://www.nbi.dk/~budd/

Introduction: Gessel sequence

- In 2001 Ira Gessel conjectured the number of walks with $2 n$ steps $\in\{N, S, S W, N E\}$ in the quadrant starting and ending at 0 to be

$$
16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=2,11,85,782, \ldots
$$

Introduction: Gessel sequence

- In 2001 Ira Gessel conjectured the number of walks with $2 n$ steps $\in\{N, S, S W, N E\}$ in the quadrant starting and ending at 0 to be

$$
16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=2,11,85,782, \ldots
$$

- Proving this turned out to be a notoriously difficult problem, but by now we have...
-a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
- ...a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
-an elementary (algebraic) proof. [Bousquet-Mélou, '15]

Introduction: Gessel sequence

- In 2001 Ira Gessel conjectured the number of walks with $2 n$ steps $\in\{N, S, S W, N E\}$ in the quadrant starting and ending at 0 to be

$$
16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=2,11,85,782, \ldots
$$

- Proving this turned out to be a notoriously difficult problem, but by now we have...
-a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
- ...a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
-an elementary (algebraic) proof. [Bousquet-Mélou, '15]
- As we will see, counting walks by winding angle provides a natural alternative route.

Introduction: Winding angle of a walk

- To a walk w on \mathbb{Z}^{2} avoiding 0 we can naturally associate a winding angle

$$
\theta_{w}:=\sum_{i=1}^{|w|} \measuredangle\left(w_{i-1}, 0, w_{i}\right)
$$

Introduction: Winding angle of a walk

- To a walk w on \mathbb{Z}^{2} avoiding 0 we can naturally associate a winding angle

$$
\theta_{w}:=\sum_{i=1}^{|w|} \measuredangle\left(w_{i-1}, 0, w_{i}\right)
$$

Introduction: Winding angle of a walk

- To a walk w on \mathbb{Z}^{2} avoiding 0 we can naturally associate a winding angle

$$
\theta_{w}:=\sum_{i=1}^{|w|} \measuredangle\left(w_{i-1}, 0, w_{i}\right)
$$

Introduction: Winding angle of a walk

- To a walk w on \mathbb{Z}^{2} avoiding 0 we can naturally associate a winding angle

$$
\theta_{w}:=\sum_{i=1}^{|w|} \measuredangle\left(w_{i-1}, 0, w_{i}\right)
$$

- Extends unambiguously to excursions from the origin.

Introduction: Winding angle of a walk

- To a walk w on \mathbb{Z}^{2} avoiding 0 we can naturally associate a winding angle

$$
\theta_{w}:=\sum_{i=1}^{|w|} \measuredangle\left(w_{i-1}, 0, w_{i}\right)
$$

- Extends unambiguously to excursions from the origin.
- Natural interpretation as walks in the universal cover of $\mathbb{Z}^{2} \backslash\{0\}$.

Introduction: Winding angle of a walk

- To a walk w on \mathbb{Z}^{2} avoiding 0 we can naturally associate a winding angle

$$
\theta_{w}:=\sum_{i=1}^{|w|} \measuredangle\left(w_{i-1}, 0, w_{i}\right)
$$

- Extends unambiguously to excursions from the origin.
- Natural interpretation as walks in the universal cover of $\mathbb{Z}^{2} \backslash\{0\}$.
- Main goal today is to determine the GF for simple excursions from origin

$$
\begin{aligned}
& F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
& =4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{aligned}
$$

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.
- Denote by $H^{(p, l)}(t)$ the GF for walks $(p, 0) \rightarrow(-I, 0)$ that hit the slit from above (counted by $\left.t^{\text {length }}\right)$.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.
- Denote by $H^{(p, l)}(t)$ the GF for walks $(p, 0) \rightarrow(-I, 0)$ that hit the slit from above (counted by $t^{\text {length }}$).
- This GF can be deduced from [Bousquet-Mélou, Schaeffer, '00].

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.
- Denote by $H^{(p, l)}(t)$ the GF for walks $(p, 0) \rightarrow(-I, 0)$ that hit the slit from above (counted by $t^{\text {length }}$).
- This GF can be deduced from [Bousquet-Mélou, Schaeffer, '00].

$H^{(I, p)}=\frac{1}{p} H^{(p, l)}$, so introduce symmetric "matrix" $\mathcal{H}:=\left(\sqrt{\frac{1}{p}} H^{(p, l)}\right)_{p, I \geq 1}$

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.
- Denote by $H^{(p, l)}(t)$ the GF for walks $(p, 0) \rightarrow(-I, 0)$ that hit the slit from above (counted by $t^{\text {length }}$).
- This GF can be deduced from [Bousquet-Mélou, Schaeffer, '00].

$-$ $H^{(I, p)}=\frac{1}{p} H^{(p, l)}$, so introduce symmetric "matrix" $\mathcal{H}:=\left(\sqrt{\frac{1}{p}} H^{(p, l)}\right)_{p, l \geq 1}$
- Then $\sqrt{\frac{p}{l}} 2^{N}\left(\mathcal{H}^{N}\right)_{p l}$ counts composite walks $(p, 0) \rightarrow(\pm l, 0)$ that alternate between axes N times.

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.
- Denote by $H^{(p, l)}(t)$ the GF for walks $(p, 0) \rightarrow(-l, 0)$ that hit the slit from above (counted by $t^{\text {length }}$).
- This GF can be deduced from [Bousquet-Mélou, Schaeffer, '00].

$$
H^{(I, p)}=\frac{l}{p} H^{(p, l)}, \text { so introduce symmetric "matrix" } \mathcal{H}:=\left(\sqrt{\frac{1}{p}} H^{(p, l)}\right)_{p, l \geq 1}
$$

- Then $\sqrt{\frac{p}{l}} 2^{N}\left(\mathcal{H}^{N}\right)_{p l}$ counts composite walks $(p, 0) \rightarrow(\pm I, 0)$ that alternate between axes N times.
- To incorporate a weight $e^{i b \theta_{w}}$ in GF just replace $2 \rightarrow e^{i b \pi}+e^{-i b \pi}$.
$\sum_{\text {such walks }} t^{|w|} e^{i b \theta_{w}}=\sqrt{\frac{p}{l}} \sum_{N=1}^{\infty}(2 \cos (\pi b))^{N}\left(\mathcal{H}^{N}\right)_{p l}$

Decomposing into walks on the slit plane

- The general idea: decompose into a sequence of walks on the slit plane.
- Denote by $H^{(p, l)}(t)$ the GF for walks $(p, 0) \rightarrow(-I, 0)$ that hit the slit from above (counted by $t^{\text {length }}$).
- This GF can be deduced from [Bousquet-Mélou, Schaeffer, '00].

$H^{(I, p)}=\frac{1}{p} H^{(p, l)}$, so introduce symmetric "matrix" $\mathcal{H}:=\left(\sqrt{\frac{1}{p}} H^{(p, l)}\right)_{p, l \geq 1}$
- Then $\sqrt{\frac{p}{T}} 2^{N}\left(\mathcal{H}^{N}\right)_{p I}$ counts composite walks $(p, 0) \rightarrow(\pm l, 0)$ that alternate between axes N times.
- To incorporate a weight $e^{i b \theta_{w}}$ in GF just replace $2 \rightarrow e^{i b \pi}+e^{-i b \pi}$.
$\sum_{\text {such walks }} t^{|\omega|} e^{i b \theta_{w}}=\sqrt{\frac{p}{l}} \sum_{N=1}^{\infty}(2 \cos (\pi b))^{N}\left(\mathcal{H}^{N}\right)_{p l}=\sqrt{\frac{p}{l}}\left(\frac{2 \cos (\pi b) \mathcal{H}}{l-2 \cos (\pi b) \mathcal{H}}\right)_{p l}$

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.
- $W^{(p, l)}\left(q_{1}, q_{2}, \ldots\right)$ is the GF for planar maps with outer degree $p \geq 1$, a marked face of degree $I \geq 1$, weighted by $\prod_{\text {faces }} q_{\text {degree }}$.

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.
- $W^{(p, l)}\left(q_{1}, q_{2}, \ldots\right)$ is the GF for planar maps with outer degree $p \geq 1$, a marked face of degree $I \geq 1$, weighted by $\prod_{\text {faces }} q_{\text {degree }}$.

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.
- $W^{(p, l)}\left(q_{1}, q_{2}, \ldots\right)$ is the GF for planar maps with outer degree $p \geq 1$, a marked face of degree $I \geq 1$, weighted by $\prod_{\text {faces }} q_{\text {degree }}$.

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.
- $W^{(p, l)}\left(q_{1}, q_{2}, \ldots\right)$ is the GF for planar maps with outer degree $p \geq 1$, a marked face of degree $I \geq 1$, weighted by $\prod_{\text {faces }} q_{\text {degree }}$.
- For quasi-bipartite maps $\left(q_{1}=q_{3}=\cdots=0\right)$ it takes a universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+l) / 2} \quad \alpha(p):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

Relation with planar maps

- Planar map $=$ a multigraph properly embedded in the plane up to homeomorphism. Take it to be rooted on the outer face.
- $W^{(p, l)}\left(q_{1}, q_{2}, \ldots\right)$ is the GF for planar maps with outer degree $p \geq 1$, a marked face of degree $I \geq 1$, weighted by $\prod_{\text {faces }} q_{\text {degree }}$.
- For quasi-bipartite maps $\left(q_{1}=q_{3}=\cdots=0\right)$ it takes a universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+l) / 2} \quad \alpha(p):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

- Remarkably $H^{(p, l)}(t)=\left.W^{(p, l)}\right|_{\rho_{\mathbf{q}} \rightarrow \rho(t):=\frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1}$

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset$

there exists a bijection

$$
\Phi^{(p, l)}:\{\mathfrak{S}-\text { walks }(p, 0) \rightarrow(-I, 0) \text { hitting slit from above }\}
$$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "ऽ-walk-decorated maps" with root face degree p } \\
\text { and marked face degree I }
\end{array}\right\}
$$

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset$
 there exists a bijection

$$
\Phi^{(p, l)}:\{\mathfrak{S}-\text { walks }(p, 0) \rightarrow(-I, 0) \text { hitting slit from above }\}
$$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "S-walk-decorated maps" with root face degree } p \\
\text { and marked face degree I }
\end{array}\right\}
$$

- A S-walk-decorated map is a rooted planar map with a marked face together with...

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset$
 there exists a bijection $\Phi^{(p, l)}:\{\mathfrak{S}$-walks $(p, 0) \rightarrow(-l, 0)$ hitting slit from above $\}$ $\longrightarrow\left\{\begin{array}{l}\text { "(-walk-decorated maps" with root face degree } p \\ \text { and marked face degree I }\end{array}\right\}$

- A S-walk-decorated map is a rooted planar map with a marked face together with...
- for each face (except root or marked) of degree k an excursion $(0,0) \rightarrow(k-2,0)$ above or below x-axis.

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset$

- A \mathfrak{S}-walk-decorated map is a rooted planar map with a marked face together with...
- for each face (except root or marked) of degree k an excursion $(0,0) \rightarrow(k-2,0)$ above or below x-axis.
- for each vertex an excursion $(0,0) \rightarrow(-2,0)$ above x-axis

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset$

- A \mathfrak{S}-walk-decorated map is a rooted planar map with a marked face together with...
- for each face (except root or marked) of degree k an excursion $(0,0) \rightarrow(k-2,0)$ above or below x-axis.
- for each vertex an excursion $(0,0) \rightarrow(-2,0)$ above x-axis
- Substituting in
$W^{(p, l)}\left(q_{i}\right)$ the GFs
$q_{k} \rightarrow$

leads to $H^{(p, l)}(t)$.

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

- Recall

$$
\sum_{\text {such walks }} t^{|w|} e^{i b \theta_{w}}=\sqrt{\frac{p}{l}} \sum_{N=1}^{\infty}(2 \cos (\pi b))^{N}\left(\mathcal{H}^{N}\right)_{p l}=\sqrt{\frac{p}{l}}\left(\frac{2 \cos (\pi b) \mathcal{H}}{l-2 \cos (\pi b) \mathcal{H}}\right)_{p l}
$$

From walks to (rigid) loop-decorated maps

- Recall
$\sum_{\text {such walks }} t^{|w|} e^{i b \theta_{w}}=\sqrt{\frac{p}{l}} \sum_{N=1}^{\infty}(2 \cos (\pi b))^{N}\left(\mathcal{H}^{N}\right)_{p l}=\sqrt{\frac{p}{l}}\left(\frac{2 \cos (\pi b) \mathcal{H}}{I-2 \cos (\pi b) \mathcal{H}}\right)_{p l}$
- Hence this also enumerates planar maps decorated with rigid loops with outer and marked face degrees $p, /$ carrying a weight

$$
(2 \cos (\pi b))^{\# \text { loops }+1} \prod_{\text {regular faces }} q_{\text {degree }}
$$

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

$$
\text { weight } \quad n^{\# \text { loops }} g^{\text {\#loop faces }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.
- Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11] for this "rigid" setting.

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

$$
\text { weight } \quad n^{\# \text { loops }} g^{\# l o o p ~ f a c e s ~} \prod_{\text {regular faces }} q_{\text {degree }}
$$

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.
- Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11] for this "rigid" setting.
- Recently in [Borot, Bouttier, Duplantier, '16] (for triangulations) exact statistics for the nesting of loops was obtained, i.e. distribution of \# loops surrounding a marked vertex/face.

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

$$
\text { weight } \quad n^{\# \text { loops }} g^{\# \text { loop faces }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.
- Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11] for this "rigid" setting.
- Recently in [Borot, Bouttier, Duplantier, '16] (for trianguations) exact statistics for the nesting of loops was obtained, i.e. distribution of \# loops surrounding a marked vertex/face.
- Importantly: the form of the GF $\mathcal{G}^{(p, l)}(n, g, \mathbf{q})$ is universal and is not affected by suppressing loops that do not surround the marked face.
- We know that (with $n=2 \cos (\pi b)$ and appropriate g, \mathbf{q})

$$
\sqrt{\frac{p}{l}}\left(\frac{\mathcal{H}}{l-n \mathcal{H}}\right)_{p l}=\quad \mathcal{G}^{(p, l)}(n, g, \mathbf{q})
$$

- We know that (with $n=2 \cos (\pi b)$ and appropriate g, \mathbf{q})

$$
\sum_{p, I \geq 1} x_{1}^{p} x_{2}^{l} \sqrt{\frac{p}{l}}\left(\frac{\mathcal{H}}{I-n \mathcal{H}}\right)_{p l}=\sum_{p, I \geq 1} x_{1}^{p} x_{2}^{l} \mathcal{G}^{(p, l)}(n, g, \mathbf{q})
$$

- We know that (with $n=2 \cos (\pi b)$ and appropriate g, \mathbf{q})

$$
\sum_{p, l \geq 1} x_{1}^{p} x_{2}^{\prime} \sqrt{\frac{p}{l}}\left(\frac{\mathcal{H}}{I-n \mathcal{H}}\right)_{p l}=\sum_{p, l \geq 1} x_{1}^{p} x_{2}^{\prime} \mathcal{G}^{(p, l)}(n, g, \mathbf{q})
$$

- Adapting GF from [Borot, Bouttier, Duplantier, '16] and computing a series expansion:

$$
=4 \sum_{m=1}^{\infty} \frac{1}{q^{m}+q^{-m}-n} \frac{\cos \left(2 \pi m v\left(x_{2}\right)\right) x_{1} \frac{\partial}{\partial x_{1}} \cos \left(2 \pi m v\left(x_{1}\right)\right)}{m\left(q^{-m}-q^{m}\right)}
$$

where $q=q(4 t)=t^{2}+8 t^{4}+\cdots$ is the nome of modulus $4 t$ and

$$
v(x):=\operatorname{cd}^{-1}(-x / \sqrt{\rho}, \rho) /(4 K(\rho)), \quad \rho(t)=\frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1
$$

- We know that (with $n=2 \cos (\pi b)$ and appropriate g, \mathbf{q})

$$
\sum_{p, l \geq 1} x_{1}^{p} x_{2}^{\prime} \sqrt{\frac{p}{l}}\left(\frac{\mathcal{H}}{I-n \mathcal{H}}\right)_{p l}=\sum_{p, l \geq 1} x_{1}^{p} x_{2}^{\prime} \mathcal{G}^{(p, l)}(n, g, \mathbf{q})
$$

- Adapting GF from [Borot, Bouttier, Duplantier, '16] and computing a series expansion:

$$
=4 \sum_{m=1}^{\infty} \frac{1}{q^{m}+q^{-m}-n} \frac{\cos \left(2 \pi m v\left(x_{2}\right)\right) x_{1} \frac{\partial}{\partial x_{1}} \cos \left(2 \pi m v\left(x_{1}\right)\right)}{m\left(q^{-m}-q^{m}\right)}
$$

where $q=q(4 t)=t^{2}+8 t^{4}+\cdots$ is the nome of modulus $4 t$ and

$$
v(x):=\operatorname{cd}^{-1}(-x / \sqrt{\rho}, \rho) /(4 K(\rho)), \quad \rho(t)=\frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1
$$

Proposition (Diagonalization of \mathcal{H})

$\mathcal{H}=U^{T} \cdot \Lambda_{q} \cdot U$ in the sense of operators on $\ell^{2}(\mathbb{R})$ with

$$
\Lambda_{q}=\operatorname{diag}\left(\frac{1}{q^{m}+q^{-m}}\right)_{m \geq 1}, U_{m p}=\sqrt{\frac{4 p}{m\left(q^{-m}-q^{m}\right)}}\left[x^{p}\right] \cos (2 \pi m v(x))
$$

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{l}} \mathcal{H}_{p /}$.

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{1}} \mathcal{H}_{p}$.

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{1}} \mathcal{H}_{p l}$.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{l}} \mathcal{H}_{p l}$.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{1}} \mathcal{H}_{p l}$.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{l}} \mathcal{H}_{p l}$.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{l}} \mathcal{H}_{p l}$.
- Why not decompose into walks on half plane?
- Denote GF for half-plane walks $(p, 0) \rightarrow(0, I)$ by $\sqrt{\frac{p}{l}} \mathcal{J}_{p l}$. Then
$2 \mathcal{H}=(2 \mathcal{J})(\mathcal{J}+\mathcal{J} \cdot 2 \mathcal{H}), \quad \mathcal{J}=\sqrt{\frac{4 \mathcal{H}}{1+2 \mathcal{H}}}$

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane, each numerated by $\sqrt{\frac{p}{l}} \mathcal{H}_{p l}$.
- Why not decompose into walks on half plane?
- Denote GF for half-plane walks $(p, 0) \rightarrow(0, l)$ by $\sqrt{\frac{p}{l}} \mathcal{J}_{p l}$. Then
$2 \mathcal{H}=(2 \mathcal{J})(\mathcal{J}+\mathcal{J} \cdot 2 \mathcal{H}), \quad \mathcal{J}=\sqrt{\frac{4 \mathcal{H}}{1+2 \mathcal{H}}}$

- Hence \mathcal{J} has same eigenmodes as \mathcal{H} but eigenvalues are $\frac{1}{q^{m / 2}+q^{-m / 2}}$ instead of $\frac{1}{q^{m}+q^{-m}}$. Such operations $q \rightarrow \sqrt{q}$ on elliptic functions are well-known as "Landen transformations".

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequences of half-plane walks with $p=I=2$ and a restriction on first and last step.

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequences of half-plane walks with $p=I=2$ and a restriction on first and last step.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(2 \cos \left(\frac{\pi b}{2}\right)\right)^{N-1}\left[\left(\mathcal{J}^{N}\right)_{22}-\right.
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequences of half-plane walks with $p=I=2$ and a restriction on first and last step.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(2 \cos \left(\frac{\pi b}{2}\right)\right)^{N-1}\left[\left(\mathcal{J}^{N}\right)_{22}-\right.
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequences of half-plane walks with $p=I=2$ and a restriction on first and last step.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(2 \cos \left(\frac{\pi b}{2}\right)\right)^{N-1}\left[\left(\mathcal{J}^{N}\right)_{22}-\sqrt{\frac{4}{2}}\left(\mathcal{J}^{N}\right)_{42}+\sqrt{\frac{6}{2}}\left(\mathcal{J}^{N}\right)_{62}-\cdots\right.
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequences of half-plane walks with $p=I=2$ and a restriction on first and last step.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(2 \cos \left(\frac{\pi b}{2}\right)\right)^{N-1} \sum_{p, l \geq 0}(-1)^{p+1} \sqrt{\frac{p}{l}}\left(\mathcal{J}^{N}\right)_{2 p, 2 l}
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequences of half-plane walks with $p=I=2$ and a restriction on first and last step.
- Enumerated by

$$
\begin{aligned}
F(t, b) & =2 \sum_{N \geq 1}\left(2 \cos \left(\frac{\pi b}{2}\right)\right)^{N-1} \sum_{p, l \geq 0}(-1)^{p+1} \sqrt{\frac{p}{l}}\left(\mathcal{J}^{N}\right)_{2 p, 2 l} \\
& =\sec \left(\frac{\pi b}{2}\right)\left[1-\frac{\pi \tan \left(\frac{\pi b}{4}\right)}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q}\right)}\right]
\end{aligned}
$$

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

$$
(n, m, p)=(13,7,5)
$$

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

- The proof uses the reflection principle.

Application: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

- The proof uses the reflection principle.

Application: walks in cones
 Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)

For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

- The proof uses the reflection principle.
- Thanks to a hint of Killian Raschel: for $b \in \mathbb{Q}, F(t, b)$ is expressible in Jacobi elliptic functions at rational angles, which are algebraic.

Application: walks in cones
 Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)

For any set of integers $-n<m-n<p<m<n$ the generating function $F_{n, m, p}(t)$ for excursions from the origin with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region ($\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi$) is given by

$$
F_{n, m, p}(t)=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

which is algebraic, i.e. $P\left(t, F_{n, m, p}(t)\right)=0$ for some $P(t, x) \in \mathbb{Z}[t, x]$.

- The proof uses the reflection principle.
- Thanks to a hint of Killian Raschel: for $b \in \mathbb{Q}, F(t, b)$ is expressible in Jacobi elliptic functions at rational angles, which are algebraic.

Application: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$

Application: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$

Application: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$
- Gessel-type excursions in the quadrant are enumerated by

$$
\frac{1}{t^{2}} F_{3,2,0}(t)=\frac{1}{4 t^{2}} F\left(t, \frac{4}{3}\right)
$$

Application: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$
- Gessel-type excursions in the quadrant are enumerated by

$$
\begin{aligned}
& \frac{1}{t^{2}} F_{3,2,0}(t)=\frac{1}{4 t^{2}} F\left(t, \frac{4}{3}\right) \\
& \quad=\frac{1}{2 t^{2}}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q}\right)}-1\right] \\
& \quad=1+2 t^{2}+11 t^{4}+85 t^{6}+\cdots
\end{aligned}
$$

which is an algebraic series.

Application: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$
- Gessel-type excursions in the quadrant are enumerated by

$$
\begin{aligned}
& \frac{1}{t^{2}} F_{3,2,0}(t)=\frac{1}{4 t^{2}} F\left(t, \frac{4}{3}\right) \\
& \quad=\frac{1}{2 t^{2}}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q}\right)}-1\right] \\
& \quad=1+2 t^{2}+11 t^{4}+85 t^{6}+\cdots
\end{aligned}
$$

which is an algebraic series.

- Can reproduce the known formula

$$
\sum_{n=0}^{\infty} t^{2 n} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=\frac{1}{2 t^{2}}\left[{ }_{2} F_{1}\left(-\frac{1}{2},-\frac{1}{6} ; \frac{2}{3} ;(4 t)^{2}\right)-1\right]
$$

by checking that both solve same algebraic equation.

Further questions

- Generating functions for walks with full control on the endpoint?
- Other walks with small steps?
- Finally, here is an interpretation of the nome q as function of the elliptic modulus k. Why is it so simple?

$$
q(k)=\lim _{n \rightarrow \infty} \mathbb{P}\left[\begin{array}{l}
\text { SRW on } \mathbb{Z}^{2} \text { reaches winding angle } n \pi \\
\text { before geometric time with parameter } k
\end{array}\right]^{1 / n}
$$

Further questions

- Generating functions for walks with full control on the endpoint?
- Other walks with small steps?
- Finally, here is an interpretation of the nome q as function of the elliptic modulus k. Why is it so simple?

$$
\begin{gathered}
q(k)=\lim _{n \rightarrow \infty} \mathbb{P}\left[\begin{array}{l}
\text { SRW on } \mathbb{Z}^{2} \text { reaches winding angle } n \pi \\
\text { before geometric time with parameter } k
\end{array}\right]^{1 / n} \\
\text { Thanks for your attention! }
\end{gathered}
$$

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{p}{T}}\left((2 \mathcal{H})^{N}\right)_{p l}$ enumerates walks $(p, 0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{1}{I}}\left((2 \mathcal{H})^{N}\right)_{11}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{1}{T}}\left((2 \mathcal{H})^{N}\right)_{11}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then $\frac{1}{1-4 t} \sum_{I \geq 1} \frac{1}{\sqrt{l}}\left((2 \mathcal{H})^{N}\right)_{1, I}$ enumerates all walks alternating $\geq N$ times.

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{1}{l}}\left((2 \mathcal{H})^{N}\right)_{1_{l}}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then
$\frac{1}{1-4 t} \sum_{I \geq 1} \frac{1}{\sqrt{j}}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, I}$ enumerates all walks alternating exactly N times.

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{1}{l}}\left((2 \mathcal{H})^{N}\right)_{1_{l}}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then
$\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{ } 1}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, I}$ enumerates all walks alternating exactly N times.

$$
\sum_{w} t^{|\omega|} e^{i \pi b\left(\left[\frac{\theta_{w}}{\pi}\right\rfloor+\frac{1}{2}\right)}=\frac{4 t \cos (\pi b / 2)}{1-4 t} \sum_{N \geq 0} \cos ^{N}(\pi b) \sum_{I \geq 1} \frac{1}{\sqrt{ } /}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, l}
$$

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{1}{1}}\left((2 \mathcal{H})^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then
$\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{ } /}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, l}$ enumerates all walks alternating exactly N times.

$$
\begin{gathered}
\sum_{w} t^{|\omega|} e^{i \pi b\left(\left\lfloor\frac{\theta_{w}}{\pi}\right\rfloor+\frac{1}{2}\right)}=\frac{4 t \cos (\pi b / 2)}{1-4 t} \sum_{N \geq 0} \cos ^{N}(\pi b) \sum_{l \geq 1} \frac{1}{\sqrt{I}}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, l} \\
=\frac{1}{1-4 t} \frac{\pi}{2 K(4 t)} \sum_{k=-\infty}^{\infty} \frac{2 e^{i \pi b\left(k+\frac{1}{2}\right)}}{q^{k+\frac{1}{2}}+q^{-k-\frac{1}{2}}}=\frac{\operatorname{cn}(b K(4 t), 4 t)}{1-4 t}
\end{gathered}
$$

Another application: hyperbolic secant law

- Recall $\sqrt{\frac{1}{T}}\left((2 \mathcal{H})^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then
$\frac{1}{1-4 t} \sum_{I \geq 1} \frac{1}{\sqrt{1}}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, I}$ enumerates all walks alternating exactly N times.

$$
\begin{gathered}
\sum_{w} t^{|\omega|} e^{i \pi b\left(\left\lfloor\frac{\theta_{w}}{\pi}\right\rfloor+\frac{1}{2}\right)}=\frac{4 t \cos (\pi b / 2)}{1-4 t} \sum_{N \geq 0} \cos ^{N}(\pi b) \sum_{l \geq 1} \frac{1}{\sqrt{I}}\left((2 \mathcal{H})^{N}-(2 \mathcal{H})^{N+1}\right)_{1, l} \\
=\frac{1}{1-4 t} \frac{\pi}{2 K(4 t)} \sum_{k=-\infty}^{\infty} \frac{2 e^{i \pi b\left(k+\frac{1}{2}\right)}}{q^{k+\frac{1}{2}}+q^{-k-\frac{1}{2}}}=\frac{\operatorname{cn}(b K(4 t), 4 t)}{1-4 t}
\end{gathered}
$$

Theorem (Winding angle of SRW on \mathbb{Z}^{2} around $\left(-\frac{1}{2}, \frac{1}{2}\right)$)
If $n_{p} \geq 1$ is a geometric $R V$ with parameter $0<p<1$ then
$\mathbb{P}\left[k \pi<\theta_{n_{p}}<(k+1) \pi\right]=\frac{\operatorname{sech}\left(\pi\left(k+\frac{1}{2}\right) T\right)}{\sum_{k \in \mathbb{Z}} \operatorname{sech}\left(\pi\left(k+\frac{1}{2}\right) T\right)}, \quad T=\frac{K\left(\sqrt{1-p^{2}}\right)}{K(p)}$

