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Introduction: Gessel sequence

I In 2001 Ira Gessel conjectured the number
of walks with 2n steps ∈ {N,S ,SW ,NE}
in the quadrant starting and ending at 0 to
be

16n (5/6)n(1/2)n
(2)n(5/3)n

= 2, 11, 85, 782, . . .

I Proving this turned out to be a notoriously difficult problem, but by
now we have. . .

I . . . a computer-aided proof. [Kauers, Koutschan, Zeilberger, ’08]

I . . . a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, ’13]

I . . . an elementary (algebraic) proof. [Bousquet-Mélou, ’15]

I As we will see, counting walks by winding angle provides a natural
alternative route.
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Introduction: Winding angle of a walk

I To a walk w on Z2 avoiding 0 we can
naturally associate a winding angle

θw :=

|w |∑
i=1

](wi−1, 0,wi ).

I Extends unambiguously to excursions
from the origin.

I Natural interpretation as walks in the
universal cover of Z2 \ {0}.

I Main goal today is to determine the GF
for simple excursions from origin

F (t, b) :=
∑
w

t |w |e ib θw

= 4t2 + (12 + 4e−ib
π
2 + 4e ib

π
2 )t4 + . . .
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Decomposing into walks on the slit plane

I The general idea: decompose into a
sequence of walks on the slit plane.

I Denote by H(p,l)(t) the GF for
walks (p, 0)→ (−l , 0) that hit the
slit from above (counted by t length).

I This GF can be deduced from
[Bousquet-Mélou, Schaeffer, ’00].

I

H(l,p) = l
pH

(p,l), so introduce symmetric “matrix” H :=
(√

l
pH

(p,l)
)
p,l≥1

I Then
√

p
l 2N(HN)pl counts composite walks (p, 0)→ (±l , 0) that

alternate between axes N times.

I To incorporate a weight e ibθw in GF just replace 2→ e ibπ + e−ibπ.

∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl
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Relation with planar maps
I Planar map = a multigraph properly embedded in the plane up to

homeomorphism. Take it to be rooted on the outer face.

I W (p,l)(q1, q2, . . .) is the GF for planar maps with outer degree
p ≥ 1, a marked face of degree l ≥ 1, weighted by

∏
faces qdegree.

I For quasi-bipartite maps (q1 = q3 = · · · = 0) it takes a universal
form (see e.g. [Collet, Fusy, ’12])

W (p,l) =
1

l

2

p + l
α(l)α(p)

(ρq
4

)(p+l)/2

α(p) :=
p!

b p2 c!b
p−1

2 c!

I Remarkably H(p,l)(t) = W (p,l)
∣∣
ρq→ρ(t):= 1−

√
1−16t2

8t2 −1
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A bijective explanation
Proposition

For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0)→ (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0)→ (−2, 0) above x-axis



A bijective explanation
Proposition

For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0)→ (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0)→ (−2, 0) above x-axis



A bijective explanation
Proposition

For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0)→ (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0)→ (−2, 0) above x-axis



A bijective explanation
Proposition

For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0)→ (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0)→ (−2, 0) above x-axis



A bijective explanation
Proposition

For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0)→ (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0)→ (−2, 0) above x-axis

I Substituting in
W (p,l)(qi ) the GFs

qk →

( )
·

( ) k−2
2

leads to H(p,l)(t).









From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



From walks to (rigid) loop-decorated maps

I Recall∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl

I Hence this also enumerates planar maps decorated with rigid loops
with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
∏

regular faces

qdegree



Planar maps coupled to a rigid O(n) loop model

I Rigid O(n) model: a planar map + disjoint
loops, that intersect solely quadrangles
through opposite sides. Enumerated with

weight n#loopsg#loop faces
∏

regular faces

qdegree

I An exact solution of a closely related model was first obtained by
[Eynard, Kristjansen, ’95] in terms of elliptic functions.

I Made more precise in [Borot, Eynard, ’09], and in [Borot, Bouttier, Guitter, ’11]

for this “rigid” setting.

I Recently in [Borot, Bouttier, Duplantier, ’16] (for triangulations) exact statistics for
the nesting of loops was obtained, i.e. distribution of # loops
surrounding a marked vertex/face.

I Importantly: the form of the GF G(p,l)(n, g ,q) is universal and is not
affected by suppressing loops that do not surround the marked face.
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I We know that (with n = 2 cos(πb) and appropriate g ,q)

∑
p,l≥1

xp1 x
l
2

√
p

l

(
H

I − nH

)
pl

=

∑
p,l≥1

xp1 x
l
2

G(p,l)(n, g ,q)

I Adapting GF from [Borot, Bouttier, Duplantier, ’16] and computing a series
expansion:

= 4
∞∑

m=1

1

qm + q−m − n

cos(2πmv(x2)) x1
∂
∂x1

cos(2πmv(x1))

m(q−m − qm)

where q = q(4t) = t2 + 8t4 + · · · is the nome of modulus 4t and

v(x) := cd−1(−x/√ρ, ρ)/(4K (ρ)), ρ(t) =
1−
√

1− 16t2

8t2
− 1

Proposition (Diagonalization of H)

H = UT · Λq · U in the sense of operators on `2(R) with

Λq = diag

(
1

qm + q−m

)
m≥1

, Ump =

√
4p

m(q−m − qm)
[xp] cos(2πmv(x))
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Refinement: increase winding angle resolution

I Up to now: decomposed walk into
sequence of walks on slit plane,
each numerated by

√
p
l Hpl .

I Why not decompose into walks on
half plane?

I Denote GF for half-plane walks
(p, 0)→ (0, l) by

√
p
l Jpl . Then

2H = (2J )(J+J ·2H), J =

√
4H

I + 2H

I Hence J has same eigenmodes as H but eigenvalues are 1
qm/2+q−m/2

instead of 1
qm+q−m . Such operations q → √q on elliptic functions

are well-known as “Landen transformations”.
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Winding angle of excursions
I Wish to enumerate excursions from origin

by length and winding angle:

F (t, b) :=
∑
w

t |w |e ib θw

= 4t2 + (12 + 4e−ib
π
2 + 4e ib

π
2 )t4 + . . .

I Flip last step away from last axis
intersection, and first step oppositely.

I θw now measures angle to penultimate
axis intersection.

I This maps excursions 4-to-2 onto sequences of half-plane walks with
p = l = 2 and a restriction on first and last step.

I Enumerated by

F (t, b) = 2
∑
N≥1

(
2 cos

(
πb
2

))N−1
[

(J N)22 −

√
4
2 (J N)42 +

√
6
2 (J N)62 − · · ·

]

= sec
(
πb
2

) [
1−

π tan
(
πb
4

)
2K (4t)

θ′1(πb4 ,
√
q)

θ1(πb4 ,
√
q)

]
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Application: walks in cones
Theorem (Excursions in the nπ

4
-cone.)

For any set of integers −n < m− n < p < m < n the generating function
Fn,m,p(t) for excursions from the origin with winding angle pπ

2 staying

strictly inside angular region ( p+m−n
4 π, p+m

4 π) is given by

Fn,m,p(t) =
1

4n

n−1∑
k=1

(e−2iπ pk
n − e−2iπ mk

n )F
(
t, 4k

n

)

,

which is algebraic, i.e. P(t,Fn,m,p(t)) = 0 for some P(t, x) ∈ Z[t, x ].

I The proof uses the reflection
principle.

I Thanks to a hint of Killian
Raschel: for b ∈ Q, F (t, b) is
expressible in Jacobi elliptic
functions at rational angles,
which are algebraic.
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Application: walks in cones (Gessel case)

I Special case: (n,m, p) = (3, 2, 0)

I Gessel-type excursions in the quadrant are
enumerated by

1

t2
F3,2,0(t) =

1

4t2
F (t, 4

3 )

=
1

2t2

[ √
3π

2K (4t)

θ′1(π3 ,
√
q)

θ1(π3 ,
√
q)
− 1

]
= 1 + 2t2 + 11t4 + 85t6 + · · ·

,

which is an algebraic series.

I Can reproduce the known formula

∞∑
n=0

t2n 16n (5/6)n(1/2)n
(2)n(5/3)n

=
1

2t2

[
2F1

(
− 1

2 ,−
1
6 ; 2

3 ; (4t)2
)
− 1

]
.

by checking that both solve same algebraic equation.
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Further questions

I Generating functions for walks with full control on the endpoint?

I Other walks with small steps?

I Finally, here is an interpretation of the nome q as function of the
elliptic modulus k. Why is it so simple?

q(k) = lim
n→∞

P
[

SRW on Z2 reaches winding angle nπ
before geometric time with parameter k

]1/n

Thanks for your attention!
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Another application: hyperbolic secant law

I Recall
√

p
l ((2H)N)pl enumerates

walks (p, 0)→ (±l , 0) that alternate
between half-axes N times.

I Then 1
1−4t

∑
l≥1

1√
l
((2H)N)1,l

enumerates all walks alternating
≥N times.

∑
w

t |w |e iπb(b θwπ c+
1
2 ) =

4t cos(πb/2)

1− 4t

∑
N≥0

cosN(πb)
∑
l≥1

1√
l
((2H)N − (2H)N+1)1,l

=
1

1− 4t

π

2K (4t)

∞∑
k=−∞

2e iπb(k+ 1
2 )

qk+ 1
2 + q−k−

1
2

=
cn(b K (4t), 4t)

1− 4t

Theorem (Winding angle of SRW on Z2 around (−1
2
, 1

2
))

If np ≥ 1 is a geometric RV with parameter 0 < p < 1 then

P
[
kπ < θnp < (k + 1)π

]
=

sech(π(k + 1
2 )T )∑

k∈Z sech(π(k + 1
2 )T )

, T =
K (
√

1− p2)

K (p)
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