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Moduli space of punctured spheres

» Consider the moduli space My , of the Riemann sphere € with n
points removed:

Mo = {X = @\{Xl,...,x,,}} / Mdbius.

» My, is an orbifold of real dimension 2n — 6.
» By the uniformization theorem (n > 3):

Mao,n = {genus-0 hyperbolic surfaces with n cusps} /isometries

» Locally isometric to hyperbolic plane H, where geodesics are circular
arcs or vertical lines.

» Cusps regions are locally isometric to vertical strips with boundaries
identified.
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Theorem (TB, Curien, '21+)

We have

_1 (d) *
({Cl, soog C,,}, n 4 dhyp) — cWP(moo, D ) (Gromov-Hausdorff sense)
n—o00
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(S,(,), n 4 dhyp) m CWP(m007 D*) (Gromov-Hausdorff sense)

Area ,—1 (d) *
(Sna o dhyp) m CWP(mOO, M, D ) (Gromov-Prokhorov sense)

where ¢, = 2.339... and (ms,, D*) is the Brownian sphere with its
natural normalized measure p.

> Implied by 1" convergence: sup,cso dhyp(x, {c1,...,cn}) = o(n3).
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Proposition (TB, Curien, '21+)
If ¢, c1, ¢ are horocycles of three uniform cusps in S, then

72 [x" 322 h(27VZ) nsoo V27151
3 [xn—3]2 3co

Var[dhyp(C1, CO) - dhyp(c2a CO)] =

where x = \/T§J1(27r\/§) and cg is the first Bessel zero Jy(cg) = 0.

» Compare Var[D*(x1,x0) — D*(x2, x0)] = /% on Brownian sphere:
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Context: quadrangulations and labeled trees

» A planar map is a planar graph that is properly embedded in the
sphere modulo orientation-preserving homeomorphisms.

» A quadrangulation has faces of degree 4: represents the gluing rules
of squares into a topological sphere.

» There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]

rooted quadrangulations rooted plane trees with labels
with a distinguished vertex in Z that vary by at most 1

» The tree labels encode the distances to the distinguished vertex.

42 3 2
r+$+l
T 2 -1
i D
r+i$;+l 4
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From labeled trees to the Brownian snake

> The labeled tree is encoded in contour process C(")(t) and label
process Z("(t).

» The continuum analogues are the Brownian excursion e; and the
Brownian snake (e, Z;)o<e<1-

contour process
o)

Brownian motion on CRT:
Var(Z, — Z;] = de(s,t) ,
~ Credits:

~ | Bettinelli

. AP ’
Brownian sphere o CRT :
Zy = Z; [Aldous,'92] (Fi,,, Zt)OStSl
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» Novelty of this work: Brownian sphere limit from continuous model!
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> Let S, € Mg, with two distinguished cusps x, A and determine cut
locus of x: points with multiple shortest geodesics to *.
> Generically a rooted plane binary tree 7, € Bin, with n — 1 leaves.
Theorem
There exists an open subset Mg, C My , of full WP-measure, such that
M, S| | (e B) € (0,720 + B >, 0+ 0 >

T €Bin,
The WP measures is mapped to Lebesgue: 2" 3da1df; - - - day_3dB,_3.

0+o>m QHU
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» The cut locus determines a canonical ideal triangulation of S,.

» To reglue: need to know position where red arcs meet sides
perpendicularly <— angles at vertex.
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Proof: an associated ideal triangulation

» The cut locus determines a canonical ideal triangulation of S,.

» To reglue: need to know position where red arcs meet sides
perpendicularly <— angles at vertex.

» Well-defined precisely when sum of opposing angles > .

o+ P2 >m

» Angles are related to hyperbolic distances ¢; via sine law:

el els et

sin(2r —a; — B1)  sinag sinf3
» The Weil-Petersson measure is [Penner, '92]

1 n—3 3
wp = m(—z > dlady) =27 daxdBy - dag sdfy-s.

corners
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Main technical part: convergence to Brownian snake

» Random surface S, € My, <— Sample
binary tree T, € Bin, proportional to Leb(A7)
and angles sampled Leb-uniformly from

Ar = {(ai, 8i) € (Oaw)2n76 st >, 040 > )

» Label edges by distance to c,, but shifted to
have label 0 on root.

» Then label on edge incident to cusp i is
thyp(Ci, €4) — dhyp(Ca, €.

> Let C("(t) be contour process, Z(")(t) label
process, R(")(t) leaf-counting process.

Proposition

(C(“)(t) Z(n(t) R(“)(t))
0<t<1

(d)
) ——— (c1e,2Z;, tho<i<i
n

n— o0

1
na n

Nl
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A Bienaymé-Galton-Watson (BGW) tree?

» Make #leaves random and critical,

Fleaves J( )
Xc CoJ1(Co
Leb S

Z0q) “PAT: xe= 0

and in the end condition on #leaves = n — 2.

P,.(T) = =0.0632...

> (T,(a;, B3;)) is a “continuous-type BGW tree” (or a peculiar
fragmentation process?):

— H
T, ) /(8
1) ¢ %1w<a+ﬂ<0+wd“dﬁ

» Unfortunately no good invariance principles (yet)! Can we find a
single-type BGW tree instead?
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» Only some of the edges of 7 intersect their dual geodesic: canonical
partition of the ideal triangulation into “blobs”.

» Connectivity tree T of the blobs has law of a critical BGW tree with
explicit offspring dist (px), except root has offspring dist (p}).

» To recover T from T: independently attach to each black vertex of
degree k a red leaf with probability r in uniform corner (rp = 1).

» Insert independent random blobs of appropriate degree (with or
without leaf) sampled according to Leb.
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Adding the labels

> Transfer the (distance) labels to the black tree.

» Conditionally on T, the increments (Agk)7 ce Aik)) at a vertex of

degree k + 1 are independent of those at other vertices and

E[aM] =0, E[(AM)*] <00, i=1,...,k

» [Marckert, Miermont, '07]: Conditioned on n, the rescaled contour
and label process of T converges to Brownian snake (e, Z;)o<t<1 as
Ne — 00.



Proof of technical result

» Stretch to convergence on 7T, still conditioning on ne = n,

)
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Proof of technical result

» Stretch to convergence on 7T, still conditioning on ne = n,

<6<">(r) Z0() fe(”)(t)) (@)
0<t<1

— (Eleh &7y, E3t)0§t§1-

n— o0

1 ) 1 Y
n2 ns n

» Change conditioning to fixed number n, = n of leaves,

(C(”)(t) Z(M(t) R(”)(t)> (d
0<t<1

)
——— (c1e, 027, t)o<e<.

n% n n—oo



Bound on distances between arbitrary horocycles

1
1



Bound on distances between arbitrary horocycles

1
A
3
2
3
X at oo 2




Bound on distances between arbitrary horocycles







Bound on distances between arbitrary horocycles




Bound on distances between arbitrary horocycles

\ 1 2 3
» Distances between arbitrary horocycles satisfy deterministic bound
hyp(Ci, ¢j) < dhyp(Ci, €i) + dhyp(cj, ) — 2 mkin Ly +2logn+10.

o(n%)



Convergence to the Brownian sphere
[Le Gall, '13] [Miermont, '13] [Addario-Berry, Albenque, '13] [Bettinelli, Jacob, Miermont, '14]

c(t) zm(t d
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n2 nas 0<t<1 n—oo
+
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+
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<c<">(r) Z0(t) dhps, t>> @
0<t<1

*
— (Cleh C2Zt7 Cop Ds,t)oﬁtﬁl'



Convergence to the Brownian sphere
[Le Gall, '13] [Miermont, '13] [Addario-Berry, Albenque, '13] [Bettinelli, Jacob, Miermont, '14]

c(t) zm(t d
(1()7 1()> @, (cree,c2Zt)o<t<1
n2 nas 0<t<1 n—oo
+
dé")(s, t) < Z"(s) + Z2("(t) — 2 max{ min Z("  min Z(”)} + o(n%)
yp [s,t] [t,s]
+

Invariance under rerooting

\U« [Le Gall, "13]'s rerooting trick

d *
— (clet, C2Zt, Cup Ds,t)OStﬁl'
n—oo

({Cl, ey Cn}, n_% dhyp) %} cWP(moo, D*) (Gromov-Hausdorff sense)
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Setting the scale
» Random surface but now subcritical and extra marked cusp o,
#Ieaves

PS(T) = 575 Leb(Ar).

» The distance difference satisfies

sin T
0 = dhyp(Co, ) —dhyp(ca, cx) Z gsm ) :/0 cot f,dt.

7T—Oé,'—
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Setting the scale
» Random surface but now subcritical and extra marked cusp o,
leaves
P(T) = %y Leb(A7).
» The distance difference satisfies
sin o

k T
0 = dhyp(Co, &) —dhyp(Cas Ci) = Z log e —h /0 cot 0 dt.
i=1 ! !

> (0;) has law of Markov process with drift 1 and J-jumps 6 — 0’ at
rate 2F(0 — 0") ',E_.'.((%)). F(0) = YZ 1 (20VE), Fu(0) = Jo(20VE).
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