




Moduli space of punctured spheres
I Consider the moduli space M0,n of the Riemann sphere Ĉ with n

points removed:

M0,n =
{
X = Ĉ \ {x1, . . . , xn}

}

/Möbius.

I M0,n is an orbifold of real dimension 2n − 6.

I By the uniformization theorem (n ≥ 3):

M0,n
∼= {genus-0 hyperbolic surfaces with n cusps} / isometries

I Locally isometric to hyperbolic plane H

, where geodesics are circular
arcs or vertical lines.

I Cusps regions are locally isometric to vertical strips with boundaries
identified.
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X = Ĉ \ {x1, . . . , xn}

}
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Random hyperbolic surface? [Guth, Parlier, Young, ’11][Mirzakhani, ’13]

I M0,n admits a natural measure WP arising from its Weil-Petersson
symplectic structure.

I Weil–Petersson volumes V0,n := WP(M0,n) = 1, π2, 5
2π

4, . . . are
finite. [Wolpert ’83, Penner ’92] An explicit generating function: [Zograf ’95]

Z(x) =
∑
n≥3

23−n

(n − 2)!
V0,nx

n−2, x =

√
Z(x)

π
J1(2π

√
Z(x)).

I Normalizing WP: the random hyperbolic surface Sn ∈M0,n.

I Unique probability measure invariant under uniform twist along any
simple closed geodesic. [Wolpert, ’82]
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Main result: scaling limit of metric spaces

I Due to cusps, the metric space (Sn, dhyp) is
non-compact.

I Disjoint length-1 horocycles c1, . . . , cn ⊂ Sn.

I Turn into compact metric space (S◦n , dhyp) by
removing interiors of c1, . . . , cn ⊂ Sn.

Theorem (TB, Curien, ’21+)

We have(
{c1, . . . , cn}, n−

1
4 dhyp

) (d)−−−→
n→∞

c
WP

(m∞,D
∗) (Gromov-Hausdorff sense)

(
S◦n , n−

1
4 dhyp

) (d)−−−→
n→∞

c
WP

(m∞,D
∗) (Gromov-Hausdorff sense)(

Sn, Area
2πn , n

− 1
4 dhyp

) (d)−−−→
n→∞

c
WP

(m∞, µ,D
∗) (Gromov-Prokhorov sense)

where c
WP

= 2.339 . . . and (m∞,D
∗) is the Brownian sphere

with its
natural normalized measure µ.

I Implied by 1st convergence: supx∈S◦n dhyp(x , {c1, . . . , cn}) = o(n
1
4 ).
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Setting the scale
Proposition (TB, Curien, ’21+)

If c0, c1, c2 are horocycles of three uniform cusps in Sn, then

Var
[
dhyp(c1, c0)− dhyp(c2, c0)

]
=
π2

3

[xn−3]Z ′2J2(2π
√
Z)

[xn−3]Z ′
n→∞∼

√
2π5 n

3c0
,

where x =
√
Z
π J1(2π

√
Z) and c0 is the first Bessel zero J0(c0) = 0.

I Compare Var[D∗(x1, x0)− D∗(x2, x0)] =
√

π
8 on Brownian sphere:

c
WP

=
2π√
3c0

= 2.339 . . .
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Context: quadrangulations and labeled trees

I A planar map is a planar graph that is properly embedded in the
sphere modulo orientation-preserving homeomorphisms.

I A quadrangulation has faces of degree 4: represents the gluing rules
of squares into a topological sphere.

I There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, ’99]{
rooted quadrangulations

with a distinguished vertex

}
↔
{

rooted plane trees with labels
in Z that vary by at most 1

}
I The tree labels encode the distances to the distinguished vertex.
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From labeled trees to the Brownian snake

I The labeled tree is encoded in contour process C (n)(t)

and label
process Z (n)(t)

.

I The continuum analogues are the Brownian excursion et

and the
Brownian snake (et ,Zt)0≤t≤1.
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The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, . . . ]

I More precisely, given Brownian snake (et ,Zt)0≤t≤1, define
pseudo-distance on [0, 1] via

D◦(s, t) = Zs + Zt − 2 max
{

min
[s,t]

Z ,min
[t,s]

Z
}
, s, t ∈ [0, 1].

I Writing t ∼ s if identified in CRT, introduce new pseudo-distance

D∗(s, t) = inf
{
D◦(s, t1) + D◦(s1, t2) + · · ·+ D◦(sk , t) : ti ∼ si

}
.

I Brownian sphere is defined as (m∞ = [0, 1]/{D∗ = 0},D∗).
I Gromov-Hausdorff convergence proven for many types of maps,

including
I p-angulations [Le Gall, ’13][Miermont, ’13][Addario-Berry, Albenque, ’20]

I Uniform (bipartite) maps [Bettinelli, Jacob, Miermont, ’14][Abraham, ’16]

I Simple triangulations, quadrangulations [Addario-Berry, Albenque, ’20]

I Bipartite maps with prescribed degrees [Marzouk, ’18], . . .

I Can also be recovered from Liouville Quantum Gravity at γ =
√

8
3 .

[Miller, Sheffield]

I Novelty of this work: Brownian sphere limit from continuous model!
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Where are the trees in a hyperbolic surface?
I Let Sn ∈M′′0,n with two distinguished cusps ?,N and determine cut

locus of ?: points with multiple shortest geodesics to ?.

I Generically a rooted plane binary tree Tn ∈ Binn with n − 1 leaves.

Theorem

There exists an open subset M◦0,n ⊂M′′0,n of full WP-measure, such that

M◦0,n
bijection←−−−→

⊔
T ∈Binn

{(αi , βi ) ∈ (0, π)2n−6 : αi + βi > π, θ + σ > π}.

The WP measures is mapped to Lebesgue: 2n−3dα1dβ1 · · · dαn−3dβn−3.
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Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.

I To reglue: need to know position where red arcs meet sides
perpendicularly

←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.

I To reglue: need to know position where red arcs meet sides
perpendicularly

←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.

I To reglue: need to know position where red arcs meet sides
perpendicularly

←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.

I To reglue: need to know position where red arcs meet sides
perpendicularly

←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly

←→ angles at vertex.
I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.

I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.
I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.
I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Proof: an associated ideal triangulation

I The cut locus determines a canonical ideal triangulation of Sn.
I To reglue: need to know position where red arcs meet sides

perpendicularly ←→ angles at vertex.
I Well-defined precisely when sum of opposing angles > π.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2π − α1 − β1)
=

e`3

sinα1
=

e`2

sinβ1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n − 3)!

(
−2

∑
corners

d`i∧d`j
)n−3

= 2n−3dα1dβ1 · · · dαn−3dβn−3.



Main technical part: convergence to Brownian snake

I Random surface Sn ∈M′′0,n ←→ Sample
binary tree Tn ∈ Binn proportional to Leb(AT )
and angles sampled Leb-uniformly from

AT = {(αi , βi ) ∈ (0, π)2n−6 : αi+βi > π, θ+σ > π}.

I Label edges by distance to c?,

but shifted to
have label 0 on root.

I Then label on edge incident to cusp i is
dhyp(ci , c?)− dhyp(cN, c?).

I Let C (n)(t) be contour process,

Z (n)(t) label
process, R(n)(t) leaf-counting process.

Proposition(
C (n)(t)

n
1
2

,
Z (n)(t)

n
1
4

,
R(n)(t)

n

)
0≤t≤1

(d)−−−→
n→∞

(c1et , c2Zt , t)0≤t≤1
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dhyp(ci , c?)− dhyp(cN, c?).

I Let C (n)(t) be contour process, Z (n)(t) label
process,

R(n)(t) leaf-counting process.

Proposition(
C (n)(t)
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n
1
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A Bienaymé-Galton-Watson (BGW) tree?

I Make #leaves random and critical,

Pxc (T ) =
xc

#leaves

Z(xc)
Leb(AT ), xc =

c0J1(c0)

2π2
= 0.0632 . . .

and in the end condition on #leaves = n − 2.

I (T , (αi , βi )) is a “continuous-type BGW tree” (or a peculiar
fragmentation process?):

I Unfortunately no good invariance principles (yet)! Can we find a
single-type BGW tree instead?
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I Only some of the edges of T intersect their dual geodesic:

canonical
partition of the ideal triangulation into “blobs”.

I Connectivity tree T of the blobs

has law of a critical BGW tree with
explicit offspring dist (pk), except root has offspring dist (p•k ).

I To recover T from T: independently attach to each black vertex of
degree k a red leaf with probability rk in uniform corner (r1 = 1).

I Insert independent random blobs of appropriate degree (with or
without leaf) sampled according to Leb.
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Adding the labels

I Transfer the (distance) labels to the black tree.

I Conditionally on T, the increments (∆
(k)
1 , . . . ,∆

(k)
k ) at a vertex of

degree k + 1 are independent of those at other vertices and

E[∆
(k)
i ] = 0, E[(∆

(k)
i )4+ε] <∞, i = 1, . . . , k.

I [Marckert, Miermont, ’07]: Conditioned on n• the rescaled contour
and label process of T converges to Brownian snake (et ,Zt)0≤t≤1 as
n• →∞.
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Proof of technical result

I Stretch to convergence on T , still conditioning on n• = n,(
C̃ (n)(t)

n
1
2

,
Z̃ (n)(t)

n
1
4

,
R̃(n)(t)

n

)
0≤t≤1

(d)−−−→
n→∞

(c̃1et , c̃2Zt , c̃3t)0≤t≤1.

I Change conditioning to fixed number n◦ = n of leaves,(
C (n)(t)

n
1
2

,
Z (n)(t)

n
1
4

,
R(n)(t)

n

)
0≤t≤1

(d)−−−→
n→∞
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Bound on distances between arbitrary horocycles

I Distances between arbitrary horocycles satisfy deterministic bound

dhyp(ci , cj) ≤ dhyp(ci , c∗) + dhyp(cj , c∗)− 2 min
k
`k + 2 log n + 10︸ ︷︷ ︸

o(n
1
4 )

.
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Convergence to the Brownian sphere
[Le Gall, ’13] [Miermont, ’13] [Addario-Berry, Albenque, ’13] [Bettinelli, Jacob, Miermont, ’14](

C (n)(t)

n
1
2

,
Z (n)(t)

n
1
4

)
0≤t≤1

(d)−−−→
n→∞

(c1et , c2Zt)0≤t≤1

+

d
(n)
hyp(s, t) ≤ Z (n)(s) + Z (n)(t)− 2 max

{
min
[s,t]

Z (n),min
[t,s]

Z (n)
}

+ o(n
1
4 )

+
Invariance under rerooting

⇓ [Le Gall, ’13]’s rerooting trick(
C (n)(t)

n
1
2

,
Z (n)(t)

n
1
4

,
d

(n)
hyp(s, t)

n
1
4

)
0≤t≤1

(d)−−−→
n→∞

(c1et , c2Zt , cWP
D∗s,t)0≤t≤1.

⇓(
{c1, . . . , cn}, n−

1
4 dhyp

) (d)−−−→
n→∞

c
WP

(m∞,D
∗) (Gromov-Hausdorff sense)
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Setting the scale
I Random surface but now subcritical and extra marked cusp ◦,

P◦x (T ) = x#leaves

Z′(x) Leb(AT ).

I The distance difference satisfies

δ = dhyp(c◦, c∗)−dhyp(cN, c?) =
k∑

i=1

log
sinαi

sin(2π − αi − βi )

=

∫ τ

0

cot θtdt.

I (θt) has law of Markov process with drift 1 and ↓-jumps θ → θ′ at

rate 2F (θ − θ′)F•(θ′)
F•(θ) . F (θ) =

√
Z
θ J1(2θ

√
Z), F•(θ) = J0(2θ

√
Z).

E◦x
[
δ2
]

= − 2

F•(π)

∫ π

0

dα

∫ α

0

dβ cotα cotβF•(π − α)F•(α− β)F•(β)

= π2

3 Z
′(x)J2(2π

√
Z(§)).
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Happy birthday, Jean!


