


Plan

I Review (Miermont’s Lecture)

I Boltzmann planar maps
I Peeling exploration

I Relation between random walks on Z2 and Boltzmann planar maps

I Rigid O(n) loop model on planar maps
I Peeling exploration
I Nesting of loops vs. winding of random walks
I Coding the O(2) model via lattice walks



Reminder: Boltzmann planar maps

I Mp = {rooted, bipartite planar maps of perimeter 2p}.

I For q = (q1, q2, . . .) ≥ 0 define measure wq(m) =
∏

faces f q deg(f )
2

.

I q admissible iff W (p)(q) := wq(Mp) <∞ for all p ≥ 1.

I If q is admissible then wq( · |Mp) defines the q-Boltzmann planar
map m(p) of perimeter 2p.
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Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, . . . ]

I Describe an exploration of m by a sequence e0 ⊂ e1 ⊂ · · · ⊂ m of
submaps containing holes (the unexplored regions).

I Fix a peeling algorithm to decide across which edge to explore next.

I For a q-Boltzmann planar map m = m(p), (ei ) is a Markov process
with transition probabilities
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Reminder: targeted peeling exploration
I If the map m• has a marked vertex, one may track the hole

containing the vertex.

I For a pointed q-Boltzmann planar map m
(p)
•
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Planar map editor: try for yourself!

http://hef.ru.nl/∼tbudd/planarmap/examples/editor.html

http://hef.ru.nl/~tbudd/planarmap/examples/editor.html


Reminder: perimeter process
I The perimeter process (Pn) tracks the half-perimeter of the hole

containing the marked vertex.

I If q admissible, (Pn) has the law of a random walk (Sn) with
distribution νq conditioned to hit Z≤0 at 0:

p(`, `+k) =
h↓(`+ k)

h↓(`)
νq(k), h↓(`) = 4−`

(
2`

`

)
, νq(k) =

{
qk+1 (4Rq)k k ≥ 0

2W (−k−1) (4Rq)k k < 0.
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Wiener-Hopf factorization
I Denote by (S<i ) the strict descending ladder process of (Sn) and by

(S≥i ) the weak ascending ladder process.

I Wiener-Hopf factorization (assuming S0 = 0):

1− Ee iθS1 = (1− Ee iθS
<
1 )(1− Ee iθS

≥
1 )

I If (Sn) hits Z≤0 at 0 with probability h↓(p), then the same is true
for (S<i ). This completely fixes the law of (S<i ) to that of, say, (Ti ).

Theorem (TB, ’15)

The map q→ νq is a bijection between admissible q and probability

distributions on Z for which (S<i )
(d)
= (Ti ).

Moreover, q is critical ⇐⇒ (Sn) oscillates ⇐⇒ (S≥i ) non-defective.
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I (Ti ) is the unique strict descending random walk that hits Z≤0 at 0
with probability h↓(p) = 2−2p

(
2p
p

)
when started at p.

I (Ti )
(d)
= axis intersections of a NW,SW random walk on 1

2Z
2.

I If q = 0, then (Si ) = (S<i )
(d)
= (Ti ).

I One can get random walks (Si ) for certain q 6= 0 by looking at axis
intersections of more general lattice walks on 1

2Z
2.
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I Consider a 2d random walk (Xt ,Yt) s.t. Xt has i.i.d. increments in
Z + 1

2 and Yt is an independent simple RW on 1
2Z.

Proposition

The law of the sequence of axis intersections of (Xt ,Yt) is equal to that
of (Si ) for some admissible q iff Xt+1 − Xt ≥ − 1

2 and (Xt) 6→ ∞.

I Proof sketch: Inspired by [Bousquet-Mélou, Schaeffer, ’02]

I Axis intersections of (Xt ,Yt) are equal in law to (X2Ti )i .
I “Subordination by (Ti ) commutes with Wiener-Hopf factorization”.

1− Ee iθX2T1 =
√

1− Ee iθX2 =

√
(1− Ee iθX<

2 )(1− Ee iθX
≥
2 ) =

√
1− Ee iθX<

2

√
1− Ee iθX

≥
2

I Thus statement holds iff (Xt) has descending ladder process X<
2t = t.
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Combinatorial explanation? Compare fragmentations
I Consider the fragmentation induced by the peeling process of a

planar map (in the more general non-bipartite setting).

I The labeled tree unique characterizes the planar map (for fixed
peeling algorithm).
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I Label de fragments by their extent.
I Determine the maximal subtree with labels ≤ −3 on inner nodes.
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Combinatorial explanation? Compare fragmentations

I Matching the trees determines a bijection between ↑-excursions of
extent −p − 2 and maps of perimeter p decorated with:

I an ↑-excursion of extent −2 for each vertex;
I an l-excursion of extent k − 2 for each face of degree k.
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I Taking the image of a random walk (Xt ,Yt) and forgetting the
decoration yields a q-Boltzmann planar map, with νq the axis-return
distribution of the walk.

I The perimeter process (Pi ) corresponds to the axis intersections.
I q is critical iff (Xt) has no drift.
I If (Xt) in dom. of attr. of an α-stable process for α ∈ (1, 2], then

(St) is in dom. of attr. of an α
2 -stable process with Lévy measure

cos aπ

xa
1x>0dx +

1

|x |a
1x<0dx , a = 1 + α

2 ∈ ( 3
2 , 2].
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A glimpse of loops

I A simple diagonal random walk (p, 0)→ (0, 0) is mapped to a
q-Boltzmann planar map with signed, nested loops with distribution

∝ g#
∏

reg. faces f

q deg(f )
2

for some g and q as before.

I The winding angle θ of the walk (ignoring the last bit) is
∑

loops±π.
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Reminder: O(n) loop model
[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, Zinn-

Justin, Kristjansen . . . , 70’s–90’s]

I Let M̂p be the set of loop-decorated maps
of boundary 2p.

I The rigid O(n) loop model corresponds to
the measure wn,g ,q( · |M̂p), where
[Borot, Bouttier, Guitter, ’11]

wn,g ,q(m) = n# g#
∏

reg. faces f

q deg(f )
2

I If (n, g ,q) is admissible, the gasket of such
a map is distributed as a q̂-Boltzmann PM.

I (n, g ,q) is critical iff q̂ is.
(n, g ,q) is non-generic iff the gasket
supports macroscopic faces.

I For n ∈ (0, 2] the non-generic scaling limits
are conjecturally related to LQGγ + CLEκ,
n = −2 cos(4π/κ)

I Dense phase: κ ∈ [4, 8), γ =
√

16/κ
I Dilute phase: κ ∈ (2, 4], γ =

√
κ
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Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Targeted peeling exploration with loops

I The untargeted peeling is easy:
explore a q̂-BPM, and replace
a new face by a loop with
appropriate probability.

I Targeted exploration:
I Discover new face.
I Discover new loop.
I Glue pair of edges.

I Track perimeter and # of
loops crossed.



Ricocheted random walk [TB,’18+]

I Let (Si ) be the random walk with law νq̂.

I For p = n
2 ∈ [0, 1], define p-ricocheted random walk (S∗i ):

I absorb in Z<0 with probability 1− p;
I ricochet to absolute value with probability p;

Ni+1 = Ni + 1;

I absorb at 0 with probability 1.

I If (q, g , n) non-generic critical: (Pi ,Ni )
(d)
= (S∗i ,#ricochets)

conditioned to be absorbed at 0.

I The law of nested loop lengths (`j)
N
j=1 is independent of q̂!
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Theorem (TB,’18+)

Let n = 2 and (n, g ,q) non-generic critical and N(`) the # nested loops
in the corresponding pointed map of boundary 2`. Let θ(`) be the
winding angle of a random walk started at (2`, 0). Then

E[zN
(`)

] = E[e ib θ
(`)

] =
1

1 + cosπb
[x2`]

(
1− x

1 + x

)b
, b = 1

π arccos z .

For n ∈ (0, 2) this distribution is simply tilted by ( n
2 )N

(`)

.

I More general results on nesting statistics of the O(n) loop model on
planar maps in [Borot, Bouttier, Duplantier, ’16] [Chen, Curien, Maillard, ’17].

I Inspired by this many more exact statistics of the winding of simple
random walks can be obtained [TB, ’17]
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Byproduct: winding field of a random loop

I Consider a uniform loop of length 2`
on Z2.

I One may color each square according
to the total winding number of the
loop around it.

I What is the expected area of squares
with winding number n 6= 0?

I It can be expressed explicitly as [TB, ’17]

42`(
2`
`

)2

`

n
[k2`]

2q2n

1− q4n

∼ `

2πn2

,

where q(k) is the nome of modulus k.

I Reproduces result of the 2d Brownian
bridge as `→∞.
[Garban, Trujillo-Ferreras,’06]
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Mating of trees and convergence to LQG+SLE

I Miller’s lecture: If you have a random map with a statistical model
coded (à la mating of trees) by a random walk on Z2 with
independent increments, then strong coupling with mated-CRT
maps allows one to import results from LQGγ + SLEκ. [Gwynne,

Holden, Sun, Miller, Sheffield]

I LQG√
8/3

+ SLE6: site-percolation on uniform triangulations ↔
Kreweras walks [Bernardi, Holden, Sun, ...]

I LQG√
2 + SLE8: spanning-tree decorated maps ↔ simple random

walk [Mullin, Bernardi, Sheffield, ...]

I LQG√
4/3

+ SLE12: bipolar-oriented maps [Kenyon, Miller, Sheffield,

Wilson, ’15]

I LQG1 + SLE16: Schnyder wood-decorated maps [Li, Sun, Watson, ’17]

I Does the coding of maps by walks in this work provide an analogue
planar map model in the “limiting γ = 2 universality class”?

I LQG2 + CLE4: O(2) loop model-decorated maps ↔ simple random
walk on Z2???
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coded (à la mating of trees) by a random walk on Z2 with
independent increments, then strong coupling with mated-CRT
maps allows one to import results from LQGγ + SLEκ. [Gwynne,

Holden, Sun, Miller, Sheffield]

I LQG√
8/3

+ SLE6: site-percolation on uniform triangulations ↔
Kreweras walks [Bernardi, Holden, Sun, ...]

I LQG√
2 + SLE8: spanning-tree decorated maps ↔ simple random

walk [Mullin, Bernardi, Sheffield, ...]

I LQG√
4/3

+ SLE12: bipolar-oriented maps [Kenyon, Miller, Sheffield,

Wilson, ’15]

I LQG1 + SLE16: Schnyder wood-decorated maps [Li, Sun, Watson, ’17]

I Does the coding of maps by walks in this work provide an analogue
planar map model in the “limiting γ = 2 universality class”?

I LQG2 + CLE4: O(2) loop model-decorated maps ↔ simple random
walk on Z2???



Mating of trees and convergence to LQG+SLE

I Miller’s lecture: If you have a random map with a statistical model
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I An ↑-excursion of extent −p − 2 encodes a planar map with
boundary length p with decoration.

I Wish to mirror the l-excursion on a face of degree k, to describe
interior of a signed loop.

I Need to shrink inner boundary of loop by 4 to make interior fit.
I The result is a type of O(2) loop model-decorated map with

asymmetric loops.
I Homework: find a nicer bijection that does not require asymmetric

loops and does not leave decoration on the vertices.
I Homework∗: extend to O(n), n ∈ (0, 2).
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Thank you!

(My life according to https://scimeter.org)

https://scimeter.org
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Byproduct: winding field of a random loop

I Consider a uniform loop of length 2`
on Z2.

I One may color each square according
to the total winding number of the
loop around it.

I What is the expected area of squares
with winding number n 6= 0?

I It can be expressed explicitly as [TB, ’17]

42`(
2`
`

)2

`

n
[k2`]

2q2n

1− q4n

∼ `

2πn2

,

where q(k) is the nome of modulus k.

I Reproduces result of the 2d Brownian
bridge as `→∞.
[Garban, Trujillo-Ferreras,’06]
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Winding angle of a simple random walk

I The winding angle Θ of random walks on Z2 were only known
asymptotically: “hyperbolic secant laws” [Rudnick, Hu, ’87] [Bélisle, ’89] [Shi,

’98].

I An application:

Theorem (Discrete hyperbolic secant law [TB, ’17])

The winding angle Θ around (− 1
2 ,−

1
2 ) of a simple random walk on Z2

shortly after a geometric random time with parameter k satisfies for
α = π
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P[Θ ∈ (α− π
2 , α + π

2 )] = c sech(τ α), c = π
2kK(k) , τ = K(

√
1−k2)

K(k) .
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