Lattice Walks \& Peeling of Planar Maps
 Timothy Budd

Plan

- Review (Miermont's Lecture)
- Boltzmann planar maps
- Peeling exploration
- Relation between random walks on \mathbb{Z}^{2} and Boltzmann planar maps
- Rigid $O(n)$ loop model on planar maps
- Peeling exploration
- Nesting of loops vs. winding of random walks
- Coding the $O(2)$ model via lattice walks

Reminder: Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.

Reminder: Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\operatorname{des}(f)}{2}}$.

Reminder: Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\operatorname{des}(f)}{2}}$.
- \mathbf{q} admissible iff $W^{(p)}(\mathbf{q}):=w_{\mathbf{q}}\left(\mathcal{M}_{p}\right)<\infty$ for all $p \geq 1$.

Reminder: Boltzmann planar maps

- $\mathcal{M}_{p}=\{$ rooted, bipartite planar maps of perimeter $2 p\}$.
- For $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \geq 0$ define measure $w_{\mathbf{q}}(\mathfrak{m})=\prod_{\text {faces } f} q_{\frac{\text { deg }(f)}{2}}$.
- \mathbf{q} admissible iff $W^{(p)}(\mathbf{q}):=w_{\mathbf{q}}\left(\mathcal{M}_{p}\right)<\infty$ for all $p \geq 1$.
- If \mathbf{q} is admissible then $w_{\mathbf{q}}\left(\cdot \mid \mathcal{M}_{p}\right)$ defines the \mathbf{q}-Boltzmann planar map $\mathfrak{m}^{(p)}$ of perimeter $2 p$.

Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

- Describe an exploration of \mathfrak{m} by a sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \cdots \subset \mathfrak{m}$ of submaps containing holes (the unexplored regions).

Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

- Describe an exploration of \mathfrak{m} by a sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \cdots \subset \mathfrak{m}$ of submaps containing holes (the unexplored regions).
- Fix a peeling algorithm to decide across which edge to explore next.

Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

- Describe an exploration of \mathfrak{m} by a sequence $\mathfrak{e}_{0} \subset \mathfrak{e}_{1} \subset \cdots \subset \mathfrak{m}$ of submaps containing holes (the unexplored regions).
- Fix a peeling algorithm to decide across which edge to explore next.

- For a \mathbf{q}-Boltzmann planar map $\mathfrak{m}=\mathfrak{m}^{(p)},\left(\mathfrak{e}_{i}\right)$ is a Markov process with transition probabilities

Transition probability: $\quad \frac{q_{k+1} W^{(l+k)}}{W^{(l)}} \quad \frac{W^{(k-1)} W^{(l-k)}}{W^{(l)}}$

Reminder: targeted peeling exploration

- If the map $\mathrm{m}_{\text {. }}$ has a marked vertex, one may track the hole containing the vertex.

Reminder: targeted peeling exploration

- If the map m_{\bullet} has a marked vertex, one may track the hole containing the vertex.

- For a pointed \mathbf{q}-Boltzmann planar map $\mathfrak{m}_{\boldsymbol{e}}^{(p)}$

Planar map editor: try for yourself!

http://hef.ru.nl/~tbudd/planarmap/examples/editor.html

Reminder: perimeter process

- The perimeter process $\left(P_{n}\right)$ tracks the half-perimeter of the hole containing the marked vertex.

Reminder: perimeter process

- The perimeter process $\left(P_{n}\right)$ tracks the half-perimeter of the hole containing the marked vertex.

- If \mathbf{q} admissible, $\left(P_{n}\right)$ has the law of a random walk $\left(S_{n}\right)$ with distribution $\nu_{\mathbf{q}}$ conditioned to hit $\mathbb{Z}_{\leq 0}$ at 0 :

$$
p(\ell, \ell+k)=\frac{h^{\downarrow}(\ell+k)}{h^{\downarrow}(\ell)} \nu_{\mathbf{q}}(k), \quad h^{\downarrow}(\ell)=4^{-\ell}\binom{2 \ell}{\ell}, \quad \nu_{\mathbf{q}}(k)=\left\{\begin{array}{l}
q_{k+1}\left(4 R_{\mathbf{q}}\right)^{k} \\
2 W^{(-k-1)}\left(4 R_{\mathbf{q}}\right)^{k}
\end{array}\right.
$$

Wiener-Hopf factorization

- Denote by $\left(S_{i}^{<}\right)$the strict descending ladder process of $\left(S_{n}\right)$ and by $\left(S_{i}^{\geq}\right)$the weak ascending ladder process.

Wiener-Hopf factorization

- Denote by $\left(S_{i}^{<}\right)$the strict descending ladder process of $\left(S_{n}\right)$ and by (S_{i}^{\geq}) the weak ascending ladder process.
- Wiener-Hopf factorization (assuming $S_{0}=0$):

$$
1-\mathbb{E} e^{i \theta S_{1}}=\left(1-\mathbb{E} e^{i \theta S_{1}^{<}}\right)\left(1-\mathbb{E} e^{i \theta S_{1}^{\geq}}\right)
$$

Wiener-Hopf factorization

- Denote by $\left(S_{i}^{<}\right)$the strict descending ladder process of $\left(S_{n}\right)$ and by (S_{i}^{\geq}) the weak ascending ladder process.
- Wiener-Hopf factorization (assuming $S_{0}=0$):

$$
1-\mathbb{E} e^{i \theta S_{1}}=\left(1-\mathbb{E} e^{i \theta S_{1}^{<}}\right)\left(1-\mathbb{E} e^{i \theta S_{1}^{\geq}}\right)
$$

- If $\left(S_{n}\right)$ hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)$, then the same is true for $\left(S_{i}^{<}\right)$. This completely fixes the law of $\left(S_{i}^{<}\right)$to that of, say, $\left(T_{i}\right)$.

Wiener-Hopf factorization

- Denote by $\left(S_{i}^{<}\right)$the strict descending ladder process of $\left(S_{n}\right)$ and by (S_{i}^{\geq}) the weak ascending ladder process.
- Wiener-Hopf factorization (assuming $S_{0}=0$):

$$
1-\mathbb{E} e^{i \theta S_{1}}=\left(1-\mathbb{E} e^{i \theta S_{1}^{<}}\right)\left(1-\mathbb{E} e^{i \theta S_{1}^{\geq}}\right)
$$

- If $\left(S_{n}\right)$ hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)$, then the same is true for $\left(S_{i}^{<}\right)$. This completely fixes the law of $\left(S_{i}^{<}\right)$to that of, say, $\left(T_{i}\right)$.

Theorem (TB, '15)

The map $\mathbf{q} \rightarrow \nu_{\mathbf{q}}$ is a bijection between admissible \mathbf{q} and probability distributions on \mathbb{Z} for which $\left(S_{i}^{<}\right) \stackrel{(\mathrm{d})}{=}\left(T_{i}\right)$.

Wiener-Hopf factorization

- Denote by $\left(S_{i}^{<}\right)$the strict descending ladder process of $\left(S_{n}\right)$ and by (S_{i}^{\geq}) the weak ascending ladder process.
- Wiener-Hopf factorization (assuming $S_{0}=0$):

$$
1-\mathbb{E} e^{i \theta S_{1}}=\left(1-\mathbb{E} e^{i \theta S_{1}^{<}}\right)\left(1-\mathbb{E} e^{i \theta S_{1}^{\geq}}\right)
$$

- If $\left(S_{n}\right)$ hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)$, then the same is true for $\left(S_{i}^{<}\right)$. This completely fixes the law of $\left(S_{i}^{<}\right)$to that of, say, $\left(T_{i}\right)$.

Theorem (TB, '15)

The map $\mathbf{q} \rightarrow \nu_{\mathbf{q}}$ is a bijection between admissible \mathbf{q} and probability distributions on \mathbb{Z} for which $\left(S_{i}^{<}\right) \stackrel{(\mathrm{d})}{=}\left(T_{i}\right)$.
Moreover, \mathbf{q} is critical $\Longleftrightarrow\left(S_{n}\right)$ oscillates $\Longleftrightarrow\left(S_{i}^{\geq}\right)$non-defective.

- $\left(T_{i}\right)$ is the unique strict descending random walk that hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)=2^{-2 p}\binom{2 p}{p}$ when started at p.
- $\left(T_{i}\right)$ is the unique strict descending random walk that hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)=2^{-2 p}\binom{2 p}{p}$ when started at p.
- $\left(T_{i}\right) \stackrel{(\mathrm{d})}{=}$ axis intersections of a NW,SW random walk on $\frac{1}{2} \mathbb{Z}^{2}$.

- $\left(T_{i}\right)$ is the unique strict descending random walk that hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)=2^{-2 p}\binom{2 p}{p}$ when started at p.
- $\left(T_{i}\right) \stackrel{(\mathrm{d})}{=}$ axis intersections of a NW,SW random walk on $\frac{1}{2} \mathbb{Z}^{2}$.

- If $\mathbf{q}=0$, then $\left(S_{i}\right)=\left(S_{i} \subset\right) \stackrel{(\mathrm{d})}{=}\left(T_{i}\right)$.

- $\left(T_{i}\right)$ is the unique strict descending random walk that hits $\mathbb{Z}_{\leq 0}$ at 0 with probability $h^{\downarrow}(p)=2^{-2 p}\binom{2 p}{p}$ when started at p.
- $\left(T_{i}\right) \stackrel{(\mathrm{d})}{=}$ axis intersections of a NW,SW random walk on $\frac{1}{2} \mathbb{Z}^{2}$.

- If $\mathbf{q}=0$, then $\left(S_{i}\right)=\left(S_{i}^{<}\right) \stackrel{(\mathrm{d})}{=}\left(T_{i}\right)$.

- One can get random walks $\left(S_{i}\right)$ for certain $\mathbf{q} \neq 0$ by looking at axis intersections of more general lattice walks on $\frac{1}{2} \mathbb{Z}^{2}$.
- Consider a 2d random walk $\left(X_{t}, Y_{t}\right)$ s.t. X_{t} has i.i.d. increments in $\mathbb{Z}+\frac{1}{2}$ and Y_{t} is an independent simple RW on $\frac{1}{2} \mathbb{Z}$.

- Consider a 2d random walk $\left(X_{t}, Y_{t}\right)$ s.t. X_{t} has i.i.d. increments in $\mathbb{Z}+\frac{1}{2}$ and Y_{t} is an independent simple RW on $\frac{1}{2} \mathbb{Z}$.

Proposition

The law of the sequence of axis intersections of $\left(X_{t}, Y_{t}\right)$ is equal to that of $\left(S_{i}\right)$ for some admissible \mathbf{q} iff $X_{t+1}-X_{t} \geq-\frac{1}{2}$ and $\left(X_{t}\right) \nrightarrow \infty$.

- Consider a 2d random walk $\left(X_{t}, Y_{t}\right)$ s.t. X_{t} has i.i.d. increments in $\mathbb{Z}+\frac{1}{2}$ and Y_{t} is an independent simple RW on $\frac{1}{2} \mathbb{Z}$.

Proposition

The law of the sequence of axis intersections of $\left(X_{t}, Y_{t}\right)$ is equal to that of $\left(S_{i}\right)$ for some admissible \mathbf{q} iff $X_{t+1}-X_{t} \geq-\frac{1}{2}$ and $\left(X_{t}\right) \nrightarrow \infty$.

- Proof sketch: Inspired by [Bousquet-Mélou, Schaeffer, '02]
- Axis intersections of $\left(X_{t}, Y_{t}\right)$ are equal in law to $\left(X_{2 T_{i}}\right)_{i}$.
- "Subordination by $\left(T_{i}\right)$ commutes with Wiener-Hopf factorization".

$$
1-\mathbb{E} e^{i \theta X_{2} \tau_{1}}=\sqrt{1-\mathbb{E} e^{i \theta X_{2}}}=\sqrt{\left(1-\mathbb{E} e^{i \theta X_{2}^{く}}\right)\left(1-\mathbb{E} e^{i \theta X_{2}^{\Sigma}}\right)}=\sqrt{1-\mathbb{E} e^{i \theta X_{2}^{く}}} \sqrt{1-\mathbb{E} e^{i \theta X_{2}^{\geq}}}
$$

- Thus statement holds iff $\left(X_{t}\right)$ has descending ladder process $X_{2 t}^{<}=t$.

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation induced by the peeling process of a planar map (in the more general non-bipartite setting).

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation induced by the peeling process of a planar map (in the more general non-bipartite setting).

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation induced by the peeling process of a planar map (in the more general non-bipartite setting).

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation induced by the peeling process of a planar map (in the more general non-bipartite setting).

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation induced by the peeling process of a planar map (in the more general non-bipartite setting).
- The labeled tree unique characterizes the planar map (for fixed peeling algorithm).

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation of an excursion in the upper-half plane.

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation of an excursion in the upper-half plane.

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation of an excursion in the upper-half plane.

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation of an excursion in the upper-half plane.
- Label de fragments by their extent.

Combinatorial explanation? Compare fragmentations

- Consider the fragmentation of an excursion in the upper-half plane.
- Label de fragments by their extent.
- Determine the maximal subtree with labels ≤-3 on inner nodes.

Combinatorial explanation? Compare fragmentations

Combinatorial explanation? Compare fragmentations

- Matching the trees determines a bijection between \uparrow-excursions of extent $-p-2$ and maps of perimeter p decorated with:
- an \uparrow-excursion of extent -2 for each vertex;
- an \downarrow-excursion of extent $k-2$ for each face of degree k.

- The bijection extends to walks on the slit plane and decorated planar maps with a marked vertex or marked face.

- The bijection extends to walks on the slit plane and decorated planar maps with a marked vertex or marked face.

- Taking the image of a random walk $\left(X_{t}, Y_{t}\right)$ and forgetting the decoration yields a \mathbf{q}-Boltzmann planar map, with $\nu_{\mathbf{q}}$ the axis-return distribution of the walk.

- Taking the image of a random walk $\left(X_{t}, Y_{t}\right)$ and forgetting the decoration yields a \mathbf{q}-Boltzmann planar map, with $\nu_{\mathbf{q}}$ the axis-return distribution of the walk.

- Taking the image of a random walk $\left(X_{t}, Y_{t}\right)$ and forgetting the decoration yields a \mathbf{q}-Boltzmann planar map, with $\nu_{\mathbf{q}}$ the axis-return distribution of the walk.
- The perimeter process $\left(P_{i}\right)$ corresponds to the axis intersections.

- Taking the image of a random walk $\left(X_{t}, Y_{t}\right)$ and forgetting the decoration yields a \mathbf{q}-Boltzmann planar map, with $\nu_{\mathbf{q}}$ the axis-return distribution of the walk.
- The perimeter process $\left(P_{i}\right)$ corresponds to the axis intersections.
- \mathbf{q} is critical iff $\left(X_{t}\right)$ has no drift.

- Taking the image of a random walk $\left(X_{t}, Y_{t}\right)$ and forgetting the decoration yields a \mathbf{q}-Boltzmann planar map, with $\nu_{\mathbf{q}}$ the axis-return distribution of the walk.
- The perimeter process $\left(P_{i}\right)$ corresponds to the axis intersections.
- \mathbf{q} is critical iff $\left(X_{t}\right)$ has no drift.
- If $\left(X_{t}\right)$ in dom. of attr. of an α-stable process for $\alpha \in(1,2]$, then $\left(S_{t}\right)$ is in dom. of attr. of an $\frac{\alpha}{2}$-stable process with Lévy measure

$$
\frac{\cos a \pi}{x^{a}} \mathbf{1}_{x>0} \mathrm{~d} x+\frac{1}{|x|^{a}} \mathbf{1}_{x<0} \mathrm{~d} x, \quad a=1+\frac{\alpha}{2} \in\left(\frac{3}{2}, 2\right]
$$

A glimpse of loops

A glimpse of loops

- A simple diagonal random walk $(p, 0) \rightarrow(0,0)$ is mapped to a q-Boltzmann planar map with signed, nested loops with distribution

$$
\propto g^{\# \square} \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

for some g and \mathbf{q} as before.

A glimpse of loops

- A simple diagonal random walk $(p, 0) \rightarrow(0,0)$ is mapped to a q-Boltzmann planar map with signed, nested loops with distribution

$$
\propto g^{\# \square} \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

for some g and \mathbf{q} as before.

- The winding angle θ of the walk (ignoring the last bit) is $\sum_{\text {loops }} \pm \pi$.

Reminder: $O(n)$ loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, ZinnJustin, Kristjansen ..., 70's-90's]

- Let $\hat{\mathcal{M}}_{p}$ be the set of loop-decorated maps of boundary $2 p$.

Reminder: $O(n)$ loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, ZinnJustin, Kristjansen ..., 70's-90's]

- Let $\hat{\mathcal{M}}_{p}$ be the set of loop-decorated maps of boundary $2 p$.
- The rigid $O(n)$ loop model corresponds to the measure $w_{n, g, q}\left(\cdot \mid \hat{\mathcal{M}}_{p}\right)$, where [Borot, Bouttier, Guitter, '11]

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \sim} g \# \square \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

Reminder: $O(n)$ loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, ZinnJustin, Kristjansen ..., 70's-90's]

- Let $\hat{\mathcal{M}}_{p}$ be the set of loop-decorated maps of boundary $2 p$.
- The rigid $O(n)$ loop model corresponds to the measure $w_{n, g, q}\left(\cdot \mid \hat{\mathcal{M}}_{p}\right)$, where [Borot, Bouttier, Guitter, '11]

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \backsim} g \# \square \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

- If (n, g, \mathbf{q}) is admissible, the gasket of such a map is distributed as a $\hat{\mathbf{q}}$-Boltzmann PM.

Reminder: $O(n)$ loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, ZinnJustin, Kristjansen ..., 70's-90's]

- Let $\hat{\mathcal{M}}_{p}$ be the set of loop-decorated maps of boundary $2 p$.
- The rigid $O(n)$ loop model corresponds to the measure $w_{n, g, q}\left(\cdot \mid \hat{\mathcal{M}}_{p}\right)$, where [Borot, Bouttier, Guitter, '11]

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \Upsilon} g \# \square \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

- If (n, g, \mathbf{q}) is admissible, the gasket of such a map is distributed as a $\hat{\mathbf{q}}$-Boltzmann PM.
- (n, g, \mathbf{q}) is critical iff $\hat{\mathbf{q}}$ is. (n, g, \mathbf{q}) is non-generic iff the gasket supports macroscopic faces.

Reminder: $O(n)$ loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, ZinnJustin, Kristjansen ..., 70's-90's]

- Let $\hat{\mathcal{M}}_{p}$ be the set of loop-decorated maps of boundary $2 p$.
- The rigid $O(n)$ loop model corresponds to the measure $w_{n, g, q}\left(\cdot \mid \hat{\mathcal{M}}_{p}\right)$, where
[Borot, Bouttier, Guitter, '11]

$$
w_{n, g, \mathbf{q}}(\mathfrak{m})=n^{\# \Upsilon} g \# \square \prod_{\text {reg. faces } f} q_{\frac{\operatorname{deg}(f)}{2}}
$$

- If (n, g, \mathbf{q}) is admissible, the gasket of such a map is distributed as a $\hat{\mathbf{q}}$-Boltzmann PM.
- (n, g, \mathbf{q}) is critical iff $\hat{\mathbf{q}}$ is.
(n, g, \mathbf{q}) is non-generic iff the gasket supports macroscopic faces.
- For $n \in(0,2]$ the non-generic scaling limits are conjecturally related to $\mathrm{LQG}_{\gamma}+\mathrm{CLE}_{\kappa}$, $n=-2 \cos (4 \pi / \kappa)$
- Dense phase: $\kappa \in[4,8), \gamma=\sqrt{16 / \kappa}$
- Dilute phase: $\kappa \in(2,4], \gamma=\sqrt{\kappa}$

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Targeted peeling exploration with loops

- The untargeted peeling is easy: explore a $\hat{\mathbf{q}}$-BPM, and replace a new face by a loop with appropriate probability.
- Targeted exploration:
- Discover new face.
- Discover new loop.
- Glue pair of edges.
- Track perimeter and \# of
 loops crossed.

Ricocheted random walk [TB,'18+]

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.

Ricocheted random walk [TB,18+]

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:

Ricocheted random walk $[\mathrm{TB}, 18+]$

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:
- absorb in $\mathbb{Z}_{<0}$ with probability $1-\mathfrak{p}$;
- ricochet to absolute value with probability \mathfrak{p};

Ricocheted random walk $[\mathrm{TB}, 18+]$

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:
- absorb in $\mathbb{Z}_{<0}$ with probability $1-\mathfrak{p}$;
- ricochet to absolute value with probability \mathfrak{p};

Ricocheted random walk [TB,'18+]

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:
- absorb in $\mathbb{Z}_{<0}$ with probability $1-\mathfrak{p}$;
- ricochet to absolute value with probability \mathfrak{p};
- absorb at 0 with probability 1.

Ricocheted random walk $[\mathrm{TB}, 18+]$

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:
- absorb in $\mathbb{Z}_{<0}$ with probability $1-\mathfrak{p}$;
- ricochet to absolute value with probability $\mathfrak{p} ; N_{i+1}=N_{i}+1$;
- absorb at 0 with probability 1.

Ricocheted random walk $[\mathrm{TB}, 18+]$

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:
- absorb in $\mathbb{Z}_{<0}$ with probability $1-\mathfrak{p}$;
- ricochet to absolute value with probability $\mathfrak{p} ; N_{i+1}=N_{i}+1$;
- absorb at 0 with probability 1.
- If (\mathbf{q}, g, n) non-generic critical: $\left(P_{i}, N_{i}\right) \stackrel{(\mathrm{d})}{=}\left(S_{i}^{*}, \#\right.$ ricochets $)$ conditioned to be absorbed at 0 .

Ricocheted random walk $[\mathrm{TB}, 18+]$

- Let $\left(S_{i}\right)$ be the random walk with law $\nu_{\hat{\mathbf{q}}}$.
- For $\mathfrak{p}=\frac{n}{2} \in[0,1]$, define \mathfrak{p}-ricocheted random walk $\left(S_{i}^{*}\right)$:
- absorb in $\mathbb{Z}_{<0}$ with probability $1-\mathfrak{p}$;
- ricochet to absolute value with probability $\mathfrak{p} ; N_{i+1}=N_{i}+1$;
- absorb at 0 with probability 1.
- If (\mathbf{q}, g, n) non-generic critical: $\left(P_{i}, N_{i}\right) \stackrel{(\mathrm{d})}{=}\left(S_{i}^{*}, \#\right.$ ricochets $)$ conditioned to be absorbed at 0 .
- The law of nested loop lengths $\left(\ell_{j}\right)_{j=1}^{N}$ is independent of $\hat{\mathbf{q}}$!

Theorem (TB,'18+)

Let $n=2$ and (n, g, \mathbf{q}) non-generic critical and $N^{(\ell)}$ the \# nested loops in the corresponding pointed map of boundary 2ℓ. Let $\theta^{(\ell)}$ be the winding angle of a random walk started at $(2 \ell, 0)$. Then

$$
\mathbb{E}\left[z^{N^{(\ell)}}\right]=\mathbb{E}\left[e^{i b \theta^{(\ell)}}\right]=\frac{1}{1+\cos \pi b}\left[x^{2 \ell}\right]\left(\frac{1-x}{1+x}\right)^{b}, \quad b=\frac{1}{\pi} \arccos z .
$$

For $n \in(0,2)$ this distribution is simply tilted by $\left(\frac{n}{2}\right)^{N^{(e)}}$.

Theorem (TB,'18+)

Let $n=2$ and (n, g, \mathbf{q}) non-generic critical and $N^{(\ell)}$ the \# nested loops in the corresponding pointed map of boundary 2ℓ. Let $\theta^{(\ell)}$ be the winding angle of a random walk started at $(2 \ell, 0)$. Then

$$
\mathbb{E}\left[z^{N^{(\ell)}}\right]=\mathbb{E}\left[e^{i b \theta^{(\ell)}}\right]=\frac{1}{1+\cos \pi b}\left[x^{2 \ell}\right]\left(\frac{1-x}{1+x}\right)^{b}, \quad b=\frac{1}{\pi} \arccos z .
$$

For $n \in(0,2)$ this distribution is simply tilted by $\left(\frac{n}{2}\right)^{N^{(e)}}$.

- More general results on nesting statistics of the $O(n)$ loop model on planar maps in [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17].

Theorem (TB,'18+)

Let $n=2$ and (n, g, \mathbf{q}) non-generic critical and $N^{(\ell)}$ the \# nested loops in the corresponding pointed map of boundary 2ℓ. Let $\theta^{(\ell)}$ be the winding angle of a random walk started at $(2 \ell, 0)$. Then

$$
\mathbb{E}\left[z^{N^{(\ell)}}\right]=\mathbb{E}\left[e^{i b \theta^{(\ell)}}\right]=\frac{1}{1+\cos \pi b}\left[x^{2 \ell}\right]\left(\frac{1-x}{1+x}\right)^{b}, \quad b=\frac{1}{\pi} \arccos z .
$$

For $n \in(0,2)$ this distribution is simply tilted by $\left(\frac{n}{2}\right)^{N^{(\ell)}}$.

- More general results on nesting statistics of the $O(n)$ loop model on planar maps in [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17].
- Inspired by this many more exact statistics of the winding of simple random walks can be obtained [TB, '17]

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.
- What is the expected area of squares with winding number $n \neq 0$?

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.
- What is the expected area of squares with winding number $n \neq 0$?
- It can be expressed explicitly as [TB, '17]

$$
\frac{4^{2 \ell}}{\binom{\ell}{\ell}^{2}} \frac{\ell}{n}\left[k^{2 \ell}\right] \frac{2 q^{2 n}}{1-q^{4 n}}
$$

where $q(k)$ is the nome of modulus k.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.
- What is the expected area of squares with winding number $n \neq 0$?
- It can be expressed explicitly as [TB, '17]

$$
\frac{4^{2 \ell}}{\binom{2 \ell}{\ell}} \frac{\ell}{n}\left[k^{2 \ell}\right] \frac{2 q^{2 n}}{1-q^{4 n}} \sim \frac{\ell}{2 \pi n^{2}},
$$

where $q(k)$ is the nome of modulus k.

- Reproduces result of the 2d Brownian bridge as $\ell \rightarrow \infty$.
[Garban, Trujillo-Ferreras,'06]

Mating of trees and convergence to LQG+SLE

- Miller's lecture: If you have a random map with a statistical model coded (à la mating of trees) by a random walk on \mathbb{Z}^{2} with independent increments, then strong coupling with mated-CRT maps allows one to import results from $\mathrm{LQG}_{\gamma}+\mathrm{SLE}_{\kappa}$. [Gwynne, Holden, Sun, Miller, Sheffield]

Mating of trees and convergence to LQG+SLE

- Miller's lecture: If you have a random map with a statistical model coded (à la mating of trees) by a random walk on \mathbb{Z}^{2} with independent increments, then strong coupling with mated-CRT maps allows one to import results from $\mathrm{LQG}_{\gamma}+\mathrm{SLE}_{\kappa}$. [Gwynne, Holden, Sun, Miller, Sheffield]
- LQG $\sqrt{\sqrt{8 / 3}}+$ SLE $_{6}$: site-percolation on uniform triangulations \leftrightarrow Kreweras walks [Bernardi, Holden, Sun, ...]
- $\mathrm{LQG}_{\sqrt{2}}+\mathrm{SLE}_{8}$: spanning-tree decorated maps \leftrightarrow simple random walk [Mullin, Bernardi, Sheffield, ...]
- LQG $_{\sqrt{4 / 3}}+$ SLE $_{12}$: bipolar-oriented maps [Kenyon, Miller, Sheffield, Wilson, '15]
- $\mathrm{LQG}_{1}+$ SLE $_{16}$: Schnyder wood-decorated maps [Li, Sun, Watson, '17]

Mating of trees and convergence to LQG+SLE

- Miller's lecture: If you have a random map with a statistical model coded (à la mating of trees) by a random walk on \mathbb{Z}^{2} with independent increments, then strong coupling with mated-CRT maps allows one to import results from $\mathrm{LQG}_{\gamma}+\mathrm{SLE}_{\kappa}$. [Gwynne, Holden, Sun, Miller, Sheffield]
- $\mathrm{LQG}_{\sqrt{8 / 3}}+$ SLE $_{6}$: site-percolation on uniform triangulations \leftrightarrow Kreweras walks [Bernardi, Holden, Sun, ...]
- $\mathrm{LQG}_{\sqrt{2}}+\mathrm{SLE}_{8}$: spanning-tree decorated maps \leftrightarrow simple random walk [Mullin, Bernardi, Sheffield, ...]
- $\mathrm{LQG}_{\sqrt{4 / 3}}+$ SLE $_{12}$: bipolar-oriented maps [Kenyon, Miller, Sheffield, Wilson, '15]
- $\mathrm{LQG}_{1}+$ SLE $_{16}$: Schnyder wood-decorated maps [Li, Sun, Watson, '17]
- Does the coding of maps by walks in this work provide an analogue planar map model in the "limiting $\gamma=2$ universality class"?

Mating of trees and convergence to LQG+SLE

- Miller's lecture: If you have a random map with a statistical model coded (à la mating of trees) by a random walk on \mathbb{Z}^{2} with independent increments, then strong coupling with mated-CRT maps allows one to import results from $\mathrm{LQG}_{\gamma}+\mathrm{SLE}_{\kappa}$. [Gwynne, Holden, Sun, Miller, Sheffield]
- $\mathrm{LQG}_{\sqrt{8 / 3}}+$ SLE $_{6}$: site-percolation on uniform triangulations \leftrightarrow Kreweras walks [Bernardi, Holden, Sun, ...]
- $\mathrm{LQG}_{\sqrt{2}}+\mathrm{SLE}_{8}$: spanning-tree decorated maps \leftrightarrow simple random walk [Mullin, Bernardi, Sheffield, ...]
- $\mathrm{LQG}_{\sqrt{4 / 3}}+\mathrm{SLE}_{12}$: bipolar-oriented maps [Kenyon, Miller, Sheffield, Wilson, '15]
- $\mathrm{LQG}_{1}+$ SLE $_{16}$: Schnyder wood-decorated maps [Li, Sun, Watson, '17]
- Does the coding of maps by walks in this work provide an analogue planar map model in the "limiting $\gamma=2$ universality class"?
- $\mathrm{LQG}_{2}+\mathrm{CLE}_{4}: O(2)$ loop model-decorated maps \leftrightarrow simple random walk on \mathbb{Z}^{2} ???

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.
- Wish to mirror the $\mathfrak{\downarrow}$-excursion on a face of degree k, to describe interior of a signed loop.

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.
- Wish to mirror the $\mathfrak{\downarrow}$-excursion on a face of degree k, to describe interior of a signed loop.
- Need to shrink inner boundary of loop by 4 to make interior fit.

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.
- Wish to mirror the $\mathfrak{\downarrow}$-excursion on a face of degree k, to describe interior of a signed loop.
- Need to shrink inner boundary of loop by 4 to make interior fit.
- The result is a type of $O(2)$ loop model-decorated map with asymmetric loops.

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.
- Wish to mirror the $\mathfrak{\downarrow}$-excursion on a face of degree k, to describe interior of a signed loop.
- Need to shrink inner boundary of loop by 4 to make interior fit.
- The result is a type of $O(2)$ loop model-decorated map with asymmetric loops.
- Homework: find a nicer bijection that does not require asymmetric loops and does not leave decoration on the vertices.

- An \uparrow-excursion of extent $-p-2$ encodes a planar map with boundary length p with decoration.
- Wish to mirror the $\mathfrak{\downarrow}$-excursion on a face of degree k, to describe interior of a signed loop.
- Need to shrink inner boundary of loop by 4 to make interior fit.
- The result is a type of $O(2)$ loop model-decorated map with asymmetric loops.
- Homework: find a nicer bijection that does not require asymmetric loops and does not leave decoration on the vertices.
- Homework*: extend to $O(n), n \in(0,2)$.

Thank you!

(My life according to https://scimeter.org)

Backup slides

Walks on slit plane encode maps

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.
- What is the expected area of squares with winding number $n \neq 0$?

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.
- What is the expected area of squares with winding number $n \neq 0$?
- It can be expressed explicitly as [TB, '17]

$$
\frac{4^{2 \ell}}{\binom{\ell}{\ell}^{2}} \frac{\ell}{n}\left[k^{2 \ell}\right] \frac{2 q^{2 n}}{1-q^{4 n}}
$$

where $q(k)$ is the nome of modulus k.

Byproduct: winding field of a random loop

- Consider a uniform loop of length 2ℓ on \mathbb{Z}^{2}.
- One may color each square according to the total winding number of the loop around it.
- What is the expected area of squares with winding number $n \neq 0$?
- It can be expressed explicitly as [TB, '17]

$$
\frac{4^{2 \ell}}{\binom{2 \ell}{\ell}} \frac{\ell}{n}\left[k^{2 \ell}\right] \frac{2 q^{2 n}}{1-q^{4 n}} \sim \frac{\ell}{2 \pi n^{2}},
$$

where $q(k)$ is the nome of modulus k.

- Reproduces result of the 2d Brownian bridge as $\ell \rightarrow \infty$.
[Garban, Trujillo-Ferreras,'06]

Winding angle of a simple random walk

- The winding angle Θ of random walks on \mathbb{Z}^{2} were only known asymptotically: "hyperbolic secant laws" [Rudnick, Hu, '87] [Bélisle, '89] [Shi, '98].

Winding angle of a simple random walk

- The winding angle Θ of random walks on \mathbb{Z}^{2} were only known asymptotically: "hyperbolic secant laws" [Rudnick, Hu, '87] [Bélisle, '89] [Shi, '98].
- An application:

Theorem (Discrete hyperbolic secant law [TB, '17])

The winding angle Θ around $\left(-\frac{1}{2},-\frac{1}{2}\right)$ of a simple random walk on \mathbb{Z}^{2} shortly after a geometric random time with parameter k satisfies for $\alpha=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}, \ldots$,

$$
\mathbb{P}\left[\Theta \in\left(\alpha-\frac{\pi}{2}, \alpha+\frac{\pi}{2}\right)\right]=c \operatorname{sech}(\tau \alpha), \quad c=\frac{\pi}{2 k K(k)}, \quad \tau=\frac{K\left(\sqrt{1-k^{2}}\right)}{K(k)} .
$$

