19-01-2023 Quantum Gravity \& Random Geometry a IHP, Paris

A combinatorial approach to random hyperbolic surfaces

Timothy Budd

Hyperbolic surfaces: a motivation from JT gravity
2D quantum gravity
$Z=\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]}$
$\left\{g_{a b}\right\}$

Hyperbolic surfaces: a motivation from JT gravity
[David, Ambjorn, Durhuus, Frohlich, Kazakov, ...]
2D quantum gravity

$$
\begin{aligned}
Z & =\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]} \\
& \left\{g_{a b}\right\}
\end{aligned}
$$

Hyperbolic surfaces: a motivation from JT gravity
[David, Ambjorn, Durhuus, Frohlich, Kazakov, ...]
2D quantum gravity
$Z=\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]}$

JT gravity

[Teitelboim, '83] [Jackiw, '85]
$S_{\mathrm{JT}}[g, \Phi]=-\frac{1}{2} \int \mathrm{~d}^{2} x \sqrt{g} \Phi(R+2)-\int \mathrm{d} x \sqrt{h} \Phi(K-1)$

Hyperbolic surfaces: a motivation from JT gravity
[David, Ambjorn, Durhuus, Frohlich, Kazakov, ...]
2D quantum gravity
$Z=\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]}$
Lattice discretization
$\left\{g_{a b}\right\}$
$g_{a b}$
Constant curvature

JT gravity

[Teitelboim, '83] [Jackiw, '85]

$$
\begin{aligned}
& S_{\mathrm{JT}}[g, \Phi]=-\frac{1}{2} \int \mathrm{~d}^{2} x \sqrt{g} \Phi(R+2)-\int \mathrm{d} x \sqrt{h} \Phi(K-1) \\
& \frac{\delta S_{\mathrm{JT}}}{\delta \Phi}=0 \Longrightarrow R=-2
\end{aligned}
$$

Hyperbolic surfaces: a motivation from JT gravity
[David, Ambjorn, Durhuus, Frohlich, Kazakov, ...]
2D quantum gravity
$Z=\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]}$ Lattice discretization
$\left\{g_{a b}\right\}$
[Saad, Shenker, Stanford, '19]

$Z_{g, n}\left(\beta_{1}, \ldots, \beta_{n}\right)=\int \mathrm{d}$ (moduli) $\int \mathrm{d}($ boundarywiggles $)$

JT gravity

[Teitelboim, '83] [Jackiw, '85]
$S_{\mathrm{JT}}[g, \Phi]=-\frac{1}{2} \int \mathrm{~d}^{2} x \sqrt{g} \Phi(R+2)-\int \mathrm{d} x \sqrt{h} \Phi(K-1)$
$\frac{\delta S_{\mathrm{JT}}}{\delta \Phi}=0 \Longrightarrow R=-2$

Hyperbolic surfaces: a motivation from JT gravity
[David, Ambjorn, Durhuus, Frohlich, Kazakov, ...]
2D quantum gravity Lattice discretization

$$
\begin{aligned}
Z & =\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]} \\
& \left\{g_{a b}\right\}
\end{aligned}
$$

[Saad, Shenker, Stanford, '19]
$g_{a b}$
JT gravity
[Teitelboim, '83] [Jackiw, '85]
$S_{\mathrm{JT}}[g, \Phi]=-\frac{1}{2} \int \mathrm{~d}^{2} x \sqrt{g} \Phi(R+2)-\int \mathrm{d} x \sqrt{h} \Phi(K-1)$
$\frac{\delta S_{\mathrm{JT}}}{\delta \Phi}=0 \Longrightarrow R=-2$ $Z_{g, n}\left(\beta_{1}, \ldots, \beta_{n}\right)=\int \mathrm{d}$ (moduli) $\int \mathrm{d}($ boundarywiggles $)$ $=\int_{0}^{\infty} \mathrm{d} L_{1} Z^{\operatorname{tr}}\left(\beta_{1}, L_{1}\right) L_{1} \cdots \int_{0}^{\infty} \mathrm{d} L_{n} Z^{\operatorname{tr}}\left(\beta_{n}, L_{n}\right) L_{n} V_{g, n}(\mathbf{L})$

Hyperbolic surfaces: a motivation from JT gravity
[David, Ambjorn, Durhuus, Frohlich, Kazakov, ...]
2D quantum gravity
$Z=\int\left[\mathcal{D} g_{a b}\right] e^{-S[g]}$ $\left\{g_{a b}\right\}$ Lattice discretization

[Saad, Shenker, Stanford, '19]

$$
=\int_{0}^{\infty} \mathrm{d} L_{1} Z^{\operatorname{tr}}\left(\beta_{1}, L_{1}\right) L_{1} \cdots \int_{0}^{\infty} \mathrm{d} L_{n} Z^{\operatorname{tr}}\left(\beta_{n}, L_{n}\right) L_{n} V_{g, n}(\mathbf{L})
$$

JT gravity
[Teitelboim, '83] [Jackiw, '85]

$$
\text { trumpet } \frac{1}{\sqrt{\beta_{1}}} e^{-\frac{L^{2}}{2 \beta_{1}}}
$$

$S_{\mathrm{JT}}[g, \Phi]=-\frac{1}{2} \int \mathrm{~d}^{2} x \sqrt{g} \Phi(R+2)-\int \mathrm{d} x \sqrt{h} \Phi(K-1)$

$$
Z_{g, n}\left(\beta_{1}, \ldots, \beta_{n}\right)=\int \mathrm{d}\left(\text { moduli) } \int \mathrm{d}\right. \text { (boundarywiggles) }
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Diff }^{+}
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Diff }^{+}
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Diff }^{+}
$$

- Carries natural Weil-Petersson volume form μ_{WP}.

In local Fenchel-Nielsen length \& twist coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ it is

$$
\mu_{\mathrm{WP}}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n .} \quad[\text { Wolpert, '82] }
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Diff }^{+}
$$

- Carries natural Weil-Petersson volume form μ_{WP}.

In local Fenchel-Nielsen length \& twist coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ it is

$$
\mu_{\mathrm{WP}}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n} . \quad[\text { Wolpert, '82] }
$$

- Weil-Petersson volume: $V_{g, n}(\mathbf{L}):=\int_{\mathcal{M}_{g, n}(\mathbf{L})} \mu_{\mathrm{WP}}$ is a polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}, \pi^{2}$. [Mirzakhani, ${ }^{\prime}{ }^{07]}$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Diff }^{+}
$$

- Carries natural Weil-Petersson volume form μ_{WP}.

In local Fenchel-Nielsen length \& twist coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ it is

$$
\left.\mu_{\mathrm{WP}}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n} . \quad \text { [Wolpert, ' } 82\right]
$$

- Weil-Petersson volume: $V_{g, n}(\mathbf{L}):=\int_{\mathcal{M}_{g, n}(\mathbf{L})} \mu_{\mathrm{WP}}$ is a polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}, \pi^{2}$. [Mirzakhani, ${ }^{\prime}{ }^{07}$]
- Examples: $V_{0,3}(\mathbf{L})=1, \quad V_{0,4}(\mathbf{L})=\frac{1}{2}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}\right)+2 \pi^{2}$,

$$
V_{1,2}(\mathbf{L})=\frac{1}{192}\left(L_{1}^{2}+L_{2}^{2}+4 \pi^{2}\right)\left(L_{1}^{2}+L_{2}^{2}+12 \pi^{2}\right)
$$

Bipartite maps on surfaces

- (grand canonical) partition function

Bipartite maps on surfaces

- (grand canonical) partition function

$$
G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}
\text { genus-g maps with } \\
\text { face degrees } 2 d_{1}, \ldots, 2 d_{n}
\end{array}\right\}
$$

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

Bipartite maps on surfaces

- (grand canonical) partition function

$$
G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}
\text { genus-g maps with } \\
\text { face degrees } 2 d_{1}, \ldots, 2 d_{n}
\end{array}\right\}
$$

$e^{\sum_{g} \lambda^{g} G_{g}}$ is a τ-function of KP hierarchy [Bonzom's talk]

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

Bipartite maps on surfaces

- (grand canonical) partition function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

$e^{\sum_{g} \lambda^{g} G_{g}}$ is a τ-function of KP hierarchy [Bonzom's talk]

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

$e^{\sum_{g} \lambda^{g} F_{g}}$ is a τ-function of KdV hierarchy

Bipartite maps on surfaces

- (grand canonical) partition function

$$
G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}
\text { genus-g maps with } \\
\text { face degrees } 2 d_{1}, \ldots, 2 d_{n}
\end{array}\right\}
$$

- String equation for $R=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$:

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

Bipartite maps on surfaces

- (grand canonical) partition function $G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- String equation for $R=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$:

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

pointed $R(q)$ rooted

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

Bipartite maps on surfaces

- (grand canonical) partition function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- String equation for $R=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$:

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

- String equation for $R=\frac{\delta F_{0}}{\delta q(0)^{2}}$:

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!}\left(t_{k}+\gamma_{k}\right) R^{k}
$$

Bipartite maps on surfaces

- (grand canonical) partition function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- String equation for $R=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$:

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

- String equation for $R=\frac{\delta F_{0}}{\delta q(0)^{2}}$:

$$
\begin{aligned}
& R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!}\left(t_{k}+\gamma_{k}\right) R^{k} \\
& \frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L) \quad \frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} \mathbf{1}_{k \geq 2}
\end{aligned}
$$

Bipartite maps on surfaces

- (grand canonical) partition function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=1}^{\infty} q_{d_{i}} \cdots \sum_{d_{n}=1}^{\infty} q_{d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- String equation for $R=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$:

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

Hyperbolic surfaces

- (grand canonical) partition function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

- String equation for $R=\frac{\delta F_{0}}{\delta q(0)^{2}}$:

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!}\left(t_{k}+\gamma_{k}\right) R^{k}
$$

$$
\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L) \quad \frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} \mathbf{1}_{k \geq 2}
$$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{2 \text {-to-1 }}{ }\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

Bouttier－Di Francesco－Guitter bijection［BDFG，＇04］

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex（＂origin＂）}\end{array}\right\} \stackrel{2 \text {－to－1 }}{ }\left\{\begin{array}{c}\text { mobiles（bicolored plane trees } \\ \text { with labeled white vertices）}\end{array}\right\}$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \xrightarrow{2 \text {-to-1 }}\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \xrightarrow{2 \text {-to-1 }}\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

- Face of degree $2 k \quad \longleftrightarrow$ Black vertex of degree k.

Bouttier-Di Francesco-Guitter bijection [BDFG, ${ }^{\text {oof] }}$

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{2 \text {-to-1 }}{\longleftrightarrow}\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

- Face of degree $2 k \quad \longleftrightarrow \quad$ Black vertex of degree k.

$$
R=(0+\sum_{k=1}^{\infty} q_{2 k} \sum_{\text {labels }}^{\infty} \underbrace{\infty}_{\substack{R \\ \infty}} q_{2 k}^{R}
$$

Bouttier-Di Francesco-Guitter bijection [BDFG, ${ }^{\text {oof] }}$

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{\text {-to-1 }}{ }\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

- Face of degree $2 k \quad \longleftrightarrow \quad$ Black vertex of degree k.

$$
R=(0)+\sum_{k=1}^{\infty} q_{2 k} \sum_{\text {labels }}^{\substack{R \\ 0 \\ 0 \\ R}} \underbrace{R}_{\substack{R \\ 0}}
$$

- Vertex with k (left-most) geodesics of length $r>0$ to origin \longleftrightarrow White vertex of degree k and label $r-r_{\text {root }}$.

Tree in a hyperbolic surface?

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic cylinders.

Tree in a hyperbolic surface？

－Extend boundaries with hyperbolic cylinders．
－Determine cut－locus／spine of origin \star ：points with more than one shortest geodesic to \star ． ［Bowditch，Epstein，＇88］

Tree in a hyperbolic surface？

－Extend boundaries with hyperbolic cylinders．
－Determine cut－locus／spine of origin \star ：points with more than one shortest geodesic to \star ． ［Bowditch，Epstein，＇88］

Tree in a hyperbolic surface？

－Extend boundaries with hyperbolic cylinders．
－Determine cut－locus／spine of origin \star ：points with more than one shortest geodesic to \star ． ［Bowditch，Epstein，＇88］

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic cylinders.
- Determine cut-locus/spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic cylinders.
- Determine cut-locus/spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]
- Result is a plane tree: boundary/cusp \longleftrightarrow white vertex.

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic cylinders.
- Determine cut-locus/spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]
- Result is a plane tree: boundary/cusp \longleftrightarrow white vertex.
- Note: spine edges can meet in cylinders!

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic cylinders.
- Determine cut-locus/spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]
- Result is a plane tree: boundary/cusp \longleftrightarrow white vertex.
- Note: spine edges can meet in cylinders!
- Can we label the tree to make a bijection?

Labels: angles on half edges

- The surface is canonically triangulated by

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: triangle with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$)

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: triangle with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$) and its reflection

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: triangle with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$) and its reflection (angle is zero if incident to white vertex);

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: triangle with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$) and its reflection (angle is zero if incident to white vertex);
- for each corner of white vertex: an ideal wedge.

Labels：angles on half edges

－The surface is canonically triangulated by
－for each spine edge：triangle with angles $\varphi_{i}, \varphi_{j}, 0$（so $\varphi_{i}+\varphi_{j}<\pi$ ）and its reflection（angle is zero if incident to white vertex）；
－for each corner of white vertex：an ideal wedge．

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: triangle with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$) and its reflection (angle is zero if incident to white vertex);
- for each corner of white vertex: an ideal wedge.
- Gluing of triangles is unique, except for bi-infinite sides: need extra parameters for injectivity.

Labels: geometry around boundary

Labels: geometry around boundary

- Consider boundary region in \mathbb{H}

Labels：geometry around boundary

－Consider boundary region in \mathbb{H} ，unique up to scaling if geodesic aligned with imaginary axis．

Labels: geometry around boundary

- Consider boundary region in \mathbb{H}, unique up to scaling if geodesic aligned with imaginary axis.
- Geodesic is partitioned into intervals: $w_{1}+t_{1}+\cdots+w_{k}+t_{k}=L$.

Labels：geometry around boundary

－Consider boundary region in \mathbb{H} ，unique up to scaling if geodesic aligned with imaginary axis．
－Geodesic is partitioned into intervals：$w_{1}+t_{1}+\cdots+w_{k}+t_{k}=L$ ．
－Uniquely characterizes geometry，

Labels：geometry around boundary

－Consider boundary region in \mathbb{H} ，unique up to scaling if geodesic aligned with imaginary axis．
－Geodesic is partitioned into intervals：$w_{1}+t_{1}+\cdots+w_{k}+t_{k}=L$ ．
－Uniquely characterizes geometry，

Labels：geometry around boundary

－Consider boundary region in \mathbb{H} ，unique up to scaling if geodesic aligned with imaginary axis．
－Geodesic is partitioned into intervals：$w_{1}+t_{1}+\cdots+w_{k}+t_{k}=L$ ．
－Uniquely characterizes geometry，provided horocycles match up：$w_{1}-t_{1}+\cdots+w_{k}-t_{k}=0$ ．

Labels: geometry around boundary

- Consider boundary region in \mathbb{H}, unique up to scaling if geodesic aligned with imaginary axis.
- Geodesic is partitioned into intervals: $w_{1}+t_{1}+\cdots+w_{k}+t_{k}=L$.
- Uniquely characterizes geometry, provided horocycles match up: $w_{1}-t_{1}+\cdots+w_{k}-t_{k}=0$.
- Label vertex of degree k corresponding to boundary of length L by $\left\{\left(w_{i}, t_{i}\right)_{i=1}^{k}: \sum_{i=1}^{k} w_{i}=\sum_{i=1}^{k} t_{i}=\frac{L}{2}\right\}$.

Bijective result

Bijective result

－For tree \mathfrak{t} with n white vertices（ $\operatorname{deg} \geq 1$ ）and red vertices（ $\operatorname{deg} \geq 3$ ），

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, t_{i}, w_{i}\right): \phi_{i}>0, t_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Bijective result

- For tree \mathfrak{t} with n white vertices ($\operatorname{deg} \geq 1$) and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, t_{i}, w_{i}\right): \phi_{i}>0, t_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Bijective result

- For tree \mathfrak{t} with n white vertices ($\operatorname{deg} \geq 1$) and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, t_{i}, w_{i}\right): \phi_{i}>0, t_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Theorem (TB, Meeusen, Zonneveld, '23+)
This determines a bijection

$$
\Phi_{n}: \mathcal{M}_{0, n+1}\left(0, L_{1}, \ldots, L_{n}\right) \longleftrightarrow \bigsqcup_{\mathrm{t}} \mathcal{A}_{\mathrm{t}}\left(L_{1}, \ldots, L_{n}\right)
$$

Bijective result

- For tree \mathfrak{t} with n white vertices ($\operatorname{deg} \geq 1$) and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, t_{i}, w_{i}\right): \phi_{i}>0, t_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

This determines a bijection

$$
\Phi_{n}: \mathcal{M}_{0, n+1}\left(0, L_{1}, \ldots, L_{n}\right) \longleftrightarrow \bigsqcup_{\mathrm{t}} \mathcal{A}_{\mathrm{t}}\left(L_{1}, \ldots, L_{n}\right)
$$

$\triangleright \operatorname{dim} \mathcal{A}_{\mathfrak{t}}=\operatorname{dim} \mathcal{M}_{0, n+1} \Longleftrightarrow \operatorname{deg}(\bullet)=3$ and $\operatorname{deg}\left(\circ_{i}\right)=1$ if $L_{i}=0$.

Weil-Petersson measure

Theorem (TB, Meeusen, Zonneveld, '23+)

The push-forward of the WP volume is simply the Euclidean volume on the polytope $\mathcal{A}_{\mathrm{t}} \subset \mathbb{R}^{2 n-4}$,

$$
\Phi^{*} \mu_{\mathrm{WP}}=\prod_{\circ} 2^{k-1} \mathrm{~d} w_{1} \mathrm{~d} t_{1} \cdots \mathrm{~d} w_{k-1} \mathrm{~d} t_{k-1} \prod_{\bullet} 2 \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}
$$

Weil-Petersson measure

Theorem (TB, Meeusen, Zonneveld, '23+)

The push-forward of the WP volume is simply the Euclidean volume on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$,

$$
\Phi^{*} \mu_{\mathrm{WP}}=\prod_{\circ} 2^{k-1} \mathrm{~d} w_{1} \mathrm{~d} t_{1} \cdots \mathrm{~d} w_{k-1} \mathrm{~d} t_{k-1} \prod_{\bullet} 2 \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}
$$

- Proof idea: starting point is WP Poisson structure expressed in shear coordinates of ideal triangulation [Fock, '93] [Checkhov, Penner, '04]

Weil-Petersson measure

Theorem (TB, Meeusen, Zonneveld, '23+)

The push-forward of the WP volume is simply the Euclidean volume on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$,

$$
\Phi^{*} \mu_{\mathrm{WP}}=\prod_{\circ} 2^{k-1} \mathrm{~d} w_{1} \mathrm{~d} t_{1} \cdots \mathrm{~d} w_{k-1} \mathrm{~d} t_{k-1} \prod_{\bullet} 2 \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}
$$

- Proof idea: starting point is WP Poisson structure expressed in shear coordinates of ideal triangulation [Fock, '93] [Checkhov, Penner, '04]

Weil-Petersson measure

Theorem (TB, Meeusen, Zonneveld, '23+)

The push-forward of the WP volume is simply the Euclidean volume on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$,

$$
\Phi^{*} \mu_{\mathrm{WP}}=\prod_{\circ} 2^{k-1} \mathrm{~d} w_{1} \mathrm{~d} t_{1} \cdots \mathrm{~d} w_{k-1} \mathrm{~d} t_{k-1} \prod 2 \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}
$$

- Proof idea: starting point is WP Poisson structure expressed in shear coordinates of ideal triangulation [Fock, '93] [Checkhov, Penner, '04]

Weil-Petersson measure

Theorem (TB, Meeusen, Zonneveld, '23+)

The push-forward of the WP volume is simply the Euclidean volume on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$,

$$
\Phi^{*} \mu_{\mathrm{WP}}=\prod_{\circ} 2^{k-1} \mathrm{~d} w_{1} \mathrm{~d} t_{1} \cdots \mathrm{~d} w_{k-1} \mathrm{~d} t_{k-1} \prod 2 \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}
$$

- Proof idea: starting point is WP Poisson structure expressed in shear coordinates of ideal triangulation [Fock, '93] [Checkhov, Penner, '04]
- Express Poisson structure in $\left(\varphi_{i}, t_{i}, w_{i}\right)$ and extract associated measure.

Weil-Petersson measure

Theorem (TB, Meeusen, Zonneveld, '23+)

The push-forward of the WP volume is simply the Euclidean volume on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$,

$$
\Phi^{*} \mu_{\mathrm{WP}}=\prod_{\circ} 2^{k-1} \mathrm{~d} w_{1} \mathrm{~d} t_{1} \cdots \mathrm{~d} w_{k-1} \mathrm{~d} t_{k-1} \prod 2 \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}
$$

- Proof idea: starting point is WP Poisson structure expressed in shear coordinates of ideal triangulation [Fock, '93] [Checkhov, Penner, '04]
- Express Poisson structure in $\left(\varphi_{i}, t_{i}, w_{i}\right)$ and extract associated measure.

- Consequence: $\operatorname{Vol}\left(\mathcal{A}_{\mathfrak{t}}\right) \propto \Pi_{0} L_{0}^{2 \operatorname{deg} 0-2} \Pi_{0} \pi^{2} \quad \Longrightarrow \quad V_{0, n}=\sum_{\mathfrak{t}} \operatorname{Vol}\left(\mathcal{A}_{\mathfrak{t}}\right)=$ polynomial in π^{2}, L_{i}^{2}.

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!}
$$

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!}
$$

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!}
$$

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!}
$$

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!}
$$

WP volume generating function
－Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!}
$$

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
\begin{aligned}
R & =\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} \\
& =\sum_{k=0}^{\infty} R \underbrace{R}_{\Omega}+\sum_{k=2}^{R} \underbrace{R}_{Q}
\end{aligned}
$$

WP volume generating function

- Why does $R=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
\begin{aligned}
R & =\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} \\
& =\sum_{k=0}^{\infty} R \underbrace{R}_{\Omega}+\sum_{k=2}^{R} \underbrace{R}_{Q}
\end{aligned}
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

$$
(-1)_{\text {binary trees }}^{k} \sum_{\mathrm{d}} \int \mathrm{~d} \varphi_{1} \cdots \mathrm{~d} \varphi_{2 k-2}=
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

$$
(-1)^{k} \sum_{\text {binary trees }} \int \mathrm{d} \varphi_{1} \cdots \mathrm{~d} \varphi_{2 k-2}=
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

$$
(-1)^{k} \sum_{\text {binary trees }} \int \mathrm{d} \varphi_{1} \cdots \mathrm{~d} \varphi_{2 k-2}=
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

$$
(-1)^{k} \sum_{\text {binary trees }} \int \mathrm{d} \varphi_{1} \cdots \mathrm{~d} \varphi_{2 k-2}=
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

$$
(-1)_{\text {binary trees }}^{k} \sum_{\mathrm{d}} \int \mathrm{~d} \varphi_{1} \cdots \mathrm{~d} \varphi_{2 k-2}=
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

- Find a full combinatorial explanation for the string equation and disk generating function

$$
\begin{aligned}
W(L) & =\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty}\left[\prod_{i=1}^{n} \mathrm{~d} q\left(L_{i}\right)\right] V_{0, n+2}^{\mathrm{WP}}\left(0, L, L_{1}, L_{2}, \ldots\right) \\
& =\sum_{k=1}^{\infty} 2^{k-1} \frac{1}{k!(k-1)!}\left(\frac{L}{2}\right)^{2 k-2} R^{k}=\frac{\sqrt{2 R}}{L} I_{1}(L \sqrt{2 R}) .
\end{aligned}
$$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)
$X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)
$X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)
$X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)
$X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}$

- Singularity analysis: $d_{1}-d_{2} \approx n^{1 / 4}$ for n large.

Not just volumes: geodesic distance control!

- Consider the distance-dependent generating function of triply-cusped surfaces

Theorem (TB, Meeusen, Zonneveld, '23+)
$X(u)=\frac{\sin 2 \pi u}{\pi y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{1}{\pi} \sin 2 \pi z-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}$

- Singularity analysis: $d_{1}-d_{2} \approx n^{1 / 4}$ for n large.
- Random hyperbolic surface with n boundaries in same universality class as random triangulations of size n ? Hausdorff dimension 4?

Control on hyperbolic distances

- In the case of only cusps, $q(L)=x \delta(L)$, this is indeed true:

Theorem (TB, Curien, '22+)
If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{W P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{-1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

- Same limit as uniform planar triangulations/quadrangulations! [Le Gall, '10][Miermont, '10]

Control on hyperbolic distances

- In the case of only cusps, $q(L)=x \delta(L)$, this is indeed true:

Theorem (TB, Curien, '22+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{W P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{-1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

- Same limit as uniform planar triangulations/quadrangulations! [Le Gall, '10][Miermont, '10]

Control on hyperbolic distances

- In the case of only cusps, $q(L)=x \delta(L)$, this is indeed true:

Theorem (TB, Curien, '22+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{W P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{-1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

- Same limit as uniform planar triangulations/quadrangulations! [Le Gall, '10][Miermont, '10]

Topological recursion

Theorem (TB, Zonneveld, '23+)

The invariants $\omega_{g, n}(\mathbf{z})$ of the curve $\left(x(u)=u^{2}, y(u)\right)$ with initial condition $\omega_{0,2}(z)=\left(z_{1}-z_{2}\right)^{2}$ and topological recursion

$$
\omega_{g, n}(\mathbf{z})=\operatorname{Res}_{u \rightarrow 0} \frac{1}{\left(z_{1}^{2}-u^{2}\right) y(u)}\left[\omega_{g-1, n+1}\left(u,-u, \mathbf{z}_{\widehat{\{1\}}}\right)+\sum_{\substack{g_{1}+g_{2}=g \\ \mid \amalg J=\{2, \ldots, n\}}} \omega_{g_{1}, n_{1}}\left(u, \mathbf{z}_{l}\right) \omega_{g_{2}, n_{2}}\left(-u, \mathbf{z}_{J}\right)\right]
$$

give the Laplace transforms of "Tight Weil-Petersson volumes" $T_{g, n}\left(L_{1}, \ldots, L_{n}\right)$,

$$
\omega_{g, n}(\mathbf{z})=\int_{0}^{\infty} \mathrm{d} L_{1} L_{1} e^{-z_{1} L_{1}} \ldots \int_{0}^{\infty} \mathrm{d} L_{n} L_{n} e^{-z_{n} L_{n}} T_{g, n}\left(L_{1}, \ldots, L_{n}\right) .
$$

Tight Weil-Petersson volumes

$$
T_{g, n}(\mathbf{L})=\sum_{p=0}^{\infty} \frac{1}{p!} \int \mathrm{d} q\left(L_{n+1}\right) \int \mathrm{d} q\left(L_{n+p}\right) \int_{\mathcal{M}_{g, n+p}(\mathrm{~L}, \mathbf{L})}^{\mathrm{d} \mu_{\mathrm{WP}}} \mathbf{1}_{\{\mathrm{tight}\}}
$$

Tight Weil-Petersson volumes

$$
T_{g, n}(\mathrm{~L})=\sum_{p=0}^{\infty} \frac{1}{p!} \int \mathrm{d} q\left(L_{n+1}\right) \int \mathrm{d} q\left(L_{n+p}\right) \int_{\mathcal{M}_{g, n+p}(\mathrm{~L}, \mathbf{L})} \underset{\mathrm{WP}}{\mathrm{~d} \mathbf{1}_{\{\mathrm{tight}\}}}
$$

