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First-passage percolation on a graph

» Random i.i.d. edge weights w(e)
with mean 1.

> Passage time v; — v
T= min E w(e)
Yivi— Vo
ecy

» Exponential distribution: equivalent
to an Eden model. X

» How does T compare to the graph
distance d (asymptotically)?

» Hop count h is the number of
edges in shortest time path.

» Asymptotically T < d < h.
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Time constants

» For many plane graphs (Z?, Poisson-Voronoi, Random Geometric)
one can show that the time constants limy_.., T/d and limy_., h/d
exist almost surely using Kingman's subadditive ergodic theorem.

» However, very few exact time constants known (ladder graph,...?).

» Numerically, many models seem to have d right in the middle of the
bounds (T < d < h). Explanation?

» Let us look at random planar maps: assuming existence of the time
constants we can compute them!

Poisson-Delaunay, exp(1)
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FPP on a random cubic map with exponentially distributed edge
weights shows up as a by-product of the study of distances on a
random general planar map.

Bijection between quadrangulations and planar maps preserving
distance. [Miermont, '09] [Ambjorn,TB, '13]

Random planar map with E edges converges to Brownian map as
E — oo. [Bettinelli,Jacob,Miermont,'13]
Also allowed to derive various distance statistics, while controlling
both the number E of edges and the number F of faces:

» Two-point function (rooted) [Ambjorn, TB, '13]

» Two-point function (unrooted) [Bouttier, Fusy, Guitter, '13]

> Three-point function [Fusy, Guitter, '14]

Consider the limit E — oo keeping F fixed. In terms of ...
> ...quadrangulation: Generalized Causal Dynamical Triangulations
(GCDT)
> . ..general planar maps: after “removal of trees” cubic maps with
edges of random length.
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From general maps to weighted cubic maps

» Take a planar map with marked vertices and weight x per edge.

» Remove dangling edges and combine neighboring edges while
keeping track of length.

» Each “subedge’ comes with weight x((1 — /1 — 4x)/x)?, hence
length is geometrically distributed.

» Scaling limit x — 1/4 and edge lengths ¢(x) := v/4 — 16x: lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.

4
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» 2-point function for general planar maps with weight x per edge and
z per face and distance t between marked vertices: [Bouttier et al, 1]
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» 2-point function for general planar maps with weight x per edge and
z per face and distance t between marked vertices: [Bouttier et al, 1]
(1—-act™)3(1-act??) (1)
(1—aott?2)3 (1—act) |’
where a = a(z,x) and o = o(z, x) solution of algebraic equations.
» Scaling z = {(x)3g, t = T/l(x), x — 1/4:

G, x(t) = log

GHY(T) =03 log(TcoshE T + asinhIT), ¥ :=./302-1

g,

and « is solution to a® —a /4 + g = 0.

» Bivalent marked vertices:
2,2 1,1
GH(T) = 1 +or)6lP(T)
» Completely cubic:

Gea (T) = 52+ 077 G5(T)
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» 2-point function for general planar maps with weight x per edge and
z per face and distance t between marked vertices: [Bouttier et al, 1]

1—aoc™)3 (1-act
G, x(t) = log El — aO_t+2;3 ((1 — aat))} , (1)

where a = a(z,x) and o = o(z, x) solution of algebraic equations.
» Scaling z = {(x)3g, t = T/l(x), x — 1/4:

GH(T) = 0% log(EcoshET + asinh £T), X :=4/3a2 -1
and « is solution to a® —a /4 + g = 0.

> Scallng limit: g — 12\[,
o — \/ﬁ and ¥ — 0.

Renormalizing 7 := X T gives

cosh T

cB(TE=2 =2 .
g2 (T) sinh® 7T




Two-point function 4

» 2-point function for general planar maps with weight x per edge anab
z per face and distance t between marked vertices: [Bouttier et al, 1]
(1—-act™)3(1-act??) (1)
(1—aott?2)3 (1—act) |’
where a = a(z,x) and o = o(z, x) solution of algebraic equations.
» Scaling z = {(x)3g, t = T/l(x), x — 1/4:

1,1
GlLY

G, x(t) = log

(T)=03log(XcoshET +asinhET), X :=,/3a2-1
and « is solution to a® —a /4 + g = 0.

» Scaling limit: g — Tﬁﬁ i.e.
o — \/% and ¥ — 0.

Renormalizing 7 := X T gives
cosh T
sinh®> 7"
> Agrees with distance-profile of the
Brownian map. T

cHBN(TE 3 =2
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» Three marked vertices with pair-wise distances diz, di3 and dbs.
» Reparametrize dip =s+t, dis=s+u, dog =u+t.

» Even case: s,t,u € Z. Odd case: s,t,u € Z + %

> Explicit expressions G&¥" (s, t, u), G244 (s, t, u) known. [Fusy, Guitter,

14]
» Scaling as before: Ggg(s, T, U) = Ge%™(S, T, U) + G4Y(S, T, U).

» Scaling again g — ﬁ T :=%T, etc., gives

sinh? S sinh? T sinh? U sinh?(S + T + U)
sinh?(S + 7)) sinh®(T + U) sinh*(U + S)’

IS, T, U)E2 = Lasdroy

which is the Brownian map 3-point function.
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Three marked vertices with pair-wise distances di2, di3 and dbs.
Reparametrize dip = s+ t, dis=s+ u, do3 =u+t.
Even case: s,t,u € Z. Odd case: s, t,u € Z + %

Explicit expressions G2V (s, t, u), G297 (s, t, u) known. [Fusy, Guitter,
14]

Scaling as before: GU)(S, T, U) = G&5™(S. T, U) + G24X(S, T, U).

Unless cycle vanishes, i.e.
completely confluent, even and odd
occur with equal probability. Hence

Gconf_ even _ ~odd
g3 = V&3 2,3
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Three marked vertices with pair-wise distances di2, di3 and dbs.
Reparametrize dip = s+ t, dis=s+ u, do3 =u+t.

Even case: s,t,u € Z. Odd case: s, t,u € Z + %

Explicit expressions G2V (s, t, u), G297 (s, t, u) known. [Fusy, Guitter,
'14]

Scaling as before: GU)(S, T, U) = G&5™(S. T, U) + G24X(S, T, U).

Unless cycle vanishes, i.e.
completely confluent, even and odd

occur with equal probability. Hence s
U
Gconf_ even _ ~odd
g3 — g3 g,3

Bivalent marked vertices

GP =1(1+0s)(1+dr)(1 +u)GLY(S. T, U) T
+ GEUT + U)3(S) + GA(U + S)5(T) + GA(S + T)s(U)
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Three marked vertices with pair-wise distances di2, di3 and dbs.
Reparametrize dip = s+ t, dis=s+ u, do3 =u+t.

Even case: s,t,u € Z. Odd case: s, t,u € Z + %
odd

Explicit expressions GZVe" (s, t, u), G257 (s, t, u) known. [Fusy, Guitter,

'14]

Scaling as before: GU)(S, T, U) = G&5™(S. T, U) + G24X(S, T, U).

Unless cycle vanishes, i.e.
completely confluent, even and odd

occur with equal probability. Hence 3
U
Gconf_ even _ ~odd
g3 — &3 2,3

Bivalent marked vertices

G =1(1+05)(1 + 0r)(1 + 0u)GL3(S. T, V)
+ GEUT + U)3(S) + GE(U + S)8(T) + G(S + T)a(U)

g,

W
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» Consider the limit T — 0 (but S, T, U > 0) of the completely
confluent three-point function, i.e.

GA(S, U) = lim 3(1+05)(1+07)(1+0u)[G55™(S, T, U)~Gg3'(S, T, U)]
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» Consider the limit T — 0 (but S, T, U > 0) of the completely
confluent three-point function, i.e.

GA(S, U) = lim 3(1+05)(1+07)(1+0u)[G55™(S, T, U)~Gg3'(S, T, U)]

» Hence, for fixed number of faces F,
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T-S

is the expected density of vertices
(at distance S) along a geodesic of
length/passage time T.

» Scaling limit:

GYUS, T=S) = (14 Z5)6E(T),



Expected hop count for random cubic map

» Consider the limit T — 0 (but S, T, U > 0) of the completely
confluent three-point function, i.e.

GA(S, U) = lim 3(1+05)(1+07)(1+0u)[G55™(S, T, U)~Gg3'(S, T, U)]

» Hence, for fixed number of faces F,

GEYS. T~ S)
GEA(T)

T-S

is the expected density of vertices
(at distance S) along a geodesic of
length/passage time T.

» Scaling limit:
(2 2
(S, T—5) = (1+ 5)6A(T).

Asymptotic hop count to passage time ratio is (h)/T — 1+ \/ig J




Time constants for FPP on a random cubic graph
» We have seen (h)/T — 1+ \/ig This is confirmed numerically

(random triangulation 128k triangles).

250
200
150

wf 7 T (1 * ﬁ) T

50




Time constants for FPP on a random cubic graph

» We have seen (h)/T — 1+ % This is confirmed numerically
(random triangulation 128k triangles).

» Let us assume that h, T and the graph distance d are
asymptotically (almost surely) linearly related.

250
200
150

wt S T (1 * ﬁ) T

50




Time constants for FPP on a random cubic graph

» We have seen (h)/T — 1+ % This is confirmed numerically
(random triangulation 128k triangles).

» Let us assume that h, T and the graph distance d are
asymptotically (almost surely) linearly related.

» Then we can determine the ratio d/T simply by comparing the
corresponding two-point functions.
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Time constants for FPP on a random cubic graph

>

We have seen (h)/T — 1+ % This is confirmed numerically
(random triangulation 128k triangles).

Let us assume that h, T and the graph distance d are
asymptotically (almost surely) linearly related.

Then we can determine the ratio d/ T simply by comparing the
corresponding two-point functions.

Deduce from transfer matrix approach in [Kawai et al, '93]:

h/T =1+ 50
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Time constants for FPP on a random cubic graph

>

We have seen (h)/T — 1+ % This is confirmed numerically
(random triangulation 128k triangles).

Let us assume that h, T and the graph distance d are
asymptotically (almost surely) linearly related.

Then we can determine the ratio d/ T simply by comparing the
corresponding two-point functions.

Deduce from transfer matrix approach in [Kawai et al, '93]:

h/T =1+ 50

Simple relation: d = (h+ T)/2. Is it true more generally?
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» Two vertices a distance T apart.

» Determine the balls of radius S and
T — S —0S5. They almost touch.

» As 6S — 0, conditioned on the balls, a
vertex occurs with probability P45 with

in terms of the disk function
Wi(2) = Snio a1 29X Wiy g.
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Transfer matrix for FPP

» Take a p-regular weighted planar map
with two marked points.

» Identify baby universes.

» Cut into small passage time intervals.
> Write G(z,T) =, z 4 16\%4*)(T) and
the disk function W,(z) := Y ,z¢"1G6%

(weight x per vertex). Then

B%Gx(z, T):%[( 7z —xzP712W,(2)) Gy(z, 7))

» Precisely this formula was used in
[Ambjorn, Watabiki, '95] as an approximation
to derive the 2-point function for
triangulations. Now we know it is not
just an approximation!
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> Now take all edges to have length 1.
Again we can build a transfer matrix.

» Two of the building blocks are quite
similar. ..

.. but there are p — 1 extra ones.

» Can work out transfer matrix PDE
explicitly and compare, but heuristically

e
» and therefore

b
BB g0 - e ()

I I e — N

Graph distance to passage time ratio is
d/T —(1+h/T)/2. J
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