Probability on trees and planar graphs, Banff, Canada, 15-09-2014
First-passage percolation on random planar maps.

Niels Bohr Institute, Copenhagen. budd@nbi.dk, http://www.nbi.dk/~budd/

Partially based on arXiv:1408.3040

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow V_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow V_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow V_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow V_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow V_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.
- How does T compare to the graph distance d (asymptotically)?

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.
- How does T compare to the graph distance d (asymptotically)?
- Hop count h is the number of edges in shortest time path.

First-passage percolation on a graph

- Random i.i.d. edge weights $w(e)$ with mean 1.
- Passage time $v_{1} \rightarrow v_{2}$

$$
T=\min _{\gamma: V_{1} \rightarrow v_{2}} \sum_{e \in \gamma} w(e)
$$

- Exponential distribution: equivalent to an Eden model.
- How does T compare to the graph distance d (asymptotically)?
- Hop count h is the number of edges in shortest time path.
- Asymptotically $T<d<h$.

Time constants

- For many plane graphs (\mathbb{Z}^{2}, Poisson-Voronoi, Random Geometric) one can show that the time constants $\lim _{d \rightarrow \infty} T / d$ and $\lim _{d \rightarrow \infty} h / d$ exist almost surely using Kingman's subadditive ergodic theorem.

Time constants

- For many plane graphs (\mathbb{Z}^{2}, Poisson-Voronoi, Random Geometric) one can show that the time constants $\lim _{d \rightarrow \infty} T / d$ and $\lim _{d \rightarrow \infty} h / d$ exist almost surely using Kingman's subadditive ergodic theorem.
- However, very few exact time constants known (ladder graph,... ?).

Time constants

- For many plane graphs (\mathbb{Z}^{2}, Poisson-Voronoi, Random Geometric) one can show that the time constants $\lim _{d \rightarrow \infty} T / d$ and $\lim _{d \rightarrow \infty} h / d$ exist almost surely using Kingman's subadditive ergodic theorem.
- However, very few exact time constants known (ladder graph,... ?).
- Numerically, many models seem to have d right in the middle of the bounds ($T<d<h$). Explanation?

Time constants

- For many plane graphs (\mathbb{Z}^{2}, Poisson-Voronoi, Random Geometric) one can show that the time constants $\lim _{d \rightarrow \infty} T / d$ and $\lim _{d \rightarrow \infty} h / d$ exist almost surely using Kingman's subadditive ergodic theorem.
- However, very few exact time constants known (ladder graph,... ?).
- Numerically, many models seem to have d right in the middle of the bounds ($T<d<h$). Explanation?

Time constants

- For many plane graphs (\mathbb{Z}^{2}, Poisson-Voronoi, Random Geometric) one can show that the time constants $\lim _{d \rightarrow \infty} T / d$ and $\lim _{d \rightarrow \infty} h / d$ exist almost surely using Kingman's subadditive ergodic theorem.
- However, very few exact time constants known (ladder graph,... ?).
- Numerically, many models seem to have d right in the middle of the bounds ($T<d<h$). Explanation?
- Let us look at random planar maps: assuming existence of the time constants we can compute them!

Poisson-Delaunay, $\exp (1)$

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.
- Bijection between quadrangulations and planar maps preserving distance. [Miermont, '09] [Ambjorn, TB, '13]

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.
- Bijection between quadrangulations and planar maps preserving distance. [Miermont, '09] [Ambjorn, TB, '13]
- Random planar map with E edges converges to Brownian map as $E \rightarrow \infty$. [Bettinelli, Jacob,Miermont,'13]

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.
- Bijection between quadrangulations and planar maps preserving distance. [Miermont, '09] [Ambjorn, TB, '13]
- Random planar map with E edges converges to Brownian map as $E \rightarrow \infty$. [Bettinelli, Jacob, Miermont,'13]
- Also allowed to derive various distance statistics, while controlling both the number E of edges and the number F of faces:
- Two-point function (rooted) [Ambjorn, TB, '13]

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.
- Bijection between quadrangulations and planar maps preserving distance. [Miermont, '09] [Ambjorn, TB, '13]
- Random planar map with E edges converges to Brownian map as $E \rightarrow \infty$. [Bettinelli, Jacob, Miermont,'13]
- Also allowed to derive various distance statistics, while controlling both the number E of edges and the number F of faces:
- Two-point function (rooted) [Ambjorn, TB, '13]
- Two-point function (unrooted) [Bouttier, Fusy, Guitter, '13]

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.
- Bijection between quadrangulations and planar maps preserving distance. [Miermont, '09] [Ambjorn, TB, '13]
- Random planar map with E edges converges to Brownian map as $E \rightarrow \infty$. [Bettinelli, Jacob, Miermont,'13]
- Also allowed to derive various distance statistics, while controlling both the number E of edges and the number F of faces:
- Two-point function (rooted) [Ambjorn, TB, '13]
- Two-point function (unrooted) [Bouttier, Fusy, Guitter, '13]
- Three-point function [Fusy, Guitter, '14]

Multi-point functions of general planar maps

- FPP on a random cubic map with exponentially distributed edge weights shows up as a by-product of the study of distances on a random general planar map.
- Bijection between quadrangulations and planar maps preserving distance. [Miermont, '09] [Ambjorn, TB, '13]
- Random planar map with E edges converges to Brownian map as $E \rightarrow \infty$. [Bettinelli, Jacob, Miermont,'13]
- Also allowed to derive various distance statistics, while controlling both the number E of edges and the number F of faces:
- Two-point function (rooted) [Ambjorn, TB, '13]
- Two-point function (unrooted) [Bouttier, Fusy, Guitter, '13]
- Three-point function [Fusy, Guitter, '14]
- Consider the limit $E \rightarrow \infty$ keeping F fixed. In terms of ...
- ...quadrangulation: Generalized Causal Dynamical Triangulations (GCDT)
- ...general planar maps: after "removal of trees" cubic maps with edges of random length.

From general maps to weighted cubic maps

- Take a planar map with marked vertices and weight x per edge.

From general maps to weighted cubic maps

- Take a planar map with marked vertices and weight x per edge.
- Remove dangling edges

From general maps to weighted cubic maps

- Take a planar map with marked vertices and weight x per edge.
- Remove dangling edges and combine neighboring edges while keeping track of length.

From general maps to weighted cubic maps

- Take a planar map with marked vertices and weight x per edge.
- Remove dangling edges and combine neighboring edges while keeping track of length.

From general maps to weighted cubic maps

- Take a planar map with marked vertices and weight x per edge.
- Remove dangling edges and combine neighboring edges while keeping track of length.
- Each "subedge" comes with weight $x((1-\sqrt{1-4 x}) / x)^{2}$, hence length is geometrically distributed.

From general maps to weighted cubic maps

- Take a planar map with marked vertices and weight x per edge.
- Remove dangling edges and combine neighboring edges while keeping track of length.
- Each "subedge" comes with weight $x((1-\sqrt{1-4 x}) / x)^{2}$, hence length is geometrically distributed.
- Scaling limit $x \rightarrow 1 / 4$ and edge lengths $\ell(x):=\sqrt{4-16 x}$: lengths are exponentially distributed with mean 1 . Maximal number of edges preferred: almost surely cubic and univalent marked vertices.

Two-point function

- 2-point function for general planar maps with weight x per edge and z per face and distance t between marked vertices: [Bouttier et al, '13]

$$
\begin{equation*}
\mathcal{G}_{z, x}(t)=\log \left[\frac{\left(1-a \sigma^{t+1}\right)^{3}}{\left(1-a \sigma^{t+2}\right)^{3}} \frac{\left(1-a \sigma^{t+3}\right)}{\left(1-a \sigma^{t}\right)}\right], \tag{1}
\end{equation*}
$$

where $a=a(z, x)$ and $\sigma=\sigma(z, x)$ solution of algebraic equations.

Two-point function

- 2-point function for general planar maps with weight x per edge and z per face and distance t between marked vertices: [Bouttier et al, '13]

$$
\begin{equation*}
\mathcal{G}_{z, x}(t)=\log \left[\frac{\left(1-a \sigma^{t+1}\right)^{3}}{\left(1-a \sigma^{t+2}\right)^{3}} \frac{\left(1-a \sigma^{t+3}\right)}{\left(1-a \sigma^{t}\right)}\right], \tag{1}
\end{equation*}
$$

where $a=a(z, x)$ and $\sigma=\sigma(z, x)$ solution of algebraic equations.

- Scaling $z=\ell(x)^{3} g, t=T / \ell(x), x \rightarrow 1 / 4$:

$$
G_{g, 2}^{(1,1)}(T)=\partial_{T}^{3} \log (\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T), \quad \Sigma:=\sqrt{\frac{3}{2} \alpha^{2}-\frac{1}{8}},
$$

and α is solution to $\alpha^{3}-\alpha / 4+g=0$.

Two-point function

- 2-point function for general planar maps with weight x per edge and z per face and distance t between marked vertices: [Bouttier et al, '13]

$$
\begin{equation*}
\mathcal{G}_{z, x}(t)=\log \left[\frac{\left(1-a \sigma^{t+1}\right)^{3}}{\left(1-a \sigma^{t+2}\right)^{3}} \frac{\left(1-a \sigma^{t+3}\right)}{\left(1-a \sigma^{t}\right)}\right], \tag{1}
\end{equation*}
$$

where $a=a(z, x)$ and $\sigma=\sigma(z, x)$ solution of algebraic equations.

- Scaling $z=\ell(x)^{3} g, t=T / \ell(x), x \rightarrow 1 / 4$:

$$
G_{g, 2}^{(1,1)}(T)=\partial_{T}^{3} \log (\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T), \quad \Sigma:=\sqrt{\frac{3}{2} \alpha^{2}-\frac{1}{8}},
$$

and α is solution to $\alpha^{3}-\alpha / 4+g=0$.

- Bivalent marked vertices:

$$
G_{g, 2}^{(2,2)}(T)=\frac{1}{4}\left(1+\partial_{T}\right)^{2} G_{g, 2}^{(1,1)}(T)
$$

Two-point function

- 2-point function for general planar maps with weight x per edge and z per face and distance t between marked vertices: [Bouttier et al, '13]

$$
\begin{equation*}
\mathcal{G}_{z, x}(t)=\log \left[\frac{\left(1-a \sigma^{t+1}\right)^{3}}{\left(1-a \sigma^{t+2}\right)^{3}} \frac{\left(1-a \sigma^{t+3}\right)}{\left(1-a \sigma^{t}\right)}\right], \tag{1}
\end{equation*}
$$

where $a=a(z, x)$ and $\sigma=\sigma(z, x)$ solution of algebraic equations.

- Scaling $z=\ell(x)^{3} g, t=T / \ell(x), x \rightarrow 1 / 4$:

$$
G_{g, 2}^{(1,1)}(T)=\partial_{T}^{3} \log (\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T), \quad \Sigma:=\sqrt{\frac{3}{2} \alpha^{2}-\frac{1}{8}},
$$

and α is solution to $\alpha^{3}-\alpha / 4+g=0$.

- Bivalent marked vertices:

$$
G_{g, 2}^{(2,2)}(T)=\frac{1}{4}\left(1+\partial_{T}\right)^{2} G_{g, 2}^{(1,1)}(T)
$$

- Completely cubic:

$$
G_{g, 2}^{(3,3)}(T)=\frac{1}{9}\left(2+\partial_{T}\right)^{2} G_{g, 2}^{(2,2)}(T)
$$

Two-point function

- 2-point function for general planar maps with weight x per edge and z per face and distance t between marked vertices: [Bouttier et al, '13]

$$
\begin{equation*}
\mathcal{G}_{z, x}(t)=\log \left[\frac{\left(1-a \sigma^{t+1}\right)^{3}}{\left(1-a \sigma^{t+2}\right)^{3}} \frac{\left(1-a \sigma^{t+3}\right)}{\left(1-a \sigma^{t}\right)}\right], \tag{1}
\end{equation*}
$$

where $a=a(z, x)$ and $\sigma=\sigma(z, x)$ solution of algebraic equations.

- Scaling $z=\ell(x)^{3} g, t=T / \ell(x), x \rightarrow 1 / 4$:

$$
G_{g, 2}^{(1,1)}(T)=\partial_{T}^{3} \log (\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T), \quad \Sigma:=\sqrt{\frac{3}{2} \alpha^{2}-\frac{1}{8}}
$$

and α is solution to $\alpha^{3}-\alpha / 4+g=0$.

- Scaling limit: $g \rightarrow \frac{1}{12 \sqrt{3}}$, i.e. $\alpha \rightarrow \frac{1}{\sqrt{12}}$ and $\Sigma \rightarrow 0$.
Renormalizing $\mathcal{T}:=\Sigma T$ gives

$$
G_{g, 2}^{(1,1)}(T) \Sigma^{-3} \rightarrow 2 \frac{\cosh \mathcal{T}}{\sinh ^{3} \mathcal{T}}
$$

Two-point function

- 2-point function for general planar maps with weight x per edge and z per face and distance t between marked vertices: [Bouttier et al, '13]

$$
\begin{equation*}
\mathcal{G}_{z, x}(t)=\log \left[\frac{\left(1-a \sigma^{t+1}\right)^{3}}{\left(1-a \sigma^{t+2}\right)^{3}} \frac{\left(1-a \sigma^{t+3}\right)}{\left(1-a \sigma^{t}\right)}\right], \tag{1}
\end{equation*}
$$

where $a=a(z, x)$ and $\sigma=\sigma(z, x)$ solution of algebraic equations.

- Scaling $z=\ell(x)^{3} g, t=T / \ell(x), x \rightarrow 1 / 4$:

$$
G_{g, 2}^{(1,1)}(T)=\partial_{T}^{3} \log (\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T), \quad \Sigma:=\sqrt{\frac{3}{2} \alpha^{2}-\frac{1}{8}}
$$

and α is solution to $\alpha^{3}-\alpha / 4+g=0$.

- Scaling limit: $g \rightarrow \frac{1}{12 \sqrt{3}}$, i.e. $\alpha \rightarrow \frac{1}{\sqrt{12}}$ and $\Sigma \rightarrow 0$.
Renormalizing $\mathcal{T}:=\Sigma T$ gives

$$
G_{g, 2}^{(1,1)}(T) \Sigma^{-3} \rightarrow 2 \frac{\cosh \mathcal{T}}{\sinh ^{3} \mathcal{T}}
$$

- Agrees with distance-profile of the Brownian map.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]
- Scaling as before: $G_{g, 3}^{(1)}(S, T, U)=G_{g, 3}^{\text {even }}(S, T, U)+G_{g, 3}^{\text {odd }}(S, T, U)$.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]
- Scaling as before: $G_{g, 3}^{(1)}(S, T, U)=G_{g, 3}^{\text {even }}(S, T, U)+G_{g, 3}^{\text {odd }}(S, T, U)$.
- Scaling again $g \rightarrow \frac{1}{12 \sqrt{3}}, \mathcal{T}:=\Sigma T$, etc., gives
$G_{g, 3}^{(1)}(S, T, U) \Sigma^{-2} \rightarrow \frac{1}{12} \partial_{\mathcal{S}} \partial_{\mathcal{T}} \partial_{\mathcal{U}} \frac{\sinh ^{2} \mathcal{S} \sinh ^{2} \mathcal{T} \sinh ^{2} \mathcal{U} \sinh ^{2}(\mathcal{S}+\mathcal{T}+\mathcal{U})}{\sinh ^{2}(\mathcal{S}+\mathcal{T}) \sinh ^{2}(\mathcal{T}+\mathcal{U}) \sinh ^{2}(\mathcal{U}+\mathcal{S})}$,
which is the Brownian map 3-point function.

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]
- Scaling as before: $G_{g, 3}^{(1)}(S, T, U)=G_{g, 3}^{\text {even }}(S, T, U)+G_{g, 3}^{\text {odd }}(S, T, U)$.
- Unless cycle vanishes, i.e. completely confluent, even and odd occur with equal probability. Hence

$$
G_{g, 3}^{\text {conf }}=G_{g, 3}^{\text {even }}-G_{g, 3}^{\text {odd }}
$$

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]
- Scaling as before: $G_{g, 3}^{(1)}(S, T, U)=G_{g, 3}^{\text {even }}(S, T, U)+G_{g, 3}^{\text {odd }}(S, T, U)$.
- Unless cycle vanishes, i.e. completely confluent, even and odd occur with equal probability. Hence

$$
G_{g, 3}^{\text {conf }}=G_{g, 3}^{\text {even }}-G_{g, 3}^{\text {odd }}
$$

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]
- Scaling as before: $G_{g, 3}^{(1)}(S, T, U)=G_{g, 3}^{\text {even }}(S, T, U)+G_{g, 3}^{\text {odd }}(S, T, U)$.
- Unless cycle vanishes, i.e. completely confluent, even and odd occur with equal probability. Hence

$$
G_{g, 3}^{\text {conf }}=G_{g, 3}^{\text {even }}-G_{g, 3}^{\text {odd }}
$$

- Bivalent marked vertices

$$
G_{g, 3}^{(2)}=\frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right) G_{g, 3}^{(1)}(S, T, U)
$$

Three-point function

- Three marked vertices with pair-wise distances d_{12}, d_{13} and d_{23}.
- Reparametrize $d_{12}=s+t, d_{13}=s+u, d_{23}=u+t$.
- Even case: $s, t, u \in \mathbb{Z}$. Odd case: $s, t, u \in \mathbb{Z}+\frac{1}{2}$.
- Explicit expressions $\mathcal{G}_{z, x}^{\text {even }}(s, t, u), \mathcal{G}_{z, x}^{\text {odd }}(s, t, u)$ known. [Fusy, Guitter, '14]
- Scaling as before: $G_{g, 3}^{(1)}(S, T, U)=G_{g, 3}^{\text {even }}(S, T, U)+G_{g, 3}^{\text {odd }}(S, T, U)$.
- Unless cycle vanishes, i.e. completely confluent, even and odd occur with equal probability. Hence

$$
G_{g, 3}^{\text {conf }}=G_{g, 3}^{\text {even }}-G_{g, 3}^{\text {odd }}
$$

- Bivalent marked vertices

$$
\begin{aligned}
G_{g, 3}^{(2)}= & \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right) G_{g, 3}^{(1)}(S, T, U) \\
& +G_{g, 2}^{(2)}(T+U) \delta(S)+G_{g, 2}^{(2)}(U+S) \delta(T)+G_{g, 2}^{(2)}(S+T) \delta(U)
\end{aligned}
$$

Expected hop count for random cubic map

- Consider the limit $T \rightarrow 0$ (but $S, T, U>0$) of the completely confluent three-point function, i.e.

$$
\hat{G}_{g, 2}^{(2)}(S, U):=\lim _{T \rightarrow 0} \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right)\left[G_{g, 3}^{\text {even }}(S, T, U)-G_{g, 3}^{\text {odd }}(S, T, U)\right]
$$

Expected hop count for random cubic map

- Consider the limit $T \rightarrow 0$ (but $S, T, U>0$) of the completely confluent three-point function, i.e.

$$
\hat{G}_{g, 2}^{(2)}(S, U):=\lim _{T \rightarrow 0} \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right)\left[G_{g, 3}^{\text {even }}(S, T, U)-G_{g, 3}^{\mathrm{odd}}(S, T, U)\right]
$$

Expected hop count for random cubic map

- Consider the limit $T \rightarrow 0$ (but $S, T, U>0$) of the completely confluent three-point function, i.e.

$$
\hat{G}_{g, 2}^{(2)}(S, U):=\lim _{T \rightarrow 0} \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right)\left[G_{g, 3}^{\text {even }}(S, T, U)-G_{g, 3}^{\text {odd }}(S, T, U)\right]
$$

Expected hop count for random cubic map

- Consider the limit $T \rightarrow 0$ (but $S, T, U>0$) of the completely confluent three-point function, i.e.

$$
\hat{G}_{g, 2}^{(2)}(S, U):=\lim _{T \rightarrow 0} \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right)\left[G_{g, 3}^{\text {even }}(S, T, U)-G_{g, 3}^{\text {odd }}(S, T, U)\right]
$$

- Hence, for fixed number of faces F,

$$
\frac{\hat{G}_{F, 2}^{(2)}(S, T-S)}{G_{F, 2}^{(2)}(T)}
$$

is the expected density of vertices (at distance S) along a geodesic of length/passage time T.

Expected hop count for random cubic map

- Consider the limit $T \rightarrow 0$ (but $S, T, U>0$) of the completely confluent three-point function, i.e.

$$
\hat{G}_{g, 2}^{(2)}(S, U):=\lim _{T \rightarrow 0} \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right)\left[G_{g, 3}^{\text {even }}(S, T, U)-G_{g, 3}^{\text {odd }}(S, T, U)\right]
$$

- Hence, for fixed number of faces F,

$$
\frac{\hat{G}_{F, 2}^{(2)}(S, T-S)}{G_{F, 2}^{(2)}(T)}
$$

is the expected density of vertices (at distance S) along a geodesic of length/passage time T.

- Scaling limit:

$$
\hat{G}_{g, 2}^{(2)}(S, T-S) \rightarrow\left(1+\frac{1}{\sqrt{3}}\right) G_{g, 2}^{(2)}(T) .
$$

Expected hop count for random cubic map

- Consider the limit $T \rightarrow 0$ (but $S, T, U>0$) of the completely confluent three-point function, i.e.
$\hat{G}_{g, 2}^{(2)}(S, U):=\lim _{T \rightarrow 0} \frac{1}{8}\left(1+\partial_{S}\right)\left(1+\partial_{T}\right)\left(1+\partial_{U}\right)\left[G_{g, 3}^{\text {even }}(S, T, U)-G_{g, 3}^{\text {odd }}(S, T, U)\right]$
- Hence, for fixed number of faces F,

$$
\frac{\hat{G}_{F, 2}^{(2)}(S, T-S)}{G_{F, 2}^{(2)}(T)}
$$

is the expected density of vertices (at distance S) along a geodesic of length/passage time T.

- Scaling limit:

$$
\hat{G}_{g, 2}^{(2)}(S, T-S) \rightarrow\left(1+\frac{1}{\sqrt{3}}\right) G_{g, 2}^{(2)}(T) .
$$

Asymptotic hop count to passage time ratio is $\langle h\rangle / T \rightarrow 1+\frac{1}{\sqrt{3}}$.

Time constants for FPP on a random cubic graph

- We have seen $\langle h\rangle / T \rightarrow 1+\frac{1}{\sqrt{3}}$. This is confirmed numerically (random triangulation 128 k triangles).

Time constants for FPP on a random cubic graph

- We have seen $\langle h\rangle / T \rightarrow 1+\frac{1}{\sqrt{3}}$. This is confirmed numerically (random triangulation 128 k triangles).
- Let us assume that h, T and the graph distance d are asymptotically (almost surely) linearly related.

Time constants for FPP on a random cubic graph

- We have seen $\langle h\rangle / T \rightarrow 1+\frac{1}{\sqrt{3}}$. This is confirmed numerically (random triangulation 128 k triangles).
- Let us assume that h, T and the graph distance d are asymptotically (almost surely) linearly related.
- Then we can determine the ratio d / T simply by comparing the corresponding two-point functions.

Time constants for FPP on a random cubic graph

- We have seen $\langle h\rangle / T \rightarrow 1+\frac{1}{\sqrt{3}}$. This is confirmed numerically (random triangulation 128k triangles).
- Let us assume that h, T and the graph distance d are asymptotically (almost surely) linearly related.
- Then we can determine the ratio d / T simply by comparing the corresponding two-point functions.
- Deduce from transfer matrix approach in [Kawai et al, '93]: $h / T \rightarrow 1+\frac{1}{2 \sqrt{3}}$.

- 〈h- 〈d \rangle
- T

$$
\begin{aligned}
& ---\left(1+\frac{1}{\sqrt{3}}\right) T \\
& \left(1+\frac{1}{2 \sqrt{3}}\right) T
\end{aligned}
$$

Time constants for FPP on a random cubic graph

- We have seen $\langle h\rangle / T \rightarrow 1+\frac{1}{\sqrt{3}}$. This is confirmed numerically (random triangulation 128k triangles).
- Let us assume that h, T and the graph distance d are asymptotically (almost surely) linearly related.
- Then we can determine the ratio d / T simply by comparing the corresponding two-point functions.
- Deduce from transfer matrix approach in [Kawai et al, '93]: $h / T \rightarrow 1+\frac{1}{2 \sqrt{3}}$.
- Simple relation: $d=(h+T) / 2$. Is it true more generally?

Expected hop count for p-regular maps

- Two vertices a distance T apart.

Expected hop count for p-regular maps

- Two vertices a distance T apart.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d}}
$$

in terms of the disk function
$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d}}
$$

in terms of the disk function
$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d}}
$$

in terms of the disk function
$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d} \quad N, d \rightarrow \infty}(p-1) x_{c} z_{c}^{p-2},
$$

in terms of the disk function
$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d} \quad N, d \rightarrow \infty} \rightarrow(p-1) x_{c} z_{c}^{p-2},
$$

in terms of the disk function
$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.

Asymptotic hop count to passage time ratio is $\langle h\rangle / T \rightarrow(p-1) x_{c} z_{c}^{p-2}$.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d} \quad N, d \rightarrow \infty} \rightarrow(p-1) x_{c} z_{c}^{p-2},
$$

in terms of the disk function
$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.
Asymptotic hop count to passage time ratio is $\langle h\rangle / T \rightarrow(p-1) x_{c} z_{c}^{p-2}$.

- $p=3: x_{c}=1 /\left(23^{3 / 4}\right), z_{c}=3^{3 / 4}(1+1 / \sqrt{3}), \frac{\langle h\rangle}{T}=1+1 / \sqrt{3}$.

Expected hop count for p-regular maps

- Two vertices a distance T apart.
- Determine the balls of radius S and $T-S-\delta S$. They almost touch.
- As $\delta S \rightarrow 0$, conditioned on the balls, a vertex occurs with probability $P \delta S$ with

$$
P=(p-1) \frac{W_{N-1, d+p-2}}{W_{N, d}} \underset{d \rightarrow \infty}{\rightarrow}(p-1) x_{c} z_{c}^{p-2},
$$

in terms of the disk function

$W_{x}(z)=\sum_{N=0}^{\infty} \sum_{d=1}^{\infty} z^{-d-1} x^{N} W_{N, d}$.
Asymptotic hop count to passage time ratio is $\langle h\rangle / T \rightarrow(p-1) x_{c} z_{c}^{p-2}$.

- $p=3: x_{c}=1 /\left(23^{3 / 4}\right), z_{c}=3^{3 / 4}(1+1 / \sqrt{3}), \frac{\langle h\rangle}{T}=1+1 / \sqrt{3}$.
- p even: $x_{c}=\left(\frac{p-2}{p}\right)^{\frac{p}{2}} \frac{4}{p-2}\binom{p}{p / 2}^{-1}, z_{c}=\sqrt{\frac{4 p}{p-2}}, \frac{\langle h\rangle}{T}=2^{p-2\binom{p-2}{\frac{p-2}{2}}^{-1} \text {. } . ~ . ~}$

Transfer matrix for FPP

- Take a p-regular weighted planar map with two marked points.

Transfer matrix for FPP

- Take a p-regular weighted planar map with two marked points.
- Identify baby universes.

Transfer matrix for FPP

- Take a p-regular weighted planar map with two marked points.
- Identify baby universes.
- Cut into small passage time intervals.

Transfer matrix for FPP

- Take a p-regular weighted planar map with two marked points.
- Identify baby universes.
- Cut into small passage time intervals.
- Write $G_{x}(z, T):=\sum_{d_{1}} z^{-d_{1}-1} G_{x, 2}^{\left(d_{1}, d_{2}\right)}(T)$ and the disk function $W_{x}(z):=\sum_{d} z^{-d-1} G_{x, 1}^{(d)}$ (weight x per vertex). Then

$$
\frac{\partial}{\partial T} G_{x}(z, T)=\frac{\partial}{\partial z}[(\underbrace{z}_{A}-\underbrace{x z^{p-1}}_{B}-2 \underbrace{W_{x}(z)}_{C}) G_{x}(z, T)]
$$

Transfer matrix for FPP

- Take a p-regular weighted planar map with two marked points.
- Identify baby universes.
- Cut into small passage time intervals.
- Write $G_{x}(z, T):=\sum_{d_{1}} z^{-d_{1}-1} G_{x, 2}^{\left(d_{1}, d_{2}\right)}(T)$ and the disk function $W_{x}(z):=\sum_{d} z^{-d-1} G_{x, 1}^{(d)}$ (weight x per vertex). Then

$$
\frac{\partial}{\partial T} G_{x}(z, T)=\frac{\partial}{\partial z}\left[\left(z-x z^{p-1}-2 W_{x}(z)\right) G_{x}(z, T)\right]
$$

- Precisely this formula was used in [Ambjorn, Watabiki, '95] as an approximation to derive the 2-point function for triangulations. Now we know it is not just an approximation!

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.
- Two of the building blocks are quite similar...

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.
- Two of the building blocks are quite similar...
- ... but there are $p-1$ extra ones.

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.
- Two of the building blocks are quite similar...
- ... but there are $p-1$ extra ones.
- Can work out transfer matrix PDE explicitly and compare, but heuristically

Transfer matrix for graph distance [Kawai et al, '93]

- Now take all edges to have length 1. Again we can build a transfer matrix.
- Two of the building blocks are quite similar...
- ... but there are $p-1$ extra ones.
- Can work out transfer matrix PDE explicitly and compare, but heuristically

$$
\infty \rightarrow \infty \sim x_{c} z_{c}^{p-2} \cap \rightarrow
$$

- and therefore

Graph distance to passage time ratio is $d / T \rightarrow(1+h / T) / 2$.

Conclusion \& open questions

- Conclusions
- Both the two- and three-point functions of weighted cubic maps converge to those of the Brownian map in the scaling limit.
- We can compute the time constants of FPP on random p-regular planar maps, and in each case they satisfy $d=(h+T) / 2$.

Conclusion \& open questions

- Conclusions
- Both the two- and three-point functions of weighted cubic maps converge to those of the Brownian map in the scaling limit.
- We can compute the time constants of FPP on random p-regular planar maps, and in each case they satisfy $d=(h+T) / 2$.
- Open questions
- Can weighted cubic maps be shown to converge to the Brownian map?

Conclusion \& open questions

- Conclusions
- Both the two- and three-point functions of weighted cubic maps converge to those of the Brownian map in the scaling limit.
- We can compute the time constants of FPP on random p-regular planar maps, and in each case they satisfy $d=(h+T) / 2$.
- Open questions
- Can weighted cubic maps be shown to converge to the Brownian map?
- Is $d=(h+T) / 2$ a coincidence or does it hold for a (much) larger class of random graphs? Does it hold in the case of ...
- ... weights on the faces, e.g. p-angulations?
- ... other edge length distributions?
- ... random geometric graphs (in certain limits)?

Conclusion \& open questions

- Conclusions
- Both the two- and three-point functions of weighted cubic maps converge to those of the Brownian map in the scaling limit.
- We can compute the time constants of FPP on random p-regular planar maps, and in each case they satisfy $d=(h+T) / 2$.
- Open questions
- Can weighted cubic maps be shown to converge to the Brownian map?
- Is $d=(h+T) / 2$ a coincidence or does it hold for a (much) larger class of random graphs? Does it hold in the case of ...
- ... weights on the faces, e.g. p-angulations?
- ... other edge length distributions?
- ... random geometric graphs (in certain limits)?
- Is there a bijective explanation for $d=(h+T) / 2$?

Conclusion \& open questions

- Conclusions
- Both the two- and three-point functions of weighted cubic maps converge to those of the Brownian map in the scaling limit.
- We can compute the time constants of FPP on random p-regular planar maps, and in each case they satisfy $d=(h+T) / 2$.
- Open questions
- Can weighted cubic maps be shown to converge to the Brownian map?
- Is $d=(h+T) / 2$ a coincidence or does it hold for a (much) larger class of random graphs? Does it hold in the case of ...
- ... weights on the faces, e.g. p-angulations?
- ... other edge length distributions?
- ... random geometric graphs (in certain limits)?
- Is there a bijective explanation for $d=(h+T) / 2$?
- How do the relative fluctuations of d, h, T scale?

Kardar-Parisi-Zhang scaling exponents on a random surface?

Conclusion \& open questions

- Conclusions
- Both the two- and three-point functions of weighted cubic maps converge to those of the Brownian map in the scaling limit.
- We can compute the time constants of FPP on random p-regular planar maps, and in each case they satisfy $d=(h+T) / 2$.
- Open questions
- Can weighted cubic maps be shown to converge to the Brownian map?
- Is $d=(h+T) / 2$ a coincidence or does it hold for a (much) larger class of random graphs? Does it hold in the case of ...
- ... weights on the faces, e.g. p-angulations?
- ... other edge length distributions?
- ... random geometric graphs (in certain limits)?
- Is there a bijective explanation for $d=(h+T) / 2$?
- How do the relative fluctuations of d, h, T scale?

Kardar-Parisi-Zhang scaling exponents on a random surface?

