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First-passage percolation on a graph

I Random i.i.d. edge weights w(e)
with mean 1.

I Passage time v1 → v2

T = min
γ:v1→v2

∑
e∈γ

w(e)

I Exponential distribution: equivalent
to an Eden model.

I How does T compare to the graph
distance d (asymptotically)?

I Hop count h is the number of
edges in shortest time path.

I Asymptotically T < d < h.
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Time constants
I For many plane graphs (Z2, Poisson-Voronoi, Random Geometric)

one can show that the time constants limd→∞ T/d and limd→∞ h/d
exist almost surely using Kingman’s subadditive ergodic theorem.

I However, very few exact time constants known (ladder graph,. . . ?).

I Numerically, many models seem to have d right in the middle of the
bounds (T < d < h). Explanation?

I Let us look at random planar maps: assuming existence of the time
constants we can compute them!
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Multi-point functions of general planar maps
I FPP on a random cubic map with exponentially distributed edge

weights shows up as a by-product of the study of distances on a
random general planar map.

I Bijection between quadrangulations and planar maps preserving
distance. [Miermont, ’09] [Ambjorn,TB, ’13]
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I Consider the limit E →∞ keeping F fixed. In terms of . . .
I . . . quadrangulation: Generalized Causal Dynamical Triangulations

(GCDT)
I . . . general planar maps: after “removal of trees” cubic maps with

edges of random length.



From general maps to weighted cubic maps

I Take a planar map with marked vertices and weight x per edge.

I Remove dangling edges

and combine neighboring edges while
keeping track of length

.

I Each “subedge” comes with weight x((1−
√

1− 4x)/x)2, hence
length is geometrically distributed.

I Scaling limit x → 1/4 and edge lengths `(x) :=
√

4− 16x : lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.



From general maps to weighted cubic maps

I Take a planar map with marked vertices and weight x per edge.

I Remove dangling edges

and combine neighboring edges while
keeping track of length

.

I Each “subedge” comes with weight x((1−
√

1− 4x)/x)2, hence
length is geometrically distributed.

I Scaling limit x → 1/4 and edge lengths `(x) :=
√

4− 16x : lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.



From general maps to weighted cubic maps

I Take a planar map with marked vertices and weight x per edge.

I Remove dangling edges and combine neighboring edges while
keeping track of length.

I Each “subedge” comes with weight x((1−
√

1− 4x)/x)2, hence
length is geometrically distributed.

I Scaling limit x → 1/4 and edge lengths `(x) :=
√

4− 16x : lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.



From general maps to weighted cubic maps

I Take a planar map with marked vertices and weight x per edge.

I Remove dangling edges and combine neighboring edges while
keeping track of length.

I Each “subedge” comes with weight x((1−
√

1− 4x)/x)2, hence
length is geometrically distributed.

I Scaling limit x → 1/4 and edge lengths `(x) :=
√

4− 16x : lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.



From general maps to weighted cubic maps

I Take a planar map with marked vertices and weight x per edge.

I Remove dangling edges and combine neighboring edges while
keeping track of length.

I Each “subedge” comes with weight x((1−
√

1− 4x)/x)2, hence
length is geometrically distributed.

I Scaling limit x → 1/4 and edge lengths `(x) :=
√

4− 16x : lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.



From general maps to weighted cubic maps

I Take a planar map with marked vertices and weight x per edge.

I Remove dangling edges and combine neighboring edges while
keeping track of length.

I Each “subedge” comes with weight x((1−
√

1− 4x)/x)2, hence
length is geometrically distributed.

I Scaling limit x → 1/4 and edge lengths `(x) :=
√

4− 16x : lengths
are exponentially distributed with mean 1. Maximal number of edges
preferred: almost surely cubic and univalent marked vertices.



Two-point function
I 2-point function for general planar maps with weight x per edge and

z per face and distance t between marked vertices: [Bouttier et al, ’13]

Gz,x(t) = log

[
(1− a σt+1)3

(1− a σt+2)3
(1− a σt+3)

(1− a σt)

]
, (1)

where a = a(z , x) and σ = σ(z , x) solution of algebraic equations.

I Scaling z = `(x)3g , t = T/`(x), x → 1/4:

G
(1,1)
g ,2 (T ) = ∂3T log(Σ cosh ΣT + α sinh ΣT ), Σ :=

√
3
2α

2 − 1
8 ,

and α is solution to α3 − α/4 + g = 0.

I Bivalent marked vertices:

G
(2,2)
g ,2 (T ) = 1

4 (1 + ∂T )2G
(1,1)
g ,2 (T )

I Completely cubic:

G
(3,3)
g ,2 (T ) = 1

9 (2 + ∂T )2G
(2,2)
g ,2 (T )
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and Σ→ 0.

Renormalizing T := ΣT gives

G
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g ,2 (T )Σ−3 → 2

cosh T
sinh3 T

.

I Agrees with distance-profile of the
Brownian map.
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Three-point function
I Three marked vertices with pair-wise distances d12, d13 and d23.

I Reparametrize d12 = s + t, d13 = s + u, d23 = u + t.

I Even case: s, t, u ∈ Z. Odd case: s, t, u ∈ Z + 1
2 .

I Explicit expressions Gevenz,x (s, t, u), Goddz,x (s, t, u) known. [Fusy, Guitter,

’14]

I Scaling as before: G
(1)
g ,3(S ,T ,U) = G even

g ,3 (S ,T ,U) + G odd
g ,3 (S ,T ,U).

I Unless cycle vanishes, i.e.
completely confluent, even and odd
occur with equal probability. Hence

G conf
g ,3 = G even

g ,3 − G odd
g ,3

I Bivalent marked vertices

G
(2)
g ,3 = 1

8 (1 + ∂S)(1 + ∂T )(1 + ∂U)G
(1)
g ,3(S ,T ,U)

+ G
(2)
g ,2(T + U)δ(S) + G

(2)
g ,2(U + S)δ(T ) + G

(2)
g ,2(S + T )δ(U)
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which is the Brownian map 3-point function.
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Expected hop count for random cubic map
I Consider the limit T → 0 (but S ,T ,U > 0) of the completely

confluent three-point function, i.e.

Ĝ
(2)
g ,2(S ,U) := lim

T→0

1
8 (1+∂S)(1+∂T )(1+∂U)[G even

g ,3 (S ,T ,U)−G odd
g ,3 (S ,T ,U)]

I Hence, for fixed number of faces F ,

Ĝ
(2)
F ,2(S ,T − S)

G
(2)
F ,2(T )

is the expected density of vertices
(at distance S) along a geodesic of
length/passage time T .

I Scaling limit:

Ĝ
(2)
g ,2(S ,T −S)→ (1+ 1√

3
)G

(2)
g ,2(T ).

Asymptotic hop count to passage time ratio is 〈h〉/T → 1 + 1√
3

.
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Ĝ
(2)
g ,2(S ,U) := lim

T→0

1
8 (1+∂S)(1+∂T )(1+∂U)[G even

g ,3 (S ,T ,U)−G odd
g ,3 (S ,T ,U)]

I Hence, for fixed number of faces F ,

Ĝ
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Time constants for FPP on a random cubic graph
I We have seen 〈h〉/T → 1 + 1√

3
. This is confirmed numerically

(random triangulation 128k triangles).

I Let us assume that h, T and the graph distance d are
asymptotically (almost surely) linearly related.

I Then we can determine the ratio d/T simply by comparing the
corresponding two-point functions.

I Deduce from transfer matrix approach in [Kawai et al, ’93]:
h/T → 1 + 1

2
√
3

.

I Simple relation: d = (h + T )/2. Is it true more generally?
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Expected hop count for p-regular maps

I Two vertices a distance T apart.

I Determine the balls of radius S and
T − S − δS . They almost touch.

I As δS → 0, conditioned on the balls, a
vertex occurs with probability P δS with

P = (p−1)
WN−1,d+p−2

WN,d

→
N,d→∞

(p−1)xcz
p−2
c ,

in terms of the disk function
Wx(z) =

∑∞
N=0

∑∞
d=1 z

−d−1xNWN,d .
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vertex occurs with probability P δS with

P = (p−1)
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(p−1)xcz
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c ,

in terms of the disk function
Wx(z) =
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Asymptotic hop count to passage time ratio is 〈h〉/T → (p − 1)xcz
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Transfer matrix for FPP

I Take a p-regular weighted planar map
with two marked points.

I Identify baby universes.

I Cut into small passage time intervals.

I Write Gx(z ,T ) :=
∑

d1
z−d1−1G

(d1,d2)
x,2 (T ) and

the disk function Wx(z) :=
∑

d z
−d−1G

(d)
x,1

(weight x per vertex). Then

∂
∂T Gx(z ,T )= ∂

∂z

[
( z −xzp−1−2Wx(z))Gx(z ,T )

]
I Precisely this formula was used in

[Ambjorn, Watabiki, ’95] as an approximation
to derive the 2-point function for
triangulations. Now we know it is not
just an approximation!
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I Now take all edges to have length 1.
Again we can build a transfer matrix.

I Two of the building blocks are quite
similar. . .

I . . . but there are p − 1 extra ones.

I Can work out transfer matrix PDE
explicitly and compare, but heuristically

∼ ∼ xc z
p−2
c

I and therefore

+ + + +

2
→ 1

2 (1 + (p − 1)xc z
p−2
c )

Graph distance to passage time ratio is
d/T → (1 + h/T )/2.
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Conclusion & open questions

I Conclusions
I Both the two- and three-point functions of weighted cubic maps

converge to those of the Brownian map in the scaling limit.
I We can compute the time constants of FPP on random p-regular

planar maps, and in each case they satisfy d = (h + T )/2.

I Open questions
I Can weighted cubic maps be shown to converge to the Brownian

map?

I Is d = (h + T )/2 a coincidence or does it hold for a (much) larger
class of random graphs? Does it hold in the case of . . .

I . . . weights on the faces, e.g. p-angulations?
I . . . other edge length distributions?
I . . . random geometric graphs (in certain limits)?

I Is there a bijective explanation for d = (h + T )/2?
I How do the relative fluctuations of d , h, T scale?

Kardar-Parisi-Zhang scaling exponents on a random surface?

Thanks!
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