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» Activity in Quantum JT gravity due to holographic
correspondence.
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[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci, correspondence quargtum
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Verlinde, Witten, Yang, ............ ]
> But predominantly boundaries are asymptotic / treated SLE?

Brownian motion?
perturbatively. Is there a finite boundary equivalent?

[Stanford, Yang, Turiaci, Verlinde, Griguolo, Panerai, Papalini, Seminara, . ..]
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» Activity in Quantum JT gravity due to holographic
correspondence.

holographlc """"""""

[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci, correspondence

quantum

system
Verlinde, Witten, Yang, ............ ]

SLE?
> But predominantly boundaries are asymptotic / treated L o motion?
perturbatively. Is there a finite boundary eqU|va|ent7
[Stanford, Yang, Turiaci, Verlinde, Griguolo, Panerai, Papalini, Seminara, ...
» Ferrari: should allow disks to self-overlap. [Ferrari, '24]

Is there a tractable model of uniform random discrete flat disks?




What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]

convex
polygon



What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]

convex non-convex
polygon polygon



What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]

O Wy W W

convex non-convex .
polygon polygon self-overlapping polygons



What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]
; L

O Wy W W

convex non-convex .
polygon polygon self-overlapping polygons



What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]
&) [« [y

O Wy W W

convex non-convex .
polygon polygon self-overlapping polygons



What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]
&) [« [y

O Wy W

convex non-convex .
polygon polygon self-overlapping polygons



What is a discrete flat disks? [Titus, Blank, Poénaru, Shor, van Wyk, Mukherjee, Graver, Cargo, Evans, Wenk, ...]

V) V[
modulo translation, % @ %

not modulo rotation

convex non-convex .
polygon polygon self-overlapping polygons
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polygon polygon self-overlapping polygons

How many discrete flat disks with n sides are there?
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First model: fix the sides!

generic* zero-sum
set Z C R?\ {0}

of n vectors

how many
disks are there?

* generic = each non-trivial pair of subsets C Z has linearly independent sums.
(In particular, all angles distinct!)
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For any polygon P, the complex KCp is contractible.
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Associahedron JC Convex diagonalizations IC p
[Tamari, *51] [Stasheff, 63 [Devadoss, Shah, Shao, Winston, '09]

Theorem (Devadoss, Shah, Shao, Winston, '09 & Braun, Ehrenborg, '10)

For any polygon P, the complex ICp is contractible. Hence, Euler characteristic x = Z (—1)dim 7 =1.
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(n — 2)! of these
Theorem (TB, '24+)

The number of n-sided disks with sides in a fixed generic* zero-sum set Z C R? is (n — 2)!.

* Z is generic if each non-trivial pair of subsets C Z has linearly independent sums.
(In particular, all angles distinct!)
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Theorem (TB, '24+)

If Z is generic, there is an explicit bijection between flat disks and excursions in the half-plane.
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» Let (Bt)icpo,y be a Brownian bridge in R? and
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» Let (Bt)icpo,y be a Brownian bridge in R? and
Z,={B1,B2_1,Bs_2,...,—B;_1}.

Theorem (TB, '24+)

The area of the uniform flat disk with sides Z, satisfies
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Conjectural scaling limit: Brownian flat disk?

The bijection suggests a construction of a Brownian flat disk: Let (X(t))ecroy a Brownian bridge

(E(t))ecfo,1 @ Brownian excursion

E(t)
and  Y(t) = /o sign [X(min{s >t:E(s)=y}) — X(max{s < t: E(s) = y})}dy

X(t) E(t) t€[0,1] ’E [0,1] Critical 1D

/'\/_\l GMC on c!rcle7
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Conjecture (TB)

The law of (X(t), Y(t))tcpo,1) is rotationally invariant and is the weak limit of the boundary of the
uniform disk with sides Z, as n — co.

Conjecture (F. Ferrari, '24 < my interpretation)
If F is conformal map to D, Lebesgue on [0, 1] is pushed by F(X(-), Y(:)) to critical GMC on 9D.
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with 2n right-angled corners.

Moduli space M, is naturally equipped with Lebesgue
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» Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

» Moduli space M, is naturally equipped with Lebesgue
measure on independent side lengths.

» Determines random rectilinear disk of fixed perimeter.

» Combinatorial type is a uniform random rigid
quadrangulation with 2n corners.
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» Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

» Moduli space M, is naturally equipped with Lebesgue
measure on independent side lengths.

» Determines random rectilinear disk of fixed perimeter.
» Combinatorial type is a uniform random rigid
quadrangulation with 2n corners.
» Quadrangulation of disk with inner vertices of degree 4,

and boundary vertices of angle %, 7 377“

2 b K
> Rays start at 37”— and end at m-angled boundary vertex.

Theorem (TB, '24+)
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» Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

» Moduli space M, is naturally equipped with Lebesgue
measure on independent side lengths.
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Bijection with colorful Z-labeled quadrangulations

rigid quadrangulation

colorful Z-labeled quadrangulation

base p

Theorem (TB, '24+)
For n > 2 and p > 1 there exists a bijection

rigid quadrangulations with colorful Z-labeled quadrangulations
2n corners and base p with n vertices and perimeter 2p
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Theorem (TB, '24+)
For n > 2 and p > 1 there exists a bijection
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corner with turning number ¢

rigid quadrangulations with
2n corners and base p
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Bijection via exploration
Scanning Vs Peeling

Q@ (0

» Many guises of these labeled quadrangulations: planar Eulerian orientations, Z-labeled bipartite
planar maps, special case of six-vertex model [Kostov, '00][Zinn-Justin, '00][Elvey Price, Guttmann, '17]
» Enumeration finally settled in

Theorem (Bousquet-Mélou, Elvey Price, '20)

The generating function of perimeter-2p colorful Z-labeled quadrangulations is

2
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Brownian flat disk?

Brownian half-plane excursion

cmmmccccc e ———

Seccca—- ———— ———— ———— ———— ———— o o | e o S i o S

’

Semcccccccccccccaas



Status and outlook in pictures

1 =i

walks in half plane polygonal flat disks

;| d

<~ -

rectilinear flat disks

N

o
labeled quadrangulations

/,_ Cont|nu0us p|cture ———— ———— ———— ———— ———— ———— <
:' %

1

)

)

)

)

)

)

i ;

H Brownian flat disk?

| fr

i Critical mating of trees
\

Seccca—- ———— ———— ———— ————

"\ [Aru, Holden, Powell, Sun, '21]

o o T o o S i o S am @

Semcccccccccccccaas



Status and outlook in pictures

@4_.

walks in half plane polygonal flat disks

-

,--= Continuous

Brownian half-plane excursion

Critical mating of trees
"\ [Aru, Holden, Powell, Sun, '21]

...... ———— o T e o S o e a2

Semcccccccccccccaas




