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Motivation: Quantum JT gravity

▶ Problem proposed by F. Ferrari at workshop Random
Geometry in Math & Physics in 2023.

▶ Two-dimensional quantum gravity on the disk:

ZEQG(Λ, L) =

∫
dg e−Λ Area,

ZQJT (L,Λ) =

∫
dg e−Λ Area

▶ Activity in Quantum JT gravity due to holographic
correspondence.
[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci,

Verlinde, Witten, Yang, . . . . . . . . . . . . ]

▶ But predominantly boundaries are asymptotic / treated
perturbatively. Is there a finite boundary equivalent?
[Stanford, Yang, Turiaci, Verlinde, Griguolo, Panerai, Papalini, Seminara, . . . ]

▶ Ferrari: should allow disks to self-overlap. [Ferrari, ’24]

Is there a tractable model of uniform random discrete flat disks?
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Theorem (Devadoss, Shah, Shao, Winston, ’09 & Braun, Ehrenborg, ’10)

For any polygon P, the complex KP is contractible.

Hence, Euler characteristic χ =
∑
cells σ

(−1)dimσ = 1.
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Theorem (TB, ’24+)

The number of n-sided disks with sides in a fixed generic∗ zero-sum set Z ⊂ R2 is (n − 2)!.

∗ Z is generic if each non-trivial pair of subsets ⊂ Z has linearly independent sums.
(In particular, all angles distinct!)
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Idea of proof: an extended bijection

▶ An excursion is a walk w0 = 0,w1, . . . ,wn ∈ R2 such
that w1, . . . ,wn−1 are above w0,wn.

▶ Call a disk unobstructed if no corner is visible
horizontally from the base.

Theorem

If Z is generic∗, {excursions with increments Z}
↕

{unobstructed disks with sides Z}

↕{
unordered Z-leaf-labeled binary trees

with up & down branch at every vertex

}

∗as before, but also no proper subset of Z has horizontal sum

▶ Excursions fragment by heights.
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Area of uniform random flat disk

▶ Let (Bt)t∈[0,1] be a Brownian bridge in R2

and
Zn = {B 1

n
,B 2

n
− 1

n
,B 3

n
− 2

n
, . . . ,−B1− 1

n
}.

Theorem (TB, ’24+)

The area of the uniform flat disk with sides Zn satisfies

E[Arean] =
log n

2π
+ C + on(1) as n→∞,

with C = −
∫ 1

0
Γ′(x + 1)/(4π

√
x Γ(x + 1))dx = 0.0285 . . .

▶ Question: does Arean − log n
2π

converge in distribution?

▶ Eerie similarity to N-winding area AN of (Bt)t itself:

n∑
N=1

NAN −
log n

2π
converges a.s. [Werner, ’94]
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Conjectural scaling limit: Brownian flat disk?
The bijection suggests a construction of a Brownian flat disk: Let

(X (t))t∈[0,1] a Brownian bridge
(E(t))t∈[0,1] a Brownian excursion

and Y (t) :=

∫ E(t)

0

sign
[
X
(
min{s ≥ t : E(s) = y}

)
− X

(
max{s ≤ t : E(s) = y}

)]
dy .

Conjecture (TB)

The law of (X (t),Y (t))t∈[0,1] is rotationally invariant and is the weak limit of the boundary of the
uniform disk with sides Zn as n→∞.

Conjecture (F. Ferrari, ’24 ← my interpretation)

If F is conformal map to D,

Lebesgue on [0, 1] is pushed by F (X (·),Y (·)) to critical GMC on ∂D.
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uniform disk with sides Zn as n→∞.

Conjecture (F. Ferrari, ’24 ← my interpretation)

If F is conformal map to D,

Lebesgue on [0, 1] is pushed by F (X (·),Y (·)) to critical GMC on ∂D.
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Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.

▶ Quadrangulation of disk with inner vertices of degree 4,
and boundary vertices of angle π

2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.

▶ Quadrangulation of disk with inner vertices of degree 4,
and boundary vertices of angle π

2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.

▶ Combinatorial type is a uniform random rigid
quadrangulation with 2n corners.

▶ Quadrangulation of disk with inner vertices of degree 4,
and boundary vertices of angle π

2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.

▶ Combinatorial type is a uniform random rigid
quadrangulation with 2n corners.

▶ Quadrangulation of disk with inner vertices of degree 4,
and boundary vertices of angle π

2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.

▶ Quadrangulation of disk with inner vertices of degree 4,
and boundary vertices of angle π

2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.
▶ Quadrangulation of disk with inner vertices of degree 4,

and boundary vertices of angle π
2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.
▶ Quadrangulation of disk with inner vertices of degree 4,

and boundary vertices of angle π
2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.
▶ Quadrangulation of disk with inner vertices of degree 4,

and boundary vertices of angle π
2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Another model of flat disks: a link with critical LQG?

▶ Consider rectilinear disks: piecewise-straight boundary
with 2n right-angled corners.

▶ Moduli spaceMn is naturally equipped with Lebesgue
measure on independent side lengths.

▶ Determines random rectilinear disk of fixed perimeter.
▶ Combinatorial type is a uniform random rigid

quadrangulation with 2n corners.
▶ Quadrangulation of disk with inner vertices of degree 4,

and boundary vertices of angle π
2
, π, 3π

2
.

▶ Rays start at 3π
2
- and end at π-angled boundary vertex.

Theorem (TB, ’24+)

The number of rigid quadrangulations is asymptotic to

(4π)n−1

16n2 log2 n
(1 + o(1)) as n→∞.

▶ Akin to random planar map models in universality class
of LQGγ=2. . .



Bijection with colorful Z-labeled quadrangulations

Theorem (TB, ’24+)

For n ≥ 2 and p ≥ 1 there exists a bijection{
rigid quadrangulations with

2n corners and base p

}
←→

{
colorful Z-labeled quadrangulations
with n vertices and perimeter 2p

}

π
2
-corner with turning number ℓ︸ ︷︷ ︸

#left−#right

←→ vertex with label ℓ
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Scanning        vs       Peeling
Bijection via exploration

▶ Many guises of these labeled quadrangulations: planar Eulerian orientations, Z-labeled bipartite
planar maps, special case of six-vertex model [Kostov, ’00][Zinn-Justin, ’00][Elvey Price, Guttmann, ’17]

▶ Enumeration finally settled in

Theorem (Bousquet-Mélou, Elvey Price, ’20)

The generating function of perimeter-2p colorful Z-labeled quadrangulations is

Q(p)(x) =
∑
k≥p

1

k + 1

(
2k

k

)(
2k − p

k

)
R(x)k+1, when

∑
k≥p

1

k + 1

(
2k

k

)2

R(x)k+1 = x .
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