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Peeling processes

I The peeling process lead to the first (heuristic)
determination of the 2-point function of
random triangulations. [Watabiki, Ambjørn,’95]

I Formalized in the setting of infinite
triangulations (UIPT). [Angel, ’03].

I Important tool to study properties of the
planar maps: distances, percolation, random
walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin,

Ray, . . . ]

I This talk: in the case of Boltzmann planar maps, with general but
controlled face degree, the peeling process gives a useful relation.

Boltzmann planar maps←→ Random walks

scaling limit−−−−−−−→ Stable processes

Loop-decorated planar maps←→ Partially reflected
random walks

scaling limit−−−−−−−→ Partially reflected
stable processes
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I Boltzmann planar maps
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Boltzmann planar maps

I Let m ∈M(l) be a bipartite rooted planar map with root face
degree 2l .

I Given a sequence q̂ = (q̂1, q̂2, . . .) in [0,∞), define weight of m to
be the product wq̂(m) =

∏
f q̂deg(f )/2 over non-root faces f .

I q̂ admissible iff W (l)(q̂) :=
∑

m∈M(l) wq̂(m) <∞. Then wq̂ gives

rise to probability measure on M(l): the q̂-Boltzmann planar map.
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Boltzmann planar maps

I Let m ∈M(l)
• be a bipartite rooted planar map with root face

degree 2l and a marked vertex.

I Given a sequence q̂ = (q̂1, q̂2, . . .) in [0,∞), define weight of m to
be the product wq̂(m) =

∏
f q̂deg(f )/2 over non-root faces f .

I q̂ admissible iff W
(l)
• (q̂) :=

∑
m∈M(l)

•
wq̂(m) <∞. Then wq̂ gives

rise to probability measure on M(l)
• : the q̂-Boltzmann planar map.



Boltzmann loop-decorated maps
I A rigid loop-decorated map (m, L) ∈ LM(l) is a rooted planar map

with root face degree 2l and a set L of loops on the dual map.

I For g̃ , ñ ≥ 0 and q = (q1, q2, . . .), define weight

wq,g̃ ,ñ(m, L) := ñ#loopsg̃ #loop-faces
∏
f

qdeg(f )/2.

I (q, g̃ , ñ) admissible iff F (l)(q, g̃ , ñ) :=
∑

(m,L)∈LM(l)

wq,g̃ ,ñ(m, L) <∞.

Gives rise to the (q, g̃ , ñ)-Boltzmann loop-decorated map.
I In the presence of a marked vertex it is convenient to distinguish

separating from non-separating loops. [Borot, Bouttier,’15]
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I (q, g̃ , ñ) admissible iff F (l)(q, g̃ , ñ) :=
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wq,g̃ ,ñ(m, L) := ñ#loopsg̃ #loop-faces
∏
f

qdeg(f )/2.
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wq,g̃ ,ñ(m, L) := ñ#loopsg̃ #loop-faces
∏
f

qdeg(f )/2.
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Boltzmann loop-decorated maps
I A rigid loop-decorated map (m, L) ∈ LM(l)

• is a rooted planar map
with root face degree 2l and a set L of loops on the dual map.

I For g , n, g̃ , ñ ≥ 0 and q = (q1, q2, . . .), define weight

wq,g ,n,g̃ ,ñ(m, L) := n#loopsg #loop-faces︸ ︷︷ ︸
separating

ñ#loopsg̃ #loop-faces︸ ︷︷ ︸
non-separating

∏
f

qdeg(f )/2.

I (q, g , n, g̃ , ñ) admissible iff F
(l)
• :=

∑
(m,L)∈LM(l)

•

wq,g ,n,g̃ ,ñ(m, L) <∞.

Gives rise to the (q, g , n, g̃ , ñ)-Boltzmann loop-decorated map.
I In the presence of a marked vertex it is convenient to distinguish

separating from non-separating loops. [Borot, Bouttier,’15]



Gasket decomposition [Borot, Bouttier, Guitter, ’12]

I The gasket G(m, L) is the submap of m “outside” the loops.

I If (m, L) is a (q, g̃ , ñ)-Boltzmann loop-decorated map, then G(m, L)
is identical in law to a q̂-Boltzmann planar map, where

q̂k = qk + ñ g̃ 2kF (k)(q, g̃ , ñ).
I Can reconstruct (q, g̃ , ñ)-Boltzmann loop-decorated map: visit each

face of degree 2k and insert loop with probability 1− qk/q̂k and new
q̂-Boltzmann planar map.

I Similarly gasket of (q, g , n, g̃ , ñ)-Boltzmann loop-decorated map
with marked vertex gives (q̂, g , n, 0, 0)-Boltzmann loop-decorated
map.
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q̂k = qk + ñ g̃ 2kF (k)(q, g̃ , ñ).
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Peeling process on loop-decorated maps
I Given a rooted loop-decorated map (m, L) with a marked vertex, we

define an exploration process: the (lazy) peeling process.

I Keep track of frontier length 2li : perimeter process (li )i .

I If (m, L) ∈ LM(l)
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• is a (q, g , n, g̃ , ñ)-Boltzmann loop-decorated map

with a marked vertex, then (li )i≥0 is a Markov process independent
of the peeling algorithm.

I The law of (li )i is not affected by taking the gasket, which is a
(q̂, g , n, 0, 0)-Boltzmann loop-decorated map.



Peeling process on loop-decorated maps
I Given a rooted loop-decorated map (m, L) with a marked vertex, we

define an exploration process: the (lazy) peeling process.

I Keep track of frontier length 2li : perimeter process (li )i .

I If (m, L) ∈ LM(l)
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Peeling process on q̂-Boltzmann planar maps

I In the absence of loops, (li )i is simply a biased random walk:

Proposition (TB, ’15)

I The perimeter process (li )i≥0 of a q̂-Boltzmann planar map is given by
conditioning a random walk (Wi )i≥0 to hit 0 before hitting Z<0.

I Let ν : Z→ R be the law of Wi+1 −Wi , then q̂k =
(
ν(−1)

2

)k−1

ν(k − 1)

for k ≥ 1 defines a bijection{
ν : Pl

(
(Wi )i does not overshoot 0

)
=

H0(l)︷ ︸︸ ︷
4−l
(

2l
l

)}
←→ {admissible q̂}.

I (li )i is h-transform of (Wi )i w.r.t. H0: P(li+1 = li + k |li ) = H0(li+k)
H0(li )

ν(k).
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A special family of random walks
I Let (St)t≥0 be the symmetric simple random walk started at 0

and
(Yi )i≥0 the sequence of (half) times at which (St)t≥0 returns to 0.

Proposition (TB ’15)

If (Wi )i with law ν : Z→ R started at l ≥ 0 does not overshoot 0 with
probability H0(l) := 4−l

(
2l
l

)
, then

(i) the descending ladder process of (Wi )i is equal in law to (Yi )i ;

(ii) the probability that (Wi )i hits Z≤0 at −k is Hk(l) := l
l+k H0(l)H0(k);

(iii) for k ≥ 1: ν(−k) = Hk−1(1)−
∑∞

l=0 Hk−1(l + 1)ν(l)
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k=−∞ ν(k)ν(−k − l) = 2ν(−l)



A special family of random walks
I Let (St)t≥0 be the symmetric simple random walk started at 0 and

(Yi )i≥0 the sequence of (half) times at which (St)t≥0 returns to 0.

Proposition (TB ’15)

If (Wi )i with law ν : Z→ R started at l ≥ 0 does not overshoot 0 with
probability H0(l) := 4−l

(
2l
l

)
, then

(i) the descending ladder process of (Wi )i is equal in law to (Yi )i ;

(ii) the probability that (Wi )i hits Z≤0 at −k is Hk(l) := l
l+k H0(l)H0(k);

(iii) for k ≥ 1: ν(−k) = Hk−1(1)−
∑∞

l=0 Hk−1(l + 1)ν(l)

(iv) for l ≥ 2:
∑∞

k=−∞ ν(k)ν(−k − l) = 2ν(−l)

I Relation with q̂-Boltzmann planar maps:

g∗ := ν(−1)
2 , q̂k

k>0
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∗ ν(k − 1), W (l) l>0
= 1

2 g−l−1
∗ ν(−l − 1),
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I (iv) implies that W (l) = W (l)(q̂) since it satisfies Tutte’s equation

W (l) =
∞∑
k=1

q̂kW (l+k−1) +
l−1∑
l′=0

W (l′)W (l−l′−1). (l ≥ 1)



Building a marked Boltzmann planar map

I A marked q̂-Boltzmann planar map m ∈M(l,l′)
• is a map with root

face and marked face of degree 2l > 0 resp. 2l ′ ≥ 0, determined by
weight wq̂(m) =

∏
f q̂deg(f )/2 over non-root, non-marked faces f .

I Start with 2W0-gon.

If Wi+1 ≥Wi : insert new face, otherwise glue
edges and leave a hole.

I If Wi+1 ≤ 0: insert marked face of degree 2|Wi | and leave a hole.

I Fill in the holes with independent q̂-Boltzmann planar maps.
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Partially reflected random walks

I Reflected random walk (W ∗
i )i : continue random walk (Wi )i by

reflection until it hits 0.

I n
2 -Partially reflected random walk (W ∗

i )i : reflect with probability n
2

each time (W ∗
i )i hits Z<0 and kill it otherwise.

Result is a (q̂, g = g∗, n = 2, 0, 0)-Boltzmann loop-decorated map.
Critical case: increasing g or n leads to non-admissible (q̂, g , n, 0, 0)
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Partially reflected random walks (continued)

I What is the probability h↓n(l) that (W ∗
i )i started at l is killed at 0?

h↓n(l) = H0(l) +
∞∑
p=1

Hp(l)
n

2
h↓n(p)

I Unique solution that is analytic in n around 0 is
∞∑
l=0

h↓n(l) x2l =
n + 2 cosh(2(b − 1) arctanh x)

n + 2
,

where b := 1
π arccos(n/2) ∈ [0, 1/2]. See also [Borot, Bouttier, ’15]
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Proposition

The perimeter process (li )i of a pointed (q̂, g∗, n, 0, 0)-Boltzmann
loop-decorated map is obtained by conditioning (W ∗

i )i to be killed at
zero, by an h-transform w.r.t. h↓n , i.e.

P(li+1 = l ′|li = l) =
h↓n(l ′)

h↓n(l)

(
ν(l ′ − l) +

n

2
ν(−l ′ − l)1{l′>0}

)

I The same is true for (q, g∗, n, g̃ , ñ)-Boltzmann loop-decorated maps.
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Scaling limit of the perimeter process
I First determine scaling limit of random walk (Wi )i with law ν.

Recall ν(−k) = Hk−1(1)−
∑∞

l=0 Hk−1(l + 1)ν(l).

Proposition

For our class of ν’s, if ν is regularly varying, there exists α ∈ [1/2, 3/2]

such that ν(−k) ∼ k−α−1 and ν(k)
ν(−k) → | cos(πα)|

= ñ
2

.

I Recall ν ↔ q̂, and q̂↔ (q, ñ, g̃). If q falls off fast, ñ ∈ (0, 2) and
g̃ = g∗ critical, then ν(k) ∼ ñ

2ν(−k).

I Depending on q: two possible values α = 1± 1
π arccos(ñ/2)

correspond to dense α ∈ (1/2, 1] and dilute α ∈ [1, 3/2) branch.
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I If α ∈ (1/2, 3/2), the random walk (Wi )i has the scaling limit(
Wbcλαtc/λ

)
t≥0

(d)−−−−→
λ→∞

(St)t≥0,

where (St)t≥0 is the α-stable process with positivity parameter
ρ := P(S1 > 0) = 1− 1/(2α).

I If (li )i is (Wi )i started at l0 conditioned to not overshoot 0, then(
lbclα0 tc/l0

)
t≥0

(d)−−−−→
l0→∞

(S↓t )t≥0,

which is the α-stable process conditioned to die continuously at 0.
[Caravenna, Chaumont]

I Both are self-similar with index α.
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I If (li )i is (Wi )i started at l0 conditioned to not overshoot 0, then(
lbclα0 tc/l0

)
t≥0

(d)−−−−→
l0→∞

(S↓t )t≥0,

which is the α-stable process conditioned to die continuously at 0.
[Caravenna, Chaumont]

I Both are self-similar with index α.



Partially reflected stable process
I Need to check conditions for: Markov process on Z>0

l0→∞−−−−→
self-similar Markov process on (0,∞). [Bertoin, Kortchemski, ’14].

Theorem (TB, ’15)

Let n, ñ ∈ (0, 2) and ñ = −2 cos(πα), α ∈ (1/2, 3/2). The perimeter (li )i
of a (q, g∗, n,g∗, ñ)-Boltzmann loop decorated map with root face degree
2l0 has the scaling limit(

lbctlα0 c

l0

)
t≥0

(d)−−−−→
l0→∞

(X ↓t )t≥0,

where (X ↓t )t is the (self-similar) n
2 -partially reflected α-stable process

conditioned to die continuously at 0.



Application: integrals of (X ↓t )t .
I (X ↓t )t is self-similar with index α and dies continuously (at t = T0):∫ T0

0

(X ↓t )γdt <∞ a.s. for γ > −α

I Can determine explicitly Mellin transform in terms of Barnes double
Gamma functions G (·, ·) using [Kuznetsov, Pardo, ’10]

M(s;α, n, γ) := E

[∫ T0

0

(X ↓t )γdt

]s−1

= (· · · ) G (·, ·)G (·, ·)G (·, ·)G (·, ·)
G (·, ·)G (·, ·)G (·, ·)G (·, ·)

I Ugly, except when γ = −1, n = ñ = −2 cos(πα), α = 1 + 1
m ,

m = 2, 3, . . ..

R↓ :=

∫ T0

0

dt

X ↓t
, P(R↓ < r) =

1

Γ(α)

∫ ∞
0

dZ Z
1
m e−ZBm

(
m

r Z
1
m

)

Bm(y) :=
1 + y cot

(
π

2m

)∏m
k=0

(
1− y ie iπk/m

)
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Distance with shortcuts (w.i.p.)
I Let d be the dual graph distance to the root with “shortcuts” in a

dilute (q, n, g∗)-Boltzmann loop-decorated map with root face 2l .

Conjecture:
d

c0 lα−1

(d)−−−→
l→∞

R↓ =

∫ T0

0

dt

X ↓t

I Peel by layers: see also [Curien, Le Gall, ’14].
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∑

i
1
li

.
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Summary
I The O(n) model on random maps equipped with different distances

potentially gives rise to several random continuous metric spaces
outside of the Brownian map universality class.

I The peeling process provides a convenient way to . . .
I . . . classify and enumerate Boltzmann (loop-decorated) maps;
I . . . study distances which are not easily accessible using other

methods, like tree bijections.
I Having a self-similar scaling limit opens up new machinery to

compute explicit statistics, like the distances with shortcuts.

Outlook
I Study the continuum geometry of “pinched” loop-decorated map

and the corresponding gasket, which is roughly the “dual” of the
stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

Thanks for you attention!

Thanks for you attention!



Summary
I The O(n) model on random maps equipped with different distances

potentially gives rise to several random continuous metric spaces
outside of the Brownian map universality class.

I The peeling process provides a convenient way to . . .
I . . . classify and enumerate Boltzmann (loop-decorated) maps;
I . . . study distances which are not easily accessible using other

methods, like tree bijections.
I Having a self-similar scaling limit opens up new machinery to

compute explicit statistics, like the distances with shortcuts.

Outlook
I Study the continuum geometry of “pinched” loop-decorated map

and the corresponding gasket, which is roughly the “dual” of the
stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

Thanks for you attention!

Thanks for you attention!



Summary
I The O(n) model on random maps equipped with different distances

potentially gives rise to several random continuous metric spaces
outside of the Brownian map universality class.

I The peeling process provides a convenient way to . . .
I . . . classify and enumerate Boltzmann (loop-decorated) maps;
I . . . study distances which are not easily accessible using other

methods, like tree bijections.
I Having a self-similar scaling limit opens up new machinery to

compute explicit statistics, like the distances with shortcuts.

Outlook
I Study the continuum geometry of “pinched” loop-decorated map

and the corresponding gasket, which is roughly the “dual” of the
stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

Thanks for you attention!

Thanks for you attention!


