Séminaire Philippe Flajolet, IHP, Paris, 03-12-2015
The peeling process on random planar maps with loops
Timothy Budd

Based on arXiv:1506.01590 and arXiv:1512.xxxxx.
Niels Bohr Institute, University of Copenhagen budd@nbi.dk, http://www.nbi.dk/~budd/

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

- topology S^{2}
- $d_{\mathrm{H}}=4$
- universality

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

Peeling processes

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjgrn,'95]

Peeling processes

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjgrn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].

Peeling processes

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

Peeling processes

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambj,grn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

- This talk: in the case of Boltzmann planar maps, with general but controlled face degree, the peeling process gives a useful relation

Boltzmann planar maps \longleftrightarrow Random walks

Peeling processes

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjgrn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

- This talk: in the case of Boltzmann planar maps, with general but controlled face degree, the peeling process gives a useful relation

Boltzmann planar maps \longleftrightarrow Random walks $\xrightarrow{\text { scaling limit }}$ Stable processes

Peeling processes

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

- This talk: in the case of Boltzmann planar maps, with general but controlled face degree, the peeling process gives a useful relation

Boltzmann planar maps \longleftrightarrow Random walks $\xrightarrow{\text { scaling limit }}$ Stable processes
Loop-decorated planar maps \longleftrightarrow Partially reflected scaling limit Partially reflected random walks
stable processes

Outline

- Preliminaries
- Boltzmann planar maps
- The $O(n)$ model: Boltzmann loop-decorated maps
- Gasket decomposition
- Peeling process
- Boltzmann planar maps \longleftrightarrow Random walks
- Boltzmann loop-decorated planar maps \longleftrightarrow Partially reflected random walks
- Scaling limit
- Convergence of perimeter to a self-similar Markov process
- Law of integral
- Potential application: distance with shortcuts on loops

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree 21 .

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree 21 .

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree 21 .

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree 21 .
- Given a sequence $\hat{\mathbf{q}}=\left(\hat{q}_{1}, \hat{q}_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root faces f.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}^{(1)}$ be a bipartite rooted planar map with root face degree $2 /$.
- Given a sequence $\hat{\mathbf{q}}=\left(\hat{q}_{1}, \hat{q}_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\hat{\mathfrak{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root faces f.
- $\hat{\mathbf{q}}$ admissible iff $W^{(l)}(\hat{\mathbf{q}}):=\sum_{\mathfrak{m} \in \mathcal{M}^{(1)}} w_{\hat{\mathbf{q}}}(\mathfrak{m})<\infty$. Then $w_{\hat{\mathbf{q}}}$ gives rise to probability measure on $\mathcal{M}^{(1)}$: the $\hat{\mathbf{q}}$-Boltzmann planar map.

Boltzmann planar maps

- Let $\mathfrak{m} \in \mathcal{M}_{0}^{(I)}$ be a bipartite rooted planar map with root face degree $2 /$ and a marked vertex.
- Given a sequence $\hat{\mathbf{q}}=\left(\hat{q}_{1}, \hat{q}_{2}, \ldots\right)$ in $[0, \infty)$, define weight of \mathfrak{m} to be the product $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root faces f.
- $\hat{\mathbf{q}}$ admissible iff $W_{\bullet}^{(I)}(\hat{\mathbf{q}}):=\sum_{\mathfrak{m} \in \mathcal{M}_{0}^{(I)}} w_{\hat{\mathbf{q}}}(\mathfrak{m})<\infty$. Then $w_{\hat{\mathbf{q}}}$ gives rise to probability measure on $\mathcal{M}_{0}^{(1)}$: the $\hat{\mathbf{q}}$-Boltzmann planar map.

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.
- For $\tilde{g}, \tilde{n} \geq 0$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$, define weight

$$
w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L):=\tilde{n}^{\# \text { loops }} \tilde{g}^{\# \text { loop-faces }} \prod_{f} q_{\operatorname{deg}(f) / 2}
$$

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.
- For $\tilde{g}, \tilde{n} \geq 0$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$, define weight

$$
w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L):=\tilde{n}^{\# \text { loops }} \tilde{g}^{\# \text { loop-faces }} \prod_{f} q_{\operatorname{deg}(f) / 2}
$$

- ($\mathbf{q}, \tilde{g}, \tilde{n})$ admissible iff $F^{(I)}(\mathbf{q}, \tilde{g}, \tilde{n}):=\sum_{(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(I)}} w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L)<\infty$.

Gives rise to the $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map.

Boltzmann loop-decorated maps

- A rigid loop-decorated map $(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}_{0}^{(I)}$ is a rooted planar map with root face degree $2 I$ and a set L of loops on the dual map.
- For $\tilde{g}, \tilde{n} \geq 0$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$, define weight

$$
w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L):=\tilde{n}^{\# \text { loops }} \tilde{g}^{\# \text { loop-faces }} \prod_{f} q_{\operatorname{deg}(f) / 2}
$$

- ($\mathbf{q}, \tilde{g}, \tilde{n})$ admissible iff $F^{(I)}(\mathbf{q}, \tilde{g}, \tilde{n}):=\sum_{(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}^{(1)}} w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L)<\infty$. Gives rise to the ($\mathbf{q}, \tilde{g}, \tilde{n}$)-Boltzmann loop-decorated map.
- In the presence of a marked vertex it is convenient to distinguish separating from non-separating loops. [Borot, Bouttier,'15]

Boltzmann loop-decorated maps

- A rigid loop-decorated $\operatorname{map}(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}_{\bullet}^{(I)}$ is a rooted planar map with root face degree $2 /$ and a set L of loops on the dual map.
- For $g, n, \tilde{g}, \tilde{n} \geq 0$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$, define weight

$$
w_{\mathbf{q}, g, n, \tilde{g}, \tilde{n}}(\mathfrak{m}, L):=\underbrace{n^{\# \text { loops }} g^{\# \text { loop-faces }}}_{\text {separating }} \underbrace{\tilde{n}^{\text {\#loops }} \tilde{g}^{\# l o o p-f a c e s ~}}_{\text {non-separating }} \prod_{f} q_{\mathrm{deg}(f) / 2} .
$$

- ($\mathbf{q}, g, n, \tilde{g}, \tilde{n})$ admissible iff $F_{\bullet}^{(I)}:=\sum w_{\mathbf{q}, g, n, \tilde{g}, \tilde{n}}(\mathfrak{m}, L)<\infty$.

$$
(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}_{\bullet}^{(I)}
$$

Gives rise to the ($\mathbf{q}, g, n, \tilde{g}, \tilde{n}$)-Boltzmann loop-decorated map.

- In the presence of a marked vertex it is convenient to distinguish separating from non-separating loops. [Borot, Bouttier,'15]

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.

Gasket decomposition [Borot, Bouttier, Guitter, '12]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.

Gasket decomposition [Borot, Buttie, Guitter, '21]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.
- Similarly gasket of (q, $g, n, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map with marked vertex gives ($\mathbf{q}, g, n, 0,0$)-Boltzmann loop-decorated map.

Gasket decomposition [Borot, Buttie, Guitter, '21]

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (\mathfrak{m}, L) is a $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map, then $\mathcal{G}(\mathfrak{m}, L)$ is identical in law to a $\hat{\mathbf{q}}$-Boltzmann planar map, where

$$
\hat{q}_{k}=q_{k}+\tilde{n} \tilde{g}^{2 k} F^{(k)}(\mathbf{q}, \tilde{g}, \tilde{n}) .
$$

- Can reconstruct $(\mathbf{q}, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map: visit each face of degree $2 k$ and insert loop with probability $1-q_{k} / \hat{q}_{k}$ and new $\hat{\mathbf{q}}$-Boltzmann planar map.
- Similarly gasket of (q, $g, n, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map with marked vertex gives ($\mathbf{q}, g, n, 0,0$)-Boltzmann loop-decorated map.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.
- If $(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}_{\bullet}^{(I)}$ is a $(\mathbf{q}, g, n, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map with a marked vertex, then $\left(l_{i}\right)_{i \geq 0}$ is a Markov process independent of the peeling algorithm.

Peeling process on loop-decorated maps

- Given a rooted loop-decorated map (\mathfrak{m}, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- Keep track of frontier length $2 l_{i}$: perimeter process $\left(l_{i}\right)_{i}$.
- If $(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}_{\bullet}^{(I)}$ is a $(\mathbf{q}, g, n, \tilde{g}, \tilde{n})$-Boltzmann loop-decorated map with a marked vertex, then $\left(l_{i}\right)_{i \geq 0}$ is a Markov process independent of the peeling algorithm.
- The law of $\left(l_{i}\right)_{i}$ is not affected by taking the gasket, which is a ($\hat{\mathbf{q}}, g, n, 0,0$)-Boltzmann loop-decorated map.

Peeling process on $\hat{\mathbf{q}}$-Boltzmann planar maps

Peeling process on $\hat{\mathbf{q}}$-Boltzmann planar maps

- In the absence of loops, $\left(I_{i}\right)_{i}$ is simply a biased random walk:

Proposition (TB, '15)

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ of a $\hat{\mathbf{q}}$-Boltzmann planar map is given by conditioning a random walk $\left(W_{i}\right)_{i \geq 0}$ to hit 0 before hitting $\mathbb{Z}_{<0}$.

Peeling process on $\hat{\mathbf{q}}$-Boltzmann planar maps

- In the absence of loops, $\left(I_{i}\right)_{i}$ is simply a biased random walk:

Proposition (TB, '15)

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ of a $\hat{\mathbf{q}}$-Boltzmann planar map is given by conditioning a random walk $\left(W_{i}\right)_{i \geq 0}$ to not overshoot 0 .

Peeling process on $\hat{\mathbf{q}}$-Boltzmann planar maps

- In the absence of loops, $\left(l_{i}\right)_{i}$ is simply a biased random walk:

Proposition (TB, '15)

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ of a $\hat{\mathbf{q}}$-Boltzmann planar map is given by conditioning a random walk $\left(W_{i}\right)_{i \geq 0}$ to not overshoot 0 .
- Let $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ be the law of $W_{i+1}-W_{i}$, then $\hat{q}_{k}=\left(\frac{\nu(-1)}{2}\right)^{k-1} \nu(k-1)$ for $k \geq 1$ defines a bijection
$\left\{\nu: \mathbb{P}_{l}\left(\left(W_{i}\right)_{i}\right.\right.$ does not overshoot 0$\left.)=4^{-1}\binom{2 \prime}{1}\right\} \longleftrightarrow\{$ admissible $\hat{\mathbf{q}}\}$.

Peeling process on $\hat{\mathbf{q}}$-Boltzmann planar maps

- In the absence of loops, $\left(l_{i}\right)_{i}$ is simply a biased random walk:

Proposition (TB, '15)

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ of a $\hat{\mathbf{q}}$-Boltzmann planar map is given by conditioning a random walk $\left(W_{i}\right)_{i \geq 0}$ to not overshoot 0 .
- Let $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ be the law of $W_{i+1}-W_{i}$, then $\hat{q}_{k}=\left(\frac{\nu(-1)}{2}\right)^{k-1} \nu(k-1)$ for $k \geq 1$ defines a bijection

$$
H_{0}(I)
$$

$\{\nu: \mathbb{P}_{l}\left(\left(W_{i}\right)_{i}\right.$ does not overshoot 0$)=\overbrace{4^{-1}\binom{2 \prime}{\prime}}\} \longleftrightarrow\{$ admissible $\hat{\mathbf{q}}\}$.

- $\left(I_{i}\right)_{i}$ is h-transform of $\left(W_{i}\right)_{i}$ w.r.t. $H_{0}: \mathbb{P}\left(I_{i+1}=I_{i}+k \mid I_{i}\right)=\frac{H_{0}\left(l_{i}+k\right)}{H_{0}\left(l_{i}\right)} \nu(k)$.

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 /}{1}$, then

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{l}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is ?;

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is ?;

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is ?;

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is $H_{k}(I):=\frac{1}{I+k} H_{0}(I) H_{0}(k)$;

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is $H_{k}(I):=\frac{1}{1+k} H_{0}(I) H_{0}(k)$;
(iii) for $k \geq 1: \quad \nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is $H_{k}(I):=\frac{1}{1+k} H_{0}(I) H_{0}(k)$;
(iii) for $k \geq 1$: $\quad \nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$
(iv) for $I \geq 2$: $\quad \sum_{k=-\infty}^{\infty} \nu(k) \nu(-k-I)=2 \nu(-I)$

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-I}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is $H_{k}(I):=\frac{1}{1+k} H_{0}(I) H_{0}(k)$;
(iii) for $k \geq 1$: $\quad \nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$
(iv) for $I \geq 2$: $\quad \sum_{k=-\infty}^{\infty} \nu(k) \nu(-k-I)=2 \nu(-I)$

- Relation with $\hat{\mathbf{q}}$-Boltzmann planar maps:

$$
g_{*}:=\frac{\nu(-1)}{2}, \quad \hat{q}_{k} \stackrel{k \geq 0}{=} g_{*}^{k-1} \nu(k-1), \quad \nu_{\perp} \quad W^{(I)} \stackrel{I \geq 0}{=} \frac{1}{2} g_{*}^{-I-1} \nu(-I-1)
$$

A special family of random walks

- Let $\left(S_{t}\right)_{t \geq 0}$ be the symmetric simple random walk started at 0 and $\left(Y_{i}\right)_{i \geq 0}$ the sequence of (half) times at which $\left(S_{t}\right)_{t \geq 0}$ returns to 0 .

Proposition (TB '15)

If $\left(W_{i}\right)_{i}$ with law $\nu: \mathbb{Z} \rightarrow \mathbb{R}$ started at $I \geq 0$ does not overshoot 0 with probability $H_{0}(I):=4^{-1}\binom{2 l}{1}$, then
(i) the descending ladder process of $\left(W_{i}\right)_{i}$ is equal in law to $\left(Y_{i}\right)_{i}$;
(ii) the probability that $\left(W_{i}\right)_{i}$ hits $\mathbb{Z}_{\leq 0}$ at $-k$ is $H_{k}(I):=\frac{1}{l+k} H_{0}(I) H_{0}(k)$;
(iii) for $k \geq 1$: $\quad \nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$
(iv) for $I \geq 2$: $\quad \sum_{k=-\infty}^{\infty} \nu(k) \nu(-k-I)=2 \nu(-I)$

- Relation with $\hat{\mathbf{q}}$-Boltzmann planar maps:

$$
g_{*}:=\frac{\nu(-1)}{2}, \quad \hat{q}_{k} \stackrel{k \geq 0}{=} g_{*}^{k-1} \nu(k-1), \quad W^{(I)} \stackrel{l \geq 0}{=} \frac{1}{2} g_{*}^{-I-1} \nu(-I-1),
$$

- (iv) implies that $W^{(I)}=W^{(I)}(\hat{\mathbf{q}})$ since it satisfies Tutte's equation

$$
W^{(I)}=\sum_{k=1}^{\infty} \hat{q}_{k} W^{(I+k-1)}+\sum_{l^{\prime}=0}^{I-1} W^{\left(l^{\prime}\right)} W^{\left(I-I^{\prime}-1\right)}
$$

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(I, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 I>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 I>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.
- If $W_{i+1} \leq 0$: insert marked face of degree $2\left|W_{i}\right|$ and leave a hole.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, \prime^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.
- If $W_{i+1} \leq 0$: insert marked face of degree $2\left|W_{i}\right|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$-Boltzmann planar maps.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, \prime^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.
- If $W_{i+1} \leq 0$: insert marked face of degree $2\left|W_{i}\right|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$-Boltzmann planar maps.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, \prime^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.
- If $W_{i+1} \leq 0$: insert marked face of degree $2\left|W_{i}\right|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$-Boltzmann planar maps.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, \prime^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.
- If $W_{i+1} \leq 0$: insert marked face of degree $2\left|W_{i}\right|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$-Boltzmann planar maps.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, \prime^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}}(f) / 2$ over non-root, non-marked faces f.

- Start with $2 W_{0}$-gon. If $W_{i+1} \geq W_{i}$: insert new face, otherwise glue edges and leave a hole.
- If $W_{i+1} \leq 0$: insert marked face of degree $2\left|W_{i}\right|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$-Boltzmann planar maps.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

This map is a marked, rooted $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}{ }^{\left(1, l^{\prime}\right)}$ with independent random I^{\prime} such that $\mathbb{P}\left(I^{\prime}=k\right)=H_{k}(I)$.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\text {deg }}(f) / 2$ over non-root, non-marked faces f.

This map is a marked, rooted $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}{ }^{\left(1, l^{\prime}\right)}$ with independent random I^{\prime} such that $\mathbb{P}\left(I^{\prime}=k\right)=H_{k}(I)$.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 />0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathfrak{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

This map is a marked, rooted $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}{ }^{\left(1, l^{\prime}\right)}$ with independent random I^{\prime} such that $\mathbb{P}\left(I^{\prime}=k\right)=H_{k}(I)$.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, \prime^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathfrak{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

This map is a marked, rooted $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(I, l^{\prime}\right)}$ with independent random I^{\prime} such that $\mathbb{P}\left(I^{\prime}=k\right)=H_{k}(I)$.

Building a marked Boltzmann planar map

- A marked $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, I^{\prime}\right)}$ is a map with root face and marked face of degree $2 l>0$ resp. $2 l^{\prime} \geq 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m})=\prod_{f} \hat{q}_{\operatorname{deg}(f) / 2}$ over non-root, non-marked faces f.

This map is a marked, rooted $\hat{\mathbf{q}}$-Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{\left(1, l^{\prime}\right)}$ with independent random I^{\prime} such that $\mathbb{P}\left(I^{\prime}=k\right)=H_{k}(I)$. Conditioning on $I^{\prime}=0$ gives a marked vertex!

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .

Result is a ($\hat{\mathbf{q}}, g=g_{*}, n=2,0,0$)-Boltzmann loop-decorated map. Critical case: increasing g or n leads to non-admissible ($\hat{\mathbf{q}}, g, n, 0,0$)

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .
- $\frac{n}{2}$-Partially reflected random walk $\left(W_{i}^{*}\right)_{i}$: reflect with probability $\frac{n}{2}$ each time $\left(W_{i}^{*}\right)_{i}$ hits $\mathbb{Z}_{<0}$ and kill it otherwise.

Partially reflected random walks

- Reflected random walk $\left(W_{i}^{*}\right)_{i}$: continue random walk $\left(W_{i}\right)_{i}$ by reflection until it hits 0 .
- $\frac{n}{2}$-Partially reflected random walk $\left(W_{i}^{*}\right)_{i}$: reflect with probability $\frac{n}{2}$ each time $\left(W_{i}^{*}\right)_{i}$ hits $\mathbb{Z}_{<0}$ and kill it otherwise.

Result is a ($\hat{\mathbf{q}}, g=g_{*}, n, 0,0$)-Boltzmann loop-decorated map $(\mathfrak{m}, L) \in \mathcal{L} \mathcal{M}_{\bullet}^{\left(I, I^{\prime}\right)}$ with a marked face $\left(I^{\prime}>0\right)$ or vertex $\left(I^{\prime}=0\right)$, and I^{\prime} is a random variable.

Partially reflected random walks (continued)

- What is the probability $h_{n}^{\downarrow}(I)$ that $\left(W_{i}^{*}\right)_{i}$ started at $/$ is killed at 0 ?

Partially reflected random walks (continued)

- What is the probability $h_{n}^{\downarrow}(I)$ that $\left(W_{i}^{*}\right)_{i}$ started at $/$ is killed at 0 ?

$$
h_{n}^{\downarrow}(I)=H_{0}(I)+\sum_{p=1}^{\infty} H_{p}(I) \frac{n}{2} h_{n}^{\downarrow}(p)
$$

Partially reflected random walks (continued)

- What is the probability $h_{n}^{\downarrow}(I)$ that $\left(W_{i}^{*}\right)_{i}$ started at l is killed at 0 ?

$$
h_{n}^{\downarrow}(I)=H_{0}(I)+\sum_{p=1}^{\infty} H_{p}(I) \frac{n}{2} h_{n}^{\downarrow}(p)
$$

- Unique solution that is analytic in n around 0 is

$$
\sum_{l=0}^{\infty} h_{n}^{\downarrow}(I) x^{2 l}=\frac{n+2 \cosh (2(b-1) \operatorname{arctanh} x)}{n+2},
$$

where $b:=\frac{1}{\pi} \arccos (n / 2) \in[0,1 / 2]$. See also [Borot, Bouttier, '15]

Partially reflected random walks (continued)

- What is the probability $h_{n}^{\downarrow}(I)$ that $\left(W_{i}^{*}\right)_{i}$ started at l is killed at 0 ?

$$
h_{n}^{\downarrow}(I)=H_{0}(I)+\sum_{p=1}^{\infty} H_{p}(I) \frac{n}{2} h_{n}^{\downarrow}(p)
$$

- Unique solution that is analytic in n around 0 is

$$
\sum_{l=0}^{\infty} h_{n}^{\downarrow}(I) x^{2 l}=\frac{n+2 \cosh (2(b-1) \operatorname{arctanh} x)}{n+2}
$$

where $b:=\frac{1}{\pi} \arccos (n / 2) \in[0,1 / 2]$. See also [Borot, Bouttier, '15]

Proposition

The perimeter process $\left(l_{i}\right)_{i}$ of a pointed $\left(\hat{\mathbf{q}}, g_{*}, n, 0,0\right)$-Boltzmann loop-decorated map is obtained by conditioning $\left(W_{i}^{*}\right)_{i}$ to be killed at zero, by an h-transform w.r.t. h_{n}^{\downarrow}, i.e.

$$
\mathbb{P}\left(I_{i+1}=I^{\prime} \mid l_{i}=I\right)=\frac{h_{n}^{\downarrow}\left(I^{\prime}\right)}{h_{n}^{\downarrow}(I)}\left(\nu\left(I^{\prime}-I\right)+\frac{n}{2} \nu\left(-I^{\prime}-I\right) \mathbf{1}_{\left\{\prime^{\prime}>0\right\}}\right)
$$

Partially reflected random walks (continued)

- What is the probability $h_{n}^{\downarrow}(I)$ that $\left(W_{i}^{*}\right)_{i}$ started at l is killed at 0 ?

$$
h_{n}^{\downarrow}(I)=H_{0}(I)+\sum_{p=1}^{\infty} H_{p}(I) \frac{n}{2} h_{n}^{\downarrow}(p)
$$

- Unique solution that is analytic in n around 0 is

$$
\sum_{l=0}^{\infty} h_{n}^{\downarrow}(I) x^{2 l}=\frac{n+2 \cosh (2(b-1) \operatorname{arctanh} x)}{n+2}
$$

where $b:=\frac{1}{\pi} \arccos (n / 2) \in[0,1 / 2]$. See also [Borot, Bouttier, '15]

Proposition

The perimeter process $\left(l_{i}\right)_{i}$ of a pointed $\left(\mathbf{q}, g_{*}, n, \tilde{g}, \tilde{n}\right)$-Boltzmann loop-decorated map is obtained by conditioning $\left(W_{i}^{*}\right)_{i}$ to be killed at zero, by an h-transform w.r.t. h_{n}^{\downarrow}, i.e.

$$
\mathbb{P}\left(l_{i+1}=I^{\prime} \mid l_{i}=I\right)=\frac{h_{n}^{\downarrow}\left(I^{\prime}\right)}{h_{n}^{\downarrow}(I)}\left(\nu\left(I^{\prime}-I\right)+\frac{n}{2} \nu\left(-I^{\prime}-I\right) \mathbf{1}_{\left\{I^{\prime}>0\right\}}\right)
$$

- The same is true for $\left(\mathbf{q}, g_{*}, n, \tilde{g}, \tilde{n}\right)$-Boltzmann loop-decorated maps.

Scaling limit of the perimeter process

- First determine scaling limit of random walk $\left(W_{i}\right)_{i}$ with law ν. Recall $\nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$.

Proposition

For our class of ν 's, if ν is regularly varying, there exists $\alpha \in[1 / 2,3 / 2]$ such that $\nu(-k) \sim k^{-\alpha-1}$ and $\frac{\nu(k)}{\nu(-k)} \rightarrow|\cos (\pi \alpha)|$

Scaling limit of the perimeter process

- First determine scaling limit of random walk $\left(W_{i}\right)_{i}$ with law ν. Recall $\nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$.

Proposition

For our class of ν 's, if ν is regularly varying, there exists $\alpha \in[1 / 2,3 / 2]$ such that $\nu(-k) \sim k^{-\alpha-1}$ and $\frac{\nu(k)}{\nu(-k)} \rightarrow|\cos (\pi \alpha)|=\frac{\tilde{n}}{2}$.

- Recall $\nu \leftrightarrow \hat{\mathbf{q}}$, and $\hat{\mathbf{q}} \leftrightarrow(\mathbf{q}, \tilde{n}, \tilde{g})$. If \mathbf{q} falls off fast, $\tilde{n} \in(0,2)$ and $\tilde{g}=g_{*}$ critical, then $\nu(k) \sim \frac{\tilde{n}}{2} \nu(-k)$.

Scaling limit of the perimeter process

- First determine scaling limit of random walk $\left(W_{i}\right)_{i}$ with law ν. Recall $\nu(-k)=H_{k-1}(1)-\sum_{l=0}^{\infty} H_{k-1}(I+1) \nu(I)$.

Proposition

For our class of ν 's, if ν is regularly varying, there exists $\alpha \in[1 / 2,3 / 2]$ such that $\nu(-k) \sim k^{-\alpha-1}$ and $\frac{\nu(k)}{\nu(-k)} \rightarrow|\cos (\pi \alpha)|=\frac{\tilde{n}}{2}$.

- Recall $\nu \leftrightarrow \hat{\mathbf{q}}$, and $\hat{\mathbf{q}} \leftrightarrow(\mathbf{q}, \tilde{n}, \tilde{g})$. If \mathbf{q} falls off fast, $\tilde{n} \in(0,2)$ and $\tilde{g}=g_{*}$ critical, then $\nu(k) \sim \frac{\tilde{n}}{2} \nu(-k)$.
- Depending on \mathbf{q} : two possible values $\alpha=1 \pm \frac{1}{\pi} \arccos (\tilde{n} / 2)$ correspond to dense $\alpha \in(1 / 2,1]$ and dilute $\alpha \in[1,3 / 2)$ branch.

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\left(I_{i}\right)_{i}$ is $\left(W_{i}\right)_{i}$ started at I_{0} conditioned to not overshoot 0 , then

$$
\left(I_{\left\lfloor c I_{0}^{\alpha} t\right\rfloor} / I_{0}\right)_{t \geq 0} \xrightarrow[I_{0} \rightarrow \infty]{(\mathrm{d})}\left(S_{t}^{\downarrow}\right)_{t \geq 0},
$$

which is the α-stable process conditioned to die continuously at 0 .
[Caravenna, Chaumont]

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\left(I_{i}\right)_{i}$ is $\left(W_{i}\right)_{i}$ started at I_{0} conditioned to not overshoot 0 , then

$$
\left(I_{\left\lfloor c I_{0}^{\alpha} t\right\rfloor} / I_{0}\right)_{t \geq 0} \xrightarrow[I_{0} \rightarrow \infty]{(\mathrm{d})}\left(S_{t}^{\downarrow}\right)_{t \geq 0},
$$

which is the α-stable process conditioned to die continuously at 0 . [Caravenna, Chaumont]

- If $\alpha \in(1 / 2,3 / 2)$, the random walk $\left(W_{i}\right)_{i}$ has the scaling limit

$$
\left(W_{\left\lfloor c \lambda^{\alpha} t\right\rfloor} / \lambda\right)_{t \geq 0} \xrightarrow[\lambda \rightarrow \infty]{(\mathrm{d})}\left(S_{t}\right)_{t \geq 0},
$$

where $\left(S_{t}\right)_{t \geq 0}$ is the α-stable process with positivity parameter $\rho:=\mathbb{P}\left(S_{1}>0\right)=1-1 /(2 \alpha)$.

- If $\left(I_{i}\right)_{i}$ is $\left(W_{i}\right)_{i}$ started at I_{0} conditioned to not overshoot 0 , then

$$
\left(I_{\left\lfloor c l_{0}^{\alpha} t\right\rfloor} / I_{0}\right)_{t \geq 0} \xrightarrow[I_{0} \rightarrow \infty]{(\mathrm{d})}\left(S_{t}^{\downarrow}\right)_{t \geq 0},
$$

which is the α-stable process conditioned to die continuously at 0 . [Caravenna, Chaumont]

- Both are self-similar with index α.

Partially reflected stable process

- Need to check conditions for: Markov process on $\mathbb{Z}_{>0} \xrightarrow{I_{0} \rightarrow \infty}$ self-similar Markov process on $(0, \infty)$. [Bertoin, Kortchemski, '14].

Theorem (TB, '15)

Let $n, \tilde{n} \in(0,2)$ and $\tilde{n}=-2 \cos (\pi \alpha), \alpha \in(1 / 2,3 / 2)$. The perimeter $\left(l_{i}\right)_{i}$ of a ($\left.\mathbf{q}, g_{*}, n, g_{*}, \tilde{n}\right)$-Boltzmann loop decorated map with root face degree 210 has the scaling limit

$$
\left(\frac{I_{\left\lfloor c t I_{0}^{\alpha}\right\rfloor}}{I_{0}}\right)_{t \geq 0} \xrightarrow[I_{0} \rightarrow \infty]{(\mathrm{d})}\left(X_{t}^{\downarrow}\right)_{t \geq 0}
$$

where $\left(X_{t}^{\downarrow}\right)_{t}$ is the (self-similar) $\frac{n}{2}$-partially reflected α-stable process conditioned to die continuously at 0 .

Application: integrals of $\left(X_{t}^{\downarrow}\right)_{t}$.

- $\left(X_{t}^{\downarrow}\right)_{t}$ is self-similar with index α and dies continuously (at $t=T_{0}$):

$$
\int_{0}^{T_{0}}\left(X_{t}^{\downarrow}\right)^{\gamma} \mathrm{d} t<\infty \text { a.s. } \quad \text { for } \gamma>-\alpha
$$

Application: integrals of $\left(X_{t}^{\downarrow}\right)_{t}$.

- $\left(X_{t}^{\downarrow}\right)_{t}$ is self-similar with index α and dies continuously (at $t=T_{0}$):

$$
\int_{0}^{T_{0}}\left(X_{t}^{\downarrow}\right)^{\gamma} \mathrm{d} t<\infty \text { a.s. } \quad \text { for } \gamma>-\alpha
$$

- Can determine explicitly Mellin transform in terms of Barnes double Gamma functions $G(\cdot, \cdot)$ using [Kuznetsov, Pardo, '10]

$$
\mathcal{M}(s ; \alpha, n, \gamma):=\mathbb{E}\left[\int_{0}^{T_{0}}\left(X_{t}^{\downarrow}\right)^{\gamma} \mathrm{d} t\right]^{s-1}=(\cdots) \frac{G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot)}{G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot)}
$$

Application: integrals of $\left(X_{t}^{\downarrow}\right)_{t}$.

- $\left(X_{t}^{\downarrow}\right)_{t}$ is self-similar with index α and dies continuously (at $t=T_{0}$):

$$
\int_{0}^{T_{0}}\left(X_{t}^{\downarrow}\right)^{\gamma} \mathrm{d} t<\infty \text { a.s. } \quad \text { for } \gamma>-\alpha
$$

- Can determine explicitly Mellin transform in terms of Barnes double Gamma functions $G(\cdot, \cdot)$ using [Kuznetsov, Pardo, '10]

$$
\mathcal{M}(s ; \alpha, n, \gamma):=\mathbb{E}\left[\int_{0}^{T_{0}}\left(X_{t}^{\downarrow}\right)^{\gamma} \mathrm{d} t\right]^{s-1}=(\cdots) \frac{G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot)}{G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot) G(\cdot, \cdot)}
$$

- Ugly, except when $\gamma=-1, n=\tilde{n}=-2 \cos (\pi \alpha), \alpha=1+\frac{1}{m}$, $m=2,3, \ldots$.

$$
\begin{gathered}
R^{\downarrow}:=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}, \quad \mathbb{P}\left(R^{\downarrow}<r\right)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \mathrm{d} Z Z^{\frac{1}{m}} e^{-Z} B_{m}\left(\frac{m}{r Z^{\frac{1}{m}}}\right) \\
B_{m}(y):=\frac{1+y \cot \left(\frac{\pi}{2 m}\right)}{\prod_{k=0}^{m}\left(1-y i e^{i \pi k / m}\right)}
\end{gathered}
$$

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: see also [Curien, Le Gall, '14].

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: see also [Curien, Le Gall, '14].

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: see also [Curien, Le Gall, '14].

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: see also [Curien, Le Gall, '14].

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face $2 /$.

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Distance with shortcuts (w.i.p.)

- Let d be the dual graph distance to the root with "shortcuts" in a dilute $\left(\mathbf{q}, n, g_{*}\right)$-Boltzmann loop-decorated map with root face 21 .

$$
\text { Conjecture: } \quad \frac{d}{c_{0} I^{\alpha-1}} \xrightarrow[I \rightarrow \infty]{(\mathrm{d})} R^{\downarrow}=\int_{0}^{T_{0}} \frac{\mathrm{~d} t}{X_{t}^{\downarrow}}
$$

- Peel by layers: one layer takes $\sim l_{i}$ steps, $d \sim \sum_{i} \frac{1}{l_{i}}$.

Summary

- The $O(n)$ model on random maps equipped with different distances potentially gives rise to several random continuous metric spaces outside of the Brownian map universality class.
- The peeling process provides a convenient way to ...
- ... classify and enumerate Boltzmann (loop-decorated) maps;
- ...study distances which are not easily accessible using other methods, like tree bijections.
- Having a self-similar scaling limit opens up new machinery to compute explicit statistics, like the distances with shortcuts.

Summary

- The $O(n)$ model on random maps equipped with different distances potentially gives rise to several random continuous metric spaces outside of the Brownian map universality class.
- The peeling process provides a convenient way to ...
- ... classify and enumerate Boltzmann (loop-decorated) maps;
- ...study distances which are not easily accessible using other methods, like tree bijections.
- Having a self-similar scaling limit opens up new machinery to compute explicit statistics, like the distances with shortcuts.

Outlook

- Study the continuum geometry of "pinched" loop-decorated map and the corresponding gasket, which is roughly the "dual" of the stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

Summary

- The $O(n)$ model on random maps equipped with different distances potentially gives rise to several random continuous metric spaces outside of the Brownian map universality class.
- The peeling process provides a convenient way to ...
- ... classify and enumerate Boltzmann (loop-decorated) maps;
- ...study distances which are not easily accessible using other methods, like tree bijections.
- Having a self-similar scaling limit opens up new machinery to compute explicit statistics, like the distances with shortcuts.

Outlook

- Study the continuum geometry of "pinched" loop-decorated map and the corresponding gasket, which is roughly the "dual" of the stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

