Séminaire Philippe Flajolet, IHP, Paris, 03-12-2015

The peeling process on random planar maps with loops Timothy Budd

Based on arXiv:1506.01590 and arXiv:1512.xxxxx.

Niels Bohr Institute, University of Copenhagen
budd@nbi.dk, http://www.nbi.dk/~budd/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

・ロト・西ト・西ト・日・ 日・ シュウ

▲ロト ▲圖 > ▲ ヨ > ▲ ヨ > ― ヨ = の < @

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Motivation [Le Gall, Miermont, Borot, Bouttier, Guitter, Sheffield, Miller, ...]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn, '95]

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

► This talk: in the case of Boltzmann planar maps, with general but controlled face degree, the peeling process gives a useful relation

 $\mathsf{Boltzmann}\ \mathsf{planar}\ \mathsf{maps}\longleftrightarrow\mathsf{Random}\ \mathsf{walks}$

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

► This talk: in the case of Boltzmann planar maps, with general but controlled face degree, the peeling process gives a useful relation

 $\mathsf{Boltzmann}\ \mathsf{planar}\ \mathsf{maps}\longleftrightarrow\mathsf{Random}\ \mathsf{walks}\ \xrightarrow{\mathsf{scaling}\ \mathsf{limit}}\mathsf{Stable}\ \mathsf{processes}$

- The peeling process lead to the first (heuristic) determination of the 2-point function of random triangulations. [Watabiki, Ambjørn,'95]
- Formalized in the setting of infinite triangulations (UIPT). [Angel, '03].
- Important tool to study properties of the planar maps: distances, percolation, random walks [Angel, Curien, Benjamini, Le Gall, TB, Ménard, Nolin, Ray, ...]

► This talk: in the case of Boltzmann planar maps, with general but controlled face degree, the peeling process gives a useful relation

 $\begin{array}{c} \mbox{Boltzmann planar maps} \longleftrightarrow \mbox{Random walks} \xrightarrow{\mbox{scaling limit}} \mbox{Stable processes} \\ \mbox{Loop-decorated planar maps} \longleftrightarrow \xrightarrow{\mbox{Partially reflected} \\ \mbox{random walks}} \xrightarrow{\mbox{scaling limit}} \mbox{Partially reflected} \\ \mbox{stable processes} \end{array}$

Outline

Preliminaries

- Boltzmann planar maps
- The O(n) model: Boltzmann loop-decorated maps
- Gasket decomposition
- Peeling process
 - $\blacktriangleright \text{ Boltzmann planar maps} \longleftrightarrow \text{Random walks}$
 - \blacktriangleright Boltzmann loop-decorated planar maps \longleftrightarrow Partially reflected random walks
- Scaling limit
 - Convergence of perimeter to a self-similar Markov process
 - Law of integral
 - Potential application: distance with shortcuts on loops

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.

- Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2*l*.
- Given a sequence \$\hfrac{\mathbf{q}}{\mathbf{q}}\$ = \$(\hfrac{\hfrac{q}}{1}, \hfrac{q}{2}, ...\$) in [0,∞)\$, define weight of \$\mathbf{m}\$ to be the product \$w_{\mathbf{q}}(\$\mathbf{m}\$) = \$\prod_f\$ \$\hfrac{d}{d}_{deg}(f)/2\$ over non-root faces \$f\$.

- Let m ∈ M^(l) be a bipartite rooted planar map with root face degree 2l.
- Given a sequence \$\hfrac{\mathbf{q}}{\mathbf{q}}\$ = (\$\hfrac{\hfrac{q}}{1}\$, \$\hfrac{q}{2}\$, ...) in [0,∞), define weight of \$\mathbf{m}\$ to be the product \$w_{\mathbf{q}}(\$\mathbf{m}\$) = \$\prod_f\$ \$\hfrac{d}{d}_{deg}(f)/2\$ over non-root faces \$f\$.
- ▶ **q** admissible iff W⁽¹⁾(**q**) := ∑_{m∈M⁽¹⁾} w_{**q**}(m) < ∞. Then w_{**q**} gives rise to probability measure on M⁽¹⁾: the **q**-Boltzmann planar map.

- Let m ∈ M_•^(I) be a bipartite rooted planar map with root face degree 2I and a marked vertex.
- Given a sequence \$\hfrac{\mathbf{q}}{\mathbf{q}}\$ = \$(\hfrac{\hfrac{q}}{1}, \hfrac{q}{2}, ...\$) in [0,∞)\$, define weight of \$\mathbf{m}\$ to be the product \$w_{\mathbf{q}}(\$\mathbf{m}\$) = \$\prod_f\$ \$\frac{d}{d}_{deg}(f)/2\$ over non-root faces \$f\$.
- ▶ **q** admissible iff W^(l)_•(**q**) := ∑_{m∈M^(l)_• w_{**q**}(**m**) < ∞. Then w_{**q**} gives rise to probability measure on M^(l)_•: the **q**-Boltzmann planar map.}

A rigid loop-decorated map (𝔅, L) ∈ LM^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.

► A rigid loop-decorated map (m, L) ∈ LM^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.

► A rigid loop-decorated map (m, L) ∈ LM^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.

A rigid loop-decorated map (𝔅, L) ∈ LM^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.

- ► A rigid loop-decorated map (m, L) ∈ LM^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.

For
$$\tilde{g}, \tilde{n} \ge 0$$
 and $\mathbf{q} = (q_1, q_2, \ldots)$, define weight

$$w_{\mathbf{q},\tilde{g},\tilde{n}}(\mathfrak{m},L) := \tilde{n}^{\#\mathrm{loops}}\tilde{g}^{\#\mathrm{loop-faces}} \prod_{f} q_{\mathrm{deg}(f)/2}$$

▶ A rigid loop-decorated map $(\mathfrak{m}, L) \in \mathcal{LM}^{(l)}$ is a rooted planar map with root face degree 2I and a set L of loops on the dual map.

For
$$\tilde{g}, \tilde{n} \ge 0$$
 and $\mathbf{q} = (q_1, q_2, ...)$, define weight
 $w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L) := \tilde{n}^{\# \text{loops}} \tilde{g}^{\# \text{loop-faces}} \prod_{l} q_{\text{deg}(f)/2}$.

• $(\mathbf{q}, \tilde{g}, \tilde{n})$ admissible iff $F^{(l)}(\mathbf{q}, \tilde{g}, \tilde{n}) := \sum_{(\mathfrak{m}, L) \in \mathcal{LM}^{(l)}} w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L) < \infty$.

Gives rise to the $(\mathbf{q}, \tilde{g}, \tilde{n})$ -Boltzmann loop-decorated map.

- A rigid loop-decorated map (𝔅, L) ∈ LM_•^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.
- ▶ For $\tilde{g}, \tilde{n} \ge 0$ and $\mathbf{q} = (q_1, q_2, ...)$, define weight $w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L) := \tilde{n}^{\# \text{loops}} \tilde{g}^{\# \text{loop-faces}} \prod q_{\text{deg}(f)/2}$.
- $\blacktriangleright (\mathbf{q}, \tilde{g}, \tilde{n}) \text{ admissible iff } F^{(l)}(\mathbf{q}, \tilde{g}, \tilde{n}) := \sum_{(\mathfrak{m}, L) \in \mathcal{LM}^{(l)}} w_{\mathbf{q}, \tilde{g}, \tilde{n}}(\mathfrak{m}, L) < \infty.$

Gives rise to the $(\mathbf{q}, \tilde{g}, \tilde{n})$ -Boltzmann loop-decorated map.

In the presence of a marked vertex it is convenient to distinguish separating from non-separating loops. [Borot, Bouttier,'15]

- A rigid loop-decorated map (m, L) ∈ LM^(I) is a rooted planar map with root face degree 2I and a set L of loops on the dual map.
- For g, n, ĝ, ñ ≥ 0 and q = (q₁, q₂,...), define weight w_{q,g,n,ĝ,ñ}(m, L) := n^{#loops} g^{#loop-faces} n^{#loops} g^{#loop-faces} f^{#loops} g^{#loop-faces} f^{#loops} f^{#loop-faces} f^{#loops} f^{#loop-faces} f^{#loop-f}

Gives rise to the $(\mathbf{q}, \mathbf{g}, \mathbf{n}, \tilde{\mathbf{g}}, \tilde{\mathbf{n}})$ -Boltzmann loop-decorated map.

In the presence of a marked vertex it is convenient to distinguish separating from non-separating loops. [Borot, Bouttier,'15]

• The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.

• The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (m, L) is a (q, ğ, ñ)-Boltzmann loop-decorated map, then G(m, L) is identical in law to a q̂-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (m, L) is a (q, ğ, ñ)-Boltzmann loop-decorated map, then G(m, L) is identical in law to a q̂-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (m, L) is a (q, ğ, ñ)-Boltzmann loop-decorated map, then G(m, L) is identical in law to a q̂-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝜏, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝔤, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝔤, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝔤, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝔤, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝜏, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝜏, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- ► Can reconstruct (q, ğ, ñ)-Boltzmann loop-decorated map: visit each face of degree 2k and insert loop with probability 1 q_k/ĝ_k and new q̂-Boltzmann planar map.
- ► Similarly gasket of (q, g, n, ğ, ñ)-Boltzmann loop-decorated map with marked vertex gives (q̂, g, n, 0, 0)-Boltzmann loop-decorated map.

- The gasket $\mathcal{G}(\mathfrak{m}, L)$ is the submap of \mathfrak{m} "outside" the loops.
- If (𝔅, L) is a (𝔤, 𝔅, 𝔅)-Boltzmann loop-decorated map, then 𝔅(𝔅, L) is identical in law to a 𝔅-Boltzmann planar map, where

$$\hat{q}_k = q_k + \tilde{n}\,\tilde{g}^{2k}F^{(k)}(\mathbf{q},\tilde{g},\tilde{n}).$$

- ► Can reconstruct (q, ğ, ñ)-Boltzmann loop-decorated map: visit each face of degree 2k and insert loop with probability 1 q_k/ĝ_k and new q̂-Boltzmann planar map.
- ► Similarly gasket of (q, g, n, ğ, ñ)-Boltzmann loop-decorated map with marked vertex gives (q̂, g, n, 0, 0)-Boltzmann loop-decorated map.

Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.

- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- /e
- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*I*_i: perimeter process (*I*_i)_i.

- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*I*_i: perimeter process (*I*_i)_i.

▲ロト ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ ― 臣 … のへで

- e
- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

▲ロト ▲聞 ト ▲ 国 ト ▲ 国 ・ の Q ()~

- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- ▶ Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- ve
- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (*lazy*) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)*_i*.

- ve
- Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.
- ▶ Keep track of frontier length 2*l_i*: perimeter process (*l_i*)_{*i*}.
- If (m, L) ∈ LM^(l) is a (q, g, n, ğ, ñ)-Boltzmann loop-decorated map with a marked vertex, then (l_i)_{i≥0} is a Markov process independent of the peeling algorithm.

Given a rooted loop-decorated map (m, L) with a marked vertex, we define an exploration process: the (lazy) peeling process.

- Keep track of frontier length $2l_i$: perimeter process $(l_i)_i$.
- If (m, L) ∈ LM^(l) is a (q, g, n, ğ, ñ)-Boltzmann loop-decorated map with a marked vertex, then (l_i)_{i≥0} is a Markov process independent of the peeling algorithm.
- ► The law of (*l_i*)_{*i*} is not affected by taking the gasket, which is a (**q**̂, *g*, *n*, 0, 0)-Boltzmann loop-decorated map.

(日)、

э.

▶ In the absence of loops, $(I_i)_i$ is simply a biased random walk:

Proposition (TB, '15)

The perimeter process (*l_i*)_{*i*≥0} of a **q**-Boltzmann planar map is given by conditioning a random walk (*W_i*)_{*i*≥0} to hit 0 before hitting Z_{<0}.

▶ In the absence of loops, $(I_i)_i$ is simply a biased random walk:

Proposition (TB, '15)

► The perimeter process (*l_i*)_{*i*≥0} of a **q**-Boltzmann planar map is given by conditioning a random walk (*W_i*)_{*i*≥0} to not overshoot 0.

▶ In the absence of loops, $(I_i)_i$ is simply a biased random walk:

Proposition (TB, '15)

► The perimeter process (l_i)_{i≥0} of a **q**-Boltzmann planar map is given by conditioning a random walk (W_i)_{i≥0} to not overshoot 0.

• Let $\nu : \mathbb{Z} \to \mathbb{R}$ be the law of $W_{i+1} - W_i$, then $\hat{q}_k = \left(\frac{\nu(-1)}{2}\right)^{k-1} \nu(k-1)$ for $k \ge 1$ defines a bijection

 $\left\{\nu: \mathbb{P}_{I}((W_{i})_{i} \text{ does not overshoot } 0) = 4^{-I} \binom{2I}{I} \right\} \longleftrightarrow \{\text{admissible } \hat{\mathbf{q}}\}.$

▶ In the absence of loops, $(I_i)_i$ is simply a biased random walk:

Proposition (TB, '15)

► The perimeter process (l_i)_{i≥0} of a **q**-Boltzmann planar map is given by conditioning a random walk (W_i)_{i≥0} to not overshoot 0.

Let ν : Z → R be the law of W_{i+1} - W_i, then \$\hat{q}_k = (\[\frac{\nu(-1)}{2}\])^{k-1}\[\nu(k-1)\] for k ≥ 1 defines a bijection \$\[H_0(l)\] \$\lefty\$ \$

• Let $(S_t)_{t\geq 0}$ be the symmetric simple random walk started at 0

• Let $(S_t)_{t \ge 0}$ be the symmetric simple random walk started at 0

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

(ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is ?;

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

(ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is ?;

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

(ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is ?;

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

(ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is $H_k(I) := \frac{1}{1+k}H_0(I)H_0(k);$

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

(ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is $H_k(I) := \frac{1}{1+k}H_0(I)H_0(k);$

(iii) for
$$k \geq 1$$
: $u(-k) = H_{k-1}(1) - \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

- (i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;
- (ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is $H_k(I) := \frac{1}{1+k}H_0(I)H_0(k);$

(iii) for $k \ge 1$: $\nu(-k) = H_{k-1}(1) - \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$

(iv) for
$$l \ge 2$$
: $\sum_{k=-\infty}^{\infty} \nu(k)\nu(-k-l) = 2\nu(-l)$

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

(ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is $H_k(I) := \frac{l}{l+k}H_0(I)H_0(k)_i$

(iii) for
$$k \ge 1$$
: $\nu(-k) = H_{k-1}(1) - \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$
(iv) for $l \ge 2$: $\sum_{k=-\infty}^{\infty} \nu(k)\nu(-k-l) = 2\nu(-l)$

Let (S_t)_{t≥0} be the symmetric simple random walk started at 0 and (Y_i)_{i≥0} the sequence of (half) times at which (S_t)_{t≥0} returns to 0.

Proposition (TB '15)

If $(W_i)_i$ with law $\nu : \mathbb{Z} \to \mathbb{R}$ started at $l \ge 0$ does not overshoot 0 with probability $H_0(l) := 4^{-l} \binom{2l}{l}$, then

(i) the descending ladder process of $(W_i)_i$ is equal in law to $(Y_i)_i$;

- (ii) the probability that $(W_i)_i$ hits $\mathbb{Z}_{\leq 0}$ at -k is $H_k(I) := \frac{l}{l+k} H_0(I) H_0(k)$;
- (iii) for $k \ge 1$: $\nu(-k) = H_{k-1}(1) \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$ (iv) for $l \ge 2$: $\sum_{k=-\infty}^{\infty} \nu(k)\nu(-k-l) = 2\nu(-l)$
 - $\begin{array}{ll} \bullet \quad \text{Relation with } \hat{\mathbf{q}}\text{-Boltzmann planar maps:} \\ g_* := \frac{\nu(-1)}{2}, \quad \hat{q}_k \stackrel{k \geq 0}{=} g_*^{k-1}\nu(k-1), \qquad \mathcal{W}^{(l)} \stackrel{l \geq 0}{=} \frac{1}{2}g_*^{-l-1}\nu(-l-1), \end{array}$

• (iv) implies that $W^{(l)} = W^{(l)}(\hat{\mathbf{q}})$ since it satisfies Tutte's equation

$$W^{(l)} = \sum_{k=1}^{\infty} \hat{q}_k W^{(l+k-1)} + \sum_{l'=0}^{l-1} W^{(l')} W^{(l-l'-1)}. \qquad (l \ge 1)$$

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

<ロ> (四) (四) (三) (三) (三) (三)

Start with 2 W_0 -gon. If $W_{i+1} \ge W_i$: insert new face

<ロ> (四) (四) (三) (三) (三) (三)

Start with $2W_0$ -gon. If $W_{i+1} \ge W_i$: insert new face

Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.

・ロト ・四ト ・ヨト ・ヨ

Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

A marked **q**-Boltzmann planar map m ∈ M_•^(I,I') is a map with root face and marked face of degree 2I > 0 resp. 2I' ≥ 0, determined by weight w_{q̂}(m) = ∏_f q̂_{deg(f)/2} over non-root, non-marked faces f.

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

- Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.
- ▶ If $W_{i+1} \leq 0$: insert marked face of degree $2|W_i|$ and leave a hole.

▶ A marked $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ is a map with root face and marked face of degree 2l > 0 resp. $2l' \ge 0$, determined by weight $w_{\hat{\mathbf{q}}}(\mathfrak{m}) = \prod_{f} \hat{q}_{\deg(f)/2}$ over non-root, non-marked faces f.

- Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.
- ▶ If $W_{i+1} \leq 0$: insert marked face of degree $2|W_i|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$ -Boltzmann planar maps.

- Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.
- ▶ If $W_{i+1} \leq 0$: insert marked face of degree $2|W_i|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$ -Boltzmann planar maps.

- Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.
- ▶ If $W_{i+1} \leq 0$: insert marked face of degree $2|W_i|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$ -Boltzmann planar maps.

- Start with 2 W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.
- ▶ If $W_{i+1} \leq 0$: insert marked face of degree $2|W_i|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$ -Boltzmann planar maps.

- Start with 2W₀-gon. If W_{i+1} ≥ W_i: insert new face, otherwise glue edges and leave a hole.
- ▶ If $W_{i+1} \leq 0$: insert marked face of degree $2|W_i|$ and leave a hole.
- Fill in the holes with independent $\hat{\mathbf{q}}$ -Boltzmann planar maps.

A marked **q̂**-Boltzmann planar map m ∈ M_•^(I,I') is a map with root face and marked face of degree 2I > 0 resp. 2I' ≥ 0, determined by weight w_{q̂}(m) = ∏_f q̂_{deg(f)/2} over non-root, non-marked faces f.

A marked **q̂**-Boltzmann planar map m ∈ M_•^(1,1') is a map with root face and marked face of degree 2*l* > 0 resp. 2*l'* ≥ 0, determined by weight w_{**q̂**}(m) = ∏_f *q̂*_{deg(f)/2} over non-root, non-marked faces f.

A marked **q̂**-Boltzmann planar map m ∈ M_•^(I,I') is a map with root face and marked face of degree 2I > 0 resp. 2I' ≥ 0, determined by weight w_{q̂}(m) = ∏_f q̂_{deg(f)/2} over non-root, non-marked faces f.

A marked **q̂**-Boltzmann planar map m ∈ M_•^(I,I') is a map with root face and marked face of degree 2I > 0 resp. 2I' ≥ 0, determined by weight w_{q̂}(m) = ∏_f q̂_{deg(f)/2} over non-root, non-marked faces f.

A marked **q̂**-Boltzmann planar map m ∈ M_•^(I,I') is a map with root face and marked face of degree 2I > 0 resp. 2I' ≥ 0, determined by weight w_{q̂}(m) = ∏_f q̂_{deg(f)/2} over non-root, non-marked faces f.

This map is a marked, rooted $\hat{\mathbf{q}}$ -Boltzmann planar map $\mathfrak{m} \in \mathcal{M}_{\bullet}^{(l,l')}$ with independent random l' such that $\mathbb{P}(l'=k) = H_k(l)$. Conditioning on l' = 0 gives a marked vertex!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

► Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

► Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

► Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

► Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.

Result is a $(\hat{\mathbf{q}}, g = g_*, n = 2, 0, 0)$ -Boltzmann loop-decorated map. Critical case: increasing g or n leads to non-admissible $(\hat{\mathbf{q}}, g, n, 0, 0)$

- ► Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.
- ▶ ⁿ/₂-Partially reflected random walk (W^{*}_i)_i: reflect with probability ⁿ/₂ each time (W^{*}_i)_i hits Z_{<0} and kill it otherwise.

Partially reflected random walks

- ▶ Reflected random walk (W^{*}_i)_i: continue random walk (W_i)_i by reflection until it hits 0.
- ▶ ⁿ/₂-Partially reflected random walk (W^{*}_i)_i: reflect with probability ⁿ/₂ each time (W^{*}_i)_i hits Z_{<0} and kill it otherwise.

Result is a $(\hat{\mathbf{q}}, g = g_*, n, 0, 0)$ -Boltzmann loop-decorated map $(\mathfrak{m}, L) \in \mathcal{LM}_{\bullet}^{(l,l')}$ with a marked face (l' > 0) or vertex (l' = 0), and l' is a random variable.

(日)、

æ

• What is the probability $h_n^{\downarrow}(I)$ that $(W_i^*)_i$ started at I is killed at 0?

・ロト ・ 雪 ト ・ ヨ ト

æ

• What is the probability $h_n^{\downarrow}(I)$ that $(W_i^*)_i$ started at I is killed at 0?

$$h_n^{\downarrow}(l) = H_0(l) + \sum_{p=1}^{\infty} H_p(l) \frac{n}{2} h_n^{\downarrow}(p)$$

• What is the probability $h_n^{\downarrow}(I)$ that $(W_i^*)_i$ started at I is killed at 0?

$$h_n^{\downarrow}(l) = H_0(l) + \sum_{p=1}^{\infty} H_p(l) \frac{n}{2} h_n^{\downarrow}(p)$$

Unique solution that is analytic in n around 0 is

$$\sum_{l=0}^{\infty} h_n^{\downarrow}(l) \, x^{2l} = \frac{n+2\cosh(2(b-1)\operatorname{arctanh} x)}{n+2},$$

where $b:=rac{1}{\pi} \arccos(n/2) \in [0,1/2]$. See also [Borot, Bouttier, '15]

• What is the probability $h_n^{\downarrow}(I)$ that $(W_i^*)_i$ started at I is killed at 0?

$$h_n^{\downarrow}(l) = H_0(l) + \sum_{p=1}^{\infty} H_p(l) \frac{n}{2} h_n^{\downarrow}(p)$$

Unique solution that is analytic in n around 0 is

$$\sum_{l=0}^{\infty} h_n^{\downarrow}(l) \, x^{2l} = \frac{n+2\cosh(2(b-1)\operatorname{arctanh} x)}{n+2}$$

where $b:=rac{1}{\pi} \arccos(n/2) \in [0,1/2]$. See also [Borot, Bouttier, '15]

Proposition

The perimeter process $(l_i)_i$ of a pointed $(\hat{\mathbf{q}}, g_*, n, 0, 0)$ -Boltzmann loop-decorated map is obtained by conditioning $(W_i^*)_i$ to be killed at zero, by an h-transform w.r.t. h_n^{\downarrow} , i.e.

$$\mathbb{P}(l_{i+1} = l' | l_i = l) = \frac{h_n^{\downarrow}(l')}{h_n^{\downarrow}(l)} \left(\nu(l' - l) + \frac{n}{2}\nu(-l' - l)\mathbf{1}_{\{l' > 0\}} \right)$$

• What is the probability $h_n^{\downarrow}(I)$ that $(W_i^*)_i$ started at I is killed at 0?

$$h_n^{\downarrow}(l) = H_0(l) + \sum_{p=1}^{\infty} H_p(l) \frac{n}{2} h_n^{\downarrow}(p)$$

Unique solution that is analytic in n around 0 is

$$\sum_{l=0}^{\infty} h_n^{\downarrow}(l) \, x^{2l} = \frac{n+2\cosh(2(b-1)\operatorname{arctanh} x)}{n+2}$$

where $b:=rac{1}{\pi} \arccos(n/2) \in [0,1/2]$. See also [Borot, Bouttier, '15]

Proposition

The perimeter process $(l_i)_i$ of a pointed $(\mathbf{q}, g_*, n, \tilde{g}, \tilde{n})$ -Boltzmann loop-decorated map is obtained by conditioning $(W_i^*)_i$ to be killed at zero, by an h-transform w.r.t. h_n^{\downarrow} , i.e.

$$\mathbb{P}(I_{i+1} = I' | I_i = I) = \frac{h_n^{\downarrow}(I')}{h_n^{\downarrow}(I)} \left(\nu(I' - I) + \frac{n}{2}\nu(-I' - I)\mathbf{1}_{\{I' > 0\}} \right)$$

▶ The same is true for $(\mathbf{q}, g_*, n, \tilde{g}, \tilde{n})$ -Boltzmann loop-decorated maps.

naa

Scaling limit of the perimeter process

• First determine scaling limit of random walk $(W_i)_i$ with law ν . Recall $\nu(-k) = H_{k-1}(1) - \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$.

Proposition

For our class of ν 's, if ν is regularly varying, there exists $\alpha \in [1/2, 3/2]$ such that $\nu(-k) \sim k^{-\alpha-1}$ and $\frac{\nu(k)}{\nu(-k)} \rightarrow |\cos(\pi\alpha)|$

Scaling limit of the perimeter process

► First determine scaling limit of random walk $(W_i)_i$ with law ν . Recall $\nu(-k) = H_{k-1}(1) - \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$.

Proposition

For our class of ν 's, if ν is regularly varying, there exists $\alpha \in [1/2, 3/2]$ such that $\nu(-k) \sim k^{-\alpha-1}$ and $\frac{\nu(k)}{\nu(-k)} \rightarrow |\cos(\pi\alpha)| = \frac{n}{2}$.

▶ Recall $\nu \leftrightarrow \hat{\mathbf{q}}$, and $\hat{\mathbf{q}} \leftrightarrow (\mathbf{q}, \tilde{n}, \tilde{g})$. If \mathbf{q} falls off fast, $\tilde{n} \in (0, 2)$ and $\tilde{g} = g_*$ critical, then $\nu(k) \sim \frac{\tilde{n}}{2}\nu(-k)$.

Scaling limit of the perimeter process

► First determine scaling limit of random walk $(W_i)_i$ with law ν . Recall $\nu(-k) = H_{k-1}(1) - \sum_{l=0}^{\infty} H_{k-1}(l+1)\nu(l)$.

Proposition

For our class of ν 's, if ν is regularly varying, there exists $\alpha \in [1/2, 3/2]$ such that $\nu(-k) \sim k^{-\alpha-1}$ and $\frac{\nu(k)}{\nu(-k)} \rightarrow |\cos(\pi\alpha)| = \frac{\tilde{n}}{2}$.

- ▶ Recall $\nu \leftrightarrow \hat{\mathbf{q}}$, and $\hat{\mathbf{q}} \leftrightarrow (\mathbf{q}, \tilde{n}, \tilde{g})$. If \mathbf{q} falls off fast, $\tilde{n} \in (0, 2)$ and $\tilde{g} = g_*$ critical, then $\nu(k) \sim \frac{\tilde{n}}{2}\nu(-k)$.
- Depending on q: two possible values α = 1 ± ¹/_π arccos(ñ/2) correspond to *dense* α ∈ (1/2, 1] and *dilute* α ∈ [1, 3/2) branch.

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

 $\left(W_{\lfloor c\lambda^{\alpha}t \rfloor}/\lambda \right)_{t \geq 0} \xrightarrow[\lambda \to \infty]{(\mathrm{d})} (S_t)_{t \geq 0},$

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

 $\left(W_{\lfloor c\lambda^{\alpha}t \rfloor}/\lambda \right)_{t \geq 0} \xrightarrow[\lambda \to \infty]{(\mathrm{d})} (S_t)_{t \geq 0},$

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

 $\left(W_{\lfloor c\lambda^{\alpha}t \rfloor}/\lambda \right)_{t \geq 0} \xrightarrow[\lambda \to \infty]{(\mathrm{d})} (S_t)_{t \geq 0},$

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

 $\big(W_{\lfloor c\lambda^{\alpha}t\rfloor}/\lambda \big)_{t\geq 0} \xrightarrow[\lambda\to\infty]{(\mathrm{d})} (S_t)_{t\geq 0},$

$$\left(W_{\lfloor c\lambda^{\alpha}t\rfloor}/\lambda\right)_{t\geq 0}\xrightarrow[\lambda\to\infty]{(\mathrm{d})} (S_t)_{t\geq 0},$$

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

▶ If $(I_i)_i$ is $(W_i)_i$ started at I_0 conditioned to not overshoot 0, then

$$\left(I_{\lfloor cI_0^{\alpha}t\rfloor}/I_0\right)_{t\geq 0}\xrightarrow[I_0\to\infty]{(\mathrm{d})} (S_t^{\downarrow})_{t\geq 0},$$

which is the α -stable process conditioned to die continuously at 0. [Caravenna, Chaumont]

$$\left(W_{\lfloor c\lambda^{\alpha}t\rfloor}/\lambda\right)_{t\geq 0}\xrightarrow[\lambda\to\infty]{(\mathrm{d})} (S_t)_{t\geq 0},$$

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

▶ If $(I_i)_i$ is $(W_i)_i$ started at I_0 conditioned to not overshoot 0, then

$$\left(I_{\lfloor cI_0^{\alpha}t\rfloor}/I_0\right)_{t\geq 0}\xrightarrow[I_0\to\infty]{(\mathrm{d})} (S_t^{\downarrow})_{t\geq 0},$$

which is the α -stable process conditioned to die continuously at 0. [Caravenna, Chaumont]

$$\left(W_{\lfloor c\lambda^{\alpha}t\rfloor}/\lambda\right)_{t\geq 0}\xrightarrow[\lambda\to\infty]{(\mathrm{d})} (S_t)_{t\geq 0},$$

where $(S_t)_{t\geq 0}$ is the α -stable process with *positivity parameter* $\rho := \mathbb{P}(S_1 > 0) = 1 - 1/(2\alpha).$

▶ If $(I_i)_i$ is $(W_i)_i$ started at I_0 conditioned to not overshoot 0, then

$$\left(I_{\lfloor cI_0^{\alpha}t\rfloor}/I_0\right)_{t\geq 0}\xrightarrow[I_0\to\infty]{(\mathrm{d})} (S_t^{\downarrow})_{t\geq 0},$$

which is the α -stable process conditioned to die continuously at 0. [Caravenna, Chaumont]

Both are self-similar with index α.

Partially reflected stable process

▶ Need to check conditions for: Markov process on $\mathbb{Z}_{>0} \xrightarrow{h_0 \to \infty}$ self-similar Markov process on $(0, \infty)$. [Bertoin, Kortchemski, '14].

Theorem (TB, '15)

Let $n, \tilde{n} \in (0, 2)$ and $\tilde{n} = -2\cos(\pi\alpha)$, $\alpha \in (1/2, 3/2)$. The perimeter $(l_i)_i$ of a $(\mathbf{q}, g_*, n, g_*, \tilde{n})$ -Boltzmann loop decorated map with root face degree $2l_0$ has the scaling limit

$$\left(\frac{I_{\lfloor ctI_0^{\alpha}\rfloor}}{I_0}\right)_{t\geq 0}\xrightarrow[I_0\to\infty]{(\mathrm{d})} (X_t^{\downarrow})_{t\geq 0},$$

where $(X_t^{\downarrow})_t$ is the (self-similar) $\frac{n}{2}$ -partially reflected α -stable process conditioned to die continuously at 0.

Application: integrals of $(X_t^{\downarrow})_t$.

• $(X_t^{\downarrow})_t$ is self-similar with index α and dies continuously (at $t = T_0$):

$$\int_0^{ au_0} (X_t^{\downarrow})^{\gamma} \mathrm{d} t < \infty ext{ a.s. } ext{ for } \gamma > -lpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application: integrals of $(X_t^{\downarrow})_t$.

• $(X_t^{\downarrow})_t$ is self-similar with index α and dies continuously (at $t = T_0$):

$$\int_0^{T_0} (X_t^{\downarrow})^{\gamma} \mathrm{d} t < \infty ext{ a.s.} \quad ext{ for } \gamma > -lpha$$

► Can determine explicitly Mellin transform in terms of Barnes double Gamma functions G(·, ·) using [Kuznetsov, Pardo, '10]

$$\mathcal{M}(s;\alpha,n,\gamma) := \mathbb{E}\left[\int_0^{T_0} (X_t^{\downarrow})^{\gamma} \mathrm{d}t\right]^{s-1} = (\cdots) \frac{G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)}{G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)}$$

Application: integrals of $(X_t^{\downarrow})_t$.

• $(X_t^{\downarrow})_t$ is self-similar with index α and dies continuously (at $t = T_0$):

$$\int_0^{T_0} (X_t^{\downarrow})^{\gamma} \mathrm{d} t < \infty ext{ a.s.} \quad ext{ for } \gamma > -lpha$$

► Can determine explicitly Mellin transform in terms of Barnes double Gamma functions G(·, ·) using [Kuznetsov, Pardo, '10]

$$\mathcal{M}(s;\alpha,n,\gamma) := \mathbb{E}\left[\int_0^{T_0} (X_t^{\downarrow})^{\gamma} \mathrm{d}t\right]^{s-1} = (\cdots) \frac{G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)}{G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)G(\cdot,\cdot)}$$

► Ugly, except when $\gamma = -1$, $n = \tilde{n} = -2\cos(\pi\alpha)$, $\alpha = 1 + \frac{1}{m}$, $m = 2, 3, \ldots$

$$R^{\downarrow} := \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}, \qquad \mathbb{P}(R^{\downarrow} < r) = \frac{1}{\Gamma(\alpha)} \int_0^{\infty} \mathrm{d}Z \, Z^{\frac{1}{m}} e^{-Z} B_m\left(\frac{m}{r \, Z^{\frac{1}{m}}}\right)$$
$$B_m(y) := \frac{1 + y \cot\left(\frac{\pi}{2m}\right)}{\prod_{k=0}^m \left(1 - y \, i e^{i\pi k/m}\right)}$$

*T*₀):

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow{(\mathrm{d})} R^{\downarrow} = \int_0^{l_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow{(\mathrm{d})}{l \to \infty} R^{\downarrow} = \int_0^{l_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

► Let d be the dual graph distance to the root with "shortcuts" in a dilute (q, n, g_{*})-Boltzmann loop-decorated map with root face 21.

Conjecture:
$$\frac{d}{c_0 l^{\alpha-1}} \xrightarrow[l \to \infty]{(\mathrm{d})} R^{\downarrow} = \int_0^{T_0} \frac{\mathrm{d}t}{X_t^{\downarrow}}$$

Summary

- The O(n) model on random maps equipped with different distances potentially gives rise to several random continuous metric spaces outside of the Brownian map universality class.
- The peeling process provides a convenient way to
 - ... classify and enumerate Boltzmann (loop-decorated) maps;
 - ... study distances which are not easily accessible using other methods, like tree bijections.
- Having a self-similar scaling limit opens up new machinery to compute explicit statistics, like the distances with shortcuts.
Summary

- The O(n) model on random maps equipped with different distances potentially gives rise to several random continuous metric spaces outside of the Brownian map universality class.
- The peeling process provides a convenient way to ...
 - ... classify and enumerate Boltzmann (loop-decorated) maps;
 - ... study distances which are not easily accessible using other methods, like tree bijections.
- Having a self-similar scaling limit opens up new machinery to compute explicit statistics, like the distances with shortcuts.

Outlook

Study the continuum geometry of "pinched" loop-decorated map and the corresponding gasket, which is roughly the "dual" of the stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

Summary

- The O(n) model on random maps equipped with different distances potentially gives rise to several random continuous metric spaces outside of the Brownian map universality class.
- The peeling process provides a convenient way to ...
 - ... classify and enumerate Boltzmann (loop-decorated) maps;
 - ... study distances which are not easily accessible using other methods, like tree bijections.
- Having a self-similar scaling limit opens up new machinery to compute explicit statistics, like the distances with shortcuts.

Outlook

Study the continuum geometry of "pinched" loop-decorated map and the corresponding gasket, which is roughly the "dual" of the stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

