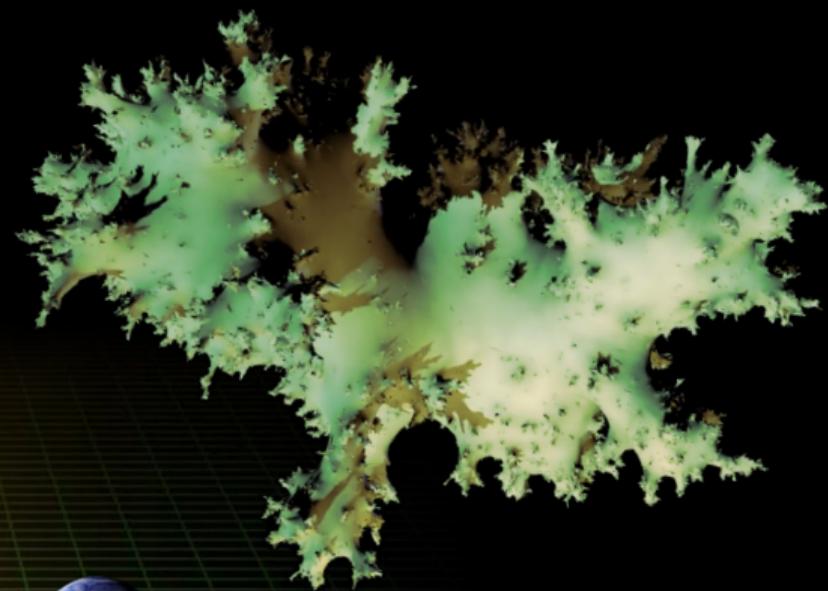
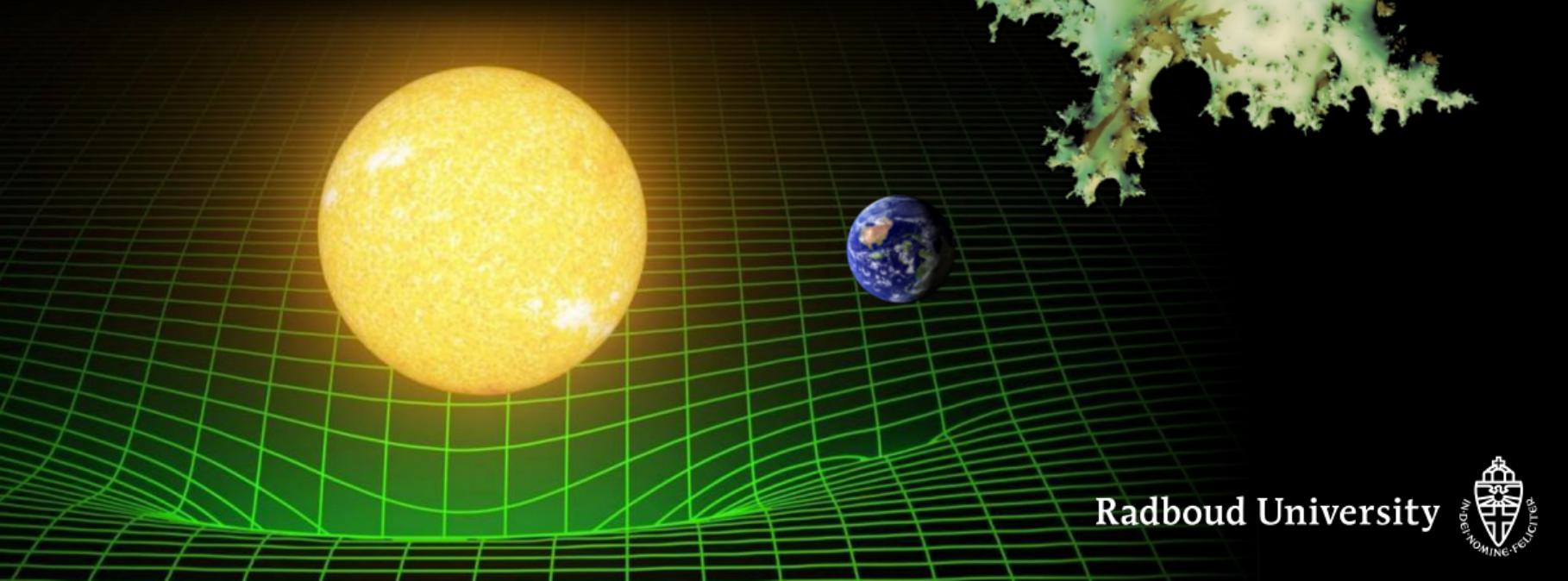


Quantum Gravity & Random Geometry

Timothy Budd



Radboud University

Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral?**

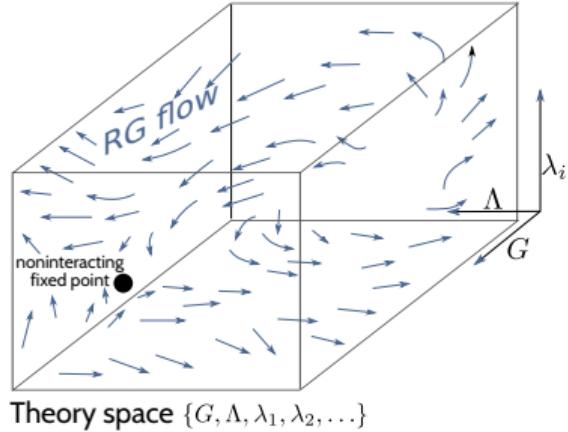
$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.

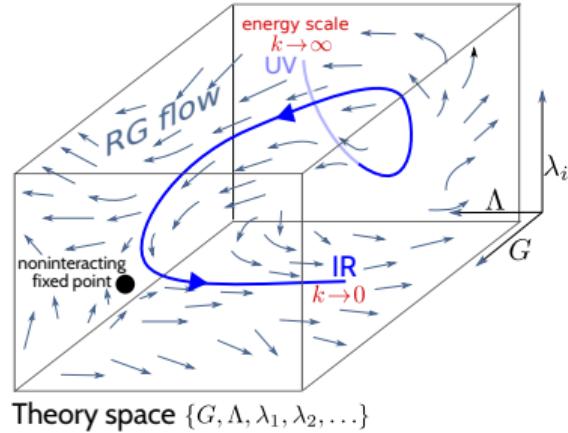


Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.

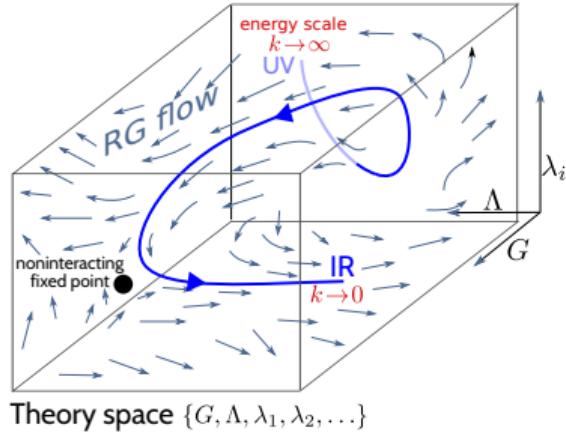


Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.
- ▶ Perturbation theory is **non-renormalizable**: couplings proliferate in the UV.

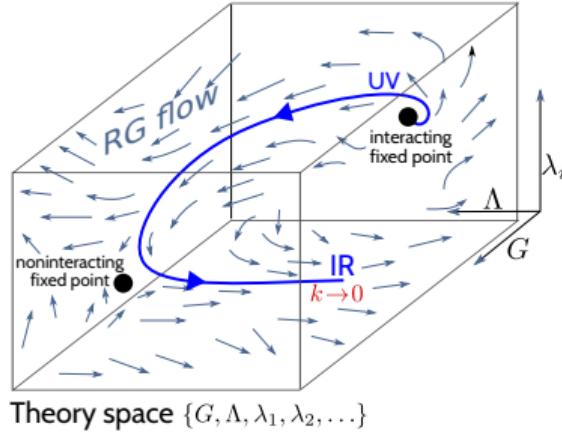


Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.
- ▶ Perturbation theory is **non-renormalizable**: couplings proliferate in the UV.
- ▶ **Asymptotic safety** hypothesis: UV completeness and predictivity can be restored if RG has an interacting **fixed point**. [Weinberg, Wilson, ...]

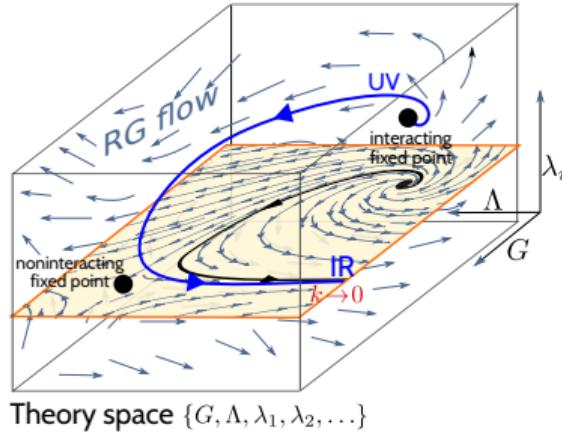


Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.
- ▶ Perturbation theory is **non-renormalizable**: couplings proliferate in the UV.
- ▶ **Asymptotic safety** hypothesis: UV completeness and predictivity can be restored if RG has an interacting **fixed point**. [Weinberg, Wilson, ...]
- ▶ Evidence for existence of suitable **Reuter fixed point** from Functional Renormalization Group methods. **Percacci's talk!**
[Reuter, Lauscher, Saueressig, ...]

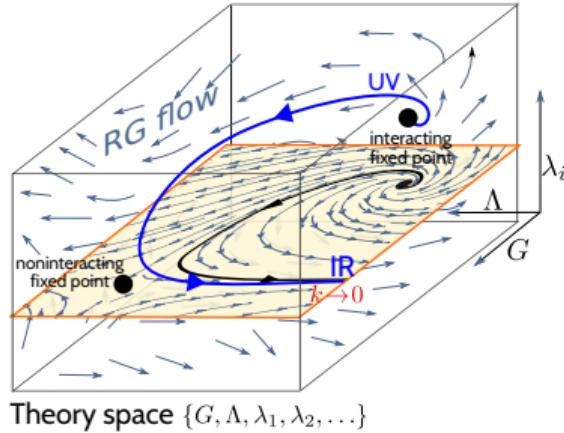


Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.
- ▶ Perturbation theory is **non-renormalizable**: couplings proliferate in the UV.
- ▶ **Asymptotic safety** hypothesis: UV completeness and predictivity can be restored if RG has an interacting **fixed point**. [Weinberg, Wilson, ...]
- ▶ Evidence for existence of suitable **Reuter fixed point** from Functional Renormalization Group methods. **Percacci's talk!** [Reuter, Lauscher, Saueressig, ...]
- ▶ Physics at fixed point in Z_{Eucl} : **scale-invariant random geometry**.



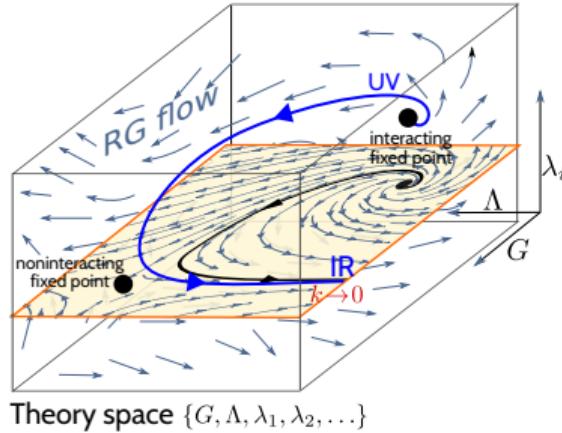
Theory space $\{G, \Lambda, \lambda_1, \lambda_2, \dots\}$

Renormalization in quantum gravity

- ▶ How to make sense of the formal **gravitational path integral**?

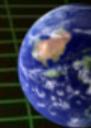
$$Z_{\text{Lor}} = \int_M \frac{\mathcal{D}g_{\mu\nu}}{\text{Diff}} e^{\frac{i}{\hbar} S[g]} \xleftarrow{\text{Wick?}} Z_{\text{Eucl}} = \int_M \frac{\mathcal{D}g_{ab}}{\text{Diff}} e^{-S[g]}$$

- ▶ As usual in QFT: coupling constants are subject to **renormalization**.
- ▶ Perturbation theory is **non-renormalizable**: couplings proliferate in the UV.
- ▶ **Asymptotic safety** hypothesis: UV completeness and predictivity can be restored if RG has an interacting **fixed point**. [Weinberg, Wilson, ...]
- ▶ Evidence for existence of suitable **Reuter fixed point** from Functional Renormalization Group methods. **Percacci's talk!** [Reuter, Lauscher, Saueressig, ...]
- ▶ Physics at fixed point in Z_{Eucl} : **scale-invariant random geometry**.



??

----- **Planck scale** (10^{-35} m) -----



Zooming in

10^{-30} m

10^{-20} m

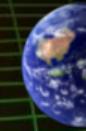
10^{-10} m

1 m

10^{10} m



Planck scale (10^{-35}m)



Zooming in

10^{-30}m

10^{-20}m

10^{-10}m

1 m

10^{10}m

Scale-invariant Random Geometry

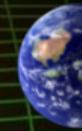
Can we find explicit models?

No explicit models on 4D/3D manifolds known

but a lot of recent mathematical progress in lower D.

Planck scale

(10^{-35}m)



Zooming in

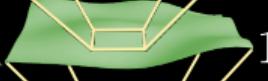
10^{-30}m

10^{-20}m

10^{-10}m

1 m

10^{10}m



QFT

+

Renormalization Group

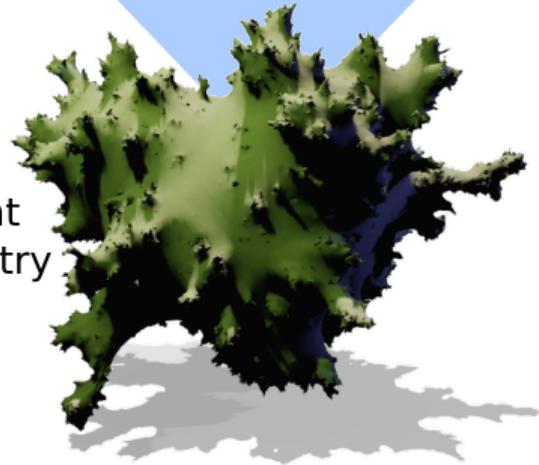
scale-invariant
random geometry

QFT

+

Renormalization Group

scale-invariant
random geometry



Building blocks?

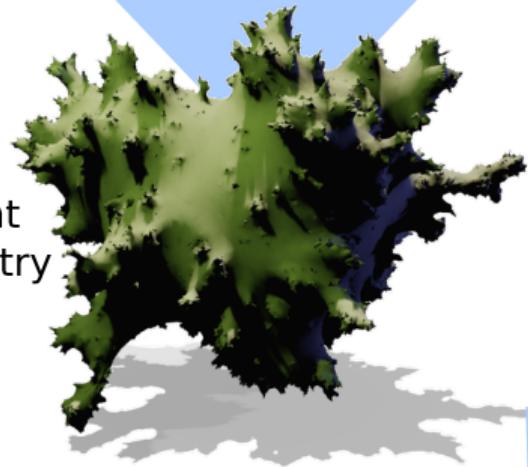


QFT

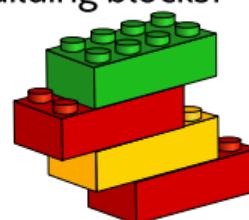
+

Renormalization Group

scale-invariant
random geometry



Building blocks?



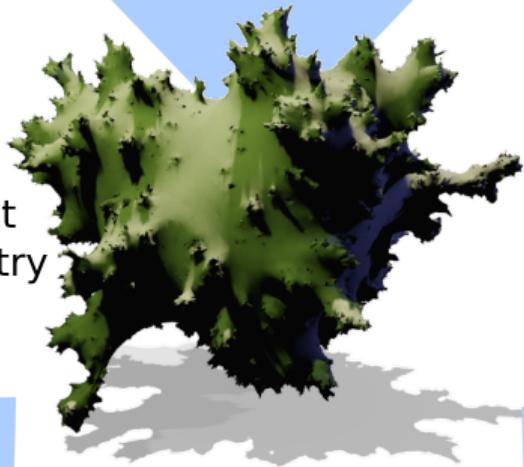
Lattice approach

QFT

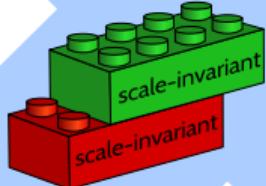
+

Renormalization Group

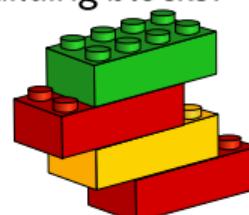
scale-invariant
random geometry



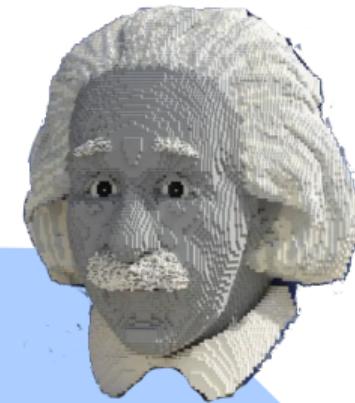
Building blocks?



Assembly approach



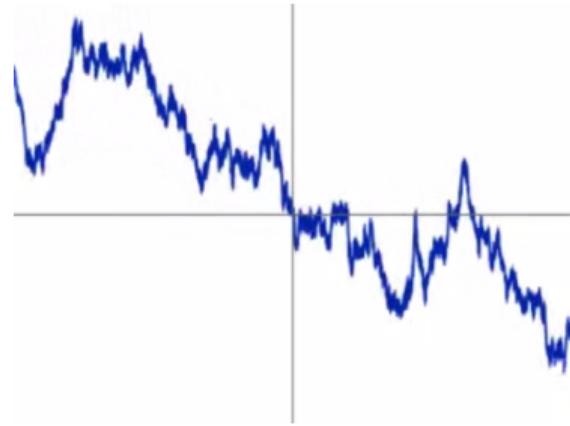
Lattice approach



The simplest universality class

- The most familiar **scale-invariant object**?

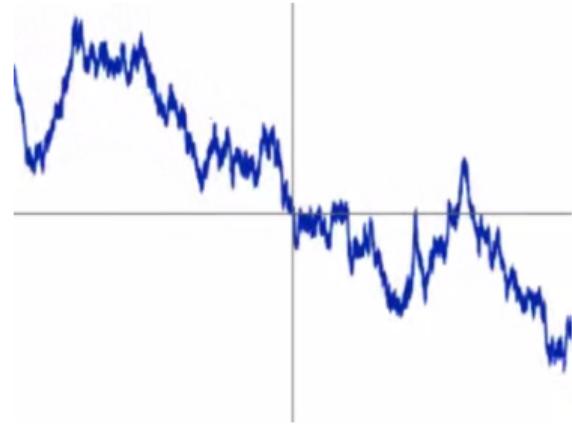
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$



The simplest universality class

- ▶ The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- ▶ Exactly self-similar (in statistical sense):

$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$



The simplest universality class

- The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- Exactly self-similar (in statistical sense):

$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$

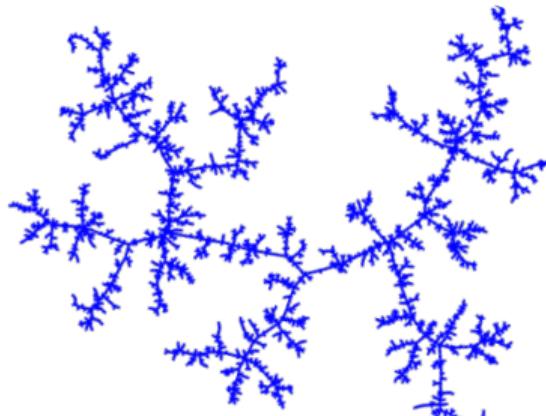
- Not 'geometry', but can **assemble** it into one:
Continuum Random Tree [Aldous, '91]
 \equiv Branched-polymer universality class

The simplest universality class

- ▶ The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- ▶ Exactly self-similar (in statistical sense):

$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$

- ▶ Not 'geometry', but can **assemble** it into one:
Continuum Random Tree [Aldous, '91]
 \equiv Branched-polymer universality class

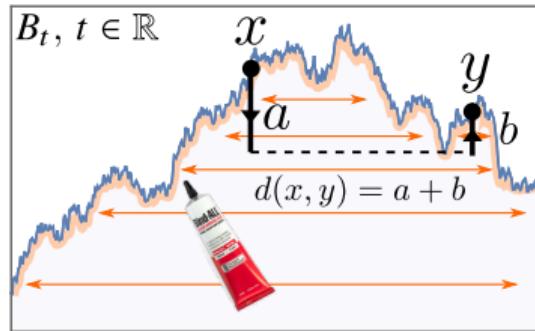
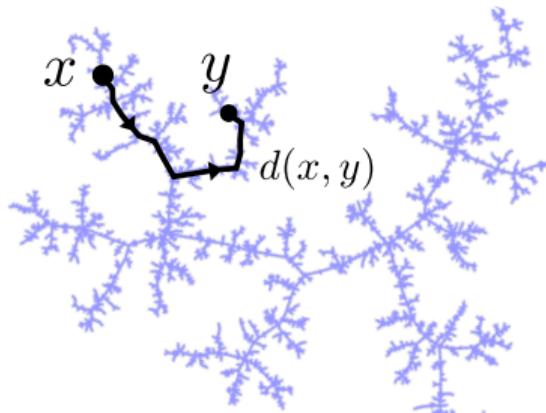


The simplest universality class

- ▶ The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- ▶ Exactly self-similar (in statistical sense):

$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$

- ▶ Not 'geometry', but can **assemble** it into one:
Continuum Random Tree [Aldous, '91]
 \equiv Branched-polymer universality class

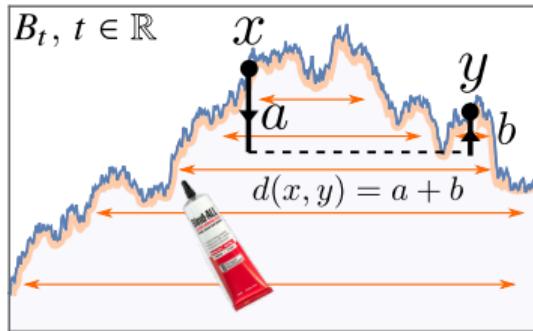
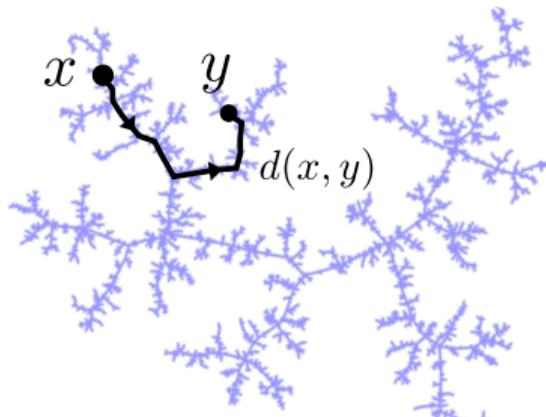


The simplest universality class

- The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- Exactly self-similar (in statistical sense):

$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$

- Not 'geometry', but can **assemble** it into one:
Continuum Random Tree [Aldous, '91]
 \equiv Branched-polymer universality class
- Well-defined (geodesic) distances but **genuinely fractal**:
 - Topological dimension: 1
 - Hausdorff dimension: 2 ($V \sim r^2$)
 - Spectral dimension: $4/3$

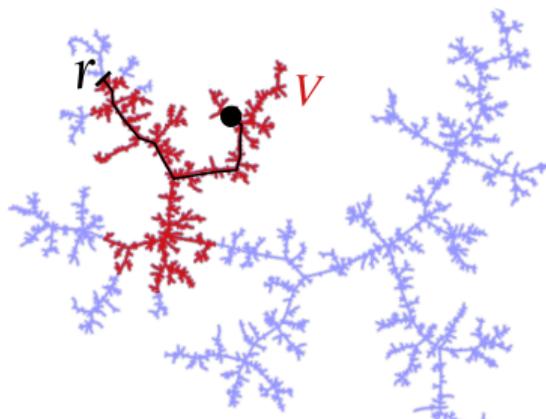


The simplest universality class

- ▶ The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- ▶ Exactly self-similar (in statistical sense):

$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$

- ▶ Not 'geometry', but can **assemble** it into one:
Continuum Random Tree [Aldous, '91]
 \equiv Branched-polymer universality class
- ▶ Well-defined (geodesic) distances but **genuinely fractal**:
 - ▶ Topological dimension: 1
 - ▶ Hausdorff dimension: 2 ($V \sim r^2$)
 - ▶ Spectral dimension: 4/3

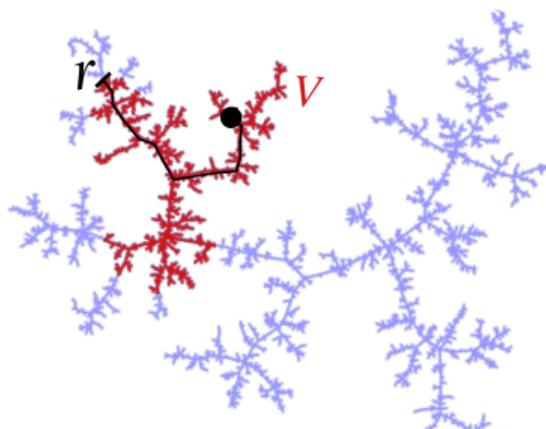


The simplest universality class

- ▶ The most familiar **scale-invariant object**?
Brownian motion $B_t, t \in \mathbb{R} \equiv 1\text{D real scalar field}$
- ▶ Exactly self-similar (in statistical sense):

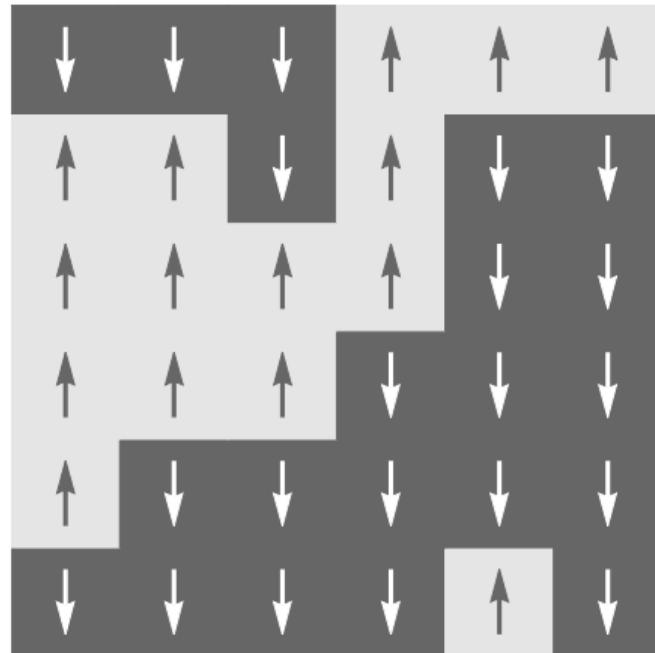
$$\sqrt{\lambda} B_{t/\lambda} \stackrel{\text{law}}{=} B_t.$$

- ▶ Not 'geometry', but can **assemble** it into one:
Continuum Random Tree [Aldous, '91]
 \equiv Branched-polymer universality class
- ▶ Well-defined (geodesic) distances but **genuinely fractal**:
 - ▶ Topological dimension: 1
 - ▶ Hausdorff dimension: 2 ($V \sim r^2$)
 - ▶ Spectral dimension: 4/3
- ▶ Nothing like a spacetime geometry / manifold?!!



Scale invariance and critical phenomena

Scale invariance also occurs in **critical lattice models**: for example the 2D Ising model at $T = T_c$.



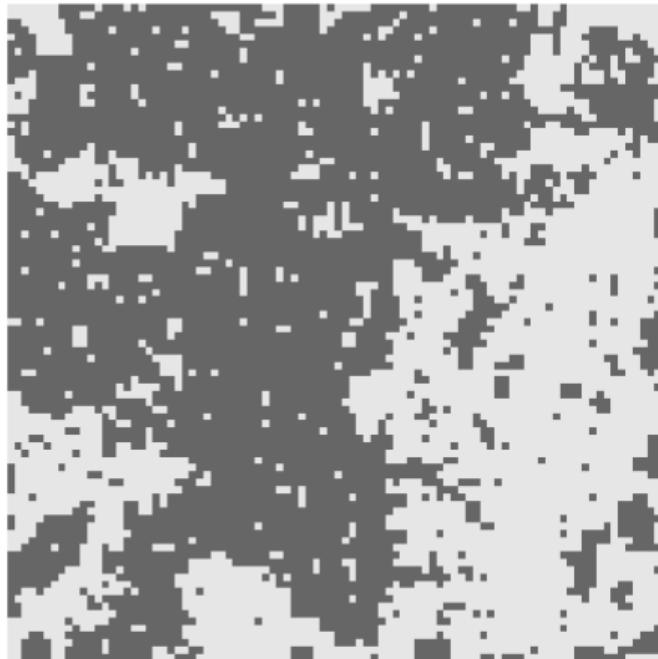
Scale invariance and critical phenomena

Scale invariance also occurs in **critical lattice models**: for example the 2D Ising model at $T = T_c$.



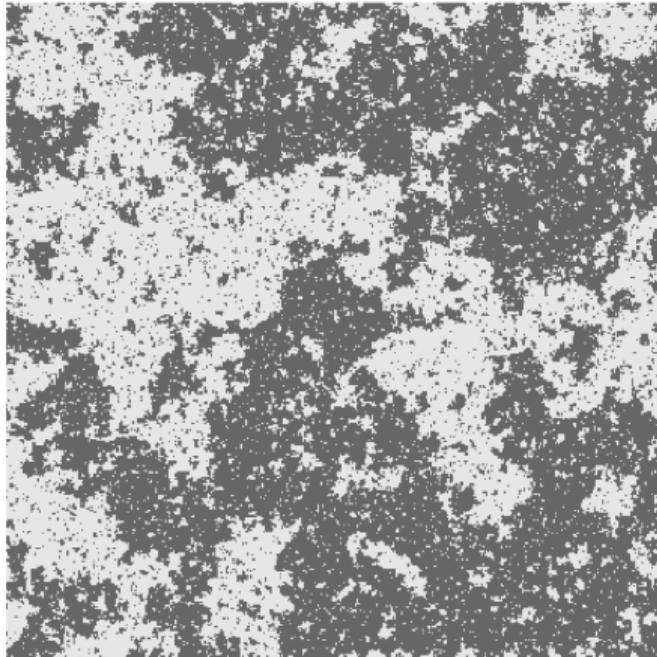
Scale invariance and critical phenomena

Scale invariance also occurs in **critical lattice models**: for example the 2D Ising model at $T = T_c$.

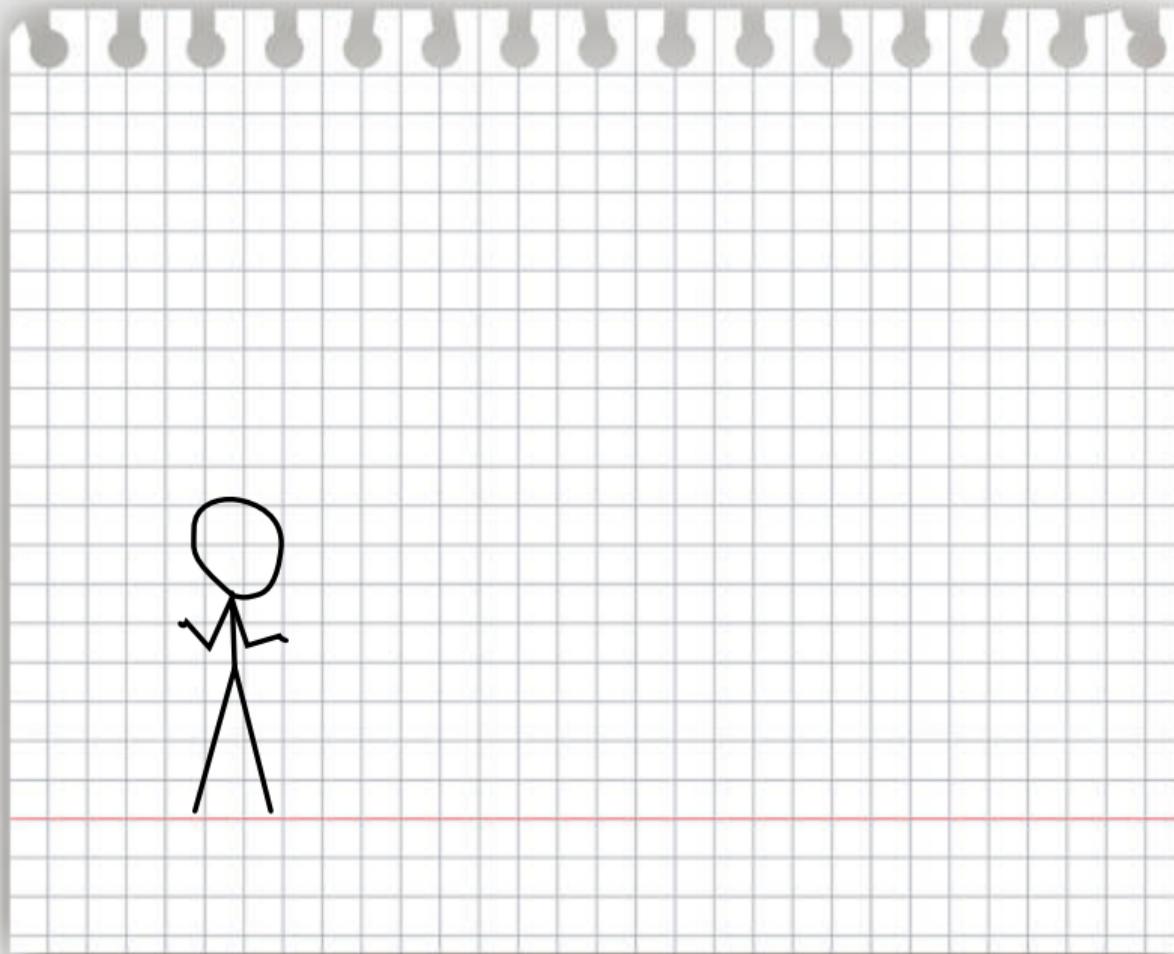


Scale invariance and critical phenomena

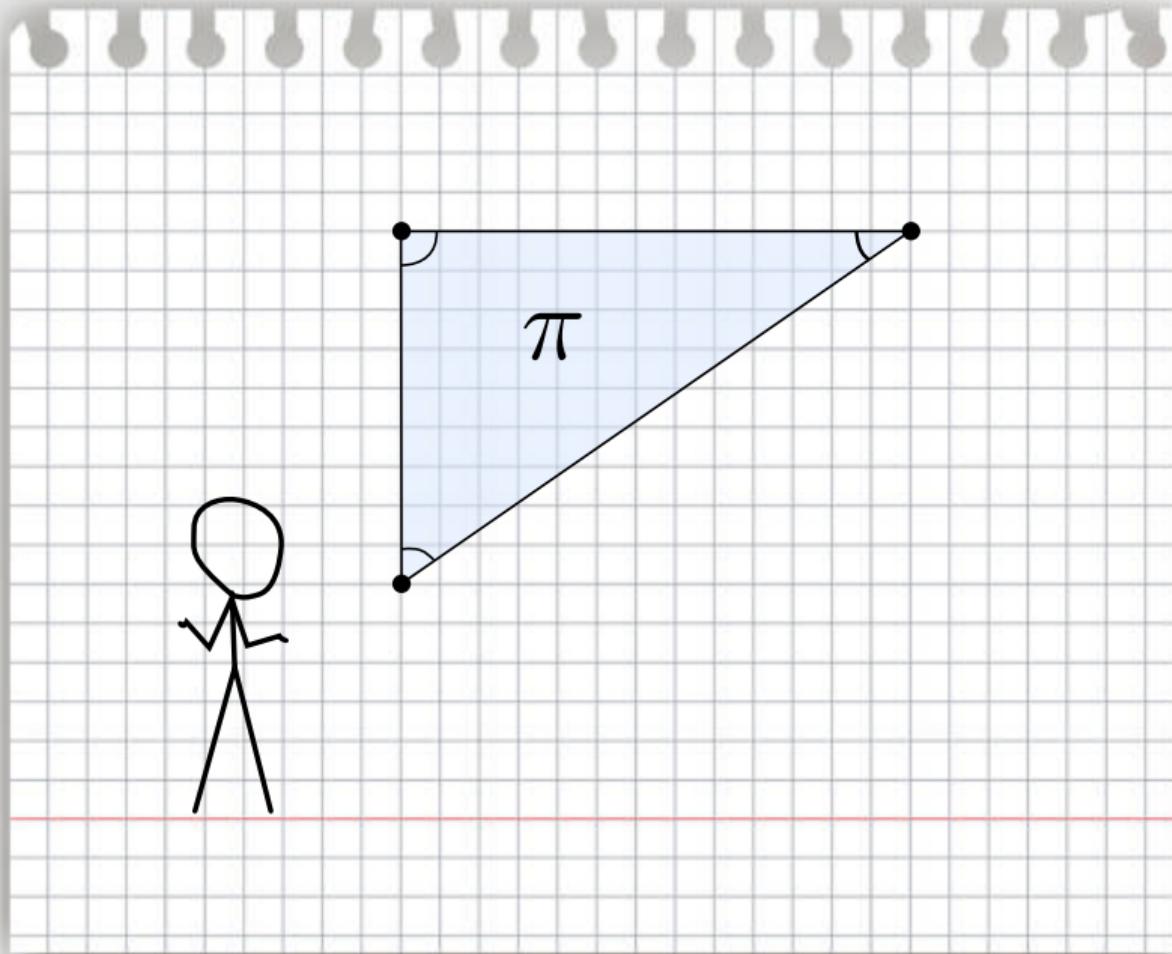
Scale invariance also occurs in **critical lattice models**: for example the 2D Ising model at $T = T_c$.



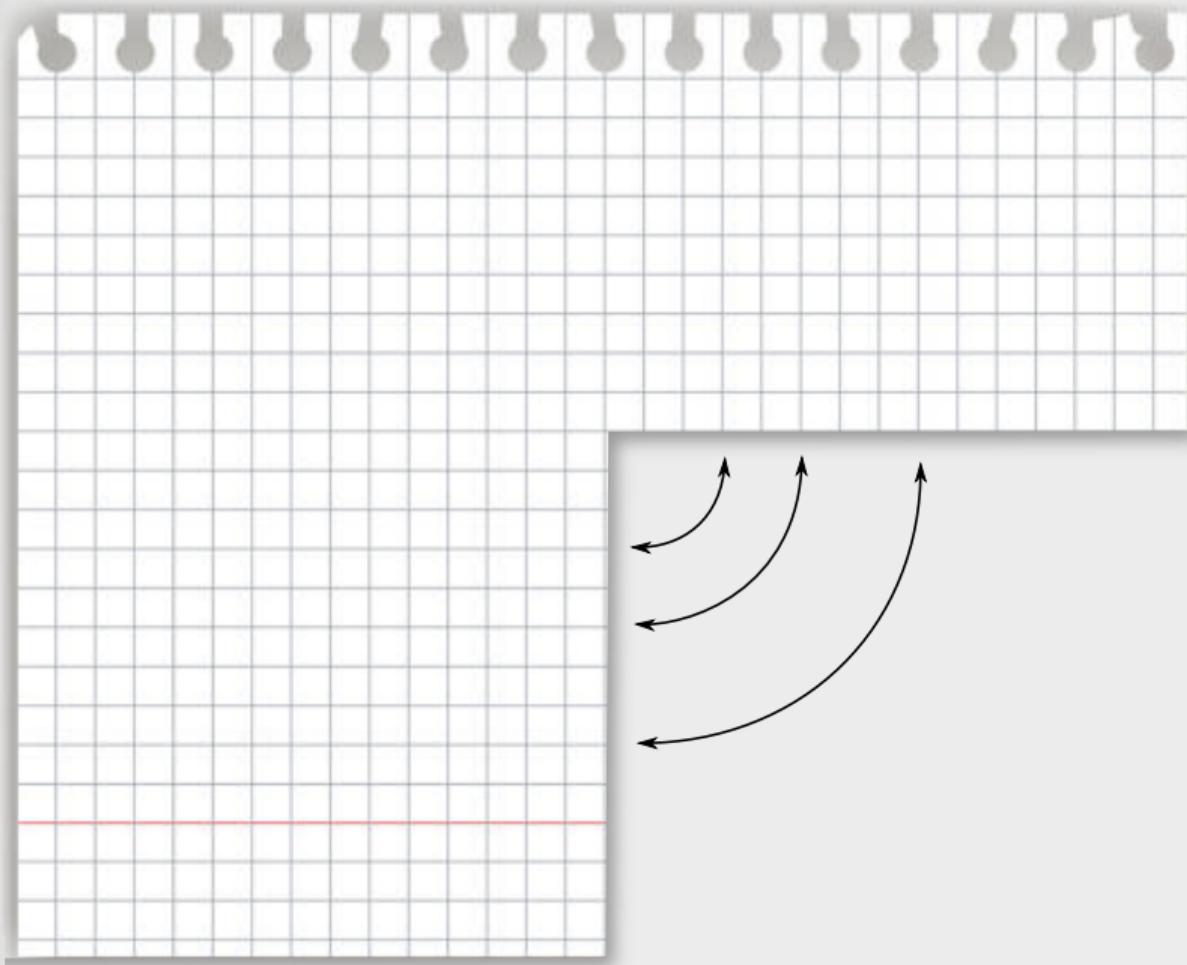
2D



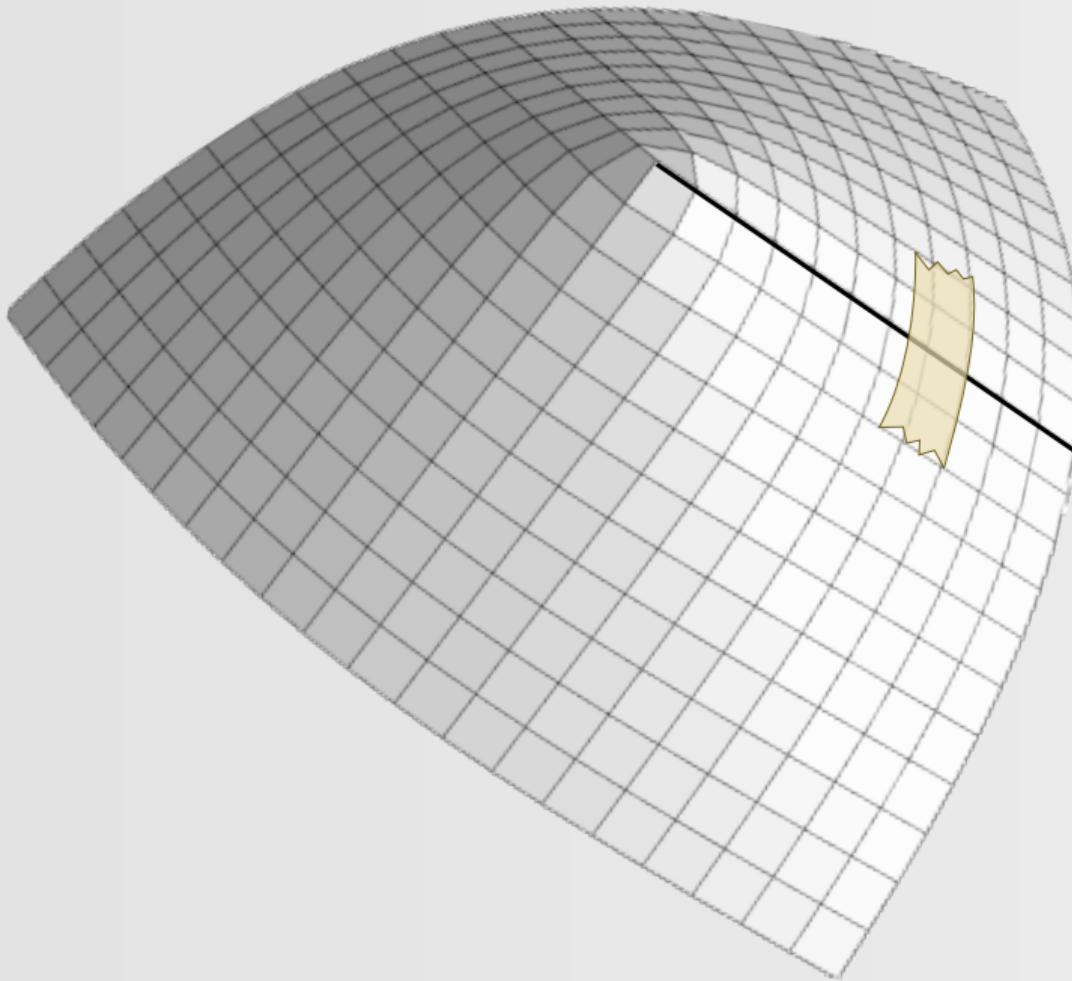
2D



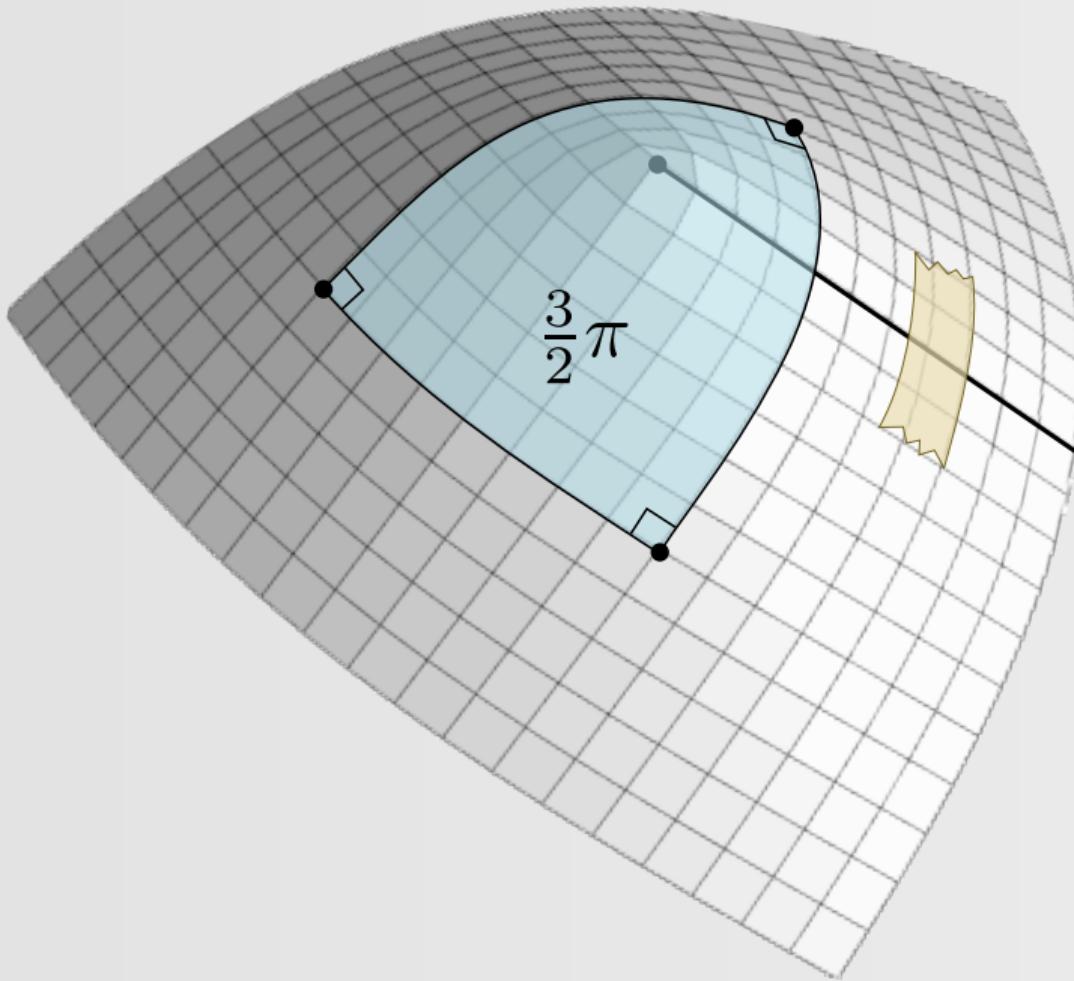
2D

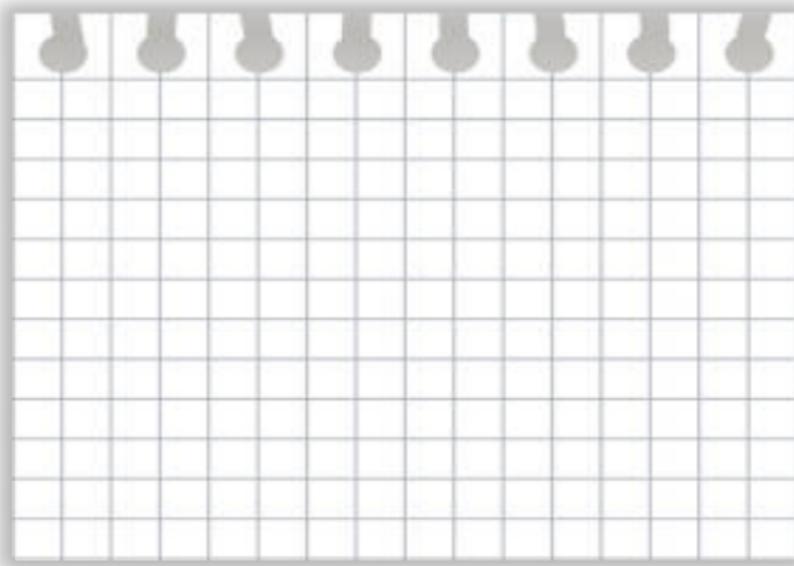


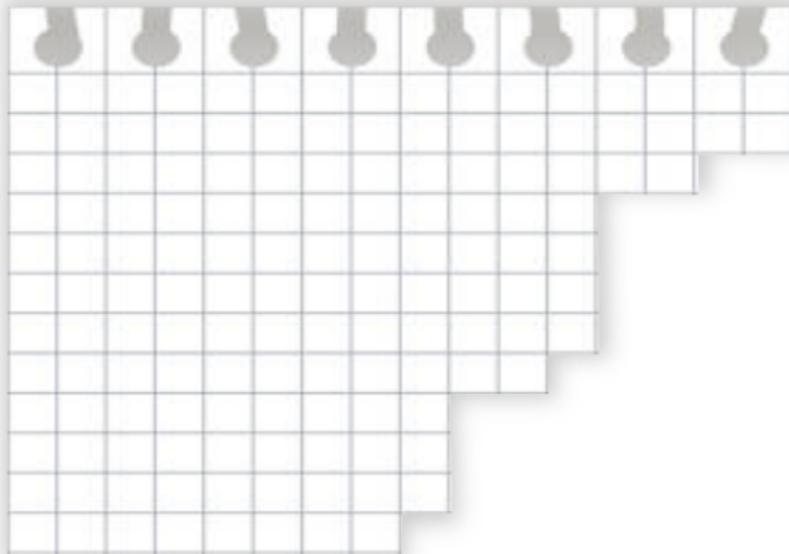
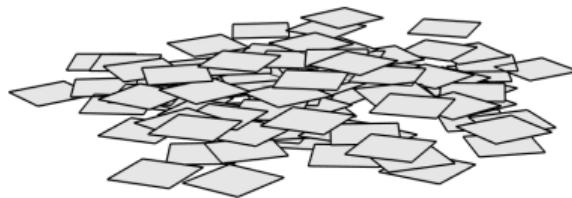
2D

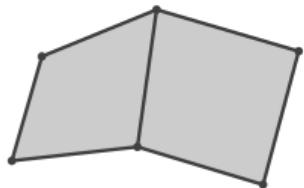
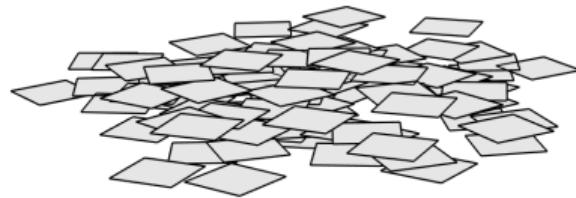


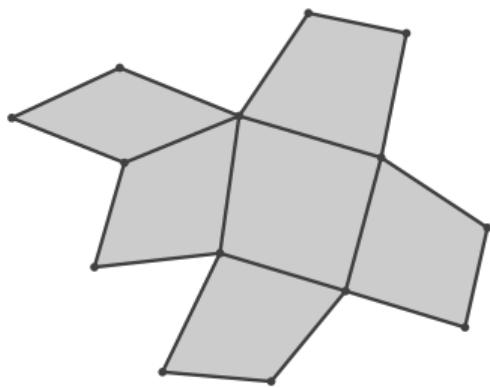
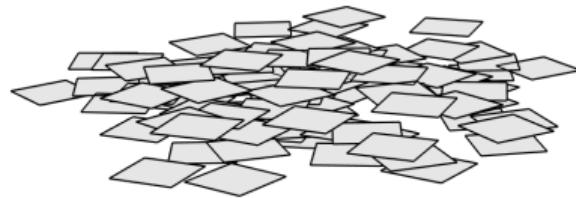
2D

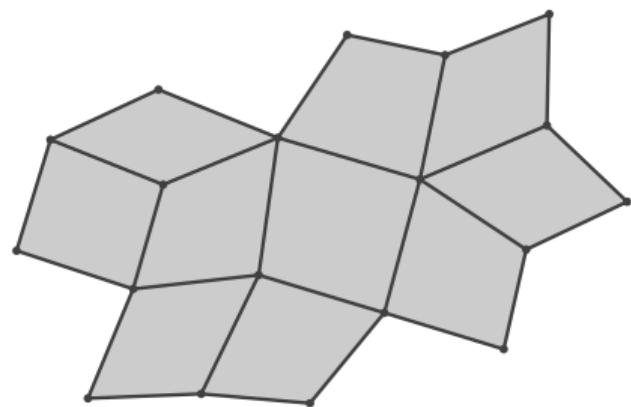
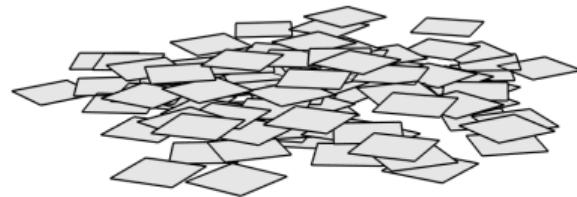


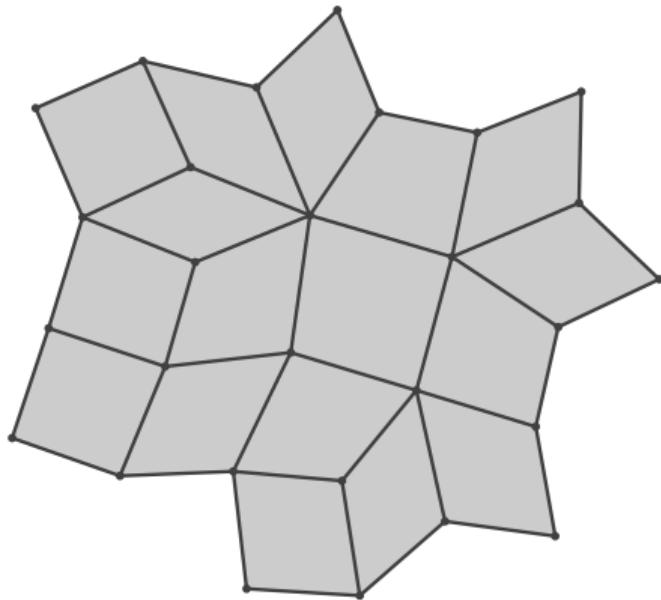
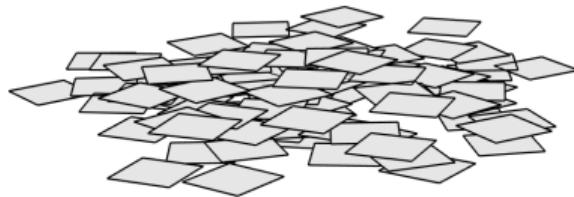


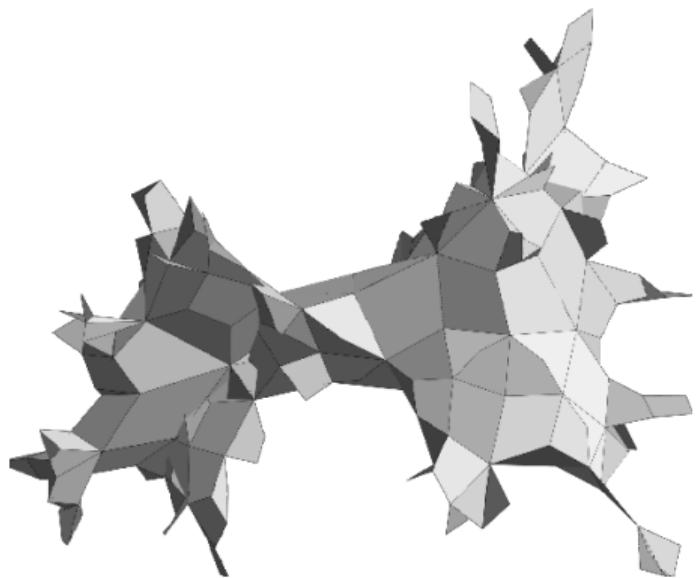
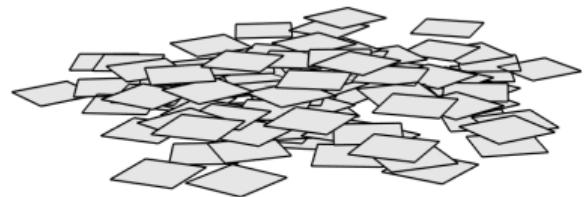




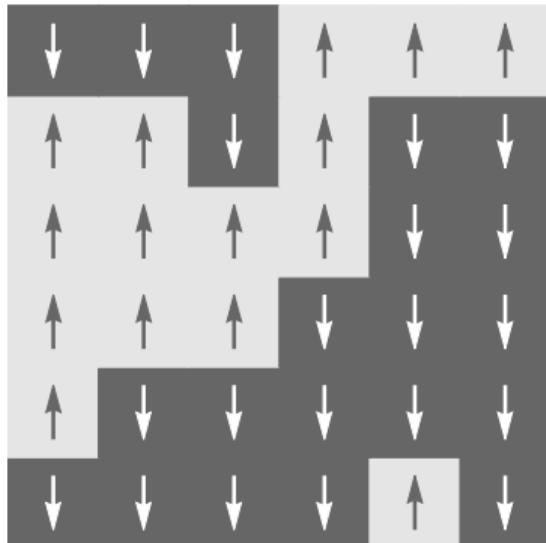




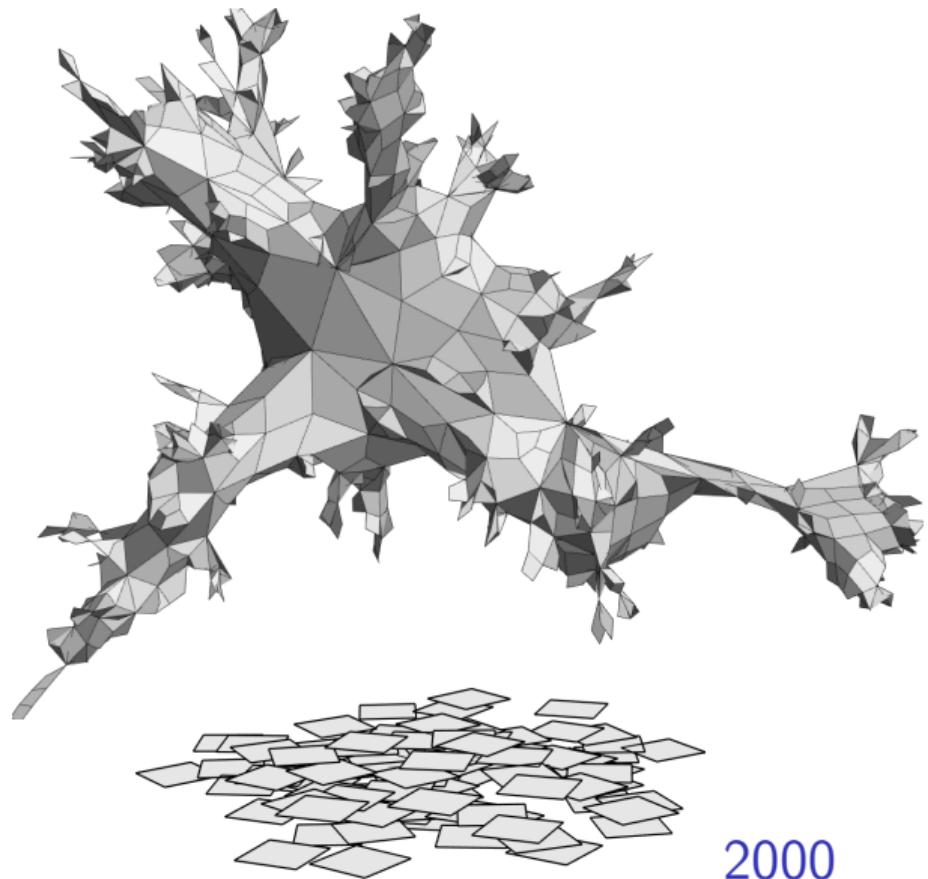


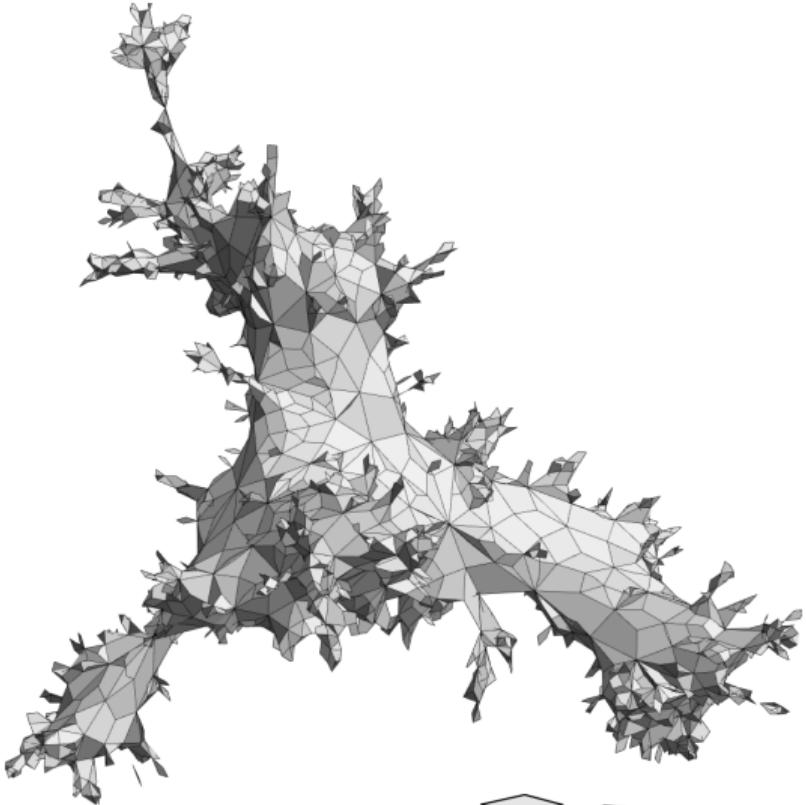
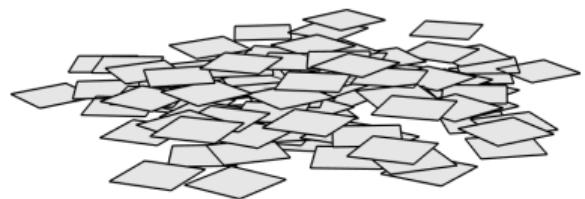


200



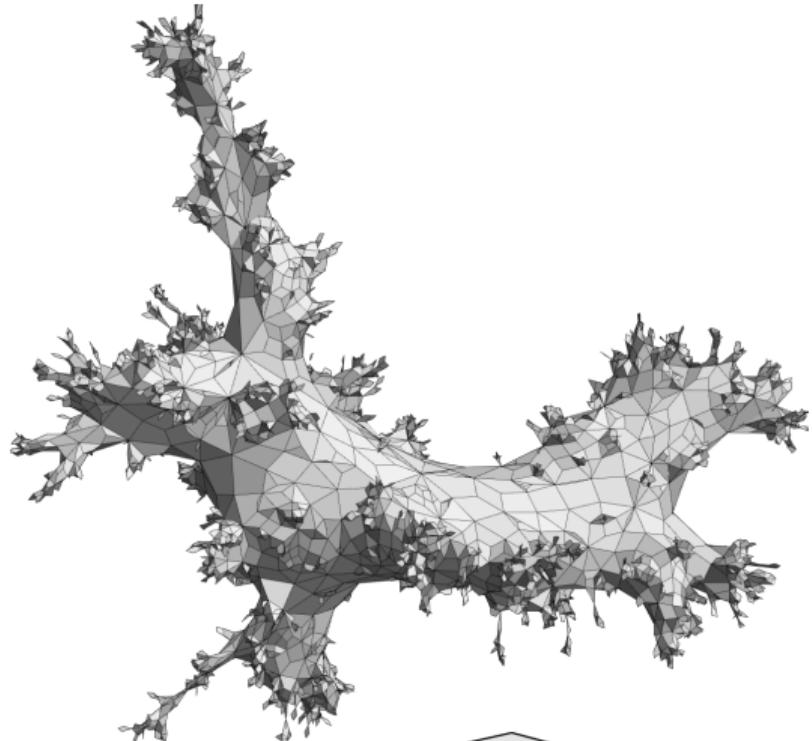
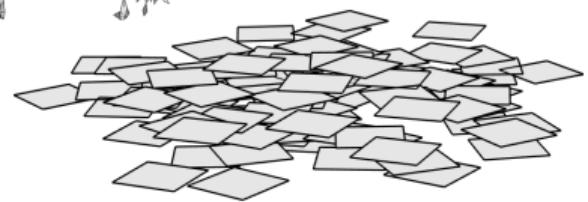
Ising model



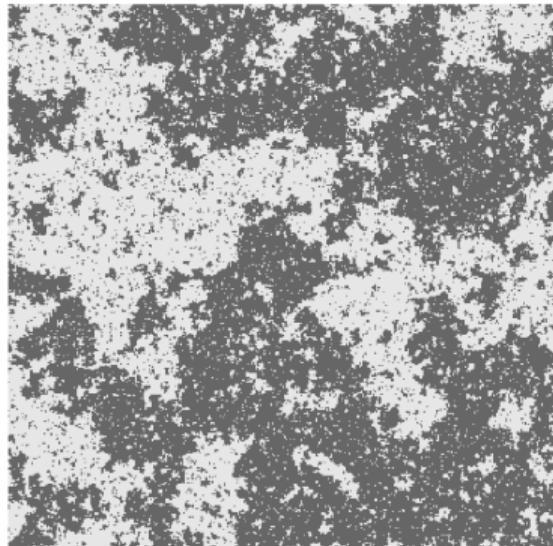


5000

Ising model



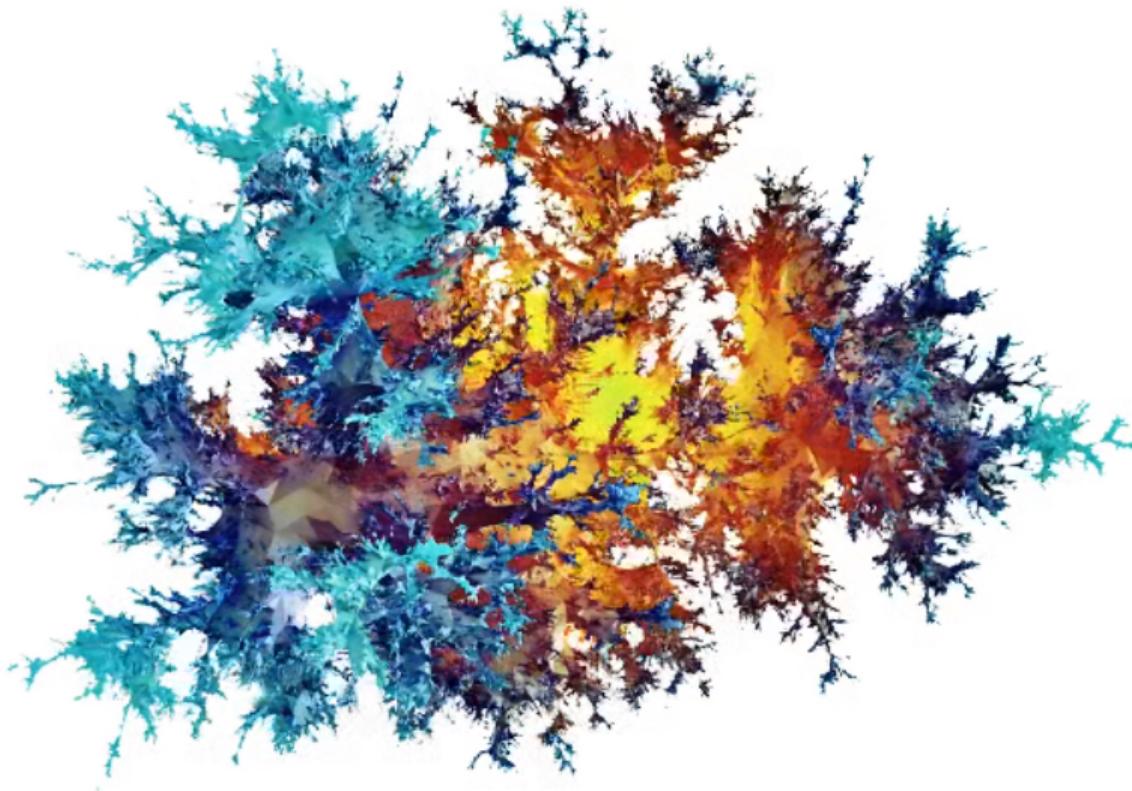
10000

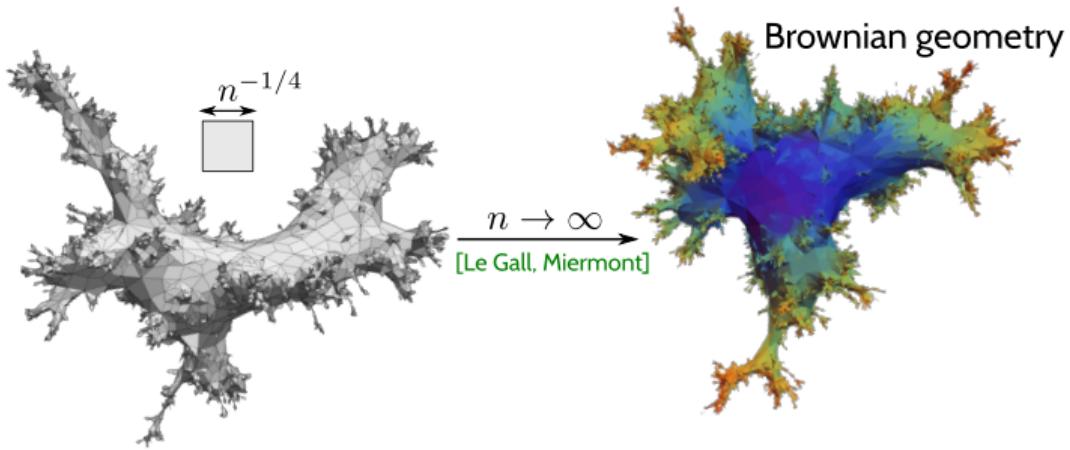


Ising model

Uniform quadrangulation (1 Million squares)

[credits: B. Stufler]



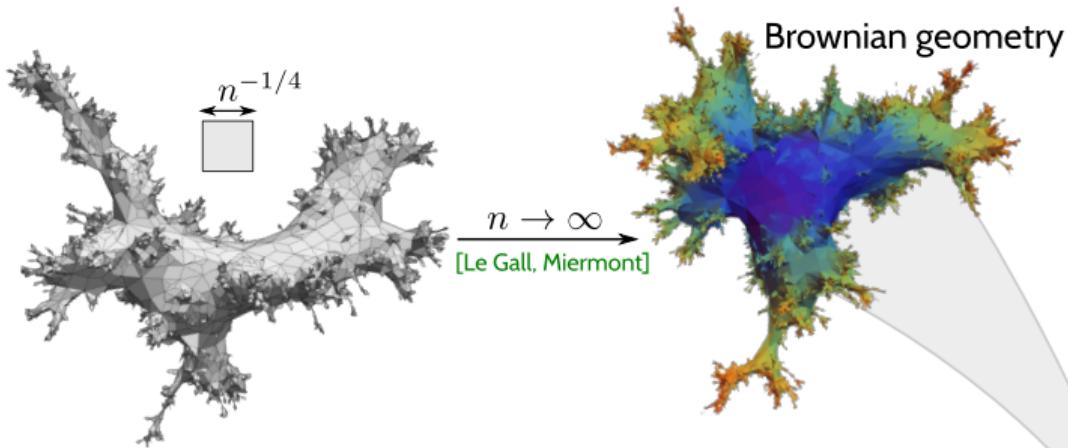


- ◆ New universality class:
Brownian geometry on 2-sphere

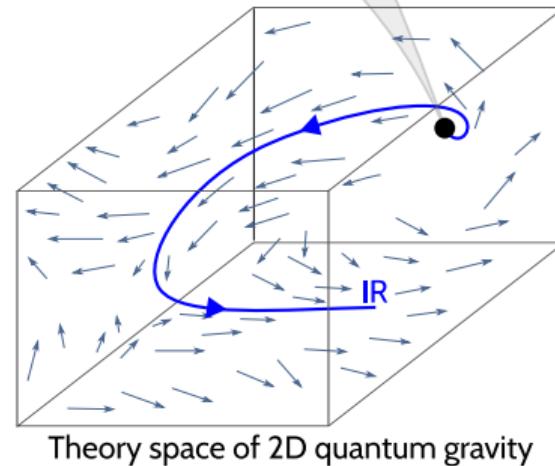
Topological dimension: 2

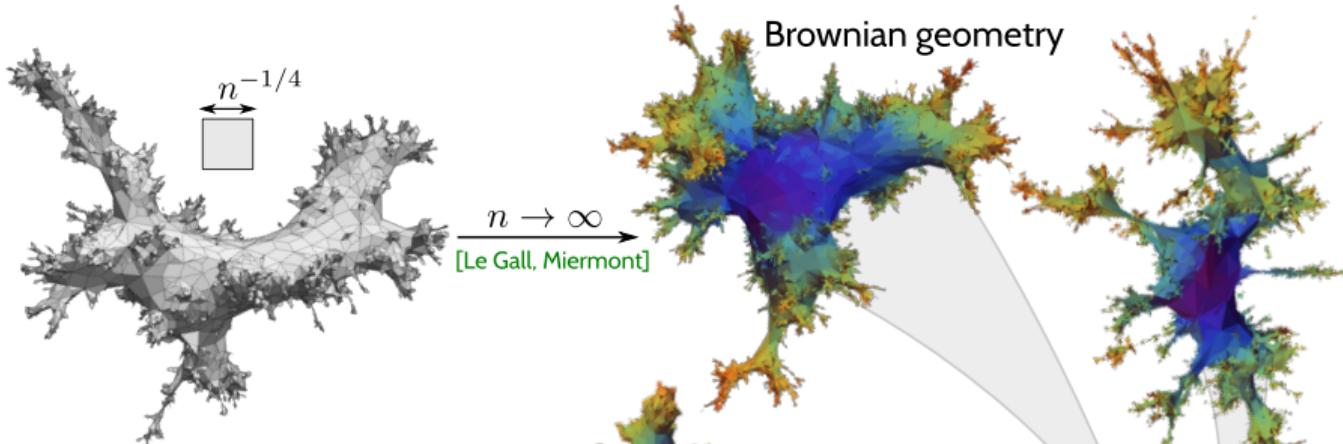
Hausdorff dimension: 4

Spectral dimension: 2



- ◆ New universality class:
Brownian geometry on 2-sphere
 - Topological dimension:* 2
 - Hausdorff dimension:* 4
 - Spectral dimension:* 2
- ◆ This is the UV fixed point of
2D (Euclidean) Quantum Gravity!

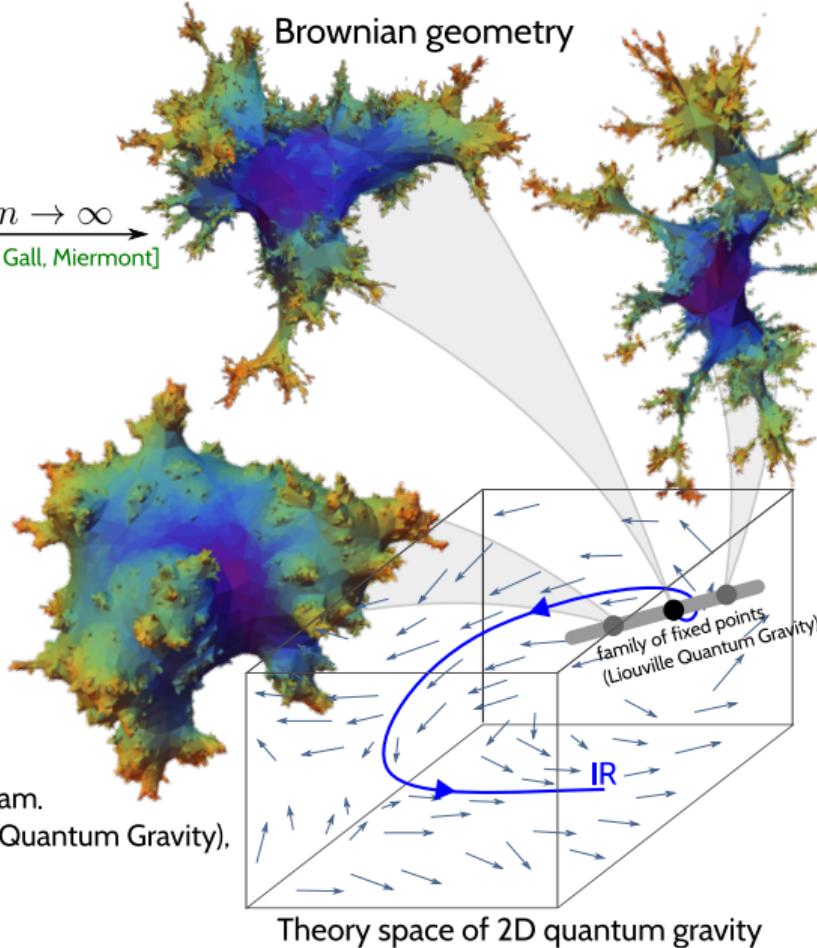




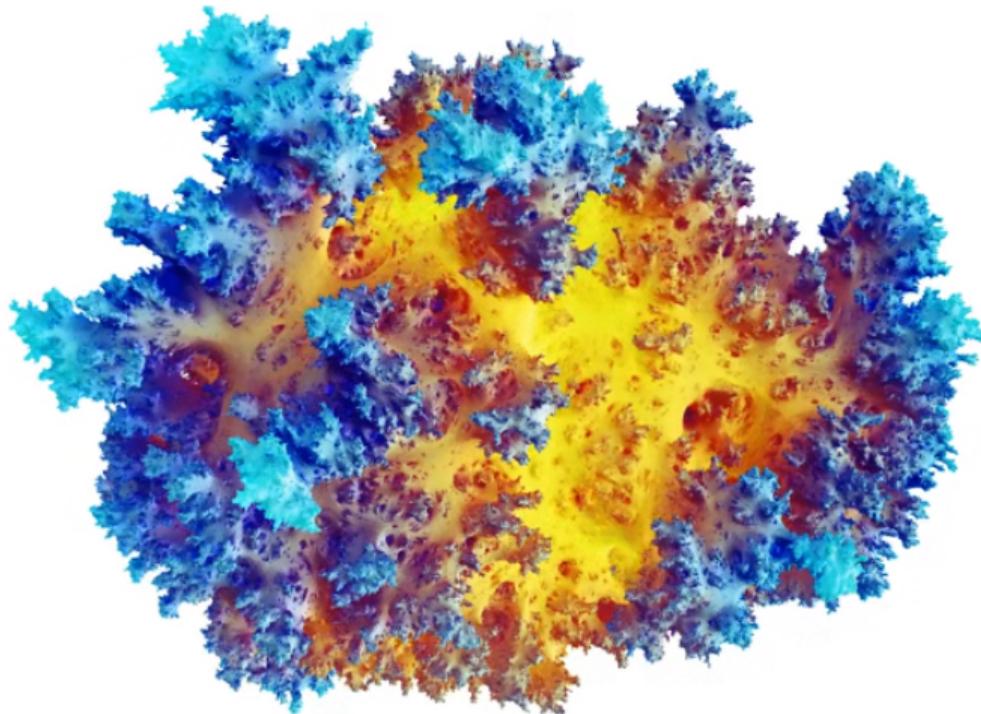
- ◆ New universality class:
Brownian geometry on 2-sphere

Topological dimension: 2
Hausdorff dimension: 4
Spectral dimension: 2

- ◆ This is the UV fixed point of 2D (Euclidean) Quantum Gravity!
- ◆ Matter interaction extends it to a 1-param. family of universality classes (Liouville Quantum Gravity), with varying fractal dimensions.

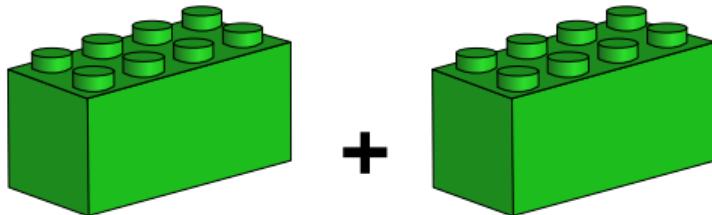


Coupling to matter (Schnyder wood): different universality class

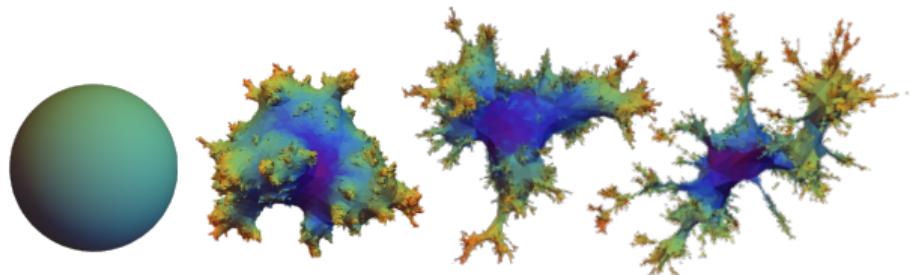


[credits: B. Stufler]

Can 2D quantum gravity also be assembled?

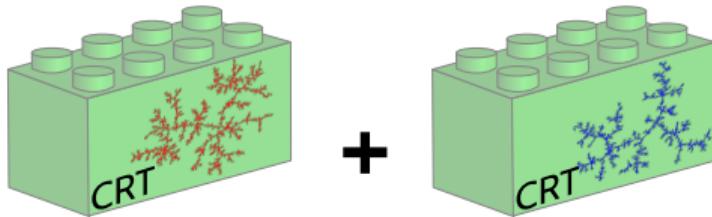


|| ?

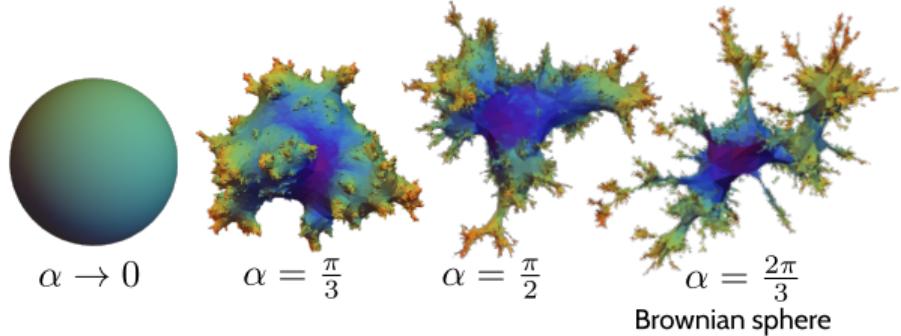


Brownian sphere

Can 2D quantum gravity also be assembled?



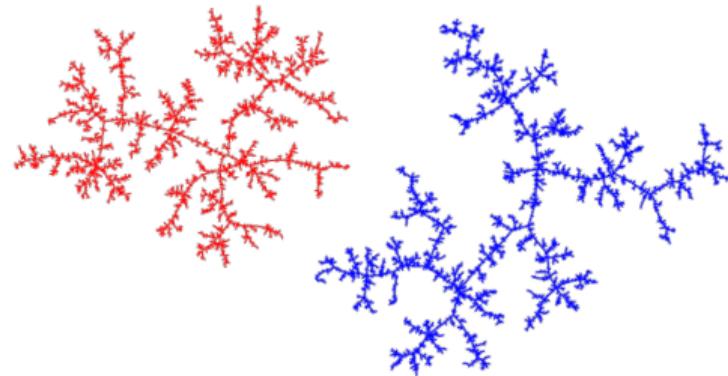
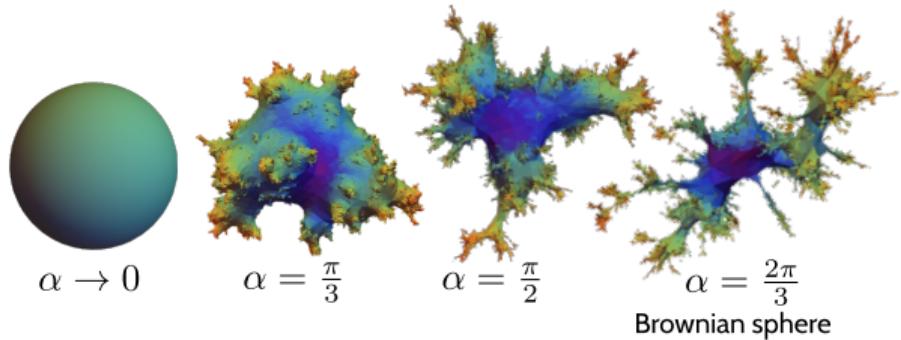
correlation angle
 $\alpha \in (0, \pi)$



"Mating of trees"

[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi,
Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]

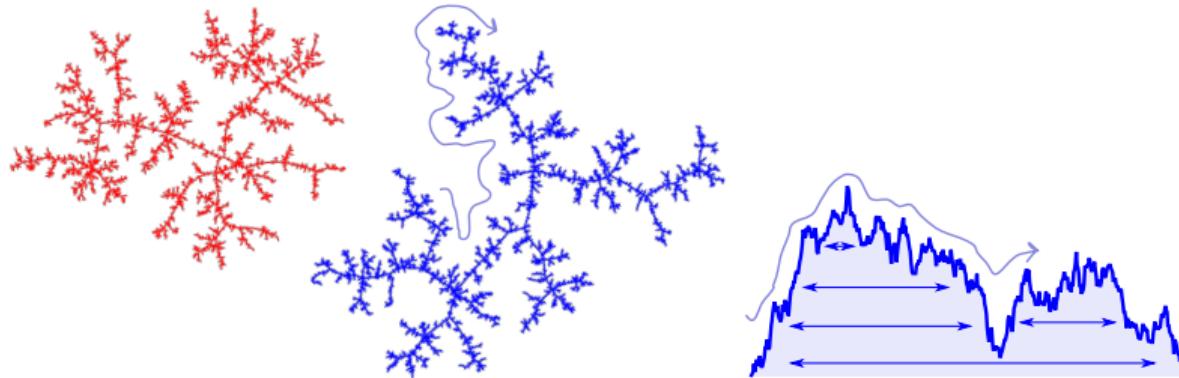
Can 2D quantum gravity also be assembled?



"Mating of trees"

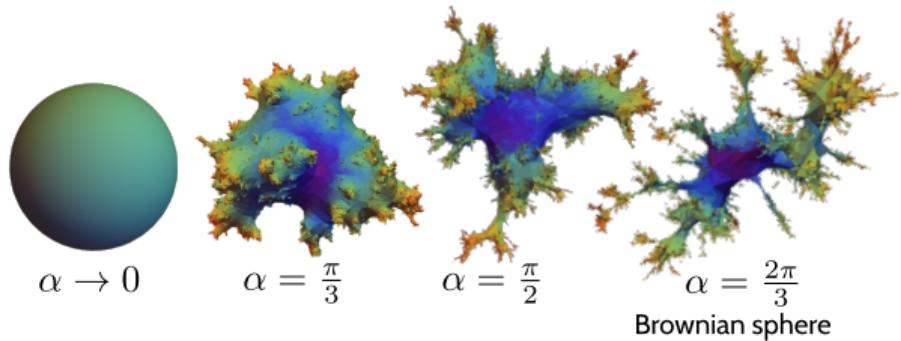
[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi,
Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]

Can 2D quantum gravity also be assembled?

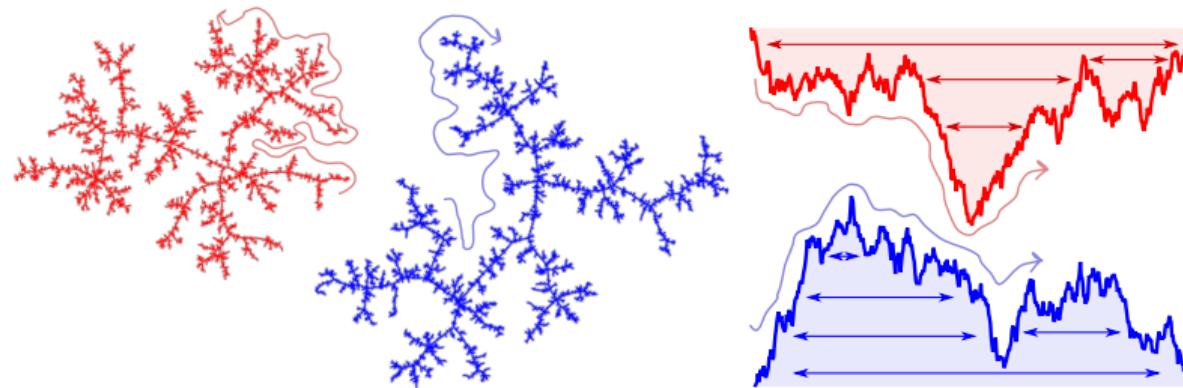


"Mating of trees"

[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi,
Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]

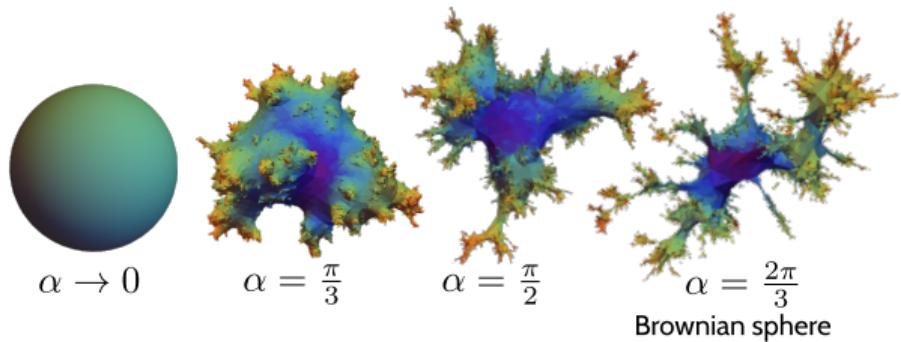


Can 2D quantum gravity also be assembled?

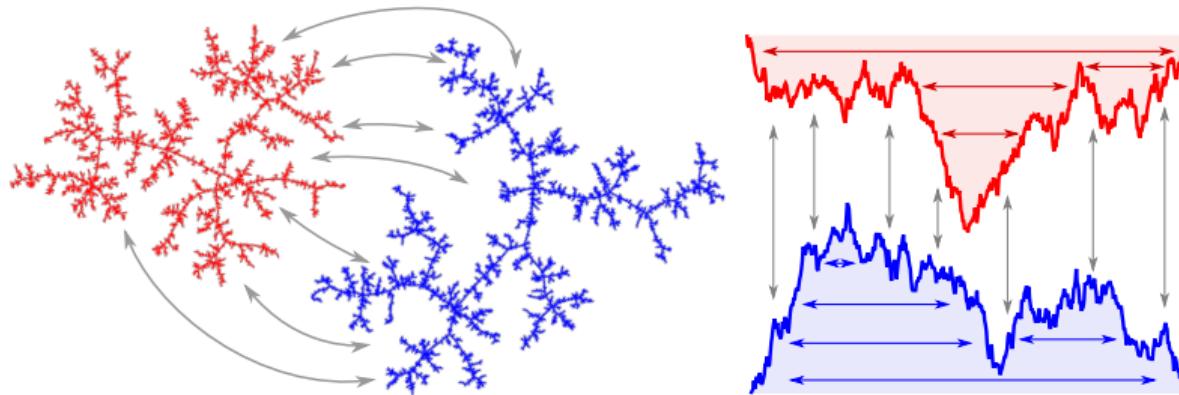


"Mating of trees"

[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi,
Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]

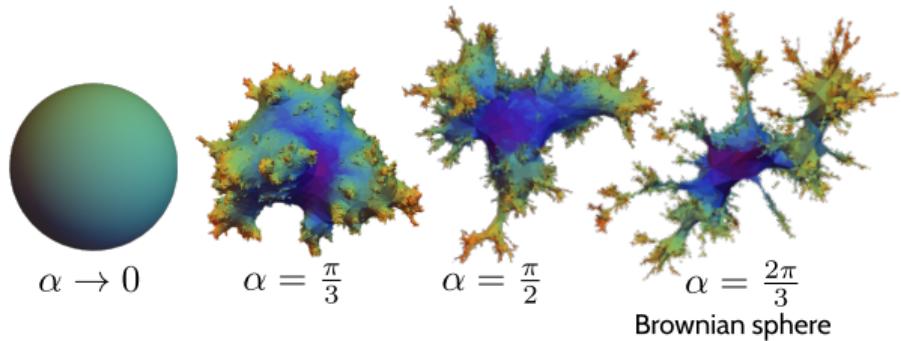


Can 2D quantum gravity also be assembled?

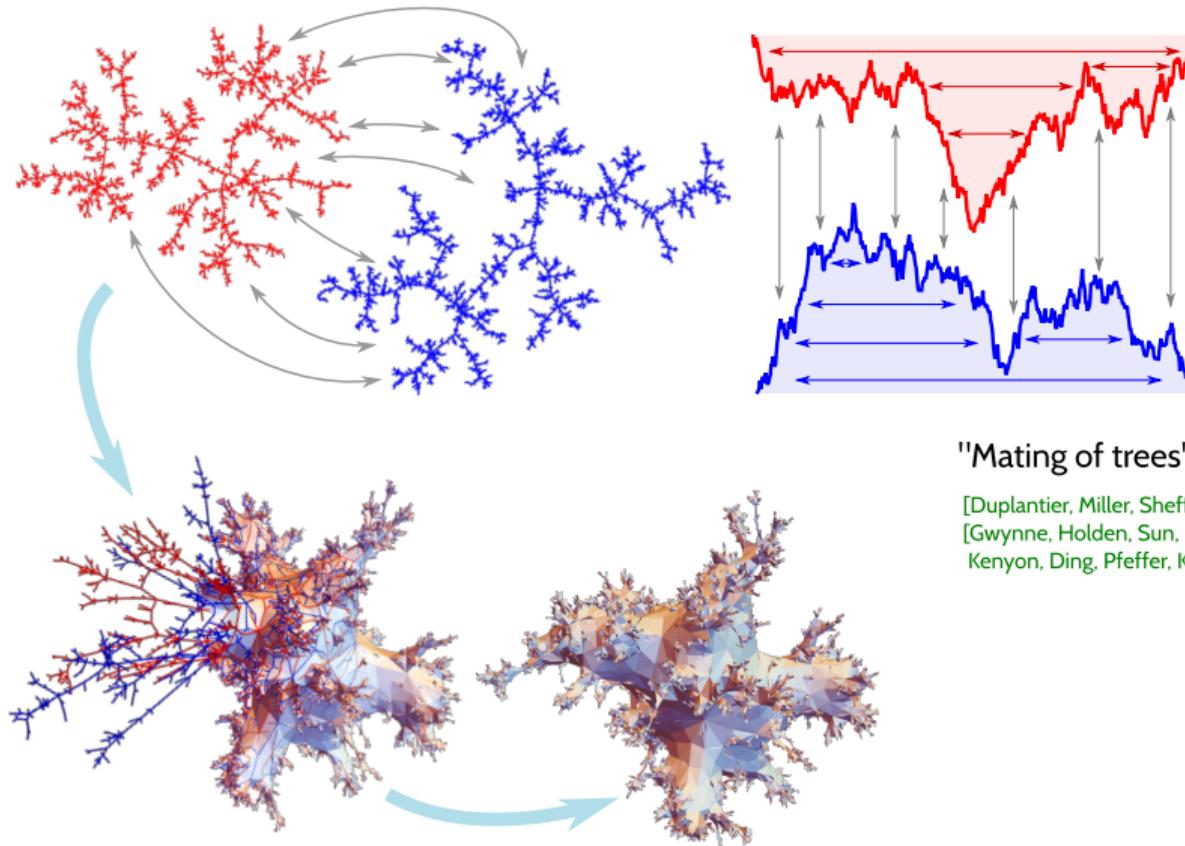


"Mating of trees"

[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi,
Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]



Can 2D quantum gravity also be assembled?

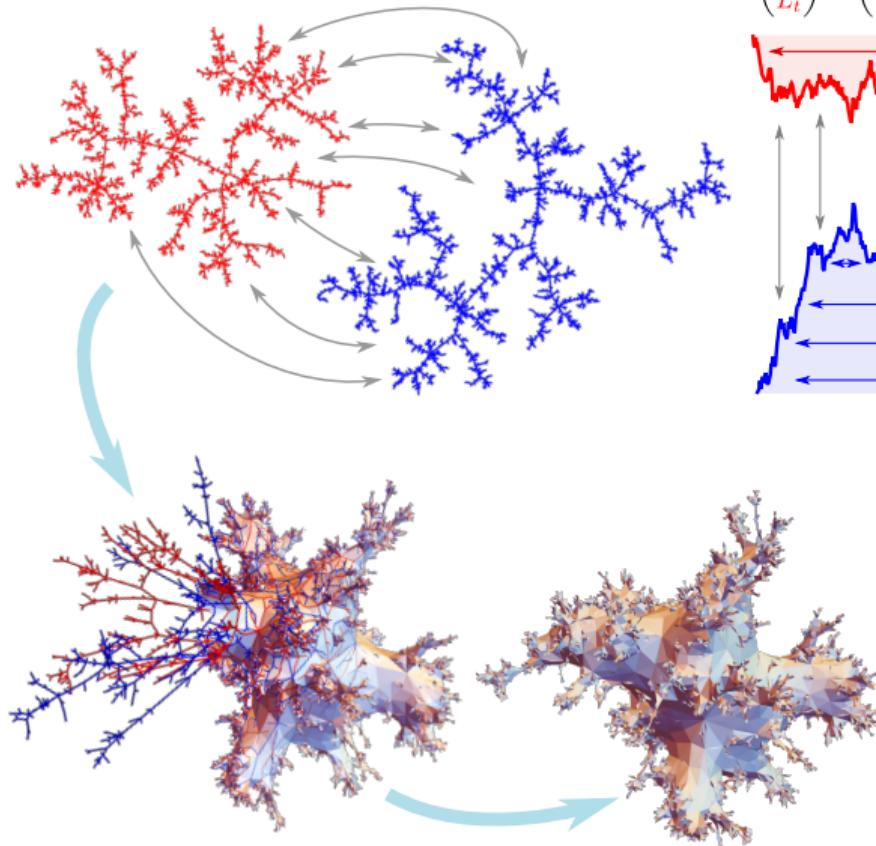
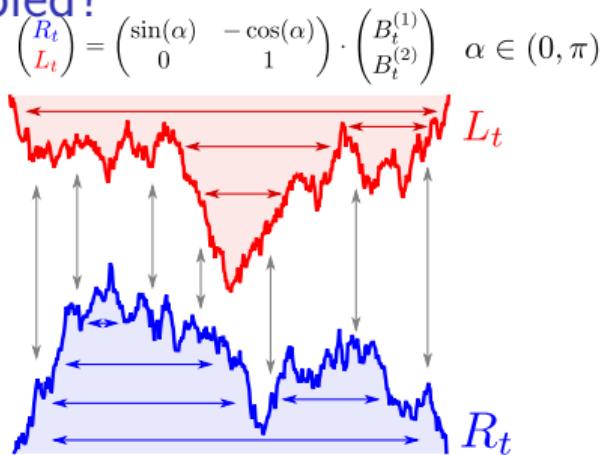


"Mating of trees"

[Duplantier, Miller, Sheffield, '14]

[Gwynne, Holden, Sun, Bernardi, Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]

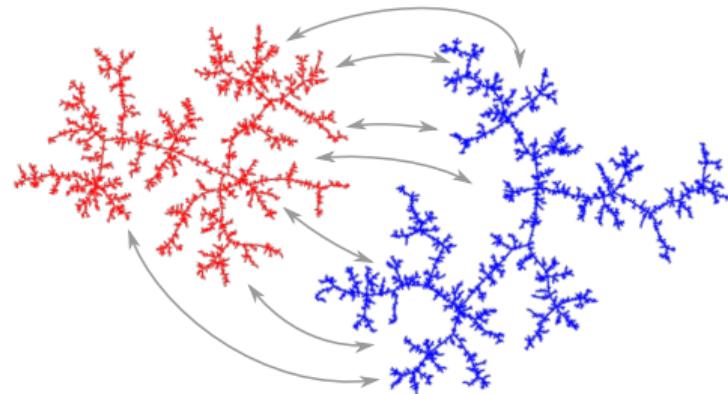
Can 2D quantum gravity also be assembled?



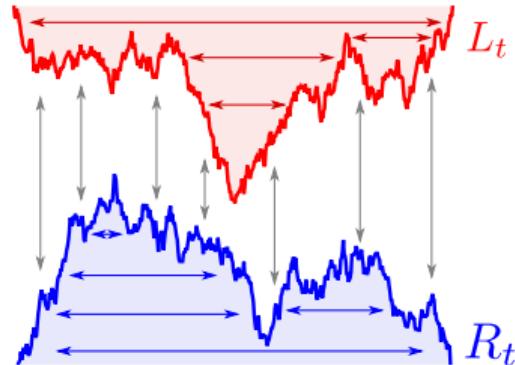
"Mating of trees"

[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi, Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]

Can 2D quantum gravity also be assembled?

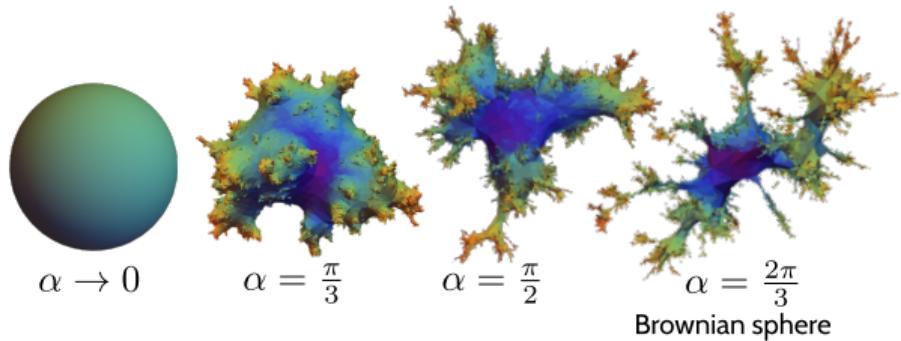


$$\begin{pmatrix} R_t \\ L_t \end{pmatrix} = \begin{pmatrix} \sin(\alpha) & -\cos(\alpha) \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} B_t^{(1)} \\ B_t^{(2)} \end{pmatrix} \quad \alpha \in (0, \pi)$$

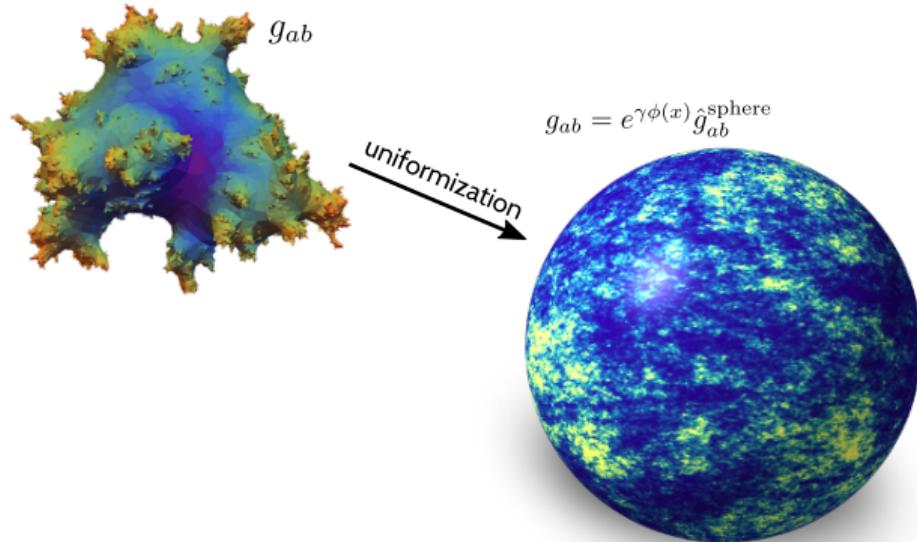


"Mating of trees"

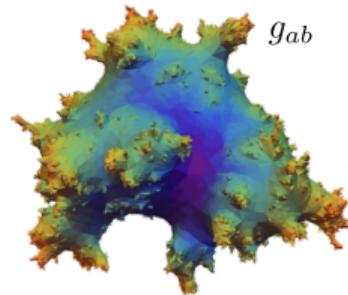
[Duplantier, Miller, Sheffield, '14]
[Gwynne, Holden, Sun, Bernardi, Kenyon, Ding, Pfeffer, Kassel, Wilson, ...]



Why does this work?



Why does this work?

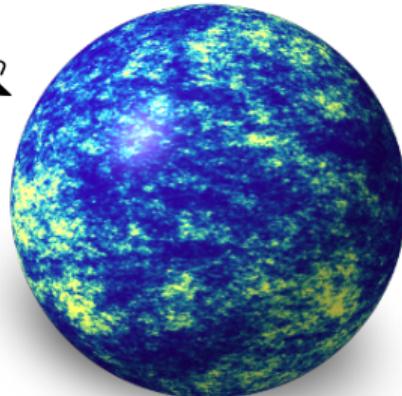


Dilaton field described
by Liouville CFT

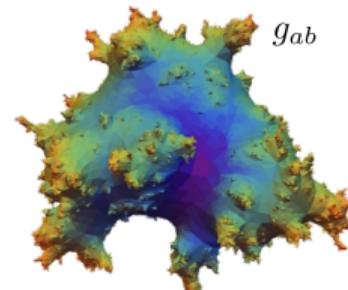
$$S[\phi] = \int d^2x \sqrt{\tilde{g}} (\phi \hat{\Delta} \phi + Q \hat{R} \phi + 4\pi\lambda e^{\gamma\phi})$$

$$g_{ab} = e^{\gamma\phi(x)} \hat{g}_{ab}^{\text{sphere}}$$

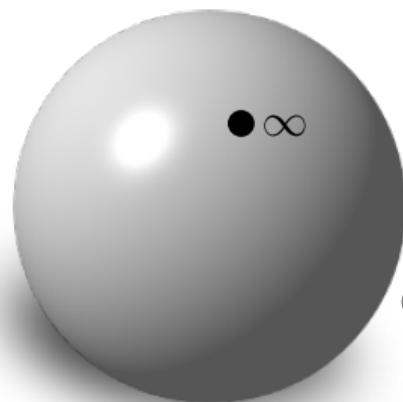
uniformization



Why does this work?



independently

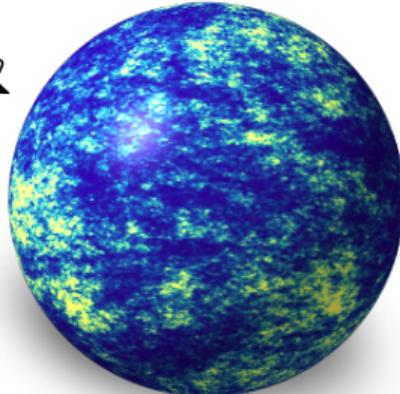


Dilaton field described
by Liouville CFT

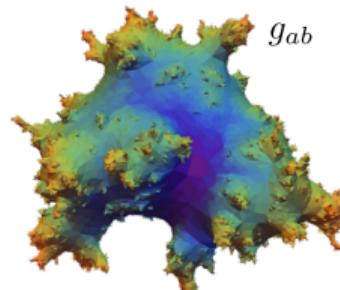
$$S[\phi] = \int d^2x \sqrt{\tilde{g}} (\phi \tilde{\Delta} \phi + Q \tilde{R} \phi + 4\pi\lambda e^{\gamma\phi})$$

$$g_{ab} = e^{\gamma\phi(x)} \tilde{g}_{ab}^{\text{sphere}}$$

uniformization



Why does this work?



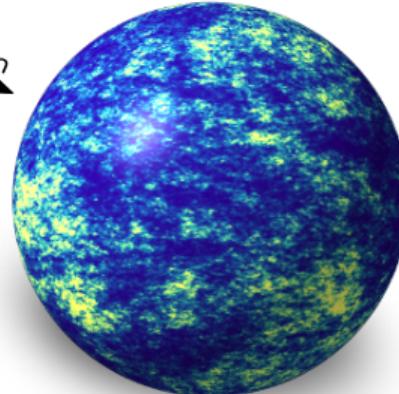
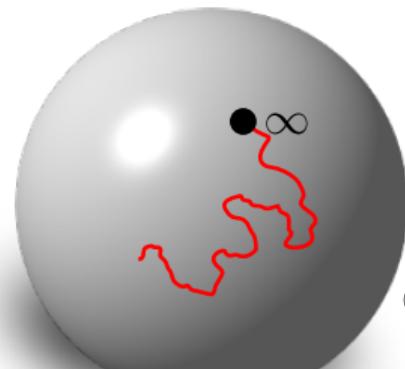
independently

Dilaton field described
by Liouville CFT

$$S[\phi] = \int d^2x \sqrt{\tilde{g}} (\phi \tilde{\Delta} \phi + Q \tilde{R} \phi + 4\pi\lambda e^{\gamma\phi})$$

$$g_{ab} = e^{\gamma\phi(x)} g_{ab}^{\text{sphere}}$$

uniformization



$$\dot{x} = e^{\frac{i}{x}} h(x)$$

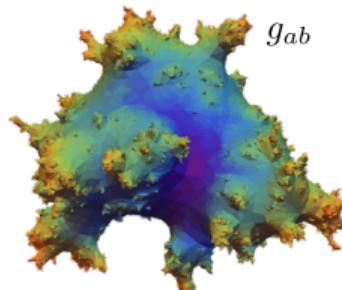
"Imaginary geometry"

[Miller, Sheffield, '12]

$$\chi = \frac{2}{\gamma} - \frac{\gamma}{2}$$

Free massless scalar field /
Gaussian free field (GFF)

Why does this work?



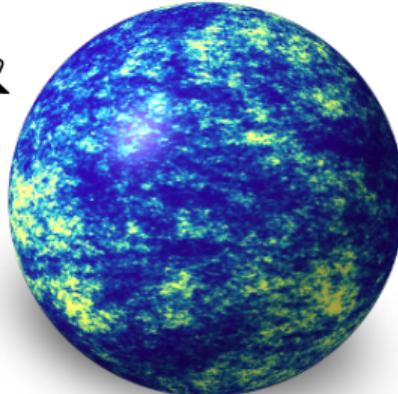
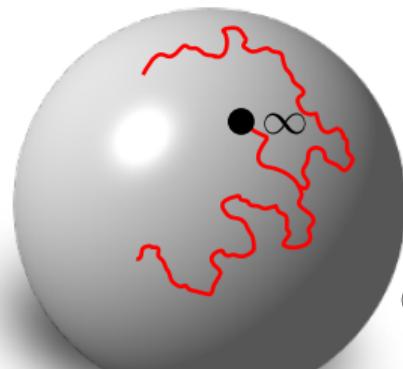
independently

Dilaton field described
by Liouville CFT

$$S[\phi] = \int d^2x \sqrt{\tilde{g}} (\phi \tilde{\Delta} \phi + Q \tilde{R} \phi + 4\pi\lambda e^{\gamma\phi})$$

$$g_{ab} = e^{\gamma\phi(x)} g_{ab}^{\text{sphere}}$$

uniformization



$$\dot{x} = e^{\frac{i}{x}} h(x)$$

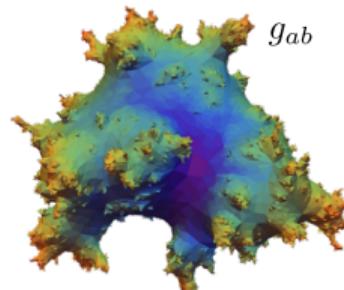
"Imaginary geometry"

[Miller, Sheffield, '12]

$$\chi = \frac{2}{\gamma} - \frac{\gamma}{2}$$

Free massless scalar field /
Gaussian free field (GFF)

Why does this work?



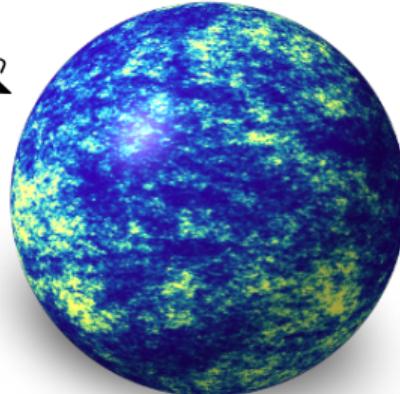
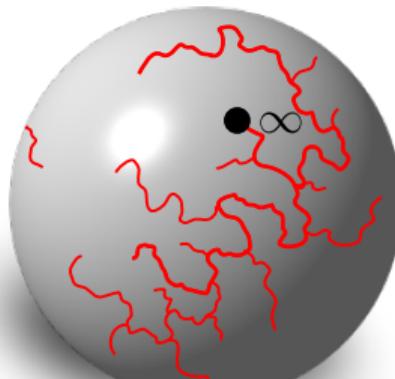
independently

Dilaton field described
by Liouville CFT

$$S[\phi] = \int d^2x \sqrt{g} (\phi \hat{\Delta} \phi + Q \hat{R} \phi + 4\pi\lambda e^{\gamma\phi})$$

$$g_{ab} = e^{\gamma\phi(x)} g_{ab}^{\text{sphere}}$$

uniformization



$$\dot{x} = e^{\frac{i}{x}} h(x)$$

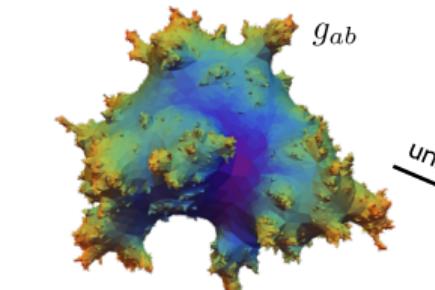
"Imaginary geometry"

[Miller, Sheffield, '12]

$$\chi = \frac{2}{\gamma} - \frac{\gamma}{2}$$

Free massless scalar field /
Gaussian free field (GFF)

Why does this work?

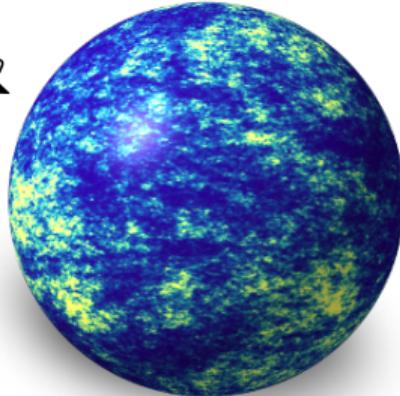


Dilaton field described
by Liouville CFT

$$S[\phi] = \int d^2x \sqrt{g} (\phi \hat{\Delta} \phi + Q \hat{R} \phi + 4\pi\lambda e^{\gamma\phi})$$

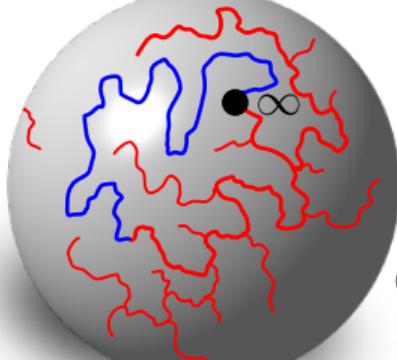
$$g_{ab} = e^{\gamma\phi(x)} g_{ab}^{\text{sphere}}$$

uniformization



independently

$$\dot{x} = e^{-\frac{i}{x} h(x)}$$



$$\mathbb{C} \cup \{\infty\}$$

$$\dot{x} = e^{\frac{i}{x} h(x)}$$

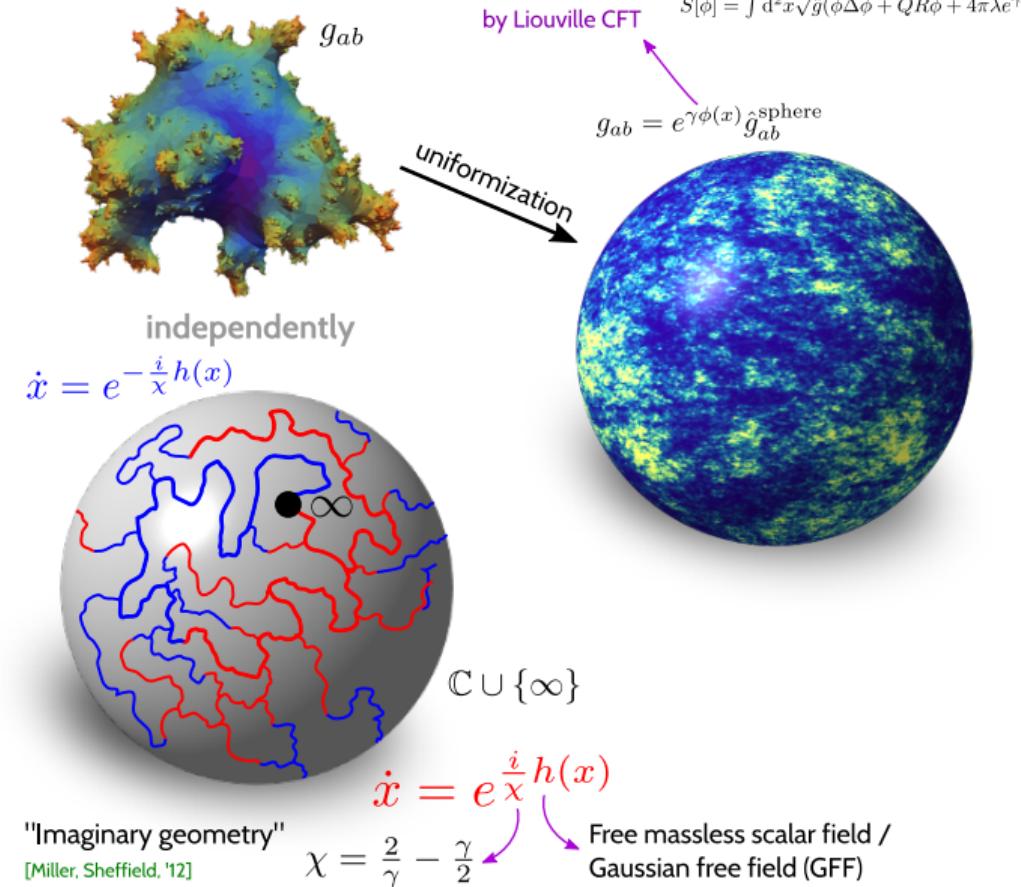
"Imaginary geometry"

[Miller, Sheffield, '12]

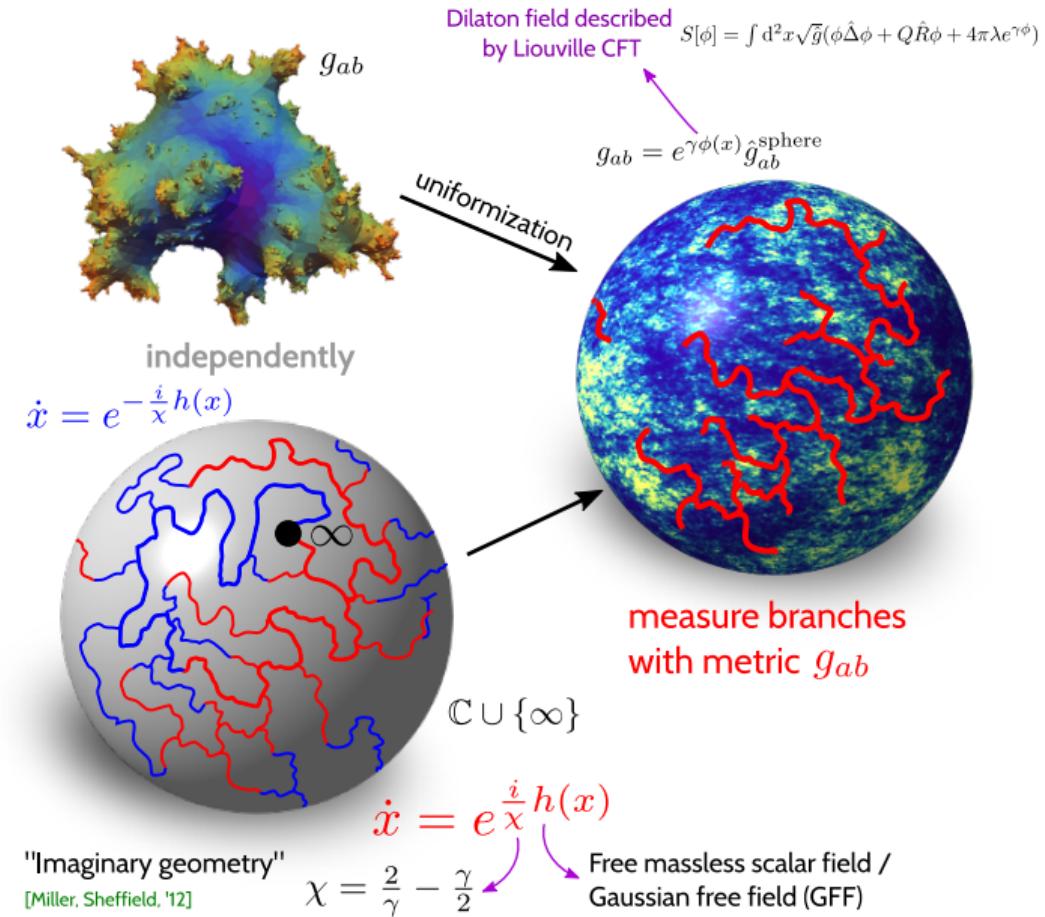
$$\chi = \frac{2}{\gamma} - \frac{\gamma}{2}$$

Free massless scalar field /
Gaussian free field (GFF)

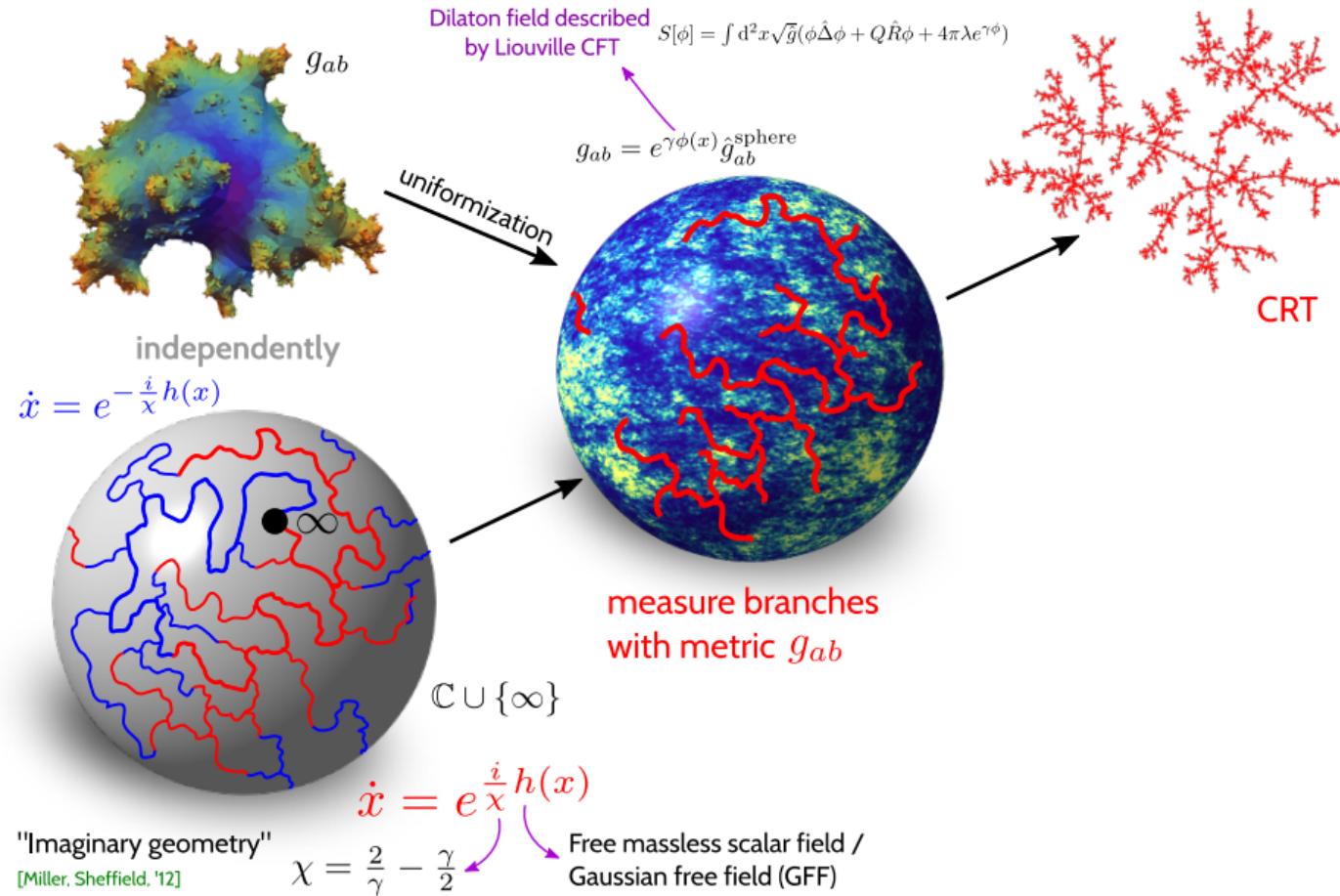
Why does this work?



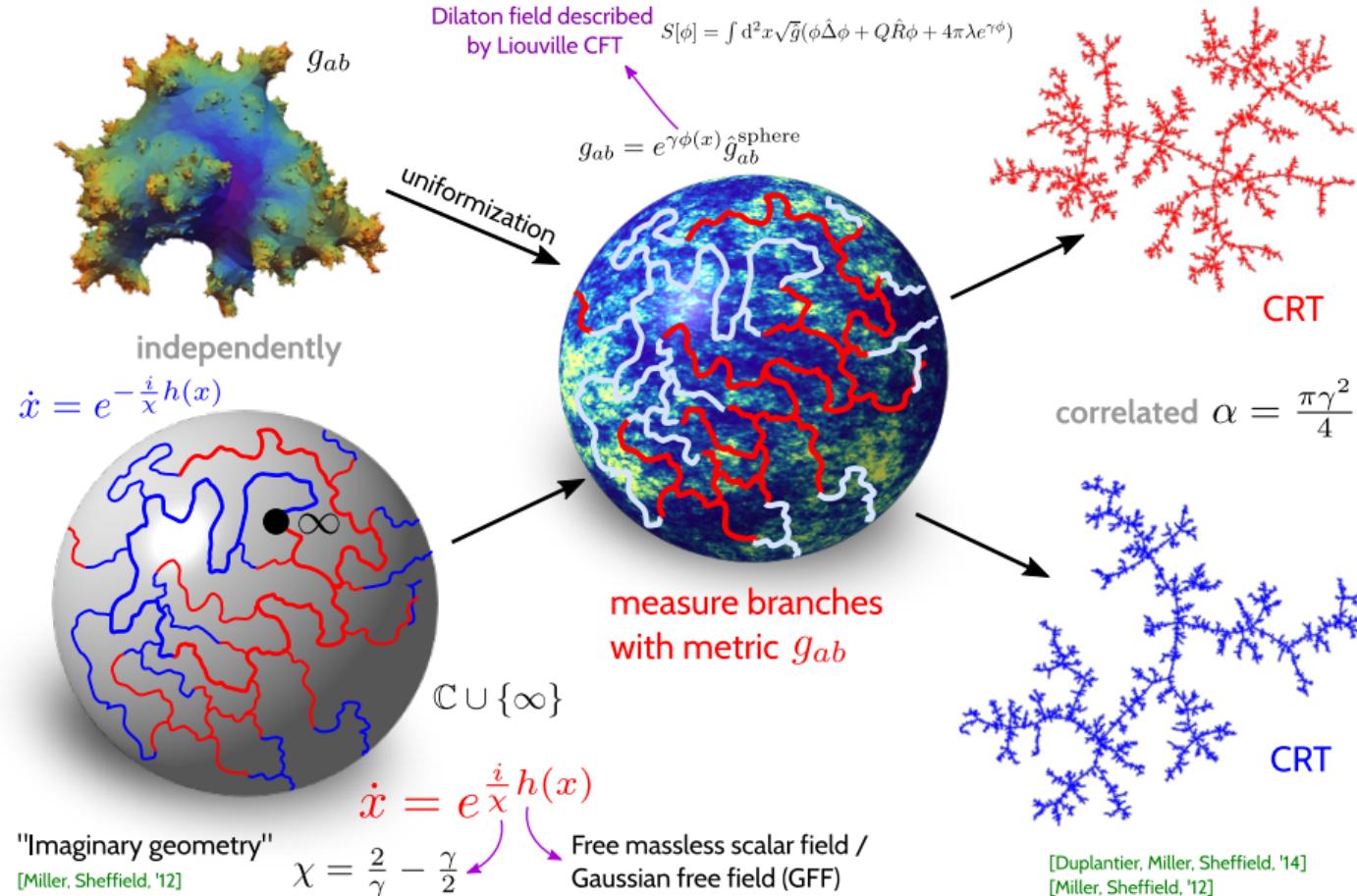
Why does this work?



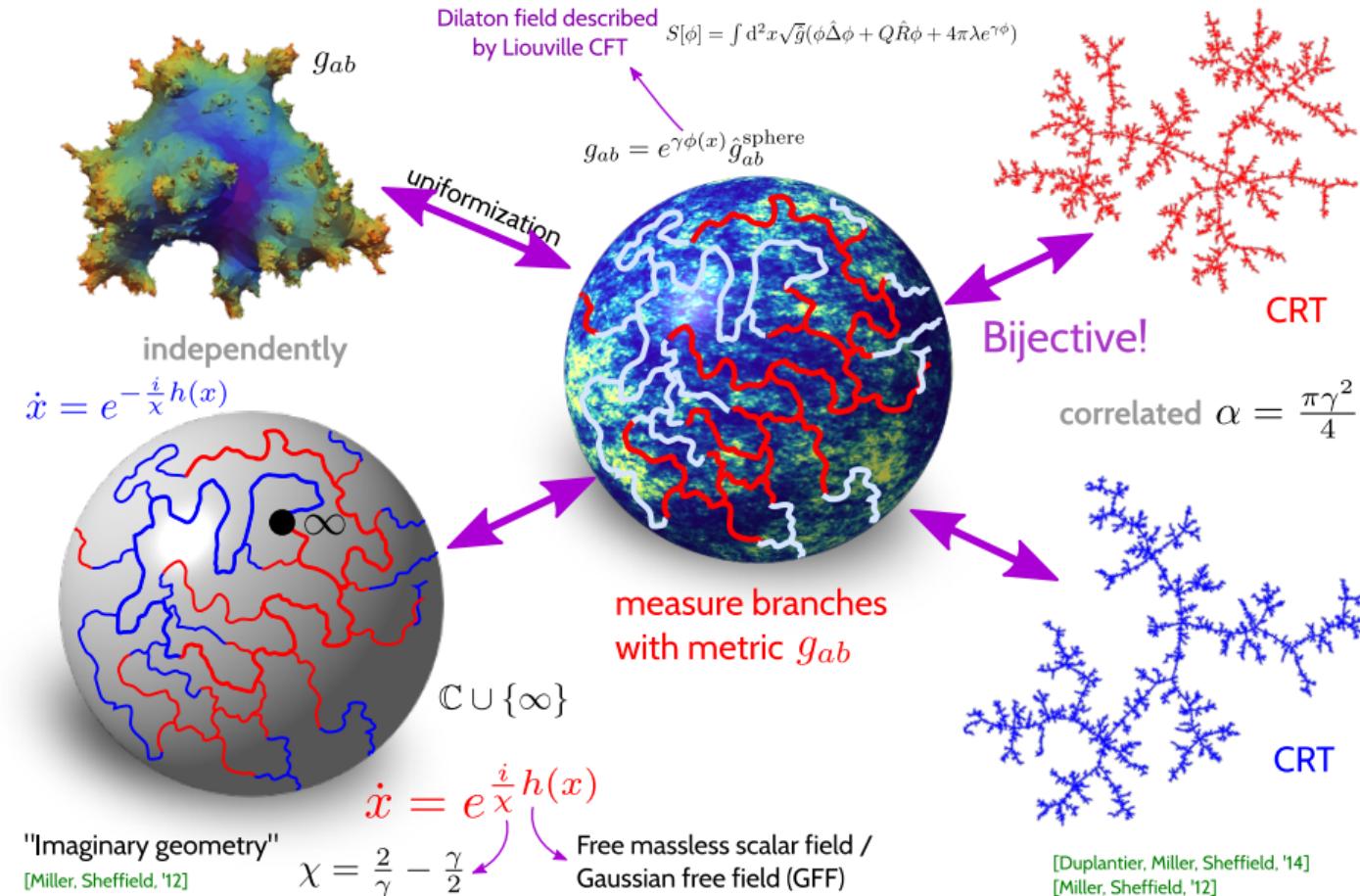
Why does this work?



Why does this work?



Why does this work?



in 3D
(or higher)

QFT
+

Renormalization Group

Reuter fixed point?

scale-invariant
random geometry

?

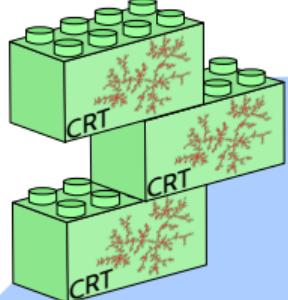
in 3D (or higher)

QFT
+

Renormalization Group

Reuter fixed point?

scale-invariant
random geometry

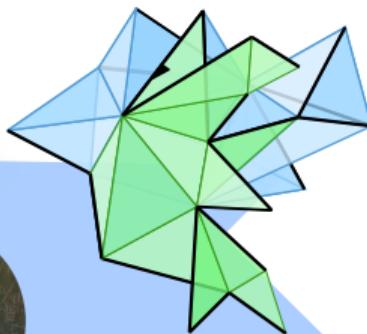


[arxiv:2206.xxxxx]

Alicia Castro

Assembly approach

Luca Lionni



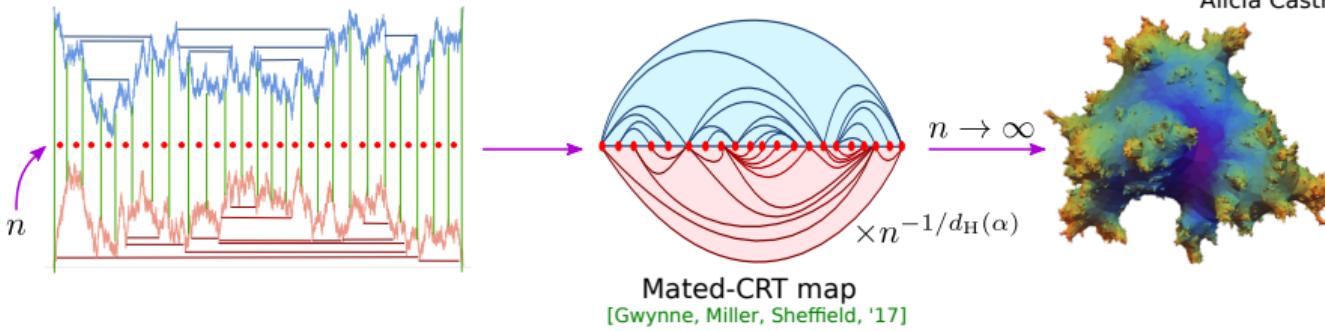
[arxiv:2203.16105]

Lattice approach

Pending required mathematics to study generalization of the assembly:
develop a **numerical toolbox**.

First benchmark in 2D quantum gravity!

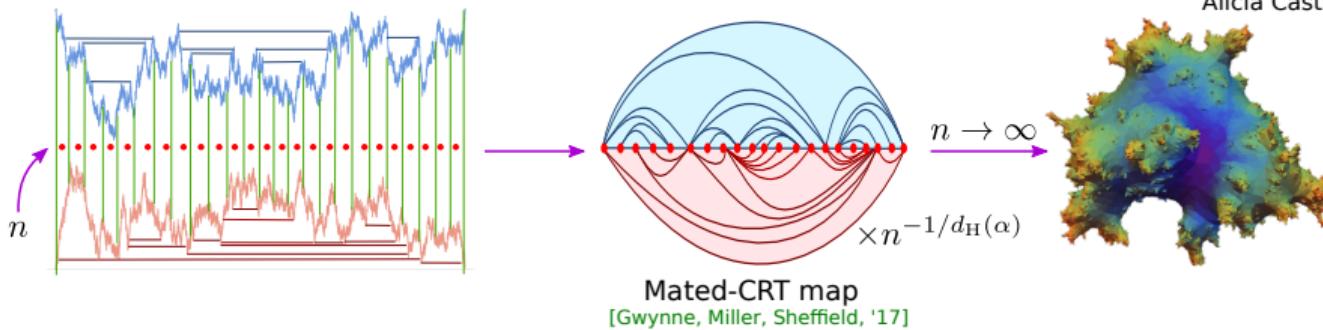
with
Alicia Castro



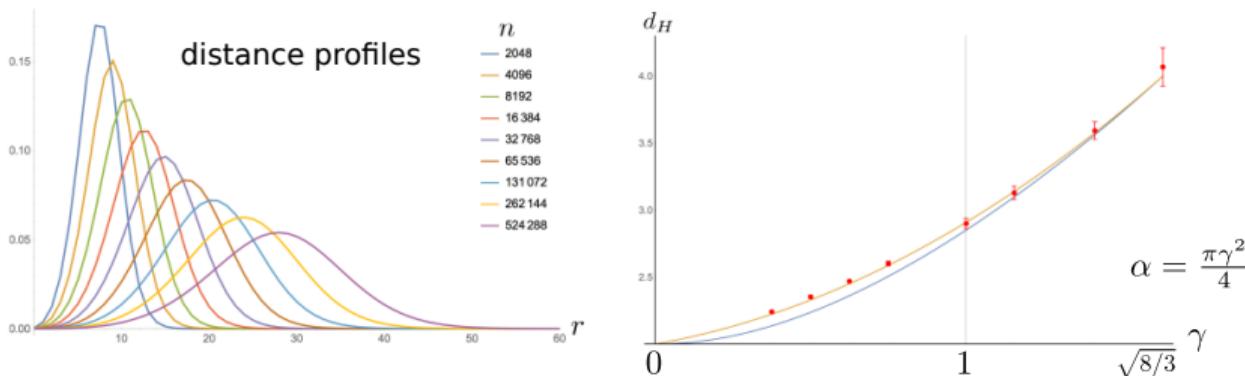
Pending required mathematics to study generalization of the assembly:
develop a **numerical toolbox**.

First benchmark in 2D quantum gravity!

with
Alicia Castro

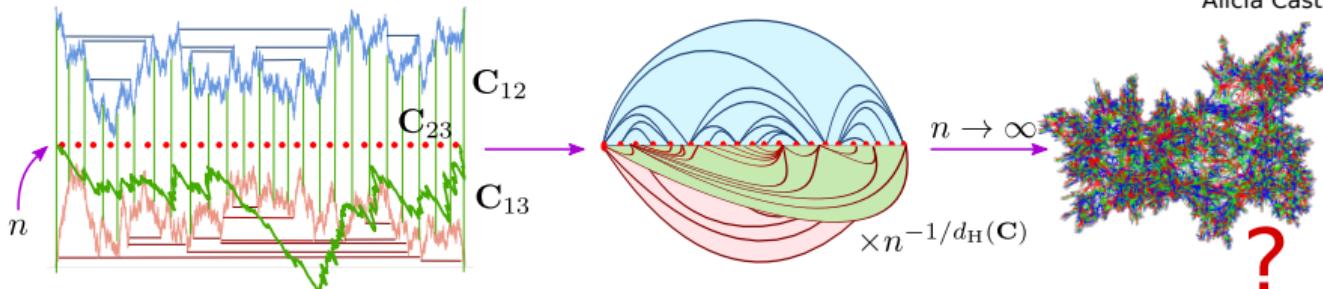


Hausdorff dimension measurements consistent with previous estimates:



Pending required mathematics to study generalization of the assembly:
develop a **numerical toolbox**.

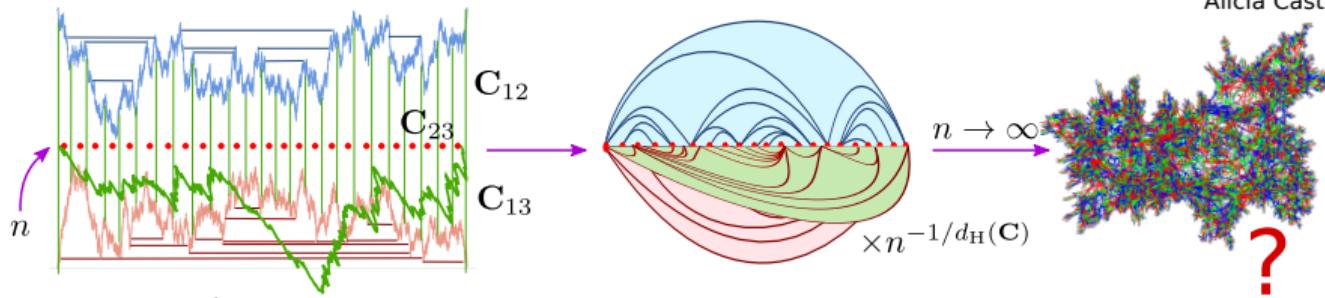
with
Alicia Castro



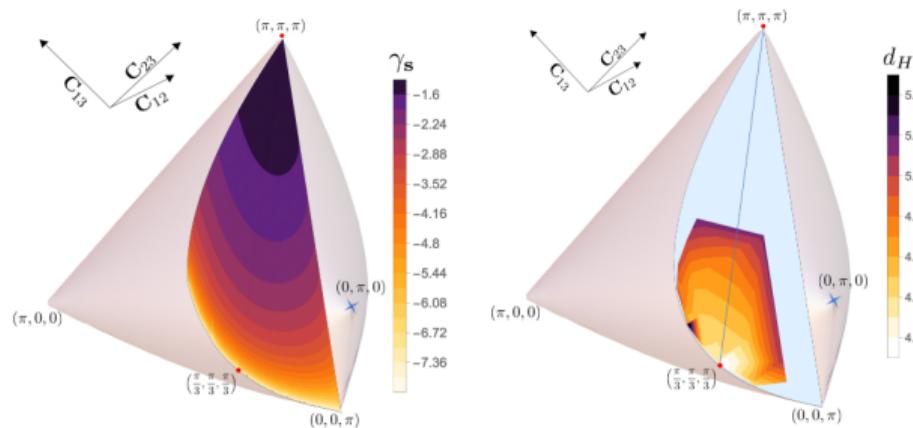
Adding a 3rd CRT: 3-dimensional phase space and can be estimated.

Pending required mathematics to study generalization of the assembly:
develop a **numerical toolbox**.

with
Alicia Castro



Adding a 3rd CRT: 3-dimensional phase space and can be estimated.



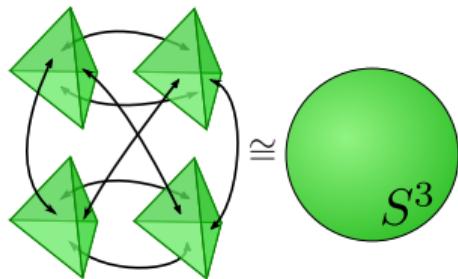
New scale-invariant random geometry, but does it have 3-manifold topology?

Universality from 3d discrete geometries?

- ▶ Lattice approach: continuum limit of random discrete geometries at criticality.

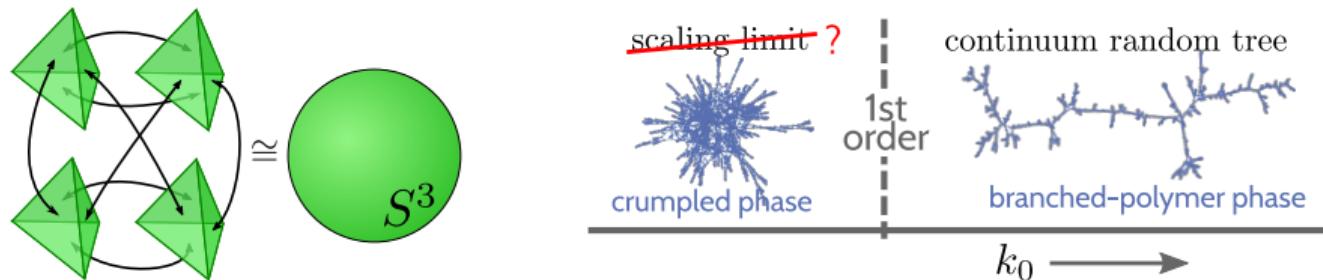
Universality from 3d discrete geometries?

- ▶ Lattice approach: continuum limit of random discrete geometries at criticality.
- ▶ **3D Dynamical Triangulations**: random triangulations of S^3 sampled proportional to $e^{k_0 \# \text{vertices}}$ [Ambjorn, Durhuus, Jonsson, Sasakura, Godfrey, Gross, Varsted, Boulatov, Agishtein, Migdal, ..., '91]



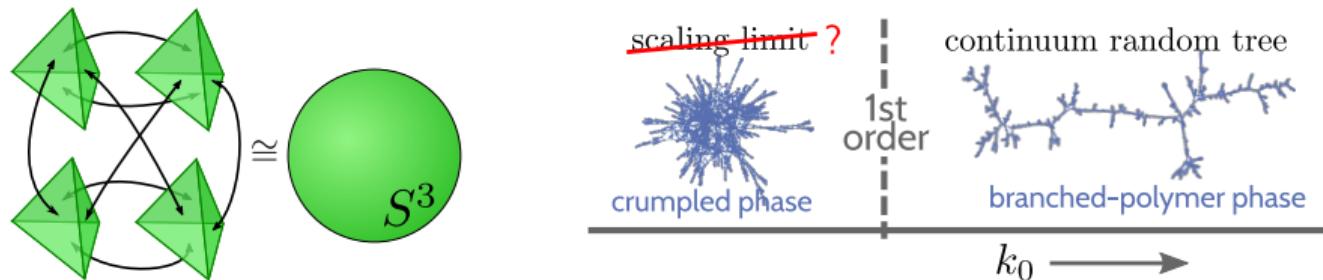
Universality from 3d discrete geometries?

- ▶ Lattice approach: continuum limit of random discrete geometries at criticality.
- ▶ **3D Dynamical Triangulations**: random triangulations of S^3 sampled proportional to $e^{k_0 \# \text{vertices}}$ [Ambjorn, Durhuus, Jonsson, Sasakura, Godfrey, Gross, Varsted, Boulatov, Agishtein, Migdal, ..., '91]
- ▶ Limited success:
 1. lack of mathematical control (no good topological invariants / missing exponential bound);
 2. 1d phase diagram numerically shows **no new critical phenomena**.



Universality from 3d discrete geometries?

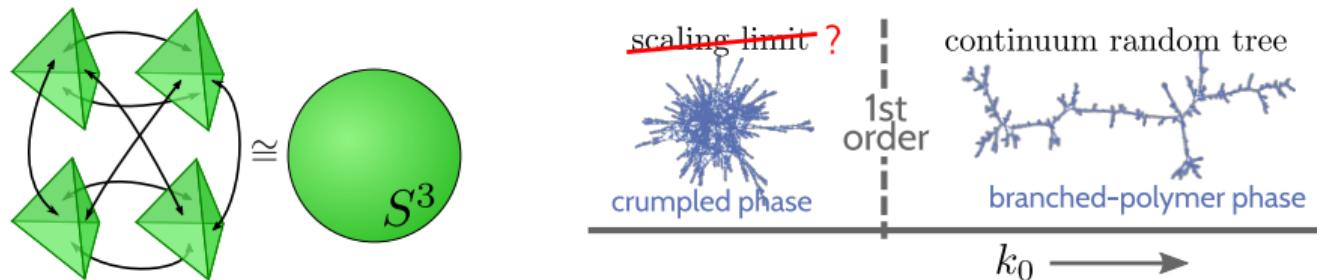
- ▶ Lattice approach: continuum limit of random discrete geometries at criticality.
- ▶ **3D Dynamical Triangulations**: random triangulations of S^3 sampled proportional to $e^{k_0 \# \text{vertices}}$ [Ambjorn, Durhuus, Jonsson, Sasakura, Godfrey, Gross, Varsted, Boulatov, Agishtein, Migdal, ..., '91]
- ▶ Limited success:
 1. lack of mathematical control (no good topological invariants / missing exponential bound);
 2. 1d phase diagram numerically shows **no new critical phenomena**.



- ▶ Option: introduce a causal structure \rightarrow Causal Dynamical Triangulations (CDT) [Loll, Ambjorn, Jurkiewicz, ...]

Universality from 3d discrete geometries?

- ▶ Lattice approach: continuum limit of random discrete geometries at criticality.
- ▶ **3D Dynamical Triangulations**: random triangulations of S^3 sampled proportional to $e^{k_0 \# \text{vertices}}$ [Ambjorn, Durhuus, Jonsson, Sasakura, Godfrey, Gross, Varsted, Boulatov, Agishtein, Migdal, ..., '91]
- ▶ Limited success:
 1. lack of mathematical control (no good topological invariants / missing exponential bound);
 2. 1d phase diagram numerically shows **no new critical phenomena**.

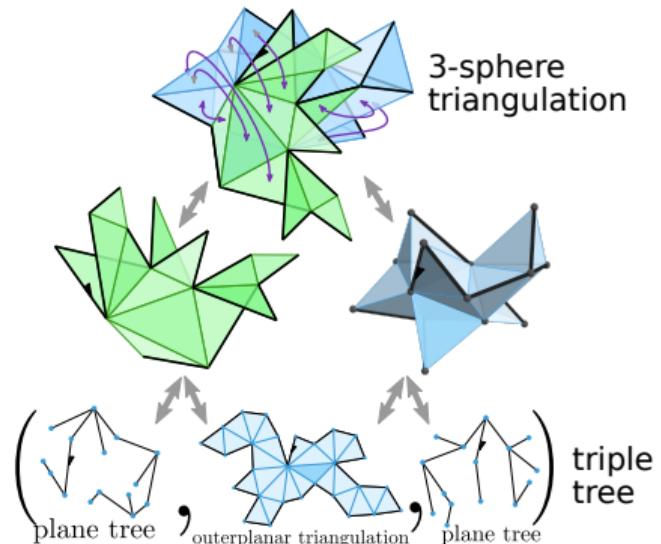


- ▶ Option: introduce a causal structure → Causal Dynamical Triangulations (CDT) [Loll, Ambjorn, Jurkiewicz, ...]
- ▶ Other Idea: identify tree structures within these geometries to facilitate analytic methods and enhance phase diagram.

An explicit model. [TB, Lioanni, '22]

- There exists a bijection

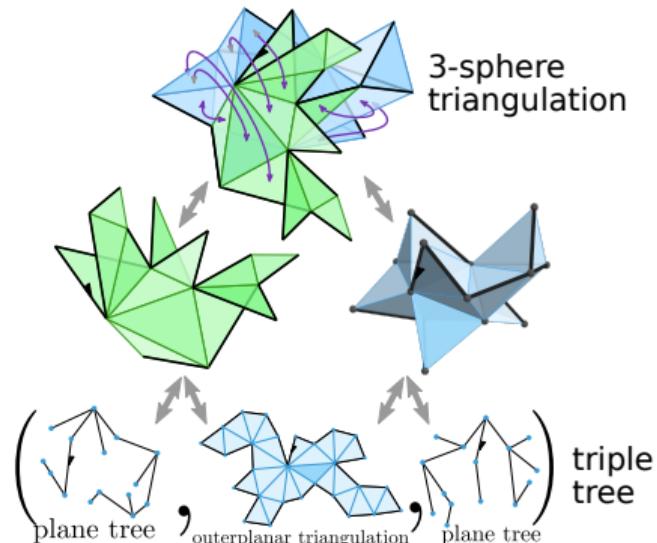
$$\left\{ \begin{array}{l} \text{subclass of triangulated 3-spheres} \\ \text{"tree-avoiding locally constructible"} \end{array} \right\} \leftrightarrow \left\{ \text{triple trees} \right\}$$



An explicit model. [TB, Lioanni, '22]

- ▶ There exists a bijection

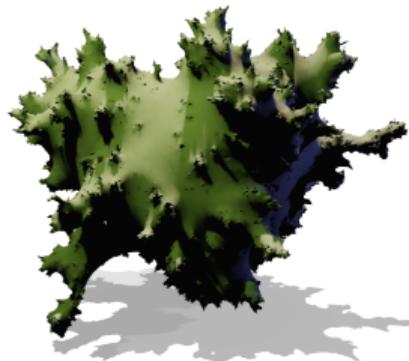
$$\left\{ \begin{array}{l} \text{subclass of triangulated 3-spheres} \\ \text{"tree-avoiding locally constructible"} \end{array} \right\} \leftrightarrow \left\{ \text{triple trees} \right\}$$



- ▶ Combinatorial enumeration still open, but shows promising numerical properties.

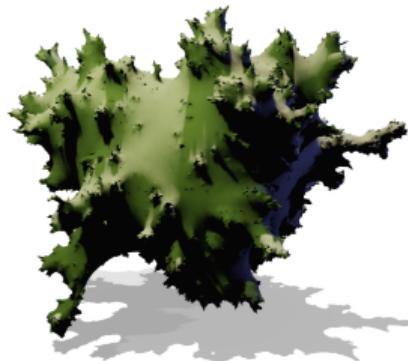
Conclusions

- ▶ If gravity is **asymptotically safe**, microscopic spacetime geometry is **nothing like that of GR**.
- ▶ Need to prepare ourselves with all the **mathematical and numerical tools** on offer/in development in **Random Geometry**.
- ▶ (Almost) **all known universality classes** of random geometry can be **assembled from the Continuum Random Tree (CRT)**.
- ▶ We may be seeing the first **universality beyond trees and surfaces**, but 3D geometry without regularity is a wilderness. . . .



Conclusions

- ▶ If gravity is **asymptotically safe**, microscopic spacetime geometry is **nothing like that of GR**.
- ▶ Need to prepare ourselves with all the **mathematical and numerical tools** on offer/in development in **Random Geometry**.
- ▶ (Almost) **all known universality classes** of random geometry can be **assembled from the Continuum Random Tree (CRT)**.
- ▶ We may be seeing the first **universality beyond trees and surfaces**, but 3D geometry without regularity is a wilderness. . . .



Thanks. Questions?