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» The most familiar scale-invariant object?
Brownian motion By, t ¢ R = 1D real scalar field

> Exactly self-similar (in statistical sense):

VABy, 2 B

» Not ‘geometry’, but can assemble it into one:
Continuum Random Tree  [Aldous, '91]
= Branched-polymer universality class

> Well-defined (geodesic) distances but genuinely fractal:

» Topological dimension: 1 T
> Hausdorff dimension: 2 (V ~ r?) Vv
» Spectral dimension: 4/3

» Nothing like a spacetime geometry / manifold?!!
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Coupling to matter (Schnyder wood): different universality class

[credits: B. Stufler]
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Pending required mathematics to study generalization of the assembly:
develop a numerical toolbox.
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Universality from 3d discrete geometries?

» Lattice approach: continuum limit of random discrete geometries at criticality.

» 3D Dynamical Triangulations: random triangulations of S3 sampled proportional to
eko#vertices [Ambjorn, Durhuus, Jonsson, Sasakura, Godrfrey, Gross, Varsted, Boulatov, Agishtein, Migdal, ..., '91]

» Limited success:

1. lack of mathematical control (no good topological invariants / missing exponential bound);
2. 1d phase diagram numerically shows no new critical phenomena.
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» Option: introduce a causal structure — Causal Dynamical Triangulations (CDT) [Lol,
Ambjorn, Jurkiewicz,. . .]

» Other Idea: identify tree structures within these geometries to facilitate analytic methods
and enhance phase diagram.
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An explicit model. [TB, Lionni, '22]

» There exists a bijection

subclass of triangulated 3-spheres .
“ - R {trlple trees}
tree-avoiding locally constructible

' 3-sphere

trlangulatlon

A LY

triple
3 tree
lane tree ’mumpmm triangulation”  plane tree

» Combinatorial enumeration still open, but shows promising numerical properties.
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> If gravity is asymptotically safe, microscopic spacetime geometry is nothing like that of GR.
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> Need to prepare ourselves with all the mathematical and numerical tools on offer/in
development in Random Geometry.

» (Almost) all known universality classes of random geometry can be assembled from the
Continuum Random Tree (CRT).

» We may be seeing the first universality beyond trees and surfaces, but 3D geometry
without regularity is a wilderness. ...

Thanks. Questions?



