


Renormalization in quantum gravity
I How to make sense of the formal gravitational path

integral?

ZLor =

∫
M

Dgµν
Diff

e
i
~S[g ] Wick?←−−→ ZEucl =

∫
M

Dgab
Diff

e−S[g ]

I As usual in QFT: coupling constants are subject to
renormalization.

I Perturbation theory is non-renormalizable: couplings
proliferate in the UV.

I Asymptotic safety hypothesis: UV completeness and
predictivity can be restored if RG has an interacting fixed
point. [Weinberg, Wilson, . . . ]

I Evidence for existence of suitable Reuter fixed point from
Functional Renormalization Group methods. Percacci’s talk!

[Reuter, Lauscher, Saueressig, . . . ]

I Physics at fixed point in ZEucl: scale-invariant random
geometry.
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The simplest universality class
I The most familiar scale-invariant object?

Brownian motion Bt , t ∈ R ≡ 1D real scalar field

I Exactly self-similar (in statistical sense):

√
λBt/λ

law
= Bt .

I Not ‘geometry’, but can assemble it into one:
Continuum Random Tree [Aldous, ’91]

≡ Branched-polymer universality class

I Well-defined (geodesic) distances but genuinely fractal:
I Topological dimension: 1
I Hausdorff dimension: 2 (V ∼ r 2)
I Spectral dimension: 4/3

I Nothing like a spacetime geometry / manifold?!!
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Uniform quadrangulation (1 Million squares) [credits: B. Stufler]









Coupling to matter (Schnyder wood): different universality class

[credits: B. Stufler]
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Pending required mathematics to study generalization of the assembly: 
develop a numerical toolbox. 

Alicia Castro

with

Mated-CRT map
[Gwynne, Miller, Sheffield, '17]

First benchmark in 2D quantum gravity!
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Hausdorff dimension measurements consistent with previous estimates: 

distance profiles
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?



Pending required mathematics to study generalization of the assembly: 
develop a numerical toolbox. 

Alicia Castro

with

Adding a 3rd CRT: 3-dimensional phase space and can be estimated.
?

New scale-invariant random geometry, but does it have 3-manifold topology?



Universality from 3d discrete geometries?
I Lattice approach: continuum limit of random discrete geometries at criticality.

I 3D Dynamical Triangulations: random triangulations of S3 sampled proportional to
ek0#vertices

[Ambjorn, Durhuus, Jonsson, Sasakura, Godrfrey, Gross, Varsted, Boulatov, Agishtein, Migdal, . . . , ’91]

I Limited success:
1. lack of mathematical control (no good topological invariants / missing exponential bound);
2. 1d phase diagram numerically shows no new critical phenomena.

I Option: introduce a causal structure → Causal Dynamical Triangulations (CDT) [Loll,

Ambjorn, Jurkiewicz,. . . ]

I Other Idea: identify tree structures within these geometries to facilitate analytic methods
and enhance phase diagram.
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An explicit model. [TB, Lionni, ’22]
I There exists a bijection{

subclass of triangulated 3-spheres
“tree-avoiding locally constructible”

}
↔
{

triple trees
}

3-sphere
triangulation

triple
tree

I Combinatorial enumeration still open, but shows promising numerical properties.
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Conclusions
I If gravity is asymptotically safe, microscopic spacetime geometry is nothing like that of GR.
I Need to prepare ourselves with all the mathematical and numerical tools on offer/in

development in Random Geometry.
I (Almost) all known universality classes of random geometry can be assembled from the

Continuum Random Tree (CRT).
I We may be seeing the first universality beyond trees and surfaces, but 3D geometry

without regularity is a wilderness. . . .

Thanks. Questions?
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