Workshop on Large Random Structures in Two Dimensions, IHP, January 19th, 2017

On a connection between planar map combinatorics and lattice walks

Timothy Budd

IPhT, CEA-Saclay
timothy.budd@cea.fr, http://www.nbi.dk/~budd/

Introduction: Hyperbolic secant law

- The winding angle θ_{t} of 2 d Brownian motion satisfies Spitzer's law [Spitzer '58]

$$
\frac{2 \theta_{t}}{\log (t)} \xrightarrow[t \rightarrow \infty]{(d)} \text { Cauchy }
$$

Introduction: Hyperbolic secant law

- The winding angle θ_{t} of 2 d Brownian motion satisfies Spitzer's law [Spitzer '58]

$$
\frac{2 \theta_{t}}{\log (t)} \xrightarrow[t \rightarrow \infty]{(d)} \text { Cauchy }
$$

Introduction: Hyperbolic secant law

- The winding angle θ_{t} of 2 d Brownian motion satisfies Spitzer's law [Spitzer '58]

$$
\mathbb{P}\left[\frac{2 \theta_{t}}{\log (t)} \in(a, b)\right] \xrightarrow{t \rightarrow \infty} \frac{1}{\pi} \int_{a}^{b} \frac{\mathrm{~d} x}{1+x^{2}}
$$

Introduction: Hyperbolic secant law

- The winding angle θ_{t} of $2 d$ Brownian motion satisfies Spitzer's law [Spitzer '58]

$$
\mathbb{P}\left[\frac{2 \theta_{t}}{\log (t)} \in(a, b)\right] \xrightarrow{t \rightarrow \infty} \frac{1}{\pi} \int_{a}^{b} \frac{\mathrm{~d} x}{1+x^{2}}
$$

- The winding angle θ_{n} of 2 d random walk satisfies hyperbolic secant law [Rudnick, Hu '87] [Bélisle '89]
$\mathbb{P}\left[\frac{2 \theta_{n}}{\log (n)} \in(a, b)\right] \xrightarrow{n \rightarrow \infty} \frac{1}{2} \int_{a}^{b} \operatorname{sech}\left(\frac{\pi x}{2}\right) \mathrm{d} x$

Introduction: Hyperbolic secant law

- The winding angle θ_{t} of $2 d$ Brownian motion satisfies Spitzer's law [Spitzer '58]

$$
\mathbb{P}\left[\frac{2 \theta_{t}}{\log (t)} \in(a, b)\right] \xrightarrow{t \rightarrow \infty} \frac{1}{\pi} \int_{a}^{b} \frac{\mathrm{~d} x}{1+x^{2}}
$$

- The winding angle θ_{n} of 2 d random walk satisfies hyperbolic secant law [Rudnick, Hu '87] [Bélisle '89]
$\mathbb{P}\left[\frac{2 \theta_{n}}{\log (n)} \in(a, b)\right] \xrightarrow{n \rightarrow \infty} \frac{1}{2} \int_{a}^{b} \operatorname{sech}\left(\frac{\pi x}{2}\right) \mathrm{d} x$
- Surprising discrete analogue for SRW started at $\left(\frac{1}{2}, \frac{1}{2}\right)$: if $n_{p} \geq 1$ is geometric with parameter p, then for $a, b \in \mathbb{Z}$:

$$
\mathbb{P}\left[\frac{\theta_{n_{p}}}{\pi} \in(a, b)\right]=C_{p} \sum_{x=a+\frac{1}{2}}^{b-\frac{1}{2}} \operatorname{sech}\left(\pi x T_{p}\right)
$$

Introduction: Hyperbolic secant law

- The winding angle θ_{t} of $2 d$ Brownian motion satisfies Spitzer's law [Spitzer '58]

$$
\mathbb{P}\left[\frac{2 \theta_{t}}{\log (t)} \in(a, b)\right] \xrightarrow{t \rightarrow \infty} \frac{1}{\pi} \int_{a}^{b} \frac{\mathrm{~d} x}{1+x^{2}}
$$

- The winding angle θ_{n} of 2 d random walk satisfies hyperbolic secant law [Rudnick, Hu '87] [Bélisle '89]
$\mathbb{P}\left[\frac{2 \theta_{n}}{\log (n)} \in(a, b)\right] \xrightarrow{n \rightarrow \infty} \frac{1}{2} \int_{a}^{b} \operatorname{sech}\left(\frac{\pi x}{2}\right) \mathrm{d} x \quad(*)$
- Surprising discrete analogue for SRW started at $\left(\frac{1}{2}, \frac{1}{2}\right)$: if $n_{p} \geq 1$ is geometric with parameter p, then for $a, b \in \mathbb{Z}$:

$$
\mathbb{P}\left[\frac{\theta_{n_{p}}}{\pi} \in(a, b)\right]=C_{p} \sum_{x=a+\frac{1}{2}}^{b-\frac{1}{2}} \operatorname{sech}\left(\pi x T_{p}\right)
$$

- $T_{p} \sim \frac{1}{\log (1-p)}$ as $p \rightarrow 1$. Reproduces (*).

Introduction: Gessel numbers

- In 2001 Ira Gessel conjectured the number of walks with $2 n$ steps $\in\{N, S, S W, N E\}$ in the quadrant starting and ending at 0 to be

$$
16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=2,11,85,782, \ldots
$$

Introduction: Gessel numbers

- In 2001 Ira Gessel conjectured the number of walks with $2 n$ steps $\in\{N, S, S W, N E\}$ in the quadrant starting and ending at 0 to be

$$
16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=2,11,85,782, \ldots
$$

- Turned out to be a notoriously difficult problem, but by now we have...
-a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
-a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
-an elementary (algebraic) proof. [Bousquet-Mélou, '15]

Introduction: Gessel numbers

- In 2001 Ira Gessel conjectured the number of walks with $2 n$ steps $\in\{N, S, S W, N E\}$ in the quadrant starting and ending at 0 to be

$$
16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=2,11,85,782, \ldots
$$

- Turned out to be a notoriously difficult problem, but by now we have...
-a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
-a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
-an elementary (algebraic) proof. [Bousquet-Mélou, '15]
- We will see that control of winding numbers provides an alternative route.

Introduction: planar maps

- Planar map $=$ rooted planar graph embedded in \mathbb{R}^{2} up to homeomorphisms.

Introduction: planar maps

- Planar map $=$ rooted planar graph embedded in \mathbb{R}^{2} up to homeomorphisms.
- Generating function of maps with fixed root face degree p :

$$
W^{(p)}\left(\left\{q_{i}\right\}\right)=\sum_{\text {maps }} \prod_{\text {faces } f} q_{\text {degree }(f)}
$$

Introduction: planar maps

- Planar map $=$ rooted planar graph embedded in \mathbb{R}^{2} up to homeomorphisms.
- Generating function of maps with fixed root face degree p :

$$
W^{(p)}\left(\left\{q_{i}\right\}\right)=\sum_{\text {maps }} \prod_{\text {faces } f} q_{\text {degree }(f)}
$$

- Similarly, let $W^{(p, 0)}$ be GF of maps with a marked vertex and $W^{(p, l)}$ for maps with a
 marked face of degree I. (Root face and marked face

Introduction: planar maps

- Planar map $=$ rooted planar graph embedded in \mathbb{R}^{2} up to homeomorphisms.
- Generating function of maps with fixed root face degree p :

$$
W^{(p)}\left(\left\{q_{i}\right\}\right)=\sum_{\text {maps }} \prod_{\text {faces } f} q_{\text {degree }(f)}
$$

- Similarly, let $W^{(p, 0)}$ be GF of maps with a marked vertex and $W^{(p, l)}$ for maps with a
 marked face of degree I. (Root face and marked face
receive no weight!)

Relation between maps and walks?

- Classical result: for bipartite maps the GF with marked vertex takes a universal form (with $\rho_{\mathbf{q}}$ a formal power series in q_{2}, q_{4}, \ldots)

$$
W^{(2 p, 0)}=\binom{2 p}{p}\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{p}
$$

Relation between maps and walks?

- Classical result: for bipartite maps the GF with marked vertex takes a universal form (with $\rho_{\mathbf{q}}$ a formal power series in q_{2}, q_{4}, \ldots)

$$
W^{(2 p, 0)}=\binom{2 p}{p}\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{p}
$$

- Same formula appears in GF's for lattice walks $(2 p, 0) \rightarrow(0,0)$ that avoid negative half-axis (counted with factor t per step):
- not only "staircase walks" $\left(\rho \rightarrow 4 t^{2}\right) \ldots$

Relation between maps and walks?

- Classical result: for bipartite maps the GF with marked vertex takes a universal form (with $\rho_{\mathbf{q}}$ a formal power series in q_{2}, q_{4}, \ldots)

$$
W^{(2 p, 0)}=\binom{2 p}{p}\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{p}
$$

- Same formula appears in GF's for lattice walks $(2 p, 0) \rightarrow(0,0)$ that avoid negative half-axis (counted with factor t per step):
- not only "staircase walks" $\left(\rho \rightarrow 4 t^{2}\right) \ldots$
- ... but whole class of walks on slit plane ($\rho \rightarrow$ some power series in t). [Bousquet-Mélou, Schaeffer, '00]

Relation between maps and walks?

- Classical result: for bipartite maps the GF with marked vertex takes a universal form (with $\rho_{\mathbf{q}}$ a formal power series in q_{2}, q_{4}, \ldots)

$$
W^{(2 p, 0)}=\binom{2 p}{p}\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{p}
$$

- Same formula appears in GF's for lattice walks $(2 p, 0) \rightarrow(0,0)$ that avoid negative half-axis (counted with factor t per step):
- not only "staircase walks" $\left(\rho \rightarrow 4 t^{2}\right) \ldots$
- ... but whole class of walks on slit plane ($\rho \rightarrow$ some power series in t). [Bousquet-Mélou, Schaeffer, '00]
- in particular simple diagonal walks $\left(\rho \rightarrow \frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1\right)$.

Relation between maps and walks? Continued.

- The GF for quasi-bipartite maps with a marked face has an equally universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+I) / 2} \quad \alpha(I):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

Relation between maps and walks? Continued.

- The GF for quasi-bipartite maps with a marked face has an equally universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+I) / 2} \quad \alpha(I):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

- Up to factor of two (and $\rho \rightarrow \frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1$) this also counts walks on slit plane ending at $(-I, 0)$.

$$
H^{(p, l)}(t)=\frac{2}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho(t)}{4}\right)^{(p+I) / 2}
$$

Relation between maps and walks? Continued.

- The GF for quasi-bipartite maps with a marked face has an equally universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+l) / 2} \quad \alpha(I):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

- Up to factor of two (and $\rho \rightarrow \frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1$) this also counts walks on slit plane ending at $(-I, 0)$.

$$
H^{(p, l)}(t)=\frac{2}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho(t)}{4}\right)^{(p+I) / 2}
$$

Relation between maps and walks? Continued.

- The GF for quasi-bipartite maps with a marked face has an equally universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+l) / 2} \quad \alpha(I):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

- Up to factor of two (and $\rho \rightarrow \frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1$) this also counts walks on slit plane ending at $(-I, 0)$.

$$
H^{(p, l)}(t)=\frac{2}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho(t)}{4}\right)^{(p+I) / 2}=: \sqrt{\frac{p}{l}}(\mathcal{H})_{p l}
$$

Relation between maps and walks? Continued.

- The GF for quasi-bipartite maps with a marked face has an equally universal form (see e.g. [Collet, Fusy, '12])

$$
W^{(p, l)}=\frac{1}{l} \frac{2}{p+l} \alpha(I) \alpha(p)\left(\frac{\rho_{\mathbf{q}}}{4}\right)^{(p+l) / 2} \quad \alpha(I):=\frac{p!}{\left\lfloor\frac{p}{2}\right\rfloor!\left\lfloor\frac{p-1}{2}\right\rfloor!}
$$

- Up to factor of two (and $\rho \rightarrow \frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1$) this also counts walks on slit plane ending at $(-I, 0)$. Coincidence?

$$
H^{(p, l)}(t)=\frac{2}{l} \frac{2}{p+l} \alpha(l) \alpha(p)\left(\frac{\rho(t)}{4}\right)^{(p+l) / 2}=: \sqrt{\frac{p}{l}}(\mathcal{H})_{p l}
$$

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset\{-1,0,1,2, \ldots\} \times\{-1,0,1\}$, there is a 2-to-1 map $\phi^{(p, l)}:\{\mathfrak{S}$-walks $(p, 0), \cdots,(-I, 0)$ on slit plane $\}$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "ऽ-walk-decorated maps" with root face degree } p \\
\text { and marked face degree I }
\end{array}\right\}
$$

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset\{-1,0,1,2, \ldots\} \times\{-1,0,1\}$, there is a 2-to-1 map $\Phi^{(p, l)}:\{\mathfrak{S}$-walks $(p, 0), \cdots,(-I, 0)$ on slit plane $\}$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "ऽ-walk-decorated maps" with root face degree } p \\
\text { and marked face degree I }
\end{array}\right\}
$$

- A S-walk-decorated map is a rooted planar map with a marked face together with...

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset\{-1,0,1,2, \ldots\} \times\{-1,0,1\}$, there is a 2-to-1 map $\Phi^{(p, l)}:\{\mathfrak{S}$-walks $(p, 0), \cdots,(-I, 0)$ on slit plane $\}$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "S-walk-decorated maps" with root face degree p } \\
\text { and marked face degree I }
\end{array}\right\}
$$

- A S-walk-decorated map is a rooted planar map with a marked face together with...
- for each face (except root or marked) of degree k an excursion $(0,0), \ldots,(k-2,0)$ above or below x-axis.

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset\{-1,0,1,2, \ldots\} \times\{-1,0,1\}$, there is a 2-to-1 map $\Phi^{(p, l)}:\{\mathfrak{S}$-walks $(p, 0), \cdots,(-I, 0)$ on slit plane $\}$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "(-walk-decorated maps" with root face degree p } \\
\text { and marked face degree I }
\end{array}\right\}
$$

- A S-walk-decorated map is a rooted planar map with a marked face together with...
- for each face (except root or marked) of degree k an excursion $(0,0), \ldots,(k-2,0)$ above or below x-axis.
- for each vertex an excursion $(0,0), \ldots,(-2,0)$ above x-axis

A bijective explanation

Proposition

For any step set $\mathfrak{S} \subset\{-1,0,1,2, \ldots\} \times\{-1,0,1\}$, there is a 2-to-1 map $\phi^{(p, l)}:\{\mathfrak{S}$-walks $(p, 0), \cdots,(-I, 0)$ on slit plane $\}$

$$
\longrightarrow\left\{\begin{array}{l}
\text { "(-walk-decorated maps" with root face degree p } \\
\text { and marked face degree I }
\end{array}\right\}
$$

- A \mathfrak{S}-walk-decorated map is a rooted planar map with a marked face together with...
- for each face (except root or marked) of degree k an excursion $(0,0), \ldots,(k-2,0)$ above or below x-axis.
- for each vertex an excursion $(0,0), \ldots,(-2,0)$ above x-axis
- Substituting in $2 W^{(p, /)}\left(\left\{q_{i}\right\}\right)$ the GF
 leads to $H^{(p, l)}(t)$ (up to $\left.(\cdot)^{p+l}\right)$.

$$
\begin{array}{ll}
\Delta \Delta \Delta \\
\Delta \Delta
\end{array}
$$

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

From walks to (rigid) loop-decorated maps

- Such walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle θ_{w} have GF

$$
\mathcal{G}_{b}^{(p, l)}:=\sum_{w} t^{|\omega|} e^{i b \theta_{w}}=\sum_{N=1}^{\infty}\left(\frac{e^{i b \pi}+e^{-i b \pi}}{2}\right)_{k_{1}, \ldots, k_{N-1} \geq 1}^{N} H^{\left(p, k_{1}\right)} H^{\left(k_{1}, k_{2}\right)} \ldots H^{\left(k_{N-1}, l\right)}
$$

From walks to (rigid) loop-decorated maps

- Such walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle θ_{w} have GF

$$
\mathcal{G}_{b}^{(p, /)}:=\sum_{w} t^{|w|} e^{i b \theta_{w}}=\sum_{N=1}^{\infty} \cos ^{N}(\pi b) \sum_{k_{1}, \ldots, k_{N-1} \geq 1} H^{\left(p, k_{1}\right)} H^{\left(k_{1}, k_{2}\right)} \cdots H^{\left(k_{N-1}, l\right)}
$$

From walks to (rigid) loop-decorated maps

- Such walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle θ_{w} have GF

$$
\mathcal{G}_{b}^{(p, l)}:=\sum_{w} t^{|\omega|} e^{i b \theta_{w}}=\sum_{N=1}^{\infty} \cos ^{N}(\pi b) \sqrt{\frac{p}{l}}\left(\mathcal{H}^{N}\right)_{p l}
$$

From walks to (rigid) loop-decorated maps

- Such walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle θ_{w} have GF

$$
\mathcal{G}_{b}^{(p, l)}:=\sum_{w} t^{|w|} e^{i b \theta_{w}}=\sqrt{\frac{p}{l}}\left(\frac{\cos (\pi b) \mathcal{H}}{I-\cos (\pi b) \mathcal{H}}\right)_{p l}
$$

From walks to (rigid) loop-decorated maps

- Such walks from $(p, 0)$ to $(\pm I, 0)$ with winding angle θ_{w} have GF

$$
\mathcal{G}_{b}^{(p, l)}:=\sum_{w} t^{|w|} e^{i b \theta_{w}}=\sqrt{\frac{p}{l}}\left(\frac{\cos (\pi b) \mathcal{H}}{I-\cos (\pi b) \mathcal{H}}\right)_{p l}
$$

- But this also enumerates planar maps decorated with rigid loops carrying a weight $n:=2 \cos (\pi b)$ each (and a redundant overall factor of n).

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

$$
\text { weight } n^{\# \text { loops }} g^{\# \text { loop faces }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.
- Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11] for this "rigid" setting.

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

$$
\text { weight } \quad n^{\# \text { loops }} g^{\# l o o p ~ f a c e s ~} \prod_{\text {regular faces }} q_{\text {degree }}
$$

- An exact solution of a closely related model was first obtained by [Eynard, Kristjansen, '95] in terms of elliptic functions.
- Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11] for this "rigid" setting.
- Recently in [Borot, Bouttier, Duplantier, '16] (in slightly different setting) exact statistics for the nesting of loops was obtained, i.e. distribution of \# loops surrounding a marked vertex/face.

Planar maps coupled to a rigid $O(n)$ loop model

- Rigid $O(n)$ model: a planar map + disjoint loops, that intersect solely quadrangles through opposite sides. Enumerated with

$$
\text { weight } \quad n^{\# \text { loops }} g^{\# l o o p ~ f a c e s ~} \prod_{\text {regular faces }} q_{\text {degree }}
$$

- An exact solution of a closely related model was first obtained by [Eynard, Kristiansen, '95] in terms of elliptic functions.
- Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11] for this "rigid" setting.
- Recently in [Borot, Bouttier, Duplantier, '16] (in slightly different setting) exact statistics for the nesting of loops was obtained, i.e. distribution of \# loops surrounding a marked vertex/face.
- Importantly: suppressing loops that do not surround mark affects GF's only through renormalization of \mathbf{q}.
- Adapting GF from [Borot, Bouttier, Duplantier, '16], setting $n=2 \cos (\pi b)$ and computing a series representation:

$$
\begin{aligned}
& \mathcal{G}_{b}\left(x_{1}, x_{2} ; t\right):=\sum_{p, l \geq 1} x_{1}^{p} x_{2}^{l} \mathcal{G}_{b}^{(p, l)} \\
& \quad=4 \sum_{m=1}^{\infty} \frac{2 \cos (\pi b)}{q^{m}+q^{-m}-2 \cos (\pi b)} \frac{\cos \left(2 \pi m v\left(x_{2}\right)\right) x_{1} \frac{\partial}{\partial x_{1}} \cos \left(2 \pi m v\left(x_{1}\right)\right)}{m\left(q^{-m}-q^{m}\right)}
\end{aligned}
$$

where $q=q(4 t)$ is elliptic nome of modulus $4 t$ and

$$
v(x):=\operatorname{cd}^{-1}(-x / \sqrt{\rho}, \rho) /(4 K(\rho)), \quad \rho(t)=\frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1
$$

- Adapting GF from [Borot, Bouttier, Duplantier, '16], setting $n=2 \cos (\pi b)$ and computing a series representation:

$$
\begin{aligned}
& \mathcal{G}_{b}\left(x_{1}, x_{2} ; t\right):=\sum_{p, I \geq 1} x_{1}^{p} x_{2}^{\prime} \mathcal{G}_{b}^{(p, I)}=\sum_{p, I \geq 1} x_{1}^{p} x_{2}^{\prime} \sqrt{\frac{p}{l}\left(\frac{\cos (\pi b) \mathcal{H}}{I-\cos (\pi b) \mathcal{H}}\right)_{p / l}} \\
& =4 \sum_{m=1}^{\infty} \frac{2 \cos (\pi b)}{q^{m}+q^{-m}-2 \cos (\pi b)} \frac{\cos \left(2 \pi m v\left(x_{2}\right)\right) x_{1} \frac{\partial}{\partial x_{1}} \cos \left(2 \pi m v\left(x_{1}\right)\right)}{m\left(q^{-m}-q^{m}\right)}
\end{aligned}
$$

where $q=q(4 t)$ is elliptic nome of modulus $4 t$ and

$$
v(x):=\operatorname{cd}^{-1}(-x / \sqrt{\rho}, \rho) /(4 K(\rho)), \quad \rho(t)=\frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1
$$

- Adapting GF from [Borot, Bouttier, Duplantier, '16], setting $n=2 \cos (\pi b)$ and computing a series representation:

$$
\begin{aligned}
& \mathcal{G}_{b}\left(x_{1}, x_{2} ; t\right):=\sum_{p, I \geq 1} x_{1}^{p} x_{2}^{\prime} \mathcal{G}_{b}^{(p, I)}=\sum_{p, I \geq 1} x_{1}^{p} x_{2}^{\prime} \sqrt{\frac{p}{l}\left(\frac{\cos (\pi b) \mathcal{H}}{I-\cos (\pi b) \mathcal{H}}\right)_{p l}} \\
& =4 \sum_{m=1}^{\infty} \frac{2 \cos (\pi b)}{q^{m}+q^{-m}-2 \cos (\pi b)} \frac{\cos \left(2 \pi m v\left(x_{2}\right)\right) x_{1} \frac{\partial}{\partial x_{1}} \cos \left(2 \pi m v\left(x_{1}\right)\right)}{m\left(q^{-m}-q^{m}\right)}
\end{aligned}
$$

where $q=q(4 t)$ is elliptic nome of modulus $4 t$ and

$$
v(x):=\operatorname{cd}^{-1}(-x / \sqrt{\rho}, \rho) /(4 K(\rho)), \quad \rho(t)=\frac{1-\sqrt{1-16 t^{2}}}{8 t^{2}}-1
$$

Proposition (Diagonalization of \mathcal{H})

$\mathcal{H}=U^{T} \cdot \Lambda_{q} \cdot U$ in the sense of operators on $\ell^{2}(\mathbb{R})$ with

$$
\Lambda_{q}=\operatorname{diag}\left(\frac{2}{q^{m}+q^{-m}}\right)_{m \geq 1}, U_{m p}=\sqrt{\frac{4 p}{m\left(q^{-m}-q^{m}\right)}}\left[x^{p}\right] \cos (2 \pi m v(x))
$$

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{p}{I}}\left(\mathcal{H}^{N}\right)_{p /}$ enumerates walks $(p, 0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{1}{I}}\left(\mathcal{H}^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{1}{1}}\left(\mathcal{H}^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then $\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{l}}\left(\mathcal{H}^{N}\right)_{1, l}$ enumerates all walks alternating $\geq N$ times.

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{1}{I}}\left(\mathcal{H}^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then $\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{ } /}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l}$ enumerates all walks alternating exactly N times.

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{1}{I}}\left(\mathcal{H}^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then $\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{ }!}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l}$ enumerates all walks alternating exactly N times.

$$
\sum_{w} t^{|\omega|} e^{i \pi b\left(\left\lfloor\frac{\theta_{\omega}}{\pi}\right\rfloor+\frac{1}{2}\right)}=\frac{4 t \cos (\pi b / 2)}{1-4 t} \sum_{N \geq 0} \cos ^{N}(\pi b) \sum_{I \geq 1} \frac{1}{\sqrt{l}}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l}
$$

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{1}{I}}\left(\mathcal{H}^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then $\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{ } /}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l}$ enumerates all walks alternating exactly N times.

$$
\begin{gathered}
\sum_{w} t^{|\omega|} e^{i \pi b\left(\left\lfloor\frac{\theta_{\omega}}{\pi}\right\rfloor+\frac{1}{2}\right)}=\frac{4 t \cos (\pi b / 2)}{1-4 t} \sum_{N \geq 0} \cos ^{N}(\pi b) \sum_{l \geq 1} \frac{1}{\sqrt{l}}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l} \\
=\frac{1}{1-4 t} \frac{\pi}{2 K(4 t)} \sum_{k=-\infty}^{\infty} \frac{2 e^{i \pi b\left(k+\frac{1}{2}\right)}}{q^{k+\frac{1}{2}}+q^{-k-\frac{1}{2}}}=\frac{\operatorname{cn}(b K(4 t), 4 t)}{1-4 t}
\end{gathered}
$$

Application 1: hyperbolic secant law

- Recall $\sqrt{\frac{1}{1}}\left(\mathcal{H}^{N}\right)_{1 /}$ enumerates walks $(1,0) \rightarrow(\pm I, 0)$ that alternate between half-axes N times.
- Then $\frac{1}{1-4 t} \sum_{l \geq 1} \frac{1}{\sqrt{l}}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l}$ enumerates all walks alternating exactly N times.

$$
\begin{gathered}
\sum_{w} t^{|w|} e^{i \pi b\left(\left\lfloor\frac{\theta_{w}}{\pi}\right\rfloor+\frac{1}{2}\right)}=\frac{4 t \cos (\pi b / 2)}{1-4 t} \sum_{N \geq 0} \cos ^{N}(\pi b) \sum_{I \geq 1} \frac{1}{\sqrt{I}}\left(\mathcal{H}^{N}-\mathcal{H}^{N+1}\right)_{1, l} \\
=\frac{1}{1-4 t} \frac{\pi}{2 K(4 t)} \sum_{k=-\infty}^{\infty} \frac{2 e^{i \pi b\left(k+\frac{1}{2}\right)}}{q^{k+\frac{1}{2}}+q^{-k-\frac{1}{2}}}=\frac{\operatorname{cn}(b K(4 t), 4 t)}{1-4 t}
\end{gathered}
$$

Theorem (Winding angle of SRW on \mathbb{Z}^{2} around ($-\frac{1}{2}, \frac{1}{2}$))
If $n_{p} \geq 1$ is a geometric $R V$ with parameter $0<p<1$ then

$$
\mathbb{P}\left[k \pi<\theta_{n_{p}}<(k+1) \pi\right]=\frac{\operatorname{sech}\left(\pi\left(k+\frac{1}{2}\right) T\right)}{\sum_{k \in \mathbb{Z}} \operatorname{sech}\left(\pi\left(k+\frac{1}{2}\right) T\right)}, \quad T=\frac{K\left(\sqrt{1-p^{2}}\right)}{K(p)}
$$

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.
- Why not decompose into walks on half plane?

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.
- Why not decompose into walks on half plane?
- Denote GF for half-plane walks $(p, 0), \ldots(0, \pm l)$ by $\sqrt{\frac{p}{l}} \mathcal{J}_{p l}$. Then

$$
\mathcal{H}=\frac{1}{2} \mathcal{J}^{2}(I+\mathcal{H}), \quad \mathcal{J}=\sqrt{\frac{2 \mathcal{H}}{I+\mathcal{H}}}
$$

Refinement: increase winding angle resolution

- Up to now: decomposed walk into sequence of walks on slit plane.
- Why not decompose into walks on half plane?
- Denote GF for half-plane walks $(p, 0), \ldots(0, \pm l)$ by $\sqrt{\frac{p}{l}} \mathcal{J}_{p l}$. Then
$\mathcal{H}=\frac{1}{2} \mathcal{J}^{2}(I+\mathcal{H}), \quad \mathcal{J}=\sqrt{\frac{2 \mathcal{H}}{I+\mathcal{H}}}$

- Hence \mathcal{J} has same eigenmodes as \mathcal{H} but eigenvalues are $\frac{2}{a^{m / 2}+q^{-m / 2}}$ instead of $\frac{2}{q^{m}+q^{-m}}$. Such an operation $q \rightarrow \sqrt{q}$ on elliptic functions are well-known as "Landen transformations".

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4 -to-2 onto sequence of half-plane walks $(2,0),(1, \pm 1), \ldots(\pm 1, \pm 1),(0 / \pm 2,0 / \pm 2)$.

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4 -to-2 onto sequence of half-plane walks $(2,0),(1, \pm 1), \ldots(\pm 1, \pm 1),(0 / \pm 2,0 / \pm 2)$.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(\cos \left(\frac{\pi b}{2}\right)\right)^{N-1}\left[\left(\mathcal{J}^{N}\right)_{22}-\right.
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4 -to-2 onto sequence of half-plane walks $(2,0),(1, \pm 1), \ldots(\pm 1, \pm 1),(0 / \pm 2,0 / \pm 2)$.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(\cos \left(\frac{\pi b}{2}\right)\right)^{N-1}\left[\left(\mathcal{J}^{N}\right)_{22}-\right.
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequence of half-plane walks $(2,0),(1, \pm 1), \ldots(\pm 1, \pm 1),(0 / \pm 2,0 / \pm 2)$.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(\cos \left(\frac{\pi b}{2}\right)\right)^{N-1}\left[\left(\mathcal{J}^{N}\right)_{22}-\sqrt{\frac{4}{2}}\left(\mathcal{J}^{N}\right)_{42}+\sqrt{\frac{6}{2}}\left(\mathcal{J}^{N}\right)_{62}-\cdots\right]
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4 -to-2 onto sequence of half-plane walks $(2,0),(1, \pm 1), \ldots(\pm 1, \pm 1),(0 / \pm 2,0 / \pm 2)$.
- Enumerated by

$$
F(t, b)=2 \sum_{N \geq 1}\left(\cos \left(\frac{\pi b}{2}\right)\right)^{N-1} \sum_{p, l \geq 0}(-1)^{p+l} \sqrt{\frac{p}{l}}\left(\mathcal{J}^{N}\right)_{2 p, 2 l}
$$

Winding angle of excursions

- Wish to enumerate excursions from origin by length and winding angle:

$$
\begin{gathered}
F(t, b):=\sum_{w} t^{|w|} e^{i b \theta_{w}} \\
=4 t^{2}+\left(12+4 e^{-i b \frac{\pi}{2}}+4 e^{i b \frac{\pi}{2}}\right) t^{4}+\ldots
\end{gathered}
$$

- Flip last step away from last axis intersection, and first step oppositely.
- θ_{w} now measures angle to penultimate axis intersection.

- This maps excursions 4-to-2 onto sequence of half-plane walks $(2,0),(1, \pm 1), \ldots(\pm 1, \pm 1),(0 / \pm 2,0 / \pm 2)$.
- Enumerated by

$$
\begin{aligned}
F(t, b) & =2 \sum_{N \geq 1}\left(\cos \left(\frac{\pi b}{2}\right)\right)^{N-1} \sum_{p, l \geq 0}(-1)^{p+l} \sqrt{\frac{p}{l}}\left(\mathcal{J}^{N}\right)_{2 p, 2 l} \\
& =\sec \left(\frac{\pi b}{2}\right)\left[1-\frac{\pi \tan \left(\frac{\pi b}{4}\right)}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi b}{4}, \sqrt{q}\right)}{\theta_{1}\left(\frac{\pi b}{4}, \sqrt{q}\right)}\right]
\end{aligned}
$$

Application 2: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For integers $m-n<p<m<n$ the GF for simple walks $(0,0),(1,0), \ldots,(0,0)$ with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region $\left(\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi\right)$ is

$$
F_{n, m, p}(t):=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application 2: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For integers $m-n<p<m<n$ the GF for simple walks $(0,0),(1,0), \ldots,(0,0)$ with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region $\left(\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi\right)$ is

$$
F_{n, m, p}(t):=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application 2: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For integers $m-n<p<m<n$ the GF for simple walks $(0,0),(1,0), \ldots,(0,0)$ with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region $\left(\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi\right)$ is

$$
F_{n, m, p}(t):=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application 2: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For integers $m-n<p<m<n$ the GF for simple walks $(0,0),(1,0), \ldots,(0,0)$ with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region $\left(\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi\right)$ is

$$
F_{n, m, p}(t):=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

Application 2: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For integers $m-n<p<m<n$ the GF for simple walks $(0,0),(1,0), \ldots,(0,0)$ with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region $\left(\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi\right)$ is

$$
F_{n, m, p}(t):=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

- Direct consequence of the reflection principle.

Application 2: walks in cones

Theorem (Excursions in the $\frac{n \pi}{4}$-cone.)
For integers $m-n<p<m<n$ the GF for simple walks $(0,0),(1,0), \ldots,(0,0)$ with winding angle $\frac{p \pi}{2}$ staying strictly inside angular region $\left(\frac{p+m-n}{4} \pi, \frac{p+m}{4} \pi\right)$ is

$$
F_{n, m, p}(t):=\frac{1}{4 n} \sum_{k=1}^{n-1}\left(e^{-2 i \pi \frac{p k}{n}}-e^{-2 i \pi \frac{m k}{n}}\right) F\left(t, \frac{4 k}{n}\right)
$$

- Direct consequence of the reflection principle.

Application 2: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$

Application 2: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$

Application 2: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$
- Gessel-type walks returning to origin in quadrant are enumerated by

$$
\frac{1}{t^{2}} F_{3,2,0}(t)=\frac{1}{4 t^{2}} F\left(t, \frac{4}{3}\right)
$$

Application 2: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$
- Gessel-type walks returning to origin in quadrant are enumerated by

$$
\begin{aligned}
& \frac{1}{t^{2}} F_{3,2,0}(t)=\frac{1}{4 t^{2}} F\left(t, \frac{4}{3}\right) \\
& \quad=\frac{1}{2 t^{2}}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q}\right)}-1\right] \\
& \quad=1+2 t^{2}+11 t^{4}+85 t^{6}+\cdots
\end{aligned}
$$

which is [OEIS sequence A135404]

Application 2: walks in cones (Gessel case)

- Special case: $(n, m, p)=(3,2,0)$
- Gessel-type walks returning to origin in quadrant are enumerated by

$$
\begin{aligned}
& \frac{1}{t^{2}} F_{3,2,0}(t)=\frac{1}{4 t^{2}} F\left(t, \frac{4}{3}\right) \\
& \quad=\frac{1}{2 t^{2}}\left[\frac{\sqrt{3} \pi}{2 K(4 t)} \frac{\theta_{1}^{\prime}\left(\frac{\pi}{3}, \sqrt{q}\right)}{\theta_{1}\left(\frac{\pi}{3}, \sqrt{q}\right)}-1\right] \\
& \quad=1+2 t^{2}+11 t^{4}+85 t^{6}+\cdots
\end{aligned}
$$

which is [OEIS sequence A135404]

- But not obvious that this reproduces the known GF

$$
\sum_{n=0}^{\infty} t^{2 n} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}}=\frac{1}{2 t^{2}}\left[{ }_{2} F_{1}\left(-\frac{1}{2},-\frac{1}{6} ; \frac{2}{3} ;(4 t)^{2}\right)-1\right],
$$

nor that it is algebraic [Bostan, Kauers, '09].

Further questions

- Which generating functions are algebraic?
- Other walks with small steps?
- Why are some of the generating functions biperiodic and other ones only quasi-biperiodic?
- Finally, here is an interpretation of the nome q as function of the elliptic modulus k. Why is it so simple?

$$
q(k)=\lim _{n \rightarrow \infty} \mathbb{P}\left[\begin{array}{l}
\text { SRW on } \mathbb{Z}^{2} \text { reaches winding angle } n \pi \\
\text { before geometric time with parameter } k
\end{array}\right]^{1 / n}
$$

