Adding colors to dynamical triangulations in 3d
Timothy Budd
budd@nbi.dk, office: Fb-11

September 20, 2012
Niels Bohr Institute

(Euclidean) Dynamical Triangulations in 3d

- Central object in Euclidean path integral approach to quantum gravity:

$$
Z_{Q G}=\int_{S^{3}} \frac{\mathcal{D} g}{\text { Diff }} e^{-S_{E H}[g]}
$$

(Euclidean) Dynamical Triangulations in 3d

- Central object in Euclidean path integral approach to quantum gravity:

$$
Z_{Q G}=\int_{S^{3}} \frac{\mathcal{D} g}{\text { Diff }} e^{-S_{E H}[g]} \underset{\text { in DT }}{ } \quad Z_{D T}=\sum_{T} \frac{1}{C_{T}} e^{-S_{D T}[T]}
$$

- DT is a lattice regularization replacing the integral by a sum over triangulations built from N_{3} equilateral tetrahedra.

(Euclidean) Dynamical Triangulations in 3d

- Central object in Euclidean path integral approach to quantum gravity:

$$
Z_{Q G}=\int_{S^{3}} \frac{\mathcal{D} g}{\mathrm{Diff}} e^{-S_{E H}[g]} \underset{\text { in DT }}{ } \quad Z_{D T}=\sum_{T} \frac{1}{C_{T}} e^{-S_{D T}[T]}
$$

- DT is a lattice regularization replacing the integral by a sum over triangulations built from N_{3} equilateral tetrahedra.

$$
S_{D T}[T]=k_{3} N_{3}-k_{0} N_{0}, \quad k_{3} \sim \Lambda, k_{0} \sim 1 / G .
$$

(Euclidean) Dynamical Triangulations in 3d

- Central object in Euclidean path integral approach to quantum gravity:

$$
Z_{Q G}=\int_{S^{3}} \frac{\mathcal{D} g}{\text { Diff }} e^{-S_{E H}[g]} \quad \underset{\text { in DT }}{ } \quad Z_{D T}=\sum_{T} \frac{1}{C_{T}} e^{-S_{D T}[T]}
$$

- DT is a lattice regularization replacing the integral by a sum over triangulations built from N_{3} equilateral tetrahedra.

$$
S_{D T}[T]=k_{3} N_{3}-k_{0} N_{0}, \quad k_{3} \sim \Lambda, k_{0} \sim 1 / G .
$$

- Number of triangulations of fixed topology grows exponentially with N_{3}. Therefore a critical coupling $k_{3}^{*}\left(k_{0}\right)$ exists s.t.

$$
\left\langle N_{3}\right\rangle<\infty \text { for } k_{3}<k_{3}^{*} \text { and } Z \text { diverges for } k_{3}>k_{3}^{*}
$$

(Euclidean) Dynamical Triangulations in 3d

- Central object in Euclidean path integral approach to quantum gravity:

$$
Z_{Q G}=\int_{S^{3}} \frac{\mathcal{D} g}{\text { Diff }} e^{-S_{E H}[g]} \underset{\text { in DT }}{ } \quad Z_{D T}=\sum_{T} \frac{1}{C_{T}} e^{-S_{D T}[T]}
$$

- DT is a lattice regularization replacing the integral by a sum over triangulations built from N_{3} equilateral tetrahedra.

$$
S_{D T}[T]=k_{3} N_{3}-k_{0} N_{0}, \quad k_{3} \sim \Lambda, k_{0} \sim 1 / G .
$$

- Number of triangulations of fixed topology grows exponentially with N_{3}. Therefore a critical coupling $k_{3}^{*}\left(k_{0}\right)$ exists s.t.

$$
\left\langle N_{3}\right\rangle<\infty \text { for } k_{3}<k_{3}^{*} \quad \text { and } Z \text { diverges for } k_{3}>k_{3}^{*}
$$

- To find a continuum limit we need $N_{3} \rightarrow \infty$, which can be achieved by tuning $k_{3} \rightarrow k_{3}^{*}$, but also lattice spacing $a \rightarrow 0$. For this we need a phase transition.
- Phase diagram of 3d DT in infinite volume limit.

- Phase diagram of 3d DT in infinite volume limit.

- Issues with DT:
- Both phases have little to do with 3d geometry, e.g. Hausdorff dimensions ∞ resp. 2.
- Phase diagram of 3d DT in infinite volume limit.

- Issues with DT:
- Both phases have little to do with 3d geometry, e.g. Hausdorff dimensions ∞ resp. 2.
- Phase transition too strong for continuum limit.
- Phase diagram of 3d DT in infinite volume limit.

- Issues with DT:
- Both phases have little to do with 3d geometry, e.g. Hausdorff dimensions ∞ resp. 2.
- Phase transition too strong for continuum limit.
- No analytic tools available. We have to rely on Monte Carlo simulations.
- Phase diagram of 3d DT in infinite volume limit.

- Issues with DT:
- Both phases have little to do with 3d geometry, e.g. Hausdorff dimensions ∞ resp. 2.
- Phase transition too strong for continuum limit.
- No analytic tools available. We have to rely on Monte Carlo simulations.
- Various attempts to cure some of these issues (90's): Modified actions, matter fields, ... (CDT)
- Phase diagram of 3d DT in infinite volume limit.

- Issues with DT:
- Both phases have little to do with 3d geometry, e.g. Hausdorff dimensions ∞ resp. 2.
- Phase transition too strong for continuum limit.
- No analytic tools available. We have to rely on Monte Carlo simulations.
- Various attempts to cure some of these issues (90's): Modified actions, matter fields, ... (CDT)
- This talk: new model which has not been studied before from DT perspective (to my knowledge).

Outline

- Motivation for colored DT: matrix models \rightarrow tensor models \rightarrow colored tensor models \rightarrow colored DT
- Monte Carlo simulations
- Analytic approach to branched polymer phase
- Conclusions \& Outlook

Matrix models

- Typical matrix model: $Z=\int d X_{i j} e^{-N\left(\operatorname{Tr}\left[X^{2}\right]+\lambda \operatorname{Tr}\left[X^{3}\right]\right)}, 1 \leq i, j \leq N$.

Matrix models

- Typical matrix model: $Z=\int d X_{i j} e^{-N\left(\operatorname{Tr}\left[X^{2}\right]+\lambda \operatorname{Tr}\left[X^{3}\right]\right)}, 1 \leq i, j \leq N$.

Matrix models

- Typical matrix model: $Z=\int d X_{i j} e^{-N\left(\operatorname{Tr}\left[X^{2}\right]+\lambda \operatorname{Tr}\left[X^{3}\right]\right)}, 1 \leq i, j \leq N$.

Matrix models

- Typical matrix model: $Z=\int d X_{i j} e^{-N\left(\operatorname{Tr}\left[X^{2}\right]+\lambda \operatorname{Tr}\left[X^{3}\right]\right)}, 1 \leq i, j \leq N$.

Matrix models

- Typical matrix model: $Z=\int d X_{i j} e^{-N\left(\operatorname{Tr}\left[X^{2}\right]+\lambda \operatorname{Tr}\left[X^{3}\right]\right)}, 1 \leq i, j \leq N$.

- Amplitude $N^{-E}(\lambda N)^{V} N^{F}=N^{V-E+F} \lambda^{V}=N^{\chi} \lambda^{V}=N^{2-2 g} \lambda^{V}$.

Matrix models

- Typical matrix model: $Z=\int d X_{i j} e^{-N\left(\operatorname{Tr}\left[X^{2}\right]+\lambda \operatorname{Tr}\left[X^{3}\right]\right)}, 1 \leq i, j \leq N$.

- Amplitude $N^{-E}(\lambda N)^{V} N^{F}=N^{V-E+F} \lambda^{V}=N^{\chi} \lambda^{V}=N^{2-2 g} \lambda^{V}$.
- For $N \rightarrow \infty$ planar triangulations dominate ($g=0$).

Tensor models

- Straightforward generalization:

$$
Z=\int d X_{i j k} e^{-N^{3 / 2}\left(x_{i j k} x^{j k}+\lambda X_{i j k} x_{i m}^{i} x_{n}^{j l} x^{k m n}\right) .}
$$

Tensor models

- Straightforward generalization:

$$
Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} x^{j k}+\lambda X_{j k} X_{i m}^{i} x_{n}^{j l} x^{k m n}\right) .}
$$

Tensor models

- Straightforward generalization:

$$
Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} x^{i j k}+\lambda x_{j k} x_{i m}^{i} x_{n}^{j} x^{k m n}\right) .}
$$

- Contrary to 2D most gluings do not give (simplicial) manifolds.
- Large N limit?

Tensor models

- Straightforward generalization:

$$
Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} x^{j j k}+\lambda x_{j k} x_{i m}^{i} x_{n}^{j} x^{k m m}\right)}
$$

- Contrary to 2D most gluings do not give (simplicial) manifolds.
- Large N limit?
- Moreover, a lot of information to keep track of.

Colored tensor models [Gurau, Bonzom]

- Instead of $Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} k^{i k}+\lambda X_{j k} X_{m}^{i} X_{n}^{j} X^{k m n}\right) \text {, we can take } 4}$ complex tensors of different colors (index contraction is implied):

$$
Z_{\mathrm{CTM}}=\int d X d X d X d X e^{-N^{3 / 2}(x \bar{x}+X \bar{x}+X \bar{x}+X \bar{x}+\lambda X x x x+\lambda \bar{x} \bar{x} \bar{x} \bar{x})}
$$

Colored tensor models [Gurau, Bonzom]

- Instead of $Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} X^{i j k}+\lambda X_{i j k} X_{l m}^{i} X_{n}^{j l} X^{k m n}\right) \text {, we can take } 4 .}$ complex tensors of different colors (index contraction is implied):

$$
Z_{\mathrm{CTM}}=\int d X d X d X d X e^{-N^{3 / 2}(X \bar{X}+X \bar{X}+X \bar{X}+X \bar{X}+\lambda X X X X+\lambda \bar{X} \bar{x} \bar{X} \bar{x})}
$$

- Get two vertices with opposite orientation (white and black)

Colored tensor models [Gurau, Bonzom]

- Instead of $Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} X^{i j k}+\lambda X_{i j k} X_{i m}^{i} X_{n}^{j l} X^{k m n}\right) \text {, we can take } 4}$ complex tensors of different colors (index contraction is implied):

$$
Z_{\mathrm{CTM}}=\int d X d X d X d X e^{-N^{3 / 2}(X \bar{X}+X \bar{X}+X \bar{X}+X \bar{X}+\lambda X X X X+\lambda \bar{X} \bar{x} \bar{X} \bar{x})}
$$

- Get two vertices with opposite orientation (white and black)

- We are dealing with colored tetrahedra and can forget about the strands!

Colored tensor models [Gurau, Bonzom]

- Instead of $Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} X^{i j k}+\lambda X_{i j k} X_{l m}^{i} X_{n}^{j l} X^{k m n}\right) \text {, we can take } 4}$ complex tensors of different colors (index contraction is implied):

$$
Z_{\mathrm{CTM}}=\int d X d X d X d X e^{-N^{3 / 2}(X \bar{X}+X \bar{X}+X \bar{X}+X \bar{X}+\lambda X X X X+\lambda \bar{X} \bar{x} \bar{X} \bar{x})}
$$

- Get two vertices with opposite orientation (white and black)

- We are dealing with colored tetrahedra and can forget about the strands!

Colored tensor models [Gurau, Bonzom]

- Instead of $Z=\int d X_{i j k} e^{-N^{3 / 2}\left(X_{i j k} X^{i j k}+\lambda X_{i j k} X_{l m}^{i} X_{n}^{j l} X^{k m n}\right) \text {, we can take } 4 .}$ complex tensors of different colors (index contraction is implied):

$$
Z_{\mathrm{CTM}}=\int d X d X d X d X e^{-N^{3 / 2}(X \bar{X}+X \bar{X}+X \bar{X}+X \bar{X}+\lambda X X X X+\lambda \bar{X} \bar{x} \bar{X} \bar{x})}
$$

- Get two vertices with opposite orientation (white and black)

- We are dealing with colored tetrahedra and can forget about the strands! The gluing of tetrahedra is uniquely encoded in bipartite colored graph!
- Every bipartite colored graph corresponds to a pseudo simplicial manifold, a manifold with mild topological singularities.

- Every bipartite colored graph corresponds to a pseudo simplicial manifold, a manifold with mild topological singularities.
- Amplitude is $\lambda^{V} N^{3-\omega}$, where the 'degree' ω is a generalization of genus g to higher dimensions. Given in terms of the genus of its 'jackets':
 $\omega=\sum_{\mathcal{J}} g_{J} \geq 0$.
- Every bipartite colored graph corresponds to a pseudo simplicial manifold, a manifold with mild topological singularities.
- Amplitude is $\lambda^{V} N^{3-\omega}$, where the 'degree' ω is a generalization of genus g to higher dimensions. Given in terms of the genus of its 'jackets':
 $\omega=\sum_{\mathcal{J}} g_{J} \geq 0$.
$g=\left\{+\frac{b}{4},+\frac{b}{4},-6-\frac{b}{4}\right\}$
- Every bipartite colored graph corresponds to a pseudo simplicial manifold, a manifold with mild topological singularities.
- Amplitude is $\lambda^{V} N^{3-\omega}$, where the 'degree' ω is a generalization of genus g to higher dimensions. Given in terms of the genus of its 'jackets':
 $\omega=\sum_{\mathcal{J}} g_{J} \geq 0$.

- ω is not a topological invariant, but $\omega=0$ corresponds to special 'melonic' triangulations of S^{3}.

- Every bipartite colored graph corresponds to a pseudo simplicial manifold, a manifold with mild topological singularities.
- Amplitude is $\lambda^{V} N^{3-\omega}$, where the 'degree' ω is a generalization of genus g to higher dimensions. Given in terms of the genus of its 'jackets':
 $\omega=\sum_{\mathcal{J}} g_{J} \geq 0$.
$g=\left\{+\frac{b}{4},+\frac{b}{4},+\frac{b}{+}\right\}$
- ω is not a topological invariant, but $\omega=0$ corresponds to special 'melonic' triangulations of S^{3}.
- Limit $N \rightarrow \infty$ well-defined in terms of melonic graphs.
- Double scaling limit to include $\omega>0$? Control over topologies? Independent methods to evaluate tensor model? Still a long way to go.

Colored dynamical triangulations

- Partition function of colored tensor models

$$
Z_{C T M}(\lambda, N)=\sum_{\text {colored graphs } \mathcal{G}} \frac{1}{C_{\mathcal{G}}} \lambda^{v} N^{3-\omega}
$$

Colored dynamical triangulations

- Partition function of colored tensor models

$$
Z_{C T M}(\lambda, N)=\sum_{\text {colored graphs } \mathcal{G}} \frac{1}{C_{\mathcal{G}}} \lambda^{v} N^{3-\omega}
$$

- Restrict sum to graphs \mathcal{G} with topology S^{3} gives colored dynamical triangulations

$$
\begin{gathered}
Z_{\mathrm{DT}}^{c}\left(k_{0}, k_{3}\right)=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} \lambda^{v} N^{3-\omega}=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} e^{-k_{3} N_{3}+k_{0} N_{0}} \\
N_{3}=V, \quad 3-\omega=N_{0}-\frac{N_{3}}{2}, \quad \Rightarrow \quad e^{-k_{3}}=\frac{\lambda}{\sqrt{N}}, \quad e^{k_{0}}=N .
\end{gathered}
$$

Colored dynamical triangulations

- Partition function of colored tensor models

$$
Z_{C T M}(\lambda, N)=\sum_{\text {colored graphs } \mathcal{G}} \frac{1}{C_{\mathcal{G}}} \lambda^{v} N^{3-\omega}
$$

- Restrict sum to graphs \mathcal{G} with topology S^{3} gives colored dynamical triangulations

$$
\begin{gathered}
Z_{\mathrm{DT}}^{c}\left(k_{0}, k_{3}\right)=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} \lambda^{V} N^{3-\omega}=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} e^{-k_{3} N_{3}+k_{0} N_{0}} \\
N_{3}=V, \quad 3-\omega=N_{0}-\frac{N_{3}}{2}, \quad \Rightarrow \quad e^{-k_{3}}=\frac{\lambda}{\sqrt{N}}, \quad e^{k_{0}}=N .
\end{gathered}
$$

- Melons occur at $N \rightarrow \infty$, i.e. $k_{0} \rightarrow \infty$.

Typical structure of branched polymers.

Colored dynamical triangulations

- Partition function of colored tensor models

$$
Z_{\text {CTM }}(\lambda, N)=\sum_{\text {colored graphs } \mathcal{G}} \frac{1}{C_{\mathcal{G}}} \lambda^{v} N^{3-\omega}
$$

- Restrict sum to graphs \mathcal{G} with topology S^{3} gives colored dynamical triangulations

$$
\begin{gathered}
Z_{\mathrm{DT}}^{c}\left(k_{0}, k_{3}\right)=\sum_{\mathcal{G}_{5^{3}}} \frac{1}{C_{\mathcal{G}}} \lambda^{V} N^{3-\omega}=\sum_{\mathcal{G}_{5^{3}}} \frac{1}{C_{\mathcal{G}}} e^{-k_{3} N_{3}+k_{0} N_{0}} \\
N_{3}=V, \quad 3-\omega=N_{0}-\frac{N_{3}}{2}, \quad \Rightarrow \quad e^{-k_{3}}=\frac{\lambda}{\sqrt{N}}, \quad e^{k_{0}}=N .
\end{gathered}
$$

- Melons occur at $N \rightarrow \infty$, i.e. $k_{0} \rightarrow \infty$. Typical structure of branched polymers.
- Goal: examine $Z_{D T}^{c}\left(k_{0}, k_{3}\right)$ at finite k_{0}
\(\xrightarrow{\substack{crumpled

phase}}\)| branched
 polymer
 phase |
| :---: |
| $\mathbf{1}^{\text {sorder }}$ | K_{0}

Monte Carlo simulations

$-Z_{\mathrm{DT}}^{c}\left(k_{0}, k_{3}\right)=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} e^{-k_{3} N_{3}+k_{0} N_{0}}$ defines a statistical ensemble with Boltzmann weights $e^{-k_{3} N_{3}+k_{0} N_{0}}$.

Monte Carlo simulations

$-Z_{\mathrm{DT}}^{c}\left(k_{0}, k_{3}\right)=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} e^{-k_{3} N_{3}+k_{0} N_{0}}$ defines a statistical ensemble with Boltzmann weights $e^{-k_{3} N_{3}+k_{0} N_{0}}$.

- Generate set $\left\{\mathcal{G}_{i}\right\}$ of random triangulation by applying large number of random 'dipole moves' on initial triangulation. Observables $\langle\mathcal{O}\rangle_{Z_{\mathrm{DT}}^{c}} \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}\left(\mathcal{G}_{i}\right)$.

Monte Carlo simulations

$-Z_{\mathrm{DT}}^{c}\left(k_{0}, k_{3}\right)=\sum_{\mathcal{G}_{s^{3}}} \frac{1}{C_{\mathcal{G}}} e^{-k_{3} N_{3}+k_{0} N_{0}}$ defines a statistical ensemble with Boltzmann weights $e^{-k_{3} N_{3}+k_{0} N_{0}}$.

- Generate set $\left\{\mathcal{G}_{i}\right\}$ of random triangulation by applying large number of random 'dipole moves' on initial triangulation. Observables $\langle\mathcal{O}\rangle_{Z_{\mathrm{DT}}^{c}} \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}\left(\mathcal{G}_{i}\right)$.

- To get large N_{3} we need to tune k_{3} to critical coupling $k_{3}^{*}\left(k_{0}\right)$.

- Measure the observable $\left\langle N_{0}\right\rangle /\left\langle N_{3}\right\rangle$

- Measure the observable $\left\langle N_{0}\right\rangle /\left\langle N_{3}\right\rangle$

- Phase transition seems to be present at $k_{0} \approx 2.7$.
- Measure the observable $\left\langle N_{0}\right\rangle /\left\langle N_{3}\right\rangle$
$\{500,1000,2000,5000,10000,20000,40000\}$

- Phase transition seems to be present at $k_{0} \approx 2.7$.

Order of the phase transition

- Try to find double peak structure in histogram of some order parameter by tuning k_{0} to phase transition. A convenient choice of order parameter is the maximal vertex degree (the degree of a vertex is the number of tetrahedra sharing it).

$$
N_{3}=10000, k_{0}=2.65
$$

Order of the phase transition

- Try to find double peak structure in histogram of some order parameter by tuning k_{0} to phase transition. A convenient choice of order parameter is the maximal vertex degree (the degree of a vertex is the number of tetrahedra sharing it).

$$
N_{3}=10000, k_{0}=2.65
$$

- If the peaks become more distinct as N_{3} increases, the phase transition is $1^{\text {st }}$ order.

Order of the phase transition

- Try to find double peak structure in histogram of some order parameter by tuning k_{0} to phase transition. A convenient choice of order parameter is the maximal vertex degree (the degree of a vertex is the number of tetrahedra sharing it).

$$
N_{3}=10000, k_{0}=2.65
$$

- If the peaks become more distinct as N_{3} increases, the phase transition is $1^{\text {st }}$ order. Check!

$N_{3}=5000, k_{0}=2.59$

$N_{3}=10000, k_{0}=2.65$

$N_{3}=20000, k_{0}=2.70$

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

- Phase diagram of colored DT very similar to uncolored DT, both have $1^{\text {st }}$ order phase transition.
- Agreement on various characteristics of both phases: Hausdorff dimension, spectral dimension, susceptibility exponent, ...
- This suggests colored DT and uncolored DT in same universality class.
- Not unexpected, but not obvious either. Colors put a severe restriction on triangulations.
- Not even clear a priori whether 3d extended colored triangulations exist. However, here is an example:

Towards analytic evaluation at finite k_{0}

- At $e^{-k_{0}}=0(N \rightarrow \infty)$ the partition function Z_{DT}^{c} is dominated by melonic triangulations, which can be easily summed. Can we go beyond $e^{-k_{0}}=0$?

Towards analytic evaluation at finite k_{0}

- At $e^{-k_{0}}=0(N \rightarrow \infty)$ the partition function Z_{DT}^{c} is dominated by melonic triangulations, which can be easily summed. Can we go beyond $e^{-k_{0}}=0$?
- Yes, we can in principle evaluate Z_{DT}^{c} order by order in $e^{-k_{0}}$.

Towards analytic evaluation at finite k_{0}

- At $e^{-k_{0}}=0(N \rightarrow \infty)$ the partition function Z_{DT}^{c} is dominated by melonic triangulations, which can be easily summed. Can we go beyond $e^{-k_{0}}=0$?
- Yes, we can in principle evaluate Z_{DT}^{c} order by order in $e^{-k_{0}}$.
- Sneak preview:

$$
\frac{\langle\omega\rangle}{\left\langle N_{3}\right\rangle}=\frac{5}{4} e^{-k_{0}}+\frac{81}{32} e^{-2 k_{0}}+\cdots, \frac{\left\langle N_{0}\right\rangle}{\left\langle N_{3}\right\rangle}=\frac{1}{2}-\frac{1}{2} \frac{\langle\omega\rangle}{\left\langle N_{3}\right\rangle} \quad\left(N_{3} \rightarrow \infty\right)
$$

Relation to the 2 PI partition function

- Let's consider two-point function $G=1-\frac{1}{2} \frac{\partial Z_{\mathrm{D} T}^{c}\left(k_{3}, k_{0}\right)}{\partial k_{3}}$.

Relation to the 2 PI partition function

- Let's consider two-point function $G=1-\frac{1}{2} \frac{\partial Z_{\mathrm{DT}}^{c}\left(k_{3}, k_{0}\right)}{\partial k_{3}}$.

- Unique decomposition into 2 Particle Irreducible (2PI) two-point graphs.

Relation to the 2PI partition function

- Let's consider two-point function $G=1-\frac{1}{2} \frac{\partial Z_{\mathrm{DT}}^{c}\left(k_{3}, k_{0}\right)}{\partial k_{3}}$.

- Unique decomposition into 2 Particle Irreducible (2PI) two-point graphs.
- The ensemble corresponding to $G\left(k_{3}, k_{0}\right)$ is that of random trees with offspring distribution governed by the 2 PI two-point function $G_{2 P I}\left(\bar{k}_{3}, k_{0}\right)$.

Relation to the 2PI partition function

- Let's consider two-point function $G=1-\frac{1}{2} \frac{\partial Z_{\mathrm{DT}}^{c}\left(k_{3}, k_{0}\right)}{\partial k_{3}}$.

- Unique decomposition into 2 Particle Irreducible (2PI) two-point graphs.
- The ensemble corresponding to $G\left(k_{3}, k_{0}\right)$ is that of random trees with offspring distribution governed by the 2 PI two-point function $G_{2 P I}\left(\bar{k}_{3}, k_{0}\right)$.
- We are interested in $N_{3} \rightarrow \infty$, hence in so-called critical trees which have \langle offspring number $\rangle=1$, i.e. $\left\langle N_{3}\right\rangle_{G_{2 P I}}=\frac{1}{2}$.
- It follows that $G\left(k_{3}=k_{3}^{*}, k_{0}\right)$ is directly related to $G_{2 P I}\left(\bar{k}_{3}, k_{0}\right)$ with \bar{k}_{3} chosen such that $\left\langle N_{3}\right\rangle_{G_{2 P I}}=1 / 2$.
- It follows that $G\left(k_{3}=k_{3}^{*}, k_{0}\right)$ is directly related to $G_{2 P I}\left(\bar{k}_{3}, k_{0}\right)$ with \bar{k}_{3} chosen such that $\left\langle N_{3}\right\rangle_{G_{2 P I}}=1 / 2$.
- In particular

$$
\left.\frac{\langle\omega\rangle}{\left\langle N_{3}\right\rangle}\right|_{k_{3}=k_{3}^{*}}=\left.\frac{\langle\omega\rangle_{2 P I}}{\left\langle N_{3}\right\rangle_{2 P I}}\right|_{\left\langle N_{3}\right\rangle_{2 P I}=1 / 2}=\left.2\langle\omega\rangle_{2 P I}\right|_{\left\langle N_{3}\right\rangle_{2 P I}=1 / 2}
$$

- It follows that $G\left(k_{3}=k_{3}^{*}, k_{0}\right)$ is directly related to $G_{2 P I}\left(\bar{k}_{3}, k_{0}\right)$ with \bar{k}_{3} chosen such that $\left\langle N_{3}\right\rangle_{G_{2 P I}}=1 / 2$.
- In particular

$$
\left.\frac{\langle\omega\rangle}{\left\langle N_{3}\right\rangle}\right|_{k_{3}=k_{3}^{*}}=\left.\frac{\langle\omega\rangle_{2 P I}}{\left\langle N_{3}\right\rangle_{2 P I}}\right|_{\left\langle N_{3}\right\rangle_{2 P I}=1 / 2}=\left.2\langle\omega\rangle_{2 P I}\right|_{\left\langle N_{3}\right\rangle_{2 P I}=1 / 2}
$$

- To find $\langle\omega\rangle_{2 P I}$ up to order $\left(e^{-k_{0}}\right)^{n}$ we only need the 2PI graphs with degree $\omega \leq n$.
- It follows that $G\left(k_{3}=k_{3}^{*}, k_{0}\right)$ is directly related to $G_{2 P I}\left(\bar{k}_{3}, k_{0}\right)$ with \bar{k}_{3} chosen such that $\left\langle N_{3}\right\rangle_{G_{2 P I}}=1 / 2$.
- In particular

$$
\left.\frac{\langle\omega\rangle}{\left\langle N_{3}\right\rangle}\right|_{k_{3}=k_{3}^{*}}=\left.\frac{\langle\omega\rangle_{2 P I}}{\left\langle N_{3}\right\rangle_{2 P I}}\right|_{\left\langle N_{3}\right\rangle_{2 P I}=1 / 2}=\left.2\langle\omega\rangle_{2 P I^{2}}\right|_{\left\langle N_{3}\right\rangle_{2 P I}=1 / 2}
$$

- To find $\langle\omega\rangle_{2 P I}$ up to order $\left(e^{-k_{0}}\right)^{n}$ we only need the 2PI graphs with degree $\omega \leq n$.
- Here the coloring is useful, and the relation to quadrangulations of Riemann surfaces.

Conclusions \& Outlook

- Conclusions
- There seems to be a closer connection between colored tensor models and colored DT than between standard tensor models and uncolored DT.
- Monte Carlo simulations suggest that colored DT and uncolored DT sit in the same universality class.
- The simple representation of triangulations through colored graphs may open up opportunities for analytical calculations.

Thanks to Biancha Dittrich, Razvan Gurau and Valentin Bonzom for suggesting a project along these lines!

Conclusions \& Outlook

- Conclusions
- There seems to be a closer connection between colored tensor models and colored DT than between standard tensor models and uncolored DT.
- Monte Carlo simulations suggest that colored DT and uncolored DT sit in the same universality class.
- The simple representation of triangulations through colored graphs may open up opportunities for analytical calculations.
- Outlook
- General algorithm to construct all low- ω graphs?
- Colored DT with measure term? $Z=\sum_{\mathcal{G}} \frac{1}{C_{\mathcal{G}}}\left(\prod_{e} d_{e}^{\beta}\right) e^{-S_{\mathrm{DT}}}$

Thanks to Biancha Dittrich, Razvan Gurau
and Valentin Bonzom for suggesting a project
along these lines!

