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(Euclidean) Dynamical Triangulations in 3d
I Central object in Euclidean path integral approach to quantum

gravity:

ZQG =

∫
S3

Dg
Diff

e−SEH [g ]

−−−−→
in DT

ZDT =
∑
T

1

CT
e−SDT [T ]

I DT is a lattice regularization replacing the integral by a
sum over triangulations built from N3 equilateral
tetrahedra.

SDT [T ] = k3N3 − k0N0, k3 ∼ Λ, k0 ∼ 1/G .

I Number of triangulations of fixed topology grows exponentially with
N3. Therefore a critical coupling k∗3 (k0) exists s.t.

〈N3〉 <∞ for k3 < k∗3 and Z diverges for k3 > k∗3

I To find a continuum limit we need N3 →∞, which can be achieved
by tuning k3 → k∗3 , but also lattice spacing a→ 0. For this we need
a phase transition.
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I Phase diagram of 3d DT in infinite volume limit.

k0

branched
polymer

phase

crumpled
phase

1 orderst

I Issues with DT:

I Both phases have little to do with 3d geometry, e.g. Hausdorff
dimensions ∞ resp. 2.

I Phase transition too strong for continuum limit.
I No analytic tools available. We have to rely on Monte Carlo

simulations.

I Various attempts to cure some of these issues (90’s): Modified
actions, matter fields, ... (CDT)

I This talk: new model which has not been studied before from DT
perspective (to my knowledge).
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Outline

I Motivation for colored DT: matrix models → tensor models →
colored tensor models → colored DT

I Monte Carlo simulations

I Analytic approach to branched polymer phase

I Conclusions & Outlook



Matrix models
I Typical matrix model: Z =

∫
dXije

−N(Tr[X 2]+λTr[X 3]), 1 ≤ i , j ≤ N.

I Amplitude N−E (λN)VNF = NV−E+FλV = NχλV = N2−2gλV .

I For N →∞ planar triangulations dominate (g = 0).
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Tensor models

I Straightforward generalization:

Z =
∫
dXijke

−N3/2(XijkX
ijk+λXijkX

i
lmX

jl
n X

kmn).

I Contrary to 2D most gluings do not give (simplicial) manifolds.

I Large N limit?

I Moreover, a lot of information to keep track of.
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Colored tensor models [Gurau, Bonzom]

I Instead of Z =
∫
dXijke

−N3/2(XijkX
ijk+λXijkX

i
lmX

jl
n X

kmn), we can take 4
complex tensors of different colors (index contraction is implied):

ZCTM =

∫
dXdXdXdXe−N

3/2(XX̄+XX̄+XX̄+XX̄+λXXXX+λX̄ X̄ X̄ X̄)

I Get two vertices with opposite orientation (white and black)

I We are dealing with colored tetrahedra and can forget about the
strands!

The gluing of tetrahedra is uniquely encoded in bipartite
colored graph!
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I Every bipartite colored graph corresponds to a
pseudo simplicial manifold, a manifold with mild
topological singularities.

I Amplitude is λVN3−ω, where the ‘degree’ ω is a
generalization of genus g to higher dimensions.
Given in terms of the genus of its ‘jackets’:
ω =

∑
J gJ ≥ 0.

I ω is not a topological invariant, but ω = 0
corresponds to special ’melonic’ triangulations of
S3.

I Limit N →∞ well-defined in terms of melonic
graphs.

I Double scaling limit to include ω > 0? Control over topologies?
Independent methods to evaluate tensor model? Still a long way to
go.
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Colored dynamical triangulations
I Partition function of colored tensor models

ZCTM(λ,N) =
∑

colored graphs G

1

CG
λVN3−ω

I Restrict sum to graphs G with topology S3 gives colored dynamical
triangulations

Z c
DT(k0, k3) =

∑
GS3

1

CG
λVN3−ω =

∑
GS3

1

CG
e−k3N3+k0N0

N3 = V , 3− ω = N0 −
N3

2
, ⇒ e−k3 =

λ√
N
, ek0 = N.

I Melons occur at N →∞, i.e. k0 →∞.
Typical structure of branched polymers.

I Goal: examine Z c
DT(k0, k3) at finite k0 k0

branched
polymer

phase

crumpled
phase

1 orderst
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Monte Carlo simulations
I Z c

DT(k0, k3) =
∑
GS3

1
CG

e−k3N3+k0N0 defines a statistical ensemble

with Boltzmann weights e−k3N3+k0N0 .

I Generate set {Gi} of random triangulation by applying large number
of random ‘dipole moves’ on initial triangulation. Observables
〈O〉Z c

DT
≈ 1

n

∑n
i=1O(Gi ).I To get large N3 we need to tune k3 to critical coupling k∗3 (k0).
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I Measure the observable 〈N0〉/〈N3〉
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I Phase transition seems to be present at k0 ≈ 2.7.

k0 = 2.0 k0 = 3.5
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Order of the phase transition
I Try to find double peak structure in histogram of some order

parameter by tuning k0 to phase transition. A convenient choice of
order parameter is the maximal vertex degree (the degree of a vertex
is the number of tetrahedra sharing it).

I If the peaks become more distinct as N3 increases, the phase
transition is 1st order.

Check!

N3=2000, k0=2.48 N3=5000, k0=2.59 N3=10000, k0=2.65 N3=20000, k0=2.70
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I Phase diagram of colored DT very similar to uncolored DT, both
have 1st order phase transition.

I Agreement on various characteristics of both phases: Hausdorff
dimension, spectral dimension, susceptibility exponent, . . .

I This suggests colored DT and uncolored DT in same universality
class.

I Not unexpected, but not obvious either. Colors put a severe
restriction on triangulations.

I Not even clear a priori whether 3d extended colored triangulations
exist. However, here is an example:
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Towards analytic evaluation at finite k0
I At e−k0 = 0 (N →∞) the partition function Z c

DT is dominated by
melonic triangulations, which can be easily summed. Can we go
beyond e−k0 = 0?

I Yes, we can in principle evaluate Z c
DT order by order in e−k0 .
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Relation to the 2PI partition function
I Let’s consider two-point function G = 1− 1

2
∂Z c

DT(k3,k0)
∂k3

.

I Unique decomposition into 2 Particle Irreducible (2PI) two-point
graphs.

I The ensemble corresponding to G (k3, k0) is that of random trees
with offspring distribution governed by the 2PI two-point function
G2PI (k̄3, k0).

I We are interested in N3 →∞, hence in so-called critical trees which
have 〈offspring number〉 = 1, i.e. 〈N3〉G2PI

= 1
2 .



Relation to the 2PI partition function
I Let’s consider two-point function G = 1− 1

2
∂Z c

DT(k3,k0)
∂k3

.

I Unique decomposition into 2 Particle Irreducible (2PI) two-point
graphs.

I The ensemble corresponding to G (k3, k0) is that of random trees
with offspring distribution governed by the 2PI two-point function
G2PI (k̄3, k0).

I We are interested in N3 →∞, hence in so-called critical trees which
have 〈offspring number〉 = 1, i.e. 〈N3〉G2PI

= 1
2 .



Relation to the 2PI partition function
I Let’s consider two-point function G = 1− 1

2
∂Z c

DT(k3,k0)
∂k3

.

I Unique decomposition into 2 Particle Irreducible (2PI) two-point
graphs.

I The ensemble corresponding to G (k3, k0) is that of random trees
with offspring distribution governed by the 2PI two-point function
G2PI (k̄3, k0).

I We are interested in N3 →∞, hence in so-called critical trees which
have 〈offspring number〉 = 1, i.e. 〈N3〉G2PI

= 1
2 .



Relation to the 2PI partition function
I Let’s consider two-point function G = 1− 1

2
∂Z c

DT(k3,k0)
∂k3

.

I Unique decomposition into 2 Particle Irreducible (2PI) two-point
graphs.

I The ensemble corresponding to G (k3, k0) is that of random trees
with offspring distribution governed by the 2PI two-point function
G2PI (k̄3, k0).

I We are interested in N3 →∞, hence in so-called critical trees which
have 〈offspring number〉 = 1, i.e. 〈N3〉G2PI

= 1
2 .



I It follows that G (k3 = k∗3 , k0) is directly related to G2PI (k̄3, k0) with
k̄3 chosen such that 〈N3〉G2PI

= 1/2.

I In particular
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I To find 〈ω〉2PI up to order (e−k0 )n we only need the 2PI graphs with
degree ω ≤ n.

I Here the coloring is useful, and the relation to quadrangulations of
Riemann surfaces.
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Conclusions & Outlook

I Conclusions
I There seems to be a closer connection between colored tensor

models and colored DT than between standard tensor models and
uncolored DT.

I Monte Carlo simulations suggest that colored DT and uncolored DT
sit in the same universality class.

I The simple representation of triangulations through colored graphs
may open up opportunities for analytical calculations.

I Outlook
I General algorithm to construct all low-ω graphs?
I Colored DT with measure term? Z =

∑
G

1
CG

(∏
e d

β
e

)
e−SDT

Thanks to Biancha Dittrich, Razvan Gurau

and Valentin Bonzom for suggesting a project

along these lines!
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