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Central object in Euclidean path integral approach to quantum
gravity:

_ [ P8 _—suia ; _ 1 —spr(]
e = s Diff ¢ mor o7 Z cr°

DT is a lattice regularization replacing the integral by a
sum over triangulations built from N3 equilateral
tetrahedra.

Sor[T] = ksNs — koNo, ks ~ A, ko ~ 1/G.
Number of triangulations of fixed topology grows exponentially with
N5. Therefore a critical coupling k3 (ko) exists s.t.

(N3) < 0o for k3 < ki and Z diverges for k3 > k3

To find a continuum limit we need N3 — oo, which can be achieved
by tuning k3 — k3, but also lattice spacing a — 0. For this we need
a phase transition.
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> Issues with DT:
> Both phases have little to do with 3d geometry, e.g. Hausdorff
dimensions oo resp. 2.
> Phase transition too strong for continuum limit.
> No analytic tools available. We have to rely on Monte Carlo
simulations.
» Various attempts to cure some of these issues (90's): Modified
actions, matter fields, ... (CDT)

» This talk: new model which has not been studied before from DT
perspective (to my knowledge).
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» Typical matrix model: Z = deUe_N(Tr[X2]+’\“[X3]), 1<i,j<N.

st
A‘V A

’3

> Amplitude N=E(AN)YVNF = NV=E+FV = NX)V = N2-28)\V.

» For N — oo planar triangulations dominate (g = 0).
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» Straightforward generalization:
7 = fdXUke—N3/2(X,jkx’lk+)\xijkxlllnx’j1/kan)'

» Contrary to 2D most gluings do not give (simplicial) manifolds.
> Large N limit?

» Moreover, a lot of information to keep track of.
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» Instead of Z = de,-jke N2 (X X4 A X X XX ) we can take 4
complex tensors of different colors (index contraction is implied):

Zorm = / dXdXdXdxe NV (XXAXXAXXFXXFAXXXXFAXXXX)

> Get two vertices with opposite orientation (white and black)
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» We are dealing with colored tetrahedra and can forget about the
strands! The gluing of tetrahedra is uniquely encoded in bipartite
colored graph!
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Every bipartite colored graph corresponds to a
pseudo simplicial manifold, a manifold with mild
topological singularities.

Amplitude is AV N3~ where the ‘degree’ w is a
generalization of genus g to higher dimensions.
Given in terms of the genus of its ‘jackets’:

w:ZJgJZO.

Avwsade G

>

w is not a topological invariant, but w =0

corresponds to special 'melonic’ triangulations of @- .
s*. S
Limit N — oo well-defined in terms of melonic o '
graphs.

Double scaling limit to include w > 07 Control over topologies?
Independent methods to evaluate tensor model? Still a long way to

go.
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» Partition function of colored tensor models

1
Zetm(A, N) = Z C—)\VN3‘“
colored graphs G g

> Restrict sum to graphs G with topology S* gives colored dynamical
triangulations

1 1
ZIC)T(kO, k3) = Z Cf)\sz'iw = Z Cie*k3N3+/<oNo
Ggs g Ges g

N
Ns=V, 3—w=Ny——, = eh=

> , e =N.
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Colored dynamical triangulations

» Partition function of colored tensor models

Zerm(A, N) = >

1
7)\VN3—L:J
C

colored graphs G g

> Restrict sum to graphs G with topology S* gives colored dynamical

triangulations

1 —w
Z&r(ko, k3) = > @AVW =

Gs3

N
Ns =V, 37w:N0773,

» Melons occur at N — oo, i.e. kg — 00.
Typical structure of branched polymers.

Z ie*k3N3+/<0No
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Colored dynamical triangulations

» Partition function of colored tensor models

1
Zetm(A, N) = Z C—)\VN3‘“
colored graphs G g

> Restrict sum to graphs G with topology S* gives colored dynamical
triangulations

1 — 1
ZIC)T(kO, k3) = Z @AVN3 = Z ?ge k3 N3+ko No

Gss g3
N A
N3 =V, 37w:N0——3, = e*k3:7, ek — N
2 VN
» Melons occur at N — oo, i.e. kg — 00. crumpled branched
Typical structure of branched polymers. phase ng;f;‘:f

> Goal: examine Zf1(ko, k3) at finite kg
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Monte Carlo simulations

> Zfp(ko ks) = g, & e falstholo defines a statistical ensemble
with Boltzmann weights e~*sNsFkoNo

» Generate set {G;} of random triangulation by applying large number
of random ‘dipole moves' on initial triangulation. Observables

(0)z5, ~ 7 221 O(Gi).

DO HQ
S e A—A

> To get large N3 we need to tune ks to critical coupling k3 (ko).
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» Measure the observable (Np)/(N3)

04

03

0.2

01

{500, 1000, 2000, 5000, 10000, 20000, 40000}

melons (w = 0)

M N
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> Phase transition seems to be present at ky ~ 2.7.
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Order of the phase transition

» Try to find double peak structure in histogram of some order
parameter by tuning kg to phase transition. A convenient choice of
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Order of the phase transition

» Try to find double peak structure in histogram of some order
parameter by tuning kg to phase transition. A convenient choice of
order parameter is the maximal vertex degree (the degree of a vertex
is the number of tetrahedra sharing it).

max vertex degree N3=10000, ko=2.65

Branched
polymer
phase

Crumpled phase

. max vertex degree
500 1000 1500 2000 2500 3000 3500

t

» If the peaks become more distinct as N3 increases, the phase
transition is 1°* order. Check!

N3=2000, kp=2.48 N3=5000, ko=2.59 N3=10000, ko=2.65 N3=20000, ko=2.70

| WYY
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Towards analytic evaluation at finite kg %
L7

» At e % =0 (N — o0) the partition function Z5 is dominated by
melonic triangulations, which can be easily summed. Can we go
beyond e~ = 0?

> Yes, we can in principle evaluate Zf 1 order by order in e fo.
» Sneak preview:
W) 5 4 81 (No) 11 (w)
AL =Ceh g~ L2 2L (N3 o0
(N3) 4 32 (N3) 2 2(Ns) (N )
No/N3
05;

0.4+

03

02r

0.1r

00—
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Relation to the 2Pl partition function

> Let's consider two-point function G =1 — %%ﬁf’k‘]).

(o]

EdLt [ thoE

» Unique decomposition into 2 Particle Irreducible (2P1) two-point
graphs.

» The ensemble corresponding to G(ks, ko) is that of random trees
with offspring distribution governed by the 2Pl two-point function
Gapi(ks, ko).

» We are interested in N3 — oo, hence in so-called critical trees which
have (offspring number) = 1, i.e. (N3)g,, = 3.
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> It follows that G(ks = ki, ko) is directly related to Gyp(ks, ko) W|th
ks chosen such that (N3)g,,, = 1/2.
> In particular

{w)
(Ns3)

» To find (w)ap up to order (e7%)" we only need the 2Pl graphs with
degree w < n.

<w>2PI

= =2 (w)2pi]
=k (N3)2pi

(N3)opy=1/2
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It follows that G(ks = ki, ko) is directly related to Gop(ks, ko) W|th

ks chosen such that (Ns)g,, = 1/2.
In particular
{w) _ (w)ep .
N3} e~ (V) = 2(@haprl
3 ks=k; 3/2PI (N3)opy=1/2

To find (w)ops up to order (e%)" we only need the 2Pl graphs with
degree w < n.

Here the coloring is useful, and the relation to quadrangulations of
Riemann surfaces.
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Conclusions & Outlook

» Conclusions

> There seems to be a closer connection between colored tensor
models and colored DT than between standard tensor models and
uncolored DT.

» Monte Carlo simulations suggest that colored DT and uncolored DT
sit in the same universality class.

> The simple representation of triangulations through colored graphs
may open up opportunities for analytical calculations.

Thanks to Biancha Dittrich, Razvan Gurau
and Valentin Bonzom for suggesting a project

along these lines!



Conclusions & Outlook

» Conclusions

> There seems to be a closer connection between colored tensor
models and colored DT than between standard tensor models and
uncolored DT.

» Monte Carlo simulations suggest that colored DT and uncolored DT
sit in the same universality class.

> The simple representation of triangulations through colored graphs
may open up opportunities for analytical calculations.

» Outlook

> General algorithm to construct all low-w graphs?
> Colored DT with measure term? Z =3 % ([1. dP) e~°p

Thanks to Biancha Dittrich, Razvan Gurau
and Valentin Bonzom for suggesting a project

along these lines!



