03－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces
The geometry of random genus－O hyperbolic surfaces via trees
Timothy Buddy
Radboud University
T．Buddascience．ru．nl
http：／／hef．ru．nl／～tbudd／
03－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces
The geometry of random genus－O hyperbolic surfaces via trees
Timothy Buddy
Radboud University
T．Buddascience．ru．nl
http：／／hef．ru．nl／～tbudd／
O3－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces

03－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces
The geometry of random genus－O hyperbolic surfaces via trees
Timothy Bud
T．Buddascience．ru．nl
Radtp：／／hef．ru．nl／～tbudd／
O3－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces

O3－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces
\qquad
\qquad
03－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces
\qquad
O3－10－2023 CIRM workshop：Probability and Geometry in，on and of non－Euclidian spaces
－2023 CIRM

正

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { genus- } g \text { hyperbolic surface with } n \text { geodesic } \\
\text { boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom }^{+}
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathbf{L})=\left\{\begin{array}{l}
\text { genus- } g \text { hyperbolic surface with } n \text { geodesic } \\
\text { boundaries of lengths } \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom }^{+}
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

- Carries natural Weil-Petersson volume form $\mu_{\text {WP }}$. In local Fenchel-Nielsen length \& twist coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ for a pants decomposition:

$$
\left.\mu_{\mathrm{WP}}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n} . \quad \text { [Wolpert, ' } 82\right]
$$

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

- Carries natural Weil-Petersson volume form $\mu_{\text {WP }}$. In local Fenchel-Nielsen length \& twist coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ for a pants decomposition:

$$
\mu_{\mathrm{WP}}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n .} \quad \text { [Wolpert, '82] }
$$

- Weil-Petersson volume: $V_{g, n}(\mathbf{L}):=\int_{\mathcal{M}_{g, n}(\mathbf{L})} \mu_{\mathrm{WP}}$ is a polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}, \pi^{2}$. [Mirzakhani, ${ }^{\prime}{ }^{07}$]

The partition function of hyperbolic surfaces: WP volumes
[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

- Carries natural Weil-Petersson volume form $\mu_{\text {WP }}$. In local Fenchel-Nielsen length \& twist coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ for a pants decomposition:

$$
\mu_{\mathrm{WP}}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n .} \quad \text { [Wolpert, '82] }
$$

- Weil-Petersson volume: $V_{g, n}(\mathbf{L}):=\int_{\mathcal{M}_{g, n}(\mathbf{L})} \mu_{\mathrm{WP}}$ is a polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}, \pi^{2}$. [Mirzakhani, ${ }^{\prime}{ }^{07}$]
- Examples: $V_{0,3}(\mathbf{L})=1, \quad V_{0,4}(\mathbf{L})=\frac{1}{2}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}\right)+2 \pi^{2}$,

$$
V_{1,2}(\mathbf{L})=\frac{1}{192}\left(L_{1}^{2}+L_{2}^{2}+4 \pi^{2}\right)\left(L_{1}^{2}+L_{2}^{2}+12 \pi^{2}\right)
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \left.\text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\right\}\end{array}\right\}$

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \left.\text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\right\}\end{array}\right\}$

$e^{\sum_{g} G_{g}}$ is τ-function of 2-Toda hierarchy
[Kadomtsev, Petriashvili, Panharipande, Okounkov, Kazarian, ...]

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

$e^{\sum_{g} G_{g}}$ is τ-function of 2-Toda hierarchy
[Kadomtsev, Petriashvili, Panharipande, Okounkov, Kazarian, ...]

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

$e^{\sum_{g} F_{g}}$ is τ-function of KdV hierarchy
[Witten, '91][Kontsevich, '92][Kaufmann, Manin, Zagier, '96][Mirzakhani, '07]
(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- $g=0$ determined by string eq. for $R(q)=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- $g=0$ determined by string eq. for $R(q)=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$

$$
R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}
$$

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

$-g=0$ determined by string eq. for $R(q)=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$ $R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}$

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

- $g=0$ determined by string eq. for $R[q]=\frac{\delta F_{0}}{\delta q(0)^{2}}$

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!}\left(t_{k}+\gamma_{k}\right) R^{k}
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

$-g=0$ determined by string eq. for $R(q)=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$ $R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}$

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

- $g=0$ determined by string eq. for $R[q]=\frac{\delta F_{0}}{\delta q(0)^{2}}$

$$
\begin{aligned}
& R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!}\left(t_{k}+\gamma_{k}\right) R^{k} \\
& \frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L) \quad \frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} \mathbf{1}_{k \geq 2}
\end{aligned}
$$

(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

$-g=0$ determined by string eq. for $R(q)=\frac{\partial G_{0}}{\partial q_{0} \partial q_{1}}$ $R=1+\sum_{k=1}^{\infty}\binom{2 k-1}{k} q_{2 k} R^{k}$

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

- $g=0$ determined by string eq. for $R[q]=\frac{\delta F_{0}}{\delta q(0)^{2}}$

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!}\left(t_{k}+\gamma_{k}\right) R^{k}
$$

$$
\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L) \quad \frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} \mathbf{1}_{k \geq 2}
$$

?
(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

$-G_{0}(q) \xrightarrow[\text { interpretation }]{\text { probabilistic }}$ Boltzmann planar map \mathfrak{m}

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

$-F_{0}(q) \xrightarrow[\text { interpretation }]{\text { probabilistic }}$ Boltzmann hyperbolic sphere X
(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- $G_{0}(q) \xrightarrow[\text { interpretation }]{\text { probabilistic }}$ Boltzmann planar map \mathfrak{m}
- Scaling limit (if q sufficiently regular):
$\left(\mathfrak{m}, n^{-\frac{1}{4}} d_{\mathrm{gr}}\right) \xrightarrow[n \rightarrow \infty]{\text { (d) GH }}$ Brownian sphere [Le gall, Miermont]
- Random metric space
- Hausdorff dimension 4
- Topology of 2-sphere [Le Gall, Miermont, Marckert, Marzouk, ...]
- Metric of Liouville Quantum Gravity at $\gamma=\sqrt{8 / 3}$
[Sheffield, Miller, Holden, ...]

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

$-F_{0}(q) \xrightarrow[\text { interpretation }]{\text { probabilistic }}$ Boltzmann hyperbolic sphere X
(Bipartite) Maps on surfaces

- genus-g generating function
$G_{g}(q)=\sum_{n \geq 1} \frac{1}{n!} \sum_{d_{1}=0}^{\infty} q_{2 d_{i}} \cdots \sum_{d_{n}=0}^{\infty} q_{2 d_{n}} \#\left\{\begin{array}{l}\text { genus-g maps with } \\ \text { face degrees } 2 d_{1}, \ldots, 2 d_{n}\end{array}\right\}$

- $G_{0}(q) \xrightarrow[\text { interpretation }]{\text { probabilistic }}$ Boltzmann planar map \mathfrak{m}
- Scaling limit (if q sufficiently regular):
$\left(\mathfrak{m}, n^{-\frac{1}{4}} d_{\mathrm{gr}}\right) \xrightarrow[n \rightarrow \infty]{\text { (d) GH }}$ Brownian sphere [Le gall, Miermont]
- Random metric space
- Hausdorff dimension 4
- Topology of 2-sphere [Le Gall, Miermont, Marckert, Marzouk, ...]
- Metric of Liouville Quantum Gravity at $\gamma=\sqrt{8 / 3}$
[Sheffield, Miller, Holden, ...]

Hyperbolic surfaces

- genus-g generating function

$$
F_{g}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{q}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \int_{0}^{\infty} \mathrm{d} q\left(L_{n}\right) V_{g, n}(\mathbf{L})
$$

$-F_{0}(q) \xrightarrow[\text { interpretation }]{\text { probabilistic }}$ Boltzmann hyperbolic sphere X

- Scaling limit (if q sufficiently regular):

$$
\left(X, n^{-\frac{1}{?}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d}) \mathrm{GH}} ? ?
$$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{2 \text {-to-1 }}{ }\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{2 \text {-to-1 }}{ }\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \xrightarrow{2 \text {-to-1 }}\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

Bouttier-Di Francesco-Guitter bijection [BDFG, '04]

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \xrightarrow{2 \text {-to-1 }}\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

- Face of degree $2 k \quad \longleftrightarrow$ Black vertex of degree k.

Bouttier-Di Francesco-Guitter bijection [BDFG, ${ }^{\text {oof] }}$

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{2 \text {-to-1 }}{\longleftrightarrow}\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

- Face of degree $2 k \quad \longleftrightarrow \quad$ Black vertex of degree k.

$$
R=0+\sum_{k=1}^{\infty} q_{2 k} \sum_{\text {labels }}^{\substack{R \\ 0}} \underbrace{R}_{\substack{R \\ R \\ 0}}
$$

Bouttier-Di Francesco-Guitter bijection [BDFG, ${ }^{\text {oof] }}$

$\left\{\begin{array}{c}\text { rooted bipartite planar maps } \\ \text { with marked vertex ("origin") }\end{array}\right\} \stackrel{2 \text {-to-1 }}{ }\left\{\begin{array}{c}\text { mobiles (bicolored plane trees } \\ \text { with labeled white vertices) }\end{array}\right\}$

- Face of degree $2 k \quad \longleftrightarrow \quad$ Black vertex of degree k.

$$
R=(0)+\sum_{k=1}^{\infty} q_{2 k} \sum_{\text {labels }}^{\substack{R \\ k}} \underbrace{R}_{\substack{R \\ R}}
$$

- Vertex at distance $r>0$ to origin \longleftrightarrow White vertex with label $r-r_{\text {root }}$.

Tree in a hyperbolic surface?

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.
- Determine spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.
- Determine spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.
- Determine spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.
- Determine spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]

Tree in a hyperbolic surface?

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.
- Determine spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]
- Upon compactification it is a plane tree!
- Note: spine edges can meet in funnels!

Tree in a hyperbolic surface?

- Extend boundaries with hyperbolic funnels.
- Determine spine of origin \star : points with more than one shortest geodesic to \star. [Bowditch, Epstein, '88]
- Upon compactification it is a plane tree!
- Note: spine edges can meet in funnels!
- Can we label the tree to make this a bijection?

Labels: angles on half edges

- The surface is canonically triangulated by

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge:

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: pair of triangles with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$)

Labels：angles on half edges

－The surface is canonically triangulated by
－for each spine edge：pair of triangles with angles $\varphi_{i}, \varphi_{j}, 0$（so $\varphi_{i}+\varphi_{j}<\pi$ ）

Labels：angles on half edges

－The surface is canonically triangulated by
－for each spine edge：pair of triangles with angles $\varphi_{i}, \varphi_{j}, 0$（so $\varphi_{i}+\varphi_{j}<\pi$ ）
－for each corner of white vertex：an ideal wedge．

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: pair of triangles with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$)
- for each corner of white vertex: an ideal wedge.

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: pair of triangles with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$)
- for each corner of white vertex: an ideal wedge.

Labels: angles on half edges

- The surface is canonically triangulated by
- for each spine edge: pair of triangles with angles $\varphi_{i}, \varphi_{j}, 0$ (so $\varphi_{i}+\varphi_{j}<\pi$)
- for each corner of white vertex: an ideal wedge.
- Gluing of triangles is unique, except for bi-infinite sides: need extra parameters for injectivity.

Labels: geometry around boundary

Labels: geometry around boundary

- Boundary of degree k partitions into $2 k$ segments of lengths $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{k}$.

Labels：geometry around boundary

－Boundary of degree k partitions into $2 k$ segments of lengths $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{k}$ ．

Labels: geometry around boundary

- Boundary of degree k partitions into $2 k$ segments of lengths $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{k}$.
- Uniquely determines gluing, so should label vertex by

$$
\left\{\left(v_{i}, w_{i}\right)_{i=1}^{k}: \sum_{i=1}^{k} v_{i}=\sum_{i=1}^{k} w_{i}=\frac{L}{2}\right\} .
$$

Bijective result

Bijective result

- For plane tree \mathfrak{t} with n white vertices $(\operatorname{deg} \geq 1)$ and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \phi_{i}>0, v_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Bijective result

- For plane tree \mathfrak{t} with n white vertices ($\operatorname{deg} \geq 1$) and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \phi_{i}>0, v_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Bijective result

- For plane tree \mathfrak{t} with n white vertices ($\operatorname{deg} \geq 1$) and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \phi_{i}>0, v_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

This determines a bijection

$$
\Phi: \mathcal{M}_{0, n+1}(0, \mathbf{L}) \longrightarrow \bigsqcup_{\mathrm{t}} \mathcal{A}_{\mathfrak{t}}(\mathbf{L}) .
$$

Bijective result

- For plane tree t with n white vertices ($\operatorname{deg} \geq 1$) and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \phi_{i}>0, v_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

This determines a bijection
「 top-dim $2 n-4$ iff $\operatorname{deg}(\bullet)=3$

$$
\Phi: \mathcal{M}_{0, n+1}(0, \mathbf{L}) \longrightarrow \bigsqcup_{\mathfrak{t}} \mathcal{A}_{\mathfrak{t}}(\mathbf{L}) .
$$

The push-forward of the WP measure is 2^{n-2} times Lebesgue measure on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$.

Bijective result

- For plane tree \mathfrak{t} with n white vertices $(\operatorname{deg} \geq 1)$ and red vertices ($\operatorname{deg} \geq 3$),

$$
\mathcal{A}_{\mathfrak{t}}\left(L_{1}, \ldots, L_{n}\right)=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \phi_{i}>0, v_{i} \geq 0, w_{i}>0, \text { constraints above }\right\} .
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

This determines a bijection
「 top-dim $2 n-4$ iff $\operatorname{deg}(\bullet)=3$

$$
\Phi: \mathcal{M}_{0, n+1}(0, \mathbf{L}) \longrightarrow \bigsqcup_{\mathfrak{t}} \mathcal{A}_{\mathfrak{t}}(\mathbf{L})
$$

The push-forward of the WP measure is 2^{n-2} times Lebesgue measure on the polytope $\mathcal{A}_{\mathfrak{t}} \subset \mathbb{R}^{2 n-4}$.

- Corollary: $V_{0, n+1}(0, \mathbf{L})=\sum_{\mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L})\right|$, and $\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L})\right|=$ rational $\times \pi^{2 \# \bullet} \prod_{\circ_{i}} L_{i}^{2\left(\operatorname{deg} \mathrm{o}_{i}-1\right)}$

Remark: extension to surfaces with cone points

Remark：extension to surfaces with cone points

－WP measure $\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})$ is still Lebesgue on polytope $\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \cdots\right\}$ ．

Remark: extension to surfaces with cone points

- WP measure $\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})$ is still Lebesgue on polytope $\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \cdots\right\}$.
- If all cone points are sharp $\left(0<\alpha_{i}<\pi\right)$:
$\rightarrow[$ Mirzakhani, '07] [Tan, Wong, Zhang, '06]

$$
\sum_{\mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=V_{0, n+p}(0, \mathbf{L}, i \boldsymbol{\alpha})=\operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) .
$$

Remark: extension to surfaces with cone points

- WP measure $\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})$ is still Lebesgue on polytope $\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \cdots\right\}$.
- If all cone points are sharp $\left(0<\alpha_{i}<\pi\right): \quad$ [Mirzakhani, '07] [Tan, Wong, Zhang, '06]

$$
\sum_{\mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=V_{0, n+p}(0, \mathbf{L}, i \boldsymbol{\alpha})=\operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) .
$$

- If some cone points are blunt ($\pi<\alpha_{i}<2 \pi$):

$$
\sum_{\mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=\text { piece-wise polynomial } \neq \operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) .
$$

Remark: extension to surfaces with cone points

- WP measure $\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})$ is still Lebesgue on polytope $\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \cdots\right\}$.
- If all cone points are sharp $\left(0<\alpha_{i}<\pi\right): \quad \longrightarrow$ [Mirzakhani, '07] [Tan, Wong, Zhang, '06]

$$
\sum_{\mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=V_{0, n+p}(0, \mathbf{L}, i \boldsymbol{\alpha})=\operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) .
$$

- If some cone points are blunt ($\pi<\alpha_{i}<2 \pi$):

$$
\sum_{\mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=\text { piece-wise polynomial } \neq \operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) .
$$

Remark: extension to surfaces with cone points

$-\varphi_{i}-\varphi_{j}-\varphi_{i}+\varphi_{j}<\pi$
$\varphi_{1} \times \varphi_{k}, \sum_{i=1}^{k} \varphi_{i}=\pi$
$\underbrace{\underbrace{}_{2} v_{k}}_{L} \sum_{i=1}^{k} v_{i}=\sum_{i=1}^{k} w_{i}=\frac{L}{2}$

- WP measure $\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})$ is still Lebesgue on polytope $\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})=\left\{\left(\phi_{i}, v_{i}, w_{i}\right): \cdots\right\}$.
- If all cone points are sharp $\left(0<\alpha_{i}<\pi\right)$:

$$
\sum_{\mathrm{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=V_{0, n+p}(0, \mathbf{L}, i \boldsymbol{\alpha})=\operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) .
$$

- If some cone points are blunt ($\pi<\alpha_{i}<2 \pi$):

$$
\begin{array}{r}
\sum_{\mathrm{t}}\left|\mathcal{A}_{\mathrm{t}}(\mathbf{L}, \boldsymbol{\alpha})\right|=\text { piece-wise polynomial } \neq \operatorname{Vol}_{\mathrm{WP}}\left(\mathcal{M}_{0,1+n, p}(0, \mathbf{L}, \boldsymbol{\alpha})\right) . \\
\text { Von-polynomial }
\end{array}
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ?
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ?
$$

$$
R[q]
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ?
$$

$$
R[q]=\sum_{\text {trees } \mathfrak{t}}\left|\mathcal{A}_{\ell}(\mathrm{L})\right|
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ?
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ?
$$

$$
R[q]=\sum_{\text {trees } \mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L})\right|=\sum_{\substack{\text { trees } \mathfrak{t} \text { with } \\ \text { hlunhlach }}}(-1)^{\# /}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L})\right|
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
R=\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ?
$$

$$
\varphi_{i}
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
\begin{aligned}
R & =\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ? \\
& =\sum_{k=0}^{\infty} \underbrace{R}_{\Omega} x_{k}^{R}+\sum_{k=2}^{R} \underbrace{R}_{\Omega} y_{k}^{R}
\end{aligned}
$$

$$
R[q]=\sum_{\text {trees } \mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L})\right|=\sum_{\substack{\text { trees } \mathfrak{t} \text { with } \\ \text { hle/black }}}(-1)^{\# /}\left|\mathcal{A}_{\mathrm{t}}^{>}(\mathbf{L})\right| \quad=\sum_{\substack{\text { 2-type } \\ \text { trees }}} \prod_{0} x_{\operatorname{deg} 0-1} \prod_{0} y_{\operatorname{deg} 0-1}
$$

WP volume generating function

- Why does the generating function $R[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty} \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) V_{0, n+2}^{\mathrm{WP}}(0,0, \mathbf{L})$ satisfy

$$
\begin{aligned}
R & =\sum_{k=0}^{\infty} \frac{2^{k-1}}{k!} t_{k} R^{k}+\sum_{k=2}^{\infty} \frac{2^{k-1}}{k!} \gamma_{k} R^{k}, \quad t_{k}=\frac{2}{k!} \int_{0}^{\infty}\left(\frac{L}{2}\right)^{2 k} \mathrm{~d} q(L), \quad \gamma_{k}=\frac{(-1)^{k} \pi^{2 k-2}}{(k-1)!} ? \\
& =\sum_{k=0}^{\infty} \underbrace{R}_{\Omega} x_{k}^{R}+\sum_{k=2}^{R} \underbrace{R}_{\Omega} y_{k}^{R}
\end{aligned}
$$

$$
R[q]=\sum_{\text {trees } \mathfrak{t}}\left|\mathcal{A}_{\mathfrak{t}}(\mathbf{L})\right|=\sum_{\substack{\text { trees } \mathfrak{t} \text { with } \\ \text { hle/black }}}(-1)^{\# /}\left|\mathcal{A}_{\mathrm{t}}^{>}(\mathbf{L})\right| \quad=\sum_{\substack{\text { 2-type } \\ \text { trees }}} \prod_{0} x_{\operatorname{deg} 0-1} \prod_{0} y_{\operatorname{deg} 0-1}
$$

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

－The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler，because WP volume is independent of tree structure：

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

- The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler, because WP volume is independent of tree structure:

WP volume of blue vertices

－The reversed condition $\varphi_{i}+\varphi_{j}>\pi$ is simpler，because WP volume is independent of tree structure：

$y_{k}=(-1)^{k} 2^{k-1} \sum_{\text {binary trees }} \int_{\mathcal{A}_{\imath}^{?}} \mathrm{~d} \varphi_{1} \cdots \mathrm{~d} \varphi_{2 k-2}=(-1)^{k} 2^{k-1} \operatorname{Cat}(k-1) \frac{\pi^{2 k-2}}{(2 k-2)!}=(-1)^{k} 2^{k-1} \frac{\pi^{2 k-2}}{k!(k-1)!}=2^{k-1} \frac{\gamma_{k}}{k!}$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right] \propto \frac{1}{1-X_{\odot}(u)-X_{\bigcirc}(u)}
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{WP}}$.

$$
\begin{aligned}
& \mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right] \propto \frac{1}{1-X_{\bigcirc}(u)-X_{\circ}(u)} \\
& 1-\frac{\left[u^{\geq 0}\right] \sin 2 \pi z}{\sin 2 \pi u} \int \mathrm{~d} q(L) \frac{\left[u^{\geq 0}\right] \frac{1}{z} \cosh L z}{\sin 2 \pi u}
\end{aligned}
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

- $\left(u^{2}, y(u)\right)$ is curve for topological recursion of "tight" Weil-Petersson volumes [TB, Zonneveld, '23]

Not just volumes: geodesic distance control!

- Boltzmann hyperbolic sphere $X \in \bigcup_{n \geq 0} \mathcal{M}_{n+3}(0,0,0, \mathbf{L}): \mathbb{P}(X) \propto \mathrm{d} q\left(L_{1}\right) \cdots \mathrm{d} q\left(L_{n}\right) \mathrm{d} \mu_{\mathrm{wP}}$.

$$
\begin{aligned}
& \mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right] \propto \frac{1}{1-X_{\circ}(u)-X_{\bigcirc}(u)} \\
& 1-\frac{\left[u^{\geq 0}\right] \sin 2 \pi z}{\sin 2 \pi u} \int \mathrm{~d} q(L) \frac{\left[u^{\geq 0}\right] \frac{1}{z} \cosh L z}{\sin 2 \pi u}
\end{aligned}
$$

Theorem (TB, Meeusen, Zonneveld, '23+)

$$
\mathbb{E}\left[e^{2 u\left(d_{1}-d_{2}\right)}\right]=\frac{\sin 2 \pi u}{2 \pi} \frac{y^{\prime}(0)}{y(u)}, \quad y(u)=\left[u^{\geq 0}\right] \frac{\sin 2 \pi z}{\pi}-\int_{0}^{\infty} \mathrm{d} q(L) \frac{\cosh L z}{z}, \quad z=\sqrt{u^{2}+2 R}
$$

- $\left(u^{2}, y(u)\right)$ is curve for topological recursion of "tight" Weil-Petersson volumes [TB, Zonneveld, '23]
- Singularity analysis: $d_{1}-d_{2} \approx n^{1 / 4}$ in Boltzmann hyperbolic sphere for n large. Same universality class as Boltzmann planar map?

Geometry of sphere with many cusps

- In the case of only cusps, $q(L)=x \delta_{0}(L)$, this is indeed true:

Theorem (TB, Curien, '23+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{w P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

Geometry of sphere with many cusps

- In the case of only cusps, $q(L)=x \delta_{0}(L)$, this is indeed true:

Theorem (TB, Curien, '23+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{W P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

Proof ingredients: Le Gall's strategy [Le Gall, '11]

convergence of labeled tree to Brownian snake

Geometry of sphere with many cusps

- In the case of only cusps, $q(L)=x \delta_{0}(L)$, this is indeed true:

Theorem (TB, Curien, '23+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{W P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

Proof ingredients: Le Gall's strategy [Le Gall, '11]

convergence of labeled tree to Brownian snake

Geometry of sphere with many cusps

- In the case of only cusps, $q(L)=x \delta_{0}(L)$, this is indeed true:

Theorem (TB, Curien, '23+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu_{w P} / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

Proof ingredients: Le Gall's strategy [Le Gall, '11]

Geometry of sphere with many cusps

- In the case of only cusps, $q(L)=x \delta_{0}(L)$, this is indeed true:

Theorem (TB, Curien, '23+)

If $S_{n} \in \mathcal{M}_{0, n}(0)$ is sampled with probability density $\mu w p / V_{0, n}(0)$, then we have the convergence in distribution of the random metric space in the Gromov-Prokhorov topology

$$
\left(S_{n}, \frac{d_{\mathrm{hyp}}}{c n^{1 / 4}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \text { Brownian sphere, } \quad c=2.339 \ldots
$$

Proof ingredients: Le Gall's strategy [Le Gall, '11]

Thanks for your attention!

