18-01-2022 Random Geometry @ CIRM

## Random hyperbolic surfaces

Timothy Budd


## Radboud University

T.Budd@science.ru.nl http://hef.ru.nl/~tbudd/

## Moduli space of hyperbolic surfaces

[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathrm{~L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathrm{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom. }
$$



## Moduli space of hyperbolic surfaces

[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathrm{~L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathrm{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom. }
$$



## Moduli space of hyperbolic surfaces

[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathrm{~L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus-g surface with } n \\
\text { geodesic boundaries of lengths } \mathrm{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom. }
$$



- Carries natural Weil-Petersson measure WP. In local Fenchel-Nielsen coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ it is

$$
\left.\mathrm{WP}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n} . \quad \text { [Wolpert, ' } 82\right]
$$

## Moduli space of hyperbolic surfaces

[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathrm{~L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathrm{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom. }
$$



- Carries natural Weil-Petersson measure WP. In local Fenchel-Nielsen coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ it is

$$
\mathrm{WP}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n} \text {. [Wolpert, '82] }
$$

- Weil-Petersson volume: $V_{g, n}(\mathrm{~L}):=\mathrm{WP}\left(\mathcal{M}_{g, n}(\mathrm{~L})\right)<\infty$.


## Moduli space of hyperbolic surfaces

[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ...]

- Consider the Moduli space

$$
\mathcal{M}_{g, n}(\mathrm{~L})=\left\{\begin{array}{l}
\text { hyperbolic metrics on genus- } g \text { surface with } n \\
\text { geodesic boundaries of lengths } \mathrm{L}=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\} / \text { Isom. }
$$

- Carries natural Weil-Petersson measure WP. In local Fenchel-Nielsen coordinates $\ell_{1}, \tau_{1}, \ldots, \ell_{3 g-3+n}, \tau_{3 g-3+n}$ it is

$$
\mathrm{WP}=2^{3-3 g-n} \mathrm{~d} \ell_{1} \mathrm{~d} \tau_{1} \cdots \mathrm{~d} \ell_{3 g-3+n} \mathrm{~d} \tau_{3 g-3+n} . \quad[\text { Wolpert, ' } 82]
$$

- Weil-Petersson volume: $V_{g, n}(\mathrm{~L}):=\mathrm{WP}\left(\mathcal{M}_{g, n}(\mathrm{~L})\right)<\infty$.
- Characterized in [Mirzakhani, $\left.{ }^{\circ} 05\right]$ : $V_{g, n}(\mathrm{~L})$ satisfies a (topological) recursion formula. In particular, $V_{g, n}(\mathrm{~L})$ is polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}$ of degree $3 g-3+n$.


## Relation to maps

- A (cubic) metric map is a map with vertices of degree 3 and positive real lengths $\left(x_{e}\right)_{e \in \text { Edges }}$ associated to its edges.


## Relation to maps

- A (cubic) metric map is a map with vertices of degree 3 and positive real lengths $\left(x_{e}\right)_{e \in \text { Edges }}$ associated to its edges.



## Relation to maps

- A (cubic) metric map is a map with vertices of degree 3 and positive real lengths $\left(x_{e}\right)_{e \in \text { Edges }}$ associated to its edges.

- The set of metric maps

$$
\mathcal{M}_{g, n}^{\text {met }}(\mathrm{L})=\left\{\begin{array}{l}
\text { genus- } g \text { metric maps with } n \text { labeled } \\
\text { faces of circumference } L=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\}
$$

is naturally equipped with Lebesgue measure Leb on $\left(x_{e}\right)_{e \in \text { Edges }}$.

## Relation to maps

- A (cubic) metric map is a map with vertices of degree 3 and positive real lengths $\left(x_{e}\right)_{e \in \text { Edges }}$ associated to its edges.

$\mathcal{M}_{1,3}^{\text {met }}(\mathbf{L})$

- The set of metric maps

$$
\mathcal{M}_{g, n}^{\text {met }}(\mathrm{L})=\left\{\begin{array}{l}
\text { genus- } g \text { metric maps with } n \text { labeled } \\
\text { faces of circumference } L=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\}
$$

is naturally equipped with Lebesgue measure Leb on $\left(x_{e}\right)_{e \in \text { Edges }}$.

- $V_{g, n}^{\text {met }}(\mathrm{L})=\operatorname{Leb}\left(\mathcal{M}_{g, n}^{\mathrm{met}}(\mathrm{L})\right)$ is a homogeneous polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}$ of degree $3 g-3+n$. [Kontsevich, '92] [Norbury, ...]


## Relation to maps

- A (cubic) metric map is a map with vertices of degree 3 and positive real lengths $\left(x_{e}\right)_{e \in \text { Edges }}$ associated to its edges.

$\mathcal{M}_{1,3}^{\text {met }}(\mathbf{L})$

- The set of metric maps

$$
\mathcal{M}_{g, n}^{\mathrm{met}}(\mathrm{~L})=\left\{\begin{array}{l}
\text { genus- } g \text { metric maps with } n \text { labeled } \\
\text { faces of circumference } L=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\}
$$

is naturally equipped with Lebesgue measure Leb on $\left(x_{e}\right)_{e \in \text { Edges }}$.

- $V_{g, n}^{\text {met }}(\mathrm{L})=\operatorname{Leb}\left(\mathcal{M}_{g, n}^{\mathrm{met}}(\mathrm{L})\right)$ is a homogeneous polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}$ of degree $3 g-3+n$. [Kontsevich, '92] [Norbury, ...]
- Intuitively clear that $V_{g, n}(\mathrm{~L}) \stackrel{\mathrm{L} \rightarrow \infty}{\sim} V_{g, n}^{\text {met }}(\mathrm{L})$. [Do, '11][Andersen, Borot,

Charbonnier, Giacchetto, Lewański, Wheeler, '20]


## Relation to maps

- A (cubic) metric map is a map with vertices of degree 3 and positive real lengths $\left(x_{e}\right)_{e \in \text { Edges }}$ associated to its edges.

$\mathcal{M}_{1,3}^{\text {met }}(\mathbf{L})$

- The set of metric maps

$$
\mathcal{M}_{g, n}^{\mathrm{met}}(\mathrm{~L})=\left\{\begin{array}{l}
\text { genus- } g \text { metric maps with } n \text { labeled } \\
\text { faces of circumference } L=\left(L_{1}, \ldots, L_{n}\right)
\end{array}\right\}
$$

is naturally equipped with Lebesgue measure Leb on $\left(x_{e}\right)_{e \in \text { Edges }}$.

- $V_{g, n}^{\text {met }}(\mathrm{L})=\operatorname{Leb}\left(\mathcal{M}_{g, n}^{\mathrm{met}}(\mathrm{L})\right)$ is a homogeneous polynomial in $L_{1}^{2}, \ldots, L_{n}^{2}$ of degree $3 g-3+n$. [Kontsevich, '92] [Norbury, ...]
- Intuitively clear that $V_{g, n}(\mathrm{~L}) \stackrel{\mathrm{L} \rightarrow \infty}{\sim} V_{g, n}^{\text {met }}(\mathrm{L})$. [Do, '11][Andersen, Borot,

Charbonnier, Giacchetto, Lewański, Wheeler, '20]


- How about finite L?
- Analog of map gen. fun. $G_{g}(q)=\sum_{\substack{\text { genus- } \\ \text { maps } \\ m}} \frac{1}{|\operatorname{Aut}(m)|} \prod_{f} q_{\operatorname{deg}(f)}$

- Analog of map gen. fun. $G_{g}(q)=\sum_{\substack{\text { genus-g } \\ \text { mass } m}} \frac{1}{|\operatorname{Aut}(m)|} \prod_{f} q_{\operatorname{deg}(f)}$ is the metric map generating functional depending on measure $q$ on $\mathbb{R}_{+}$,

$$
F_{g}^{\mathrm{met}}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty}\left[\prod_{i=1}^{n} \mathrm{~d} q\left(L_{i}\right)\right] V_{g, n}^{\mathrm{met}}(\mathrm{~L})
$$



- Analog of map gen. fun. $G_{g}(q)=\sum_{\substack{\text { genus-g } \\ \text { mass } m}} \frac{1}{|\operatorname{Aut}(m)|} \prod_{f} q_{\operatorname{deg}(f)}$ is the metric map generating functional depending on measure $q$ on $\mathbb{R}_{+}$,

$$
F_{g}^{\mathrm{met}}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty}\left[\prod_{i=1}^{n} \mathrm{~d} q\left(L_{i}\right)\right] V_{g, n}^{\mathrm{met}}(\mathrm{~L})=F_{g}\left(t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right) .
$$

- It only depends on "times" $t_{k}=\frac{4^{-k}}{k!} \int_{0}^{\infty} L^{2 k} \mathrm{~d} q(L)$.

- Analog of map gen. fun. $G_{g}(q)=\sum_{\substack{\text { genus-g } \\ \text { mass } m}} \frac{1}{|\operatorname{Aut}(m)|} \prod_{f} q_{\operatorname{deg}(f)}$ is the metric map generating functional depending on measure $q$ on $\mathbb{R}_{+}$,

$$
F_{g}^{\mathrm{met}}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty}\left[\prod_{i=1}^{n} \mathrm{~d} q\left(L_{i}\right)\right] V_{g, n}^{\mathrm{met}}(\mathrm{~L})=F_{g}\left(t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right) .
$$

- It only depends on "times" $t_{k}=\frac{4^{-k}}{k!} \int_{0}^{\infty} L^{2 k} d q(L)$.
- $F_{g}\left(t_{0}, t_{1}, \ldots\right)$ is generating function of intersection numbers and $e^{\sum_{g} \lambda^{g} F_{g}}$ a $\tau$-function of the KdV hierarchy. [Witten, '91], [Kontsevich, '92]

- Analog of map gen. fun. $G_{g}(q)=\sum_{\substack{\text { genus-g } \\ \text { maps } m}} \frac{1}{|\operatorname{Aut}(m)|} \prod_{f} q_{\operatorname{deg}(f)}$ is the metric map generating functional depending on measure $q$ on $\mathbb{R}_{+}$,

$$
F_{g}^{\mathrm{met}}[q]=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty}\left[\prod_{i=1}^{n} \mathrm{~d} q\left(L_{i}\right)\right] V_{g, n}^{\mathrm{met}}(\mathrm{~L})=F_{g}\left(t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right) .
$$

- It only depends on "times" $t_{k}=\frac{4^{-k}}{k!} \int_{0}^{\infty} L^{2 k} \mathrm{~d} q(L)$.
- $F_{g}\left(t_{0}, t_{1}, \ldots\right)$ is generating function of intersection numbers and $e^{\sum_{g} \lambda^{8} F_{g}}$ a $\tau$-function of the KdV hierarchy. [Witten, '91], [Kontsevich, '92]
- The generating functionals of WP volumes are obtained by a shift [Kaufmann, Manin, Zagier, '96] [Zograf, '98]

$$
F_{g}^{\mathrm{WP}}[q]:=\sum_{n \geq 1} \frac{1}{n!} \int_{0}^{\infty}\left[\prod_{i=1}^{n} \mathrm{~d} q\left(L_{i}\right)\right] V_{g, n}^{\mathrm{WP}}(\mathrm{~L})=F_{g}\left(t_{0}, t_{1}, t_{2}+\pi^{2}, t_{3}-\frac{1}{2} \pi^{4}, \ldots\right)
$$



- Open problem: Is there a bijective/geometric interpretation?

- Open problem: Is there a bijective/geometric interpretation?

- Do random planar maps and random hyperbolic surfaces belong to same universality class? see also Louf's talk
- Open problem: Is there a bijective/geometric interpretation?

- Do random planar maps and random hyperbolic surfaces belong to same universality class? see also Louf's talk
- Can we transfer methods between the two fields?

- Open problem: Is there a bijective/geometric interpretation?

- Do random planar maps and random hyperbolic surfaces belong to same universality class? see also Louf's talk
- Can we transfer methods between the two fields?


## maps


hyperbolic surfaces

- Open problem: Is there a bijective/geometric interpretation?

- Do random planar maps and random hyperbolic surfaces belong to same universality class? see also Louf's talk
- Can we transfer methods between the two fields?

hyperbolic surfaces
- Open problem: Is there a bijective/geometric interpretation?

- Do random planar maps and random hyperbolic surfaces belong to same universality class? see also Louf's talk
- Can we transfer methods between the two fields?

- Focus on genus 0 with cusps ( $=$ boundaries of length 0 ), $\mathcal{M}_{g, n}=\mathcal{M}_{g, n}(\mathrm{~L}=0)$.


## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Dotega

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.


## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Dotegga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Doregga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$



## Recall Quadrangulations $\leftrightarrow$ labeled trees talk: Bettinelli, Dotegga

- A planar map is a planar graph that is properly embedded in the sphere modulo orientation-preserving homeomorphisms.
- A quadrangulation has faces of degree 4: represents the gluing rules of squares into a topological sphere.
- There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]
$\left\{\begin{array}{c}\text { rooted quadrangulations } \\ \text { with a distinguished vertex }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { rooted plane trees with labels } \\ \text { in } \mathbb{Z} \text { that vary by at most } 1\end{array}\right\}$
- The tree labels encode the distances to the distinguished vertex.



## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\mathbf{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.


## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\mathbf{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.


## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\mathbf{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.


## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.


## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.


## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.



## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.


## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.
- Generically a rooted plane binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ with $n-1$ leaves.



## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.
- Generically a rooted plane binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ with $n-1$ leaves.



## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.
- Generically a rooted plane binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ with $n-1$ leaves.


## Theorem

There exists an open subset $\mathcal{M}_{0, n}^{\circ} \subset \mathcal{M}_{0, n}$ of full WP-measure, such that

$$
\mathcal{M}_{0, n}^{\circ} \stackrel{\text { bijection }}{\longleftrightarrow} \bigsqcup_{\mathcal{T} \in \operatorname{Bin}_{n}}\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\}
$$



## Where are the trees in a hyperbolic surface?

- Let $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ with two distinguished cusps $\star$, $\boldsymbol{\Delta}$ and determine cut locus / spine of $\star$ : points with multiple shortest geodesics to $\star$.
- Generically a rooted plane binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ with $n-1$ leaves.


## Theorem

There exists an open subset $\mathcal{M}_{0, n}^{\circ} \subset \mathcal{M}_{0, n}$ of full WP-measure, such that

$$
\mathcal{M}_{0, n}^{\circ} \stackrel{\text { bijection }}{\longleftrightarrow} \bigsqcup_{\mathcal{T} \in \operatorname{Bin}_{n}}\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\} .
$$

The WP measures is mapped to Lebesgue: $2^{n-3} \mathrm{~d} \alpha_{1} \mathrm{~d} \beta_{1} \cdots \mathrm{~d} \alpha_{n-3} \mathrm{~d} \beta_{n-3}$.


## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.
- Well-defined precisely when sum of opposing angles $>\pi$.



## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.
- Well-defined precisely when sum of opposing angles $>\pi$.

- Angles are related to hyperbolic distances $\ell_{i}$ via sine law:

$$
\frac{e^{\ell_{1}}}{\sin \left(2 \pi-\alpha_{1}-\beta_{1}\right)}=\frac{e^{\ell_{3}}}{\sin \alpha_{1}}=\frac{e^{\ell_{2}}}{\sin \beta_{1}}
$$

## Proof: an associated ideal triangulation

- The cut locus determines a canonical ideal triangulation of $\mathcal{S}_{n}$.
- To reglue: need to know position where red arcs meet sides perpendicularly $\longleftrightarrow$ angles at vertex.
- Well-defined precisely when sum of opposing angles $>\pi$.

- Angles are related to hyperbolic distances $\ell_{i}$ via sine law:

$$
\frac{e^{\ell_{1}}}{\sin \left(2 \pi-\alpha_{1}-\beta_{1}\right)}=\frac{e^{\ell_{3}}}{\sin \alpha_{1}}=\frac{e^{\ell_{2}}}{\sin \beta_{1}}
$$

- The Weil-Petersson measure is [Penner, '92]

$$
W P=\frac{1}{(n-3)!}\left(-2 \sum_{\text {corners }} \mathrm{d} \ell_{i} \wedge \mathrm{~d} \ell_{j}\right)^{n-3}=2^{n-3} \mathrm{~d} \alpha_{1} \mathrm{~d} \beta_{1} \cdots \mathrm{~d} \alpha_{n-3} \mathrm{~d} \beta_{n-3}
$$

## Application to random surface with many cusps

- Sample $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ proportional to WP measure.
- $\left(\mathcal{S}_{n}, d_{\text {hyp }}\right)$ is non-compact due to cusps.



## Application to random surface with many cusps

- Sample $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ proportional to WP measure.
- $\left(\mathcal{S}_{n}, d_{\text {hyp }}\right)$ is non-compact due to cusps.
- Disjoint length-1 horocycles $c_{1}, \ldots, c_{n} \subset \mathcal{S}_{n}$.



## Application to random surface with many cusps

- Sample $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ proportional to WP measure.
- $\left(\mathcal{S}_{n}, d_{\text {hyp }}\right)$ is non-compact due to cusps.
- Disjoint length-1 horocycles $c_{1}, \ldots, c_{n} \subset \mathcal{S}_{n}$.


Theorem (TB, Curien, '22+)
We have

$$
\left(\left\{c_{1}, \ldots, c_{n}\right\}, n^{-\frac{1}{4}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(d)} c_{w P}\left(m_{\infty}, D^{*}\right) \quad \text { (Gromov-Hausdorff sense) }
$$

where $\mathrm{c}_{\text {WP }}=2.339 \ldots$ and $\left(\mathrm{m}_{\infty}, D^{*}\right)$ is the Brownian sphere

## Application to random surface with many cusps

- Sample $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ proportional to WP measure.
- $\left(\mathcal{S}_{n}, d_{\text {hyp }}\right)$ is non-compact due to cusps.
- Disjoint length-1 horocycles $c_{1}, \ldots, c_{n} \subset \mathcal{S}_{n}$.
- Turn into compact metric space ( $\mathcal{S}_{n}^{\circ}, d_{\text {hyp }}$ ) by removing interiors of $c_{1}, \ldots, c_{n} \subset \mathcal{S}_{n}$.


Theorem (TB, Curien, '22+)
We have

$$
\begin{aligned}
\left(\left\{c_{1}, \ldots, c_{n}\right\}, n^{-\frac{1}{4}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(d)} c_{w p}\left(\mathrm{~m}_{\infty}, D^{*}\right) & \text { (Gromov-Hausdorff sense) } \\
\left(\mathcal{S}_{n}^{\circ}, n^{-\frac{1}{4}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(d)} c_{w p}\left(\mathrm{~m}_{\infty}, D^{*}\right) & \text { (Gromov-Hausdorff sense) }
\end{aligned}
$$

where $\mathrm{c}_{\text {WP }}=2.339 \ldots$ and $\left(\mathrm{m}_{\infty}, D^{*}\right)$ is the Brownian sphere

- Implied by $1^{\text {st }}$ convergence: $\sup _{x \in \mathcal{S}_{n}^{\circ}} d_{\text {hyp }}\left(x,\left\{c_{1}, \ldots, c_{n}\right\}\right)=o\left(n^{\frac{1}{4}}\right)$.


## Application to random surface with many cusps

- Sample $\mathcal{S}_{n} \in \mathcal{M}_{0, n}$ proportional to WP measure.
- $\left(\mathcal{S}_{n}, d_{\text {hyp }}\right)$ is non-compact due to cusps.
- Disjoint length-1 horocycles $c_{1}, \ldots, c_{n} \subset \mathcal{S}_{n}$.
- Turn into compact metric space ( $\mathcal{S}_{n}^{\circ}, d_{\text {hyp }}$ ) by removing interiors of $c_{1}, \ldots, c_{n} \subset \mathcal{S}_{n}$.



## Theorem (TB, Curien, '22+)

We have

$$
\begin{aligned}
\left(\left\{c_{1}, \ldots, c_{n}\right\}, n^{-\frac{1}{4}} d_{h y p}\right) \xrightarrow[n \rightarrow \infty]{(d)} c_{w p}\left(m_{\infty}, D^{*}\right) & \text { (Gromov-Hausdorff sense) } \\
\left(\mathcal{S}_{n}^{\circ}, n^{-\frac{1}{4}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(d)} c_{w p}\left(\mathrm{~m}_{\infty}, D^{*}\right) & \text { (Gromov-Hausdorff sense) } \\
\left(\mathcal{S}_{n}, \frac{\text { Area }}{2 \pi n}, n^{-\frac{1}{4}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathrm{c}_{w p}\left(\mathrm{~m}_{\infty}, \mu, D^{*}\right) & \text { (Gromov-Prokhorov sense) }
\end{aligned}
$$

where $\mathrm{c}_{\text {WP }}=2.339 \ldots$ and $\left(\mathrm{m}_{\infty}, D^{*}\right)$ is the Brownian sphere with its natural normalized measure $\mu$.

- Implied by $1^{\text {st }}$ convergence: $\sup _{x \in \mathcal{S}_{n}^{\circ}} d_{\text {hyp }}\left(x,\left\{c_{1}, \ldots, c_{n}\right\}\right)=o\left(n^{\frac{1}{4}}\right)$.


## Conjecture

The generating function of Weil-Petersson volumes of hyperbolic surfaces with three marked cusps weighted by $e^{2 u\left(d_{1}-d_{2}\right)}$ is

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \int_{\mathcal{M}_{0, n+3}} e^{2 u\left(d_{1}-d_{2}\right)} \mathrm{dWP}=\frac{\sin (2 \pi u)}{[u \geq 0] \sin \left(2 \pi \sqrt{u^{2}+R}\right)}
$$

where $R(x)=2 \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \mathrm{WP}\left(\mathcal{M}_{0, n+2}\right)$ solves $\frac{\sqrt{R}}{2 \pi} J_{1}(2 \pi \sqrt{R})=x$.


## Conjecture

The generating function of Weil-Petersson volumes of hyperbolic surfaces with three marked cusps weighted by $e^{2 u\left(d_{1}-d_{2}\right)}$ is

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \int_{\mathcal{M}_{0, n+3}} e^{2 u\left(d_{1}-d_{2}\right)} \mathrm{dWP}=\frac{\sin (2 \pi u)}{[u \geq 0] \sin \left(2 \pi \sqrt{u^{2}+R}\right)}
$$

where $R(x)=2 \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \mathrm{WP}\left(\mathcal{M}_{0, n+2}\right)$ solves $\frac{\sqrt{R}}{2 \pi} J_{1}(2 \pi \sqrt{R})=x$.

- Proved to order $u^{2}$. Resulting in $\mathbb{E}_{\mathcal{S}_{n}}\left[\left(d_{1}-d_{2}\right)^{2}\right] \stackrel{n \rightarrow \infty}{\sim} \frac{\sqrt{2 \pi^{5} n}}{3 c_{0}}$, where $c_{0}$ is first Bessel zero $J_{0}\left(c_{0}\right)=0$.



## Conjecture

The generating function of Weil-Petersson volumes of hyperbolic surfaces with three marked cusps weighted by $e^{2 u\left(d_{1}-d_{2}\right)}$ is

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \int_{\mathcal{M}_{0, n+3}} e^{2 u\left(d_{1}-d_{2}\right)} \mathrm{dWP}=\frac{\sin (2 \pi u)}{[u \geq 0] \sin \left(2 \pi \sqrt{u^{2}+R}\right)}
$$

where $R(x)=2 \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \mathrm{WP}\left(\mathcal{M}_{0, n+2}\right)$ solves $\frac{\sqrt{R}}{2 \pi} J_{1}(2 \pi \sqrt{R})=x$.

- Proved to order $u^{2}$. Resulting in $\mathbb{E}_{\mathcal{S}_{n}}\left[\left(d_{1}-d_{2}\right)^{2}\right] \stackrel{n \rightarrow \infty}{\sim} \frac{\sqrt{2 \pi^{5} n}}{3 c_{0}}$, where $c_{0}$ is first Bessel zero $J_{0}\left(c_{0}\right)=0$.
- Comparison to $\mathbb{E}_{\mathrm{m}_{\infty}}\left[\left(D_{1}^{*}-D_{2}^{*}\right)^{2}\right]=\sqrt{\frac{\pi}{8}}$ on Brownian sphere:

$$
c_{w P}=\frac{2 \pi}{\sqrt{3 c_{0}}}=2.339 \ldots
$$

## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\} . c_{*}
$$



## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\} .
$$

- Label edges by distance to $c_{\star}$,



## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from
$\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\}$.
- Label edges by distance to $c_{\star}$, but shifted to have label 0 on root.



## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\}
$$

- Label edges by distance to $c_{\star}$, but shifted to have label 0 on root.
- Then label on edge incident to cusp $i$ is
 $d_{\text {hyp }}\left(c_{i}, c_{\star}\right)-d_{\text {hyp }}\left(c_{\mathbf{\Delta}}, c_{\star}\right)$.


## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\}
$$

- Label edges by distance to $c_{\star}$, but shifted to have label 0 on root.
- Then label on edge incident to cusp $i$ is
 $d_{\text {hyp }}\left(c_{i}, c_{\star}\right)-d_{\text {hyp }}\left(c_{\mathbf{\Delta}}, c_{\star}\right)$.
- Let $C^{(n)}(t)$ be contour process,



## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from

$$
\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\} .
$$

- Label edges by distance to $c_{\star}$, but shifted to have label 0 on root.
- Then label on edge incident to cusp $i$ is
 $d_{\text {hyp }}\left(c_{i}, c_{\star}\right)-d_{\text {hyp }}\left(c_{\mathbf{\Delta}}, c_{\star}\right)$.
- Let $C^{(n)}(t)$ be contour process, $Z^{(n)}(t)$ label process,



## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from $\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\}$.
- Label edges by distance to $c_{\star}$, but shifted to have label 0 on root.
- Then label on edge incident to cusp $i$ is $d_{\text {hyp }}\left(c_{i}, c_{\star}\right)-d_{\text {hyp }}\left(c_{\mathbf{\Delta}}, c_{\star}\right)$.
- Let $C^{(n)}(t)$ be contour process, $Z^{(n)}(t)$ label process, $R^{(n)}(t)$ leaf-counting process.



## Main technical part: convergence to Brownian snake

- Random surface $\mathcal{S}_{n} \in \mathcal{M}_{0, n} \longleftrightarrow$ Sample binary tree $\mathcal{T}_{n} \in \operatorname{Bin}_{n}$ proportional to $\operatorname{Leb}\left(\mathcal{A}_{\mathcal{T}}\right)$ and angles sampled Leb-uniformly from $\mathcal{A}_{\mathcal{T}}=\left\{\left(\alpha_{i}, \beta_{i}\right) \in(0, \pi)^{2 n-6}: \alpha_{i}+\beta_{i}>\pi, \theta+\sigma>\pi\right\}$.
- Label edges by distance to $c_{\star}$, but shifted to have label 0 on root.
- Then label on edge incident to cusp $i$ is $d_{\text {hyp }}\left(c_{i}, c_{\star}\right)-d_{\text {hyp }}\left(c_{\mathbf{\Delta}}, c_{\star}\right)$.
- Let $C^{(n)}(t)$ be contour process, $Z^{(n)}(t)$ label process, $R^{(n)}(t)$ leaf-counting process.



## Proposition

$$
\left(\frac{C^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{Z^{(n)}(t)}{n^{\frac{1}{4}}}, \frac{R^{(n)}(t)}{n}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(c_{1} e_{t}, c_{2} Z_{t}, t\right)_{0 \leq t \leq 1}
$$

## Bringing your favorite tree home

- Need an invariance principle for our trees.



## Bringing your favorite tree home

- Need an invariance principle for our trees.
- Make size random and critical $\mathbb{P}_{x_{c}}(\mathcal{T}) \propto x_{c}{ }^{\text {\#leaves }}$.



## Bringing your favorite tree home

- Need an invariance principle for our trees.
- Make size random and critical $\mathbb{P}_{x_{c}}(\mathcal{T}) \propto x_{c}{ }^{\text {\#leaves }}$.
- Offspring distribution is angle-dependent

$\rightsquigarrow$ Continuous-type Galton-Watson tree?


## Bringing your favorite tree home

- Need an invariance principle for our trees.
- Make size random and critical $\mathbb{P}_{x_{c}}(\mathcal{T}) \propto x_{c}{ }^{\text {\#leaves }}$.
- Offspring distribution is angle-dependent

$\rightsquigarrow$ Continuous-type Galton-Watson tree?
- Disassemble tree to fit better!

- Only some edges of $\mathcal{T}$ intersect their dual geodesic:

- Only some edges of $\mathcal{T}$ intersect their dual geodesic:

- Only some edges of $\mathcal{T}$ intersect their dual geodesic:

- Only some edges of $\mathcal{T}$ intersect their dual geodesic:

- Only some edges of $\mathcal{T}$ intersect their dual geodesic: canonical partition of the ideal triangulation into "blobs".

- Only some edges of $\mathcal{T}$ intersect their dual geodesic: canonical partition of the ideal triangulation into "blobs".
- Connectivity tree $\mathfrak{T}$ of the blobs has law of a critical GW tree with explicit offspring dist $\left(p_{k}\right)$, except root has offspring dist $\left(p_{k}^{\bullet}\right)$.

- Only some edges of $\mathcal{T}$ intersect their dual geodesic: canonical partition of the ideal triangulation into "blobs".
- Connectivity tree $\mathfrak{T}$ of the blobs has law of a critical GW tree with explicit offspring dist $\left(p_{k}\right)$, except root has offspring dist $\left(p_{k}^{\bullet}\right)$.

- Only some edges of $\mathcal{T}$ intersect their dual geodesic: canonical partition of the ideal triangulation into "blobs".
- Connectivity tree $\mathfrak{T}$ of the blobs has law of a critical GW tree with explicit offspring dist $\left(p_{k}\right)$, except root has offspring dist $\left(p_{k}^{\bullet}\right)$.

- To recover $\mathcal{T}$ from $\mathfrak{T}$ : independently attach to each black vertex of degree $k$ a red leaf with probability $r_{k}$ in uniform corner ( $r_{1}=1$ ).
- Only some edges of $\mathcal{T}$ intersect their dual geodesic: canonical partition of the ideal triangulation into "blobs".
- Connectivity tree $\mathfrak{T}$ of the blobs has law of a critical GW tree with explicit offspring dist $\left(p_{k}\right)$, except root has offspring dist $\left(p_{k}^{\bullet}\right)$.

- To recover $\mathcal{T}$ from $\mathfrak{T}$ : independently attach to each black vertex of degree $k$ a red leaf with probability $r_{k}$ in uniform corner ( $r_{1}=1$ ).
- Insert independent random blobs of appropriate degree (with or without leaf) sampled according to Leb.


## Adding the labels



- Transfer the (distance) labels to the black tree.


## Adding the labels



- Transfer the (distance) labels to the black tree.
- Conditionally on $\mathfrak{T}$, the increments $\left(\Delta_{1}^{(k)}, \ldots, \Delta_{k}^{(k)}\right)$ at a vertex of degree $k+1$ are independent of those at other vertices and

$$
\mathbb{E}\left[\Delta_{i}^{(k)}\right]=0, \quad \mathbb{E}\left[\left(\Delta_{i}^{(k)}\right)^{4+\varepsilon}\right]<\infty, \quad i=1, \ldots, k
$$

## Adding the labels



- Transfer the (distance) labels to the black tree.
- Conditionally on $\mathfrak{T}$, the increments $\left(\Delta_{1}^{(k)}, \ldots, \Delta_{k}^{(k)}\right)$ at a vertex of degree $k+1$ are independent of those at other vertices and

$$
\mathbb{E}\left[\Delta_{i}^{(k)}\right]=0, \quad \mathbb{E}\left[\left(\Delta_{i}^{(k)}\right)^{4+\varepsilon}\right]<\infty, \quad i=1, \ldots, k
$$

## Adding the labels



- Transfer the (distance) labels to the black tree.
- Conditionally on $\mathfrak{T}$, the increments $\left(\Delta_{1}^{(k)}, \ldots, \Delta_{k}^{(k)}\right)$ at a vertex of degree $k+1$ are independent of those at other vertices and

$$
\mathbb{E}\left[\Delta_{i}^{(k)}\right]=0, \quad \mathbb{E}\left[\left(\Delta_{i}^{(k)}\right)^{4+\varepsilon}\right]<\infty, \quad i=1, \ldots, k
$$

## Adding the labels



- Transfer the (distance) labels to the black tree.
- Conditionally on $\mathfrak{T}$, the increments $\left(\Delta_{1}^{(k)}, \ldots, \Delta_{k}^{(k)}\right)$ at a vertex of degree $k+1$ are independent of those at other vertices and

$$
\mathbb{E}\left[\Delta_{i}^{(k)}\right]=0, \quad \mathbb{E}\left[\left(\Delta_{i}^{(k)}\right)^{4+\varepsilon}\right]<\infty, \quad i=1, \ldots, k
$$

- [Marckert, Miermont, '07]: Conditioned on $n_{0}$ the rescaled contour and label process of $\mathfrak{T}$ converges to Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$ as $n_{\bullet} \rightarrow \infty$.


## Proof of technical result



- Stretch to convergence on $\mathcal{T}$, still conditioning on $n_{\bullet}=n$,

$$
\left(\frac{\tilde{C}^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{\tilde{Z}^{(n)}(t)}{n^{\frac{1}{4}}}, \frac{\tilde{R}^{(n)}(t)}{n}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(\tilde{c}_{1} e_{t}, \tilde{c}_{2} Z_{t}, \tilde{c}_{3} t\right)_{0 \leq t \leq 1} .
$$

## Proof of technical result



- Stretch to convergence on $\mathcal{T}$, still conditioning on $n_{\bullet}=n$,

$$
\left(\frac{\tilde{C}^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{\tilde{Z}^{(n)}(t)}{n^{\frac{1}{4}}}, \frac{\tilde{R}^{(n)}(t)}{n}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(\tilde{c}_{1} e_{t}, \tilde{c}_{2} Z_{t}, \tilde{c}_{3} t\right)_{0 \leq t \leq 1} .
$$

- Change conditioning to fixed number $n_{\circ}=n$ of leaves,

$$
\left(\frac{C^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{Z^{(n)}(t)}{n^{\frac{1}{4}}}, \frac{R^{(n)}(t)}{n}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(c_{1} e_{t}, \mathrm{c}_{2} Z_{t}, t\right)_{0 \leq t \leq 1} .
$$

## Bound on distances between arbitrary horocycles



Bound on distances between arbitrary horocycles


Bound on distances between arbitrary horocycles


Bound on distances between arbitrary horocycles


Bound on distances between arbitrary horocycles


## Bound on distances between arbitrary horocycles



- Distances between arbitrary horocycles satisfy deterministic bound

$$
d_{\mathrm{hyp}}\left(c_{i}, c_{j}\right) \leq d_{\mathrm{hyp}}\left(c_{i}, c_{*}\right)+d_{\mathrm{hyp}}\left(c_{j}, c_{*}\right)-2 \min _{k} \ell_{k}+\underbrace{2 \log n+10}_{o\left(n^{\frac{1}{4}}\right)}
$$

## Convergence to the Brownian sphere

[Le Gall, '13] [Miermont, '13] [Addario-Berry, Albenque, '13] [Bettinelli, Jacob, Miermont, '14]

$$
\begin{gathered}
\left(\frac{C^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{Z^{(n)}(t)}{n^{\frac{1}{4}}}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathrm{c}_{1} e_{t}, \mathrm{c}_{2} Z_{t}\right)_{0 \leq t \leq 1} \\
+ \\
d_{\text {hyp }}^{(n)}(s, t) \leq Z^{(n)}(s)+Z^{(n)}(t)-2 \max \left\{\min _{[s, t]} Z^{(n)}, \min _{[t, s]} Z^{(n)}\right\}+o\left(n^{\frac{1}{4}}\right) \\
+
\end{gathered}
$$

Invariance under rerooting
$\Downarrow$ [Le Gall, '13]'s rerooting trick

$$
\left(\frac{C^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{Z^{(n)}(t)}{n^{\frac{1}{4}}}, \frac{d_{\mathrm{hyp}}^{(n)}(s, t)}{n^{\frac{1}{4}}}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathrm{c}_{1} e_{t}, \mathrm{c}_{2} Z_{t}, \mathrm{c}_{w p} D_{s, t}^{*}\right)_{0 \leq t \leq 1}
$$

## Convergence to the Brownian sphere

[Le Gall, '13] [Miermont, '13] [Addario-Berry, Albenque, '13] [Bettinelli, Jacob, Miermont, '14]

$$
\begin{gathered}
\left(\frac{C^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{Z^{(n)}(t)}{n^{\frac{1}{4}}}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(\mathrm{c}_{1} e_{t}, \mathrm{c}_{2} Z_{t}\right)_{0 \leq t \leq 1} \\
+ \\
d_{\mathrm{hyp}}^{(n)}(s, t) \leq Z^{(n)}(s)+Z^{(n)}(t)-2 \max \left\{\min _{[s, t]} Z^{(n)}, \min _{[t, s]} Z^{(n)}\right\}+o\left(n^{\frac{1}{4}}\right) \\
+
\end{gathered}
$$

Invariance under rerooting
$\Downarrow$ [Le Gall, '13]'s rerooting trick

$$
\begin{gathered}
\left(\frac{C^{(n)}(t)}{n^{\frac{1}{2}}}, \frac{Z^{(n)}(t)}{n^{\frac{1}{4}}}, \frac{d_{\text {hyp }}^{(n)}(s, t)}{n^{\frac{1}{4}}}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{ }(d) \\
\quad\left(\left\{c_{1} e_{t}, \mathrm{c}_{2} Z_{t}, \mathrm{c}_{w P} D_{s, t}^{*}\right)_{0 \leq t \leq 1}\right. \\
\left.\left.\forall, c_{n}\right\}, n^{-\frac{1}{4}} d_{\text {hyp }}\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathrm{c}_{\mathrm{wP}}\left(\mathrm{~m}_{\infty}, D^{*}\right) \quad \text { (Gromov-Hausdorff sense) }
\end{gathered}
$$

## Perspectives

- The tree bijection for hyperbolic surfaces in a sense simpler than maps: left-right symmetric!
- Benjamini-Schramm convergence to random hyperbolic surface of topology $\mathbb{R}^{2} \backslash \mathbb{Z}^{2}$. [TB, Curien, '22+]
- Tree bijection extends to boundary lengths $L>0$ (natural analogue of BDG bijection).
- Another possible bridge: tight boundaries, see Miermont's talk tomorrow!


## Perspectives

- The tree bijection for hyperbolic surfaces in a sense simpler than maps: left-right symmetric!
- Benjamini-Schramm convergence to random hyperbolic surface of topology $\mathbb{R}^{2} \backslash \mathbb{Z}^{2}$. [TB, Curien, '22+]
- Tree bijection extends to boundary lengths $L>0$ (natural analogue of BDG bijection).
- Another possible bridge: tight boundaries, see Miermont's talk tomorrow!


## Thank you!



## Backup slides

## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$
- The continuum analogues are the Brownian excursion $e_{t}$



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$
- The continuum analogues are the Brownian excursion $e_{t}$



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$ and label process $Z^{(n)}(t)$.
- The continuum analogues are the Brownian excursion $e_{t}$



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$ and label process $Z^{(n)}(t)$.
- The continuum analogues are the Brownian excursion $e_{t}$ and the Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$.



## From labeled trees to the Brownian snake

- The labeled tree is encoded in contour process $C^{(n)}(t)$ and label process $Z^{(n)}(t)$.
- The continuum analogues are the Brownian excursion $e_{t}$ and the Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$.



## The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, ...]

- More precisely, given Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$, define pseudo-distance on $[0,1]$ via

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left\{\min _{[s, t]} Z, \min _{[t, s]} Z\right\}, \quad s, t \in[0,1] .
$$

## The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, ...]

- More precisely, given Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$, define pseudo-distance on $[0,1]$ via

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left\{\min _{[s, t]} Z, \min _{[t, s]} Z\right\}, \quad s, t \in[0,1] .
$$

- Writing $t \sim s$ if identified in CRT, introduce new pseudo-distance

$$
D^{*}(s, t)=\inf \left\{D^{\circ}\left(s, t_{1}\right)+D^{\circ}\left(s_{1}, t_{2}\right)+\cdots+D^{\circ}\left(s_{k}, t\right): t_{i} \sim s_{i}\right\} .
$$

## The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, ...]

- More precisely, given Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$, define pseudo-distance on $[0,1]$ via

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left\{\min _{[s, t]} Z, \min _{[t, s]} Z\right\}, \quad s, t \in[0,1] .
$$

- Writing $t \sim s$ if identified in CRT, introduce new pseudo-distance

$$
D^{*}(s, t)=\inf \left\{D^{\circ}\left(s, t_{1}\right)+D^{\circ}\left(s_{1}, t_{2}\right)+\cdots+D^{\circ}\left(s_{k}, t\right): t_{i} \sim s_{i}\right\} .
$$

- Brownian sphere is defined as $\left(m_{\infty}=[0,1] /\left\{D^{*}=0\right\}, D^{*}\right)$.


## The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, ...]

- More precisely, given Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$, define pseudo-distance on $[0,1]$ via

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left\{\min _{[s, t]} Z, \min _{[t, s]} Z\right\}, \quad s, t \in[0,1] .
$$

- Writing $t \sim s$ if identified in CRT, introduce new pseudo-distance

$$
D^{*}(s, t)=\inf \left\{D^{\circ}\left(s, t_{1}\right)+D^{\circ}\left(s_{1}, t_{2}\right)+\cdots+D^{\circ}\left(s_{k}, t\right): t_{i} \sim s_{i}\right\} .
$$

- Brownian sphere is defined as ( $\left.m_{\infty}=[0,1] /\left\{D^{*}=0\right\}, D^{*}\right)$.
- Gromov-Hausdorff convergence proven for many types of maps, including
- p-angulations [Le Gall, '13][Miermont, '13][Addario-Berry, Albenque, '20]
- Uniform (bipartite) maps [Bettinelli, Jacob, Miermont, '14][Abraham, '16]
- Simple triangulations, quadrangulations [Addario-Berry, Albenque, '20]
- Bipartite maps with prescribed degrees [Marzouk, '18], ...


## The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, ...]

- More precisely, given Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$, define pseudo-distance on $[0,1]$ via

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left\{\min _{[s, t]} Z, \min _{[t, s]} Z\right\}, \quad s, t \in[0,1] .
$$

- Writing $t \sim s$ if identified in CRT, introduce new pseudo-distance

$$
D^{*}(s, t)=\inf \left\{D^{\circ}\left(s, t_{1}\right)+D^{\circ}\left(s_{1}, t_{2}\right)+\cdots+D^{\circ}\left(s_{k}, t\right): t_{i} \sim s_{i}\right\} .
$$

- Brownian sphere is defined as ( $\left.m_{\infty}=[0,1] /\left\{D^{*}=0\right\}, D^{*}\right)$.
- Gromov-Hausdorff convergence proven for many types of maps, including
- p-angulations [Le Gall, '13][Miermont, '13][Addario-Berry, Albenque, '20]
- Uniform (bipartite) maps [Bettinelli, Jacob, Miermont, '14][Abraham, '16]
- Simple triangulations, quadrangulations [Addario-Berry, Albenque, '20]
- Bipartite maps with prescribed degrees [Marzouk, '18], ...
- Can also be recovered from Liouville Quantum Gravity at $\gamma=\sqrt{\frac{8}{3}}$. [Miller, Sheffield]


## The Brownian sphere [Marckert, Mokkadem, Le Gall, Miermont, ...]

- More precisely, given Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$, define pseudo-distance on $[0,1]$ via

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left\{\min _{[s, t]} Z, \min _{[t, s]} Z\right\}, \quad s, t \in[0,1] .
$$

- Writing $t \sim s$ if identified in CRT, introduce new pseudo-distance

$$
D^{*}(s, t)=\inf \left\{D^{\circ}\left(s, t_{1}\right)+D^{\circ}\left(s_{1}, t_{2}\right)+\cdots+D^{\circ}\left(s_{k}, t\right): t_{i} \sim s_{i}\right\} .
$$

- Brownian sphere is defined as ( $\left.m_{\infty}=[0,1] /\left\{D^{*}=0\right\}, D^{*}\right)$.
- Gromov-Hausdorff convergence proven for many types of maps, including
- p-angulations [Le Gall, '13][Miermont, '13][Addario-Berry, Albenque, '20]
- Uniform (bipartite) maps [Bettinelli, Jacob, Miermont, '14][Abraham, '16]
- Simple triangulations, quadrangulations [Addario-Berry, Albenque, '20]
- Bipartite maps with prescribed degrees [Marzouk, '18], ...
- Can also be recovered from Liouville Quantum Gravity at $\gamma=\sqrt{\frac{8}{3}}$. [Miller, Sheffield]
- Novelty of this work: Brownian sphere limit from continuous model!

