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Moduli space of hyperbolic surfaces

[Wolpert, Penner, Zograf, Witten, Kontsevich, Mirzakhani, ]

» Consider the Moduli space

hyperbolic metrics on genus-g surface with n /lsom
geodesic boundaries of lengths L = (Ly,...,L,) '

M) = {

Mo (L)

» Carries natural Weil-Petersson measure WP. In local
Fenchel-Nielsen coordinates {1, 71, . ..,¢3g—31n, T3g—3+n it is

WP = 23—3g—n dﬁldTl s d£3g—3+nd7—3g—3+n- [Wolpert, '82]

> Weil-Petersson volume: Vg n(L) := WP(Mg (L)) < oo.

» Characterized in [Mirzakhani,'05]: Vg n(L) satisfies a (topological)
recursion formula. In particular, V, (L) is polynomial in L2, ... [2
of degree 3g — 3+ n.
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» The set of metric maps

MTE(L) = genus-g metric maps with n labeled
&n faces of circumference L = (L1, ..., L,)
is naturally equipped with Lebesgue measure Leb on (Xe)ecEdges-

> V(L) = Leb(MP5 (L)) is a homogeneous polynomial in
L2,..., L2 of degree 3g — 3 + n. [Kontsevich, '92] [Norbury, . ..]
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» How about finite L?
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> Analog of map gen. fun. Gg( Z ‘Aut(m)lnqdeg(f is the metric

genus-g
maps m

map generating functional depending on measure g on R,
Fe'lq] = Z - / qu vmet (L) = Fa(to, tr, o, 3, . .).

pr " 4=k oo ok
> It only depends on “times” t, = 4 [* [**dq(L).
» Fg(to,t1,...) is generating function of intersection numbers and
e2s**Fs 3 r_function of the KdV hierarchy. [witten, '91], [Kontsevich, '92]

» The generating functionals of WP volumes are obtained by a shift
[Kaufmann, Manin, Zagier, '96] [Zograf, '98]

FWP[q] _Zn'/ qu VWP (L) = Fg(to, t1, tom?, t3— 3%,
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» Open problem: Is there a bijective/geometric interpretation?
o(L)

? U R
F;NP [d]

me L
Fg t[q] a(La) L)

» Do random planar maps and random hyperbolic surfaces belong to
same universality class? see also Louf's talk

» Can we transfer methods between the two fields?
Pty g=0

maps

hyperbolic surfaces

» Focus on genus 0 with cusps (= boundaries of length 0),
Mg n= Mg (L =0).
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Recall Quadrangulations <> labeled trees ti: Bettineli, Doiega

» A planar map is a planar graph that is properly embedded in the
sphere modulo orientation-preserving homeomorphisms.

» A quadrangulation has faces of degree 4: represents the gluing rules
of squares into a topological sphere.

» There exists a 2-to-1 map [Cori, Vauquelin] [Schaeffer, '99]

rooted quadrangulations rooted plane trees with labels
with a distinguished vertex in Z that vary by at most 1

» The tree labels encode the distances to the distinguished vertex.

42 3 2
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T 2 -1
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Where are the trees in a hyperbolic surface?

> Let S, € My, with two distinguished cusps %, A and determine cut
locus / spine of x: points with multiple shortest geodesics to *.
> Generically a rooted plane binary tree 7, € Bin, with n — 1 leaves.

Theorem
There exists an open subset Mg , C Mo, of full WP-measure, such that
biiecti
MG, 8| (e B) € (0,70 i+ Bi >, 0+ 0 >

T €Bin,
The WP measures is mapped to Lebesgue: 2" 3da1dfs - - - dap—_3dBa_s.
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Proof: an associated ideal triangulation

» The cut locus determines a canonical ideal triangulation of S,.

» To reglue: need to know position where red arcs meet sides
perpendicularly <— angles at vertex.

» Well-defined precisely when sum of opposing angles > .

o+ P2 >m

» Angles are related to hyperbolic distances ¢; via sine law:

el els et

sin(2r —a; — B1)  sinag sinf3
» The Weil-Petersson measure is [Penner, '92]

1 n—3 3
wp = m(—z > dlady) =27 daxdBy - dag sdfy-s.

corners
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> Sample S, € My, proportional to WP measure.

.\

» (Sh, dhyp) is non-compact due to cusps. .

» Disjoint length-1 horocycles ¢, ..., ¢, C Sy.

» Turn into compact metric space (Sy,, dhyp) by N Jois
removing interiors of ¢1,...,¢, C Sp. J
Theorem (TB, Curien, '22+)

We have
—1 (d) *
({Cl7 500 C,,}7 n 4 dhyp) — cWP(moo, D ) (Gromov-Hausdorff sense)
n—oo
o -1 (d) *
(Snv n 4 dhyp) E— cWP(moo, D ) (Gromov-Hausdorff sense)
n—oo

(d)

_1
(S Area 4dhyp) — CWP(mOO,‘LL, D*) (Gromov-Prokhorov sense)

ny b
2mn n— o0

where ¢, = 2.339... and (mo, D*) is the Brownian sphere with its
natural normalized measure .

> Implied by 1 convergence: sup,cso dhyp(x, {c1,...,cn}) = o(n

Bl
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The generating function of Weil-Petersson volumes of hyperbolic surfaces
with three marked cusps weighted by e2“(%1—%) js

i Ln/ e2u(d1—d2) dWP = Sin(zﬂ—u) ,
=l J g s [u=Z9]sin(2mV u? + R)

where R(x) =232 XWP(Mo ,12) solves §J1(277\/§) =%

n=0 n!

n— 00 271-5
~ Y 0

> Proved to order u?. Resulting in Eg,[(d1 — d2)?] 5o, where

¢ is first Bessel zero Jy(cp) = 0.




Conjecture

The generating function of Weil-Petersson volumes of hyperbolic surfaces
with three marked cusps weighted by e?!(%1—) js

27u)
2Ll(d1 ) dWP = Sln( ,
Z n! /M0n+3 [UZO]SIn(27rV U2—|—R)

where R(x) = 2322 0 X'WP(Mo n12) solves X J;(21V/R) = x.

> Proved to order u?. Resulting in Es[(di — d2)?] "< Y327 where
¢ is first Bessel zero Jy(cp) = 0.
» Comparison to En_[(Df — D5)?] = /% on Brownian sphere:
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Main technical part: convergence to Brownian snake

» Random surface S, € My, +— Sample
binary tree 7, € Bin, proportional to Leb(.At)
and angles sampled Leb-uniformly from

Ar = {(a;, 8)) € (Oaﬁ)zn_ﬁ Cai+Bi >, 040 > wh

» Label edges by distance to c,, but shifted to
have label 0 on root.

» Then label on edge incident to cusp i is
hyp(Ciy ) — dhyp(Ca, Ci)-

> Let C("(t) be contour process, Z(")(t) label
process, R(")(t) leaf-counting process.

Proposition
() zM(t) ROI(t d
l( )a ;( )7 ( ) L) (Cl €t, C2Zta t)OStSl
n2 na n 0<t<1 n—00
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Bringing your favorite tree home

» Need an invariance principle for our trees.

» Make size random and critical
]P)XC(T) x XC#Ieaves'

» Offspring distribution is angle-dependent

0 angle-dependent offspring

~~ Continuous-type Galton-Watson tree?
» Disassemble tree to fit better!




> Only some edges of T intersect their dual geodesic:




> Only some edges of T intersect their dual geodesic:




» Only some edges of T intersect their dual geodesic:




> Only some edges of T intersect their dual geodesic:




» Only some edges of T intersect their dual geodesic: canonical
partition of the ideal triangulation into “blobs”.




» Only some edges of T intersect their dual geodesic: canonical
partition of the ideal triangulation into “blobs”.

» Connectivity tree T of the blobs has law of a critical GW tree with
explicit offspring dist (px), except root has offspring dist (p}).




» Only some edges of T intersect their dual geodesic: canonical
partition of the ideal triangulation into “blobs”.

» Connectivity tree T of the blobs has law of a critical GW tree with
explicit offspring dist (px), except root has offspring dist (p}).




» Only some edges of T intersect their dual geodesic: canonical
partition of the ideal triangulation into “blobs”.

» Connectivity tree T of the blobs has law of a critical GW tree with
explicit offspring dist (px), except root has offspring dist (p}).

» To recover T from T: independently attach to each black vertex of
degree k a red leaf with probability r in uniform corner (rp = 1).



» Only some edges of T intersect their dual geodesic: canonical
partition of the ideal triangulation into “blobs”.

» Connectivity tree T of the blobs has law of a critical GW tree with
explicit offspring dist (px), except root has offspring dist (p}).

» To recover T from T: independently attach to each black vertex of
degree k a red leaf with probability r in uniform corner (rp = 1).

» Insert independent random blobs of appropriate degree (with or
without leaf) sampled according to Leb.
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Adding the labels

> Transfer the (distance) labels to the black tree.

» Conditionally on T, the increments (Agk)7 ce Aik)) at a vertex of

degree k + 1 are independent of those at other vertices and

E[aM] =0, E[(AM)*] <00, i=1,...,k

» [Marckert, Miermont, '07]: Conditioned on n, the rescaled contour
and label process of T converges to Brownian snake (e, Z;)o<t<1 as
Ne — 00.



Proof of technical result

» Stretch to convergence on 7T, still conditioning on ne = n,

)

COry Zm(r) RO (¢ J . . .
( (*) ;( ): (®) N (Cret,822;, C3t)o<e<1-
n4 n n— o0
0<t<1

Nl

n



Proof of technical result

» Stretch to convergence on 7T, still conditioning on ne = n,

<6<">(r) Z0() fe(”)(t)) (@)
0<t<1

— (Eleh &7y, E3t)0§t§1-

n— o0

1 ) 1 Y
n2 ns n

» Change conditioning to fixed number n, = n of leaves,

(C(”)(t) Z(M(t) R(”)(t)> (d
0<t<1

)
——— (c1e, 027, t)o<e<.

n% n n—oo
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d(ca,cy)
d(c1,cy)
d(c2, ¢)
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Bound on distances between arbitrary horocycles

. 1 2
» Distances between arbitrary horocycles satisfy deterministic bound
hyp(Ci, ¢j) < dhyp(Ci, €i) + dhyp(cj, ) — 2 mkin Ly +2logn+10.

o(n%)



Convergence to the Brownian sphere
[Le Gall, '13] [Miermont, '13] [Addario-Berry, Albenque, '13] [Bettinelli, Jacob, Miermont, '14]

c(t) zm(t d
(1()7 1()> @, (cree,c2Zt)o<t<1
n2 nas 0<t<1 n—oo
+
dé")(s, t) < Z"(s) + Z2("(t) — 2 max{ min Z("  min Z(”)} + o(n%)
yp [s,t] [t,s]
+

Invariance under rerooting
\U« [Le Gall, "13]'s rerooting trick
<c<">(r) Z0(t) dhps, t>> @
0<t<1
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Convergence to the Brownian sphere
[Le Gall, '13] [Miermont, '13] [Addario-Berry, Albenque, '13] [Bettinelli, Jacob, Miermont, '14]

c(t) zm(t d
(1()7 1()> @, (cree,c2Zt)o<t<1
n2 nas 0<t<1 n—oo
+
dé")(s, t) < Z"(s) + Z2("(t) — 2 max{ min Z("  min Z(”)} + o(n%)
yp [s,t] [t,s]
+

Invariance under rerooting

\U« [Le Gall, "13]'s rerooting trick

d *
— (clet, C2Zt, Cup Ds,t)OStﬁl'
n—oo

({Cl, ey Cn}, n_% dhyp) %} cWP(moo, D*) (Gromov-Hausdorff sense)



Perspectives

» The tree bijection for hyperbolic surfaces in a sense simpler than
maps: left-right symmetric!

» Benjamini-Schramm convergence to random hyperbolic surface of
topology R? \ Z2. [TB, Curien, 22+]

» Tree bijection extends to boundary lengths L > 0 (natural analogue
of BDG bijection).

» Another possible bridge: tight boundaries, see Miermont's talk
tomorrow!



Perspectives

>

>

The tree bijection for hyperbolic surfaces in a sense simpler than
maps: left-right symmetric!

Benjamini-Schramm convergence to random hyperbolic surface of
topology R2 \ Z2. [T8, Curien, 22+]

Tree bijection extends to boundary lengths L > 0 (natural analogue
of BDG bijection).

Another possible bridge: tight boundaries, see Miermont's talk
tomorrow!

Thank you!
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process Z("(t).
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> The labeled tree is encoded in contour process C(")(t) and label
process Z("(t).

» The continuum analogues are the Brownian excursion e; and the
Brownian snake (e, Z;)o<e<1-

R
&y —

Brownian motion on CRT:
Var(Z, — Z;] = de(s,t)

contour process

o)

~ Credits:

b ~ | Bettinelli

\

CRT
[Aldous,'92] (e, Zi)o<t<1



From labeled trees to the Brownian snake

> The labeled tree is encoded in contour process C(")(t) and label
process Z("(t).

» The continuum analogues are the Brownian excursion e; and the
Brownian snake (e, Z;)o<e<1-

contour process
o)

Brownian motion on CRT:
Var(Z, — Z;] = de(s,t) ,
~ Credits:

~ | Bettinelli

. AP ’
Brownian sphere o CRT :
Zy = Z; [Aldous,'92] (Fi,,, Zt)OStSl
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» Gromov-Hausdorff convergence proven for many types of maps,
including
> p-angulations [Le Gall, '13][Miermont, '13][Addario-Berry, Albenque, '20]
» Uniform (bipartite) maps [Bettinelli, Jacob, Miermont, '14][Abraham, '16]
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» Novelty of this work: Brownian sphere limit from continuous model!



