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Planar maps coupled to a rigid O(n) loop model

» Planar map: planar (multi)graph properly
embedded in R? viewed up to continuous
deformations. Rooted, perimeter p fixed,
marked vertex.

» Rigid O(n) loop model: add disjoint loops
that intersect solely quadrangles through
opposite sides. Sample with probability
proportional to

loops _total loop length
n# P g plene H Qdegree

regular faces

for n, g, 42,94, qe, - .. € Ry fixed.
» For n € (0, 2] the model is critical iff:

> #faces < oo a.s., but E(#faces) = oo,
> supports loops of length O(p) as p — co.
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Loop nesting statistics

> Let N, be the number of loops surrounding
the marked vertex in a random map of
perimeter p.

» For n € (0,2) we have [Borot, Bouttier,
Duplantier, '16] [Chen, Curien, Maillard, '17]:

Ny, p 1 n
logp p—oo TA/4— n2

» Large deviation behaviour:

log P(Np = |xlog p])
log p

— xA\7(1/x)

where xA}(1/x) = —1J(rx) and

X

2
J(x) = xlog (; Nien

) + arccot(x) — arccos(n/2).
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Uniformization

K € (8/3,8)
n = 2cos (ﬂ'(l — %))

Conformal loop ensemble
Picture: [Miller, Watson, Wilson, '14]

7 = min(V/k, 4/ k)
LQG, g

Liouville Quantum Gravity
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Conformal radius
CR(U;) = |¢'(0)] T; = —log CR(U;)

» The sequence (T;) of log-conformal radii of the nested loops has
i.i.d. increments and [Schramm, Sheffield, Wilson, '09]
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CR(U) = [¢'(0)] T; = —log CR(U;)

» The sequence (T;) of log-conformal radii of the nested loops has
i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

AT — cos(4x) AN
Ele"] = cos(Tr (1—4/&)2-&-8)\/&) -

» Number of loops surrounding e-disk: N, ~ sup{i: T; < log(1/€)}
» Large deviation behaviour [Miller, Watson, Wilson, '14]:
log P(Ne = [xlog(1/€)]) o
log(1/€)

xN:(1/x)
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» If we have a volume measure on D |t is more natural to fix § > 0
and ask for nesting around €(d)-disk of volume 4.

To

—log ﬁ



_ TO

+ Tl

11
IR

> |If we have a volume measure on DD it is more natural to fix § > 0
and ask for nesting around €(§)-disk of volume §.

> In LQG, the law of €(d) as § — 0 is well-understood [Duplantier,
Sheffield, '08]: log(1/e(d)) ~ hitting time of log(1/d)/v by a BM with
drift 2/y — /2.
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> |If we have a volume measure on DD it is more natural to fix § > 0
and ask for nesting around €(§)-disk of volume §.

> In LQG, the law of €(d) as § — 0 is well-understood [Duplantier,
Sheffield, '08]: log(1/e(d)) ~ hitting time of log(1/d)/v by a BM with
drift 2/y — /2.

» The effect on the Iarge deviations is [Borot, Bouttier, Duplantier, '16]

log P(Nes) = [xlog(1/6)]) 50 . (1/x
v x (A 02U)" (1/)

where U, is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]
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> |If we have a volume measure on DD it is more natural to fix § > 0
and ask for nesting around €(§)-disk of volume §.

> In LQG, the law of €(d) as § — 0 is well-understood [Duplantier,
Sheffield, '08]: log(1/e(d)) ~ hitting time of log(1/d)/v by a BM with
drift 2/y — /2.

» The effect on the Iarge deviations is [Borot, Bouttier, Duplantier, '16]
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“Nesting in CLE,” + “KPZ" = “Nesting in O(n) on planar maps”

Main question in this talk:

Can we disentangle the LHS starting from planar map combinatorics?



A Markov process on concentric circles

» Define the Markov process (X,) on {x € C: |x| € 2Z} such that

> | Xy| arg X, is standard Brownian motion;

> |Xu|/2 is an independent birth-death process with birth rate
Ap = 1(2+1/p) and death rate p, = (2 - 1/p);

> (X.) is trapped upon hitting 0.
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A Markov process on concentric circles

» Define the Markov process (X,) on {x € C: |x| € 2Z} such that

> | Xy| arg X, is standard Brownian motion;

> |Xu|/2 is an independent birth-death process with birth rate
Ap = 1(2+1/p) and death rate p, = (2 - 1/p);

> (X.) is trapped upon hitting 0.

» It a.s. hits 0 in finite time.

» Far away from 0 it resembles 2D Brownian motion.
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Loop length versus axis crossing

> Let (¢1,0,...¢N) be the sequence of
lengths of loops surrounding the
marked vertex in a critical O(n)
loop-decorated planar map with
perimeter p.
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> Let (r1, r2, ..., rn) be the sequence of

distances of the points at which (X,)

alternates between the two half x-axes

before hitting 0 when started at (p, 0).

Theorem

If n e (0,2] then (€1, b, ... n) L (r, 1o, ..., 1) biased by (n/2)N.




> Can perform a time change t(u) = [, [ Xy [?du’, Xy = 2Ry(,)e™®w
such that (©;) is standard Brownian motion and (R;) is an
independent birth-death process with rates A, = 4p?),, i, = 4p? 1.

Ca



> Can perform a time change t(u) = [, [ Xy [?du’, Xy = 2Ry(,)e™®w
such that (©;) is standard Brownian motion and (R;) is an

independent birth-death process with rates A, = 4p®\,, i, = 4p2,.

> If b= Larccos(n/2), then there exists an hy, : Z; — R such that
Hp(©, R) = cos(b©) hp(R)

is harmonic w.r.t. the Markov process (©;, Ry): until ©; = +.
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Can perform a time change t(u) = [;' | X [?du’, Xy = 2Ry(,)e®w
such that (©;) is standard Brownian motion and (R;) is an

independent birth-death process with rates A, = 4p®\,, i, = 4p2,.

If b= Larccos(n/2), then there exists an h, : Z; — R such that
Hp(©, R) = cos(b©) hp(R)

is harmonic w.r.t. the Markov process (©;, Ry): until ©; = +.
Biasing by (n/2)" is very similar to H,-transforming (©;, R;); into
(), R®)..

G(tb) and Rt(b) are still independent (as long as Rt(b) #0)!

4*



Proposition

If (;); are the half-axis alternation times of R{®e’®” and (T) are the
log-conformal radii of CLE,; with k = 4/(1 £ b), then (t;); @ (kT7);.
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> Question: Are the distributions of 7 = inf{t : Rt(b) =0} and
nlogﬁ identical in the limit log(1/d) ~ 2log p — o0?
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Connection: simple diagonal random walk on Z?

There exists a mapping
& : {diagonal walks} — {maps with nested loops}
such that
((W;) : Wo = (p,0)) = critical map of
perimeter p with nested O(2) loops

(W;) and (X,) have same exit
distribution from half-plane
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continuous time Markov process on Z. .
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Exit distribution from half pIane [TB.17]
> (W;) exits at £ with prob Z z ( 5)4 m

n even

g

n even

» Encode in an operator J, on some Hilbert space
D with basis (ep)p>1: Jkep = D poq Je.p(k)er.

» Let ©; be Brownian motion and R; a unknown
continuous time Markov process on Z. .

» The exit distribution of R,e®* also determines ¢
an operator on D

! > —sK 1 T
o= | e ®dF(s) = - sech (\/2K7>
; > 2
where F(s) = %P(SUPte(o,s) |©¢] > 7/2) and K
is the generator Ke, = lim;_,o 1 E[e, — eg,] of
Rt.
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Dirichlet space D :
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» D = D(D) is Hilbert space of analytic functions f on the unit disk &
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(. g)p = / @) (2)dA(2) = 3 n[Z17(2) [2"]8(2).

> Basis ()52 given by ey(z) = zP with (e, &), = p1ly—py.
» May represent J, = \ll,tlllk where W, is the operator

1= kz2
‘ka:: )‘_O’(/)k7 wk(z):%

» By conformal invariance of the Dirichlet inner product,

(F,dkg)p = (Wif, Wig)p, = (f oYk, 8 0 Vi) p = (F, &) Dy (D))
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(f, deg)p = (Wif, Wig)p = (fo i, g o ¥i)p = (f. &)D(wi(m))- %

» To diagonalize Ji it suffices to find a basis (f,,) that is orthogonal
w.r.t. both <'7'>D(]D>) and <'7'>D(\Uk(]D>))-

» Look for a nice conformal mapping.

> An elliptic integral does the job (k' = /1 — k2, ky = 11—,’:;)

dx arcsn (ﬁ, k1>

1 V4
viu (2) = 4K (k1) /0 V=)0 = kx?)  4K(ki)

Tk
D Uk, vi(7)
/—>
3
V(D) 1 1
-1 1 -1 i
\ =k O VE / e
7 -
T, = K@) 7 N\




» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.
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» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.
» Basis cos(2rm( - + 1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.
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» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.

» Basis cos(2rm( - + 1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

» Hence basis

fm(z) = cos(2rm(vi, (z) + 1/4)) — cos(mm/2), m>1

of D is orthogonal w.r.t. (-, )pm) and (-, "), (D))
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strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.
Basis cos(2rm( - +1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

Hence basis

The push-forward of f € D extends to an analytic function on the %
N
5

fm(z) = cos(2rm(vi, (z) + 1/4)) — cos(mm/2), m>1

of D is orthogonal w.r.t. (-, )pm) and (-, "), (D))
Conclusion: Ji has eigenvectors (fn)m>1 and eigenvalues

(fms fm)D(we(@))  sinh(CmmTy) 1
= = —sech(2mn T, T, =
(fm, fm) D(D) sinh(4mn T) 5 3€¢ (2mm T), K

i1y,

—1
f S fovkl

!
S
E
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> Ji = L sech(v2K, %) has eigenvalues 1 sech(2mnTy), m > 1.
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» Ky has same eigenvectors as J, and eigenvalues 8m?T?
» Explicit calculation:
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Krep, = ( 7(T )) ’f6 [(8 —4k%) e, — (2 + p) kze,,il}

2
il () ()
— — |4ep — (24— ) epr1 — | 2— = | ep—_1],
16{ P < p P+ p P

which is exactly the generator of the birth-death process R;.




> Ji = L sech(v2K, %) has eigenvalues 1 sech(2mnTy), m > 1.
» Ky has same eigenvectors as J, and eigenvalues 8m?T?
» Explicit calculation:

2K(K')\? p? 1
Krep, = ( 7(T )) ’%6 [(8 —4k%) e, — (2 + p) kzepil}

2
KoL P e, (242 ) eper— (2— 2 ) epn,
16|: P < p p+1 p p—1

which is exactly the generator of the birth-death process R;.

Proposition

The sequences of locations where the diagonal random walk (W;) and the
Markov process (X,) alternate between the x- and y-axis are equal in law.
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» Excursion w in upper-half plane from (0,0) to (—p — 2,0), p > 1.
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From walks to loop-decorated maps

> If (W;) is a simple diagonal random walk started at (p, 0) and killed
at (0,0),
then ®((W;)) is a rooted planar map with a marked vertex and rigid
loops surrounding the marked vertex with probability proportional to

loops __total loop length
2# pg p lengt H Qdegree

regular faces

for some g, g2, qs,... € Ry.
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From walks to loop-decorated maps S

> If (W;) is a simple diagonal random walk started at (p, 0) and killed
at (0’ 0)’ biased by (n/2)#ha|f—axis alternations’
then ®((W;)) is a rooted planar map with a marked vertex and rigid
loops surrounding the marked vertex with probability proportional to

loops __total loop length
n# P g pleng H Qdegree

regular faces

for some g, g2, qs,... € Ry.
> #loops = #half-axis alternations of (W;).



Thanks for you attention!
Comments?



