Dynamics on random graphs CIRM, Marseille, France - October 22, 2017

Nesting of loops versus winding of walks Timothy Budd

 Planar map: planar (multi)graph properly embedded in R² viewed up to continuous deformations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Planar map: planar (multi)graph properly embedded in ℝ² viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Planar map: planar (multi)graph properly embedded in ℝ² viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Planar map: planar (multi)graph properly embedded in ℝ² viewed up to continuous deformations. Rooted, perimeter *p* fixed, marked vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Rigid O(n) loop model: add disjoint loops that intersect solely quadrangles through opposite sides. Sample with probability proportional to

$$n^{\# \text{loops}} g^{\text{total loop length}} \prod_{\text{regular faces}} q_{\text{degree}}$$

for $n, g, q_2, q_4, q_6, \ldots \in \mathbb{R}_+$ fixed.

 Rigid O(n) loop model: add disjoint loops that intersect solely quadrangles through opposite sides. Sample with probability proportional to

$$n^{\# \text{loops}} g^{\text{total loop length}} \prod_{\text{regular faces}} q_{\text{degree}}$$

for $n, g, q_2, q_4, q_6, \ldots \in \mathbb{R}_+$ fixed.

• For $n \in (0, 2]$ the model is critical iff:

- #faces $< \infty$ a.s., but $\mathbb{E}(\#$ faces $) = \infty$,
- supports loops of length O(p) as $p \to \infty$.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ ()

Loop nesting statistics

Let N_p be the number of loops surrounding the marked vertex in a random map of perimeter p.

(日)、(同)、(日)、(日)

Loop nesting statistics

- Let N_p be the number of loops surrounding the marked vertex in a random map of perimeter p.
- For n ∈ (0, 2) we have [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17]:

$$\frac{N_p}{\log p} \xrightarrow[p \to \infty]{\mathbb{P}} \frac{1}{\pi} \frac{n}{\sqrt{4-n^2}}.$$

(日) (同) (日) (日)

Loop nesting statistics

- Let N_p be the number of loops surrounding the marked vertex in a random map of perimeter p.
- For n ∈ (0, 2) we have [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17]:

$$\frac{N_p}{\log p} \xrightarrow{\mathbb{P}} \frac{1}{p \to \infty} \frac{1}{\pi} \frac{n}{\sqrt{4-n^2}}.$$

Large deviation behaviour:

$$\frac{\log \mathbb{P}(N_p = \lfloor x \log p \rfloor)}{\log p} \longrightarrow x \Lambda_n^*(1/x)$$

where
$$x \Lambda_n^*(1/x) = -rac{1}{\pi} J(\pi x)$$
 and

・ロト ・聞ト ・ヨト ・ヨト

$$J(x) = x \log\left(\frac{2}{n} \frac{x}{\sqrt{1+x^2}}\right) + \arccos(x) - \arccos(n/2).$$

200

・ロト ・四ト ・ヨト ・ヨト 三日

Nesting in CLE_κ

Nesting in CLE_{κ}

Nesting in CLE_{κ}

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The sequence (T_i) of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$\mathbb{E}\left[e^{-\lambda T_1}\right] = \frac{-\cos\left(\frac{4\pi}{\kappa}\right)}{\cos\left(\pi\sqrt{(1-4/\kappa)^2+8\lambda/\kappa}\right)} =: e^{\Lambda_{\kappa}(\lambda)}$$

Nesting in CLE_{κ}

The sequence (T_i) of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$\mathbb{E}\left[e^{-\lambda T_1}\right] = \frac{-\cos\left(\frac{4\pi}{\kappa}\right)}{\cos\left(\pi\sqrt{(1-4/\kappa)^2+8\lambda/\kappa}\right)} =: e^{\Lambda_{\kappa}(\lambda)}$$

▶ Number of loops surrounding ϵ -disk: $\mathcal{N}_{\epsilon} \approx \sup\{i : T_i < \log(1/\epsilon)\}$

Nesting in CLE_{κ}

The sequence (T_i) of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$\mathbb{E}\left[e^{-\lambda T_1}\right] = \frac{-\cos\left(\frac{4\pi}{\kappa}\right)}{\cos\left(\pi\sqrt{(1-4/\kappa)^2+8\lambda/\kappa}\right)} =: e^{\Lambda_{\kappa}(\lambda)}$$

▶ Number of loops surrounding ϵ -disk: $\mathcal{N}_{\epsilon} \approx \sup\{i : T_i < \log(1/\epsilon)\}$

Large deviation behaviour [Miller, Watson, Wilson, '14]:

$$rac{\log \mathbb{P}(\mathcal{N}_{\epsilon} = \lfloor x \log(1/\epsilon)
floor)}{\log(1/\epsilon)} \xrightarrow{\epsilon o 0} x \Lambda_{\kappa}^{*}(1/x)$$

If we have a volume measure on D it is more natural to fix δ > 0 and ask for nesting around ε(δ)-disk of volume δ.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

▶ In LQG_{γ} the law of $\epsilon(\delta)$ as $\delta \to 0$ is well-understood [Duplantier, Sheffield, '08]: log(1/ $\epsilon(\delta)$) ≈ hitting time of log(1/ δ)/ γ by a BM with drift 2/ $\gamma - \gamma/2$.

- ▶ In LQG_{γ} the law of $\epsilon(\delta)$ as $\delta \rightarrow 0$ is well-understood [Duplantier, Sheffield, '08]: log(1/ $\epsilon(\delta)$) ≈ hitting time of log(1/ δ)/ γ by a BM with drift 2/ $\gamma \gamma/2$.
- ► The effect on the large deviations is [Borot, Bouttier, Duplantier, '16]

$$\frac{\log \mathbb{P}(\mathcal{N}_{\epsilon(\delta)} = \lfloor x \log(1/\delta) \rfloor)}{\log(1/\delta)} \xrightarrow{\delta \to 0} x \underbrace{(\Lambda_{\kappa} \circ 2U_{\gamma})^{*}}_{}(1/x),$$

where U_{γ} is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

$$U_{\gamma}(\Delta) \coloneqq \frac{\gamma^2}{4} \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta.$$

- If we have a volume measure on D it is more natural to fix δ > 0 and ask for nesting around ε(δ)-disk of volume δ.
- ▶ In LQG_{γ} the law of $\epsilon(\delta)$ as $\delta \to 0$ is well-understood [Duplantier, Sheffield, '08]: log(1/ $\epsilon(\delta)$) ≈ hitting time of log(1/ δ)/ γ by a BM with drift 2/ $\gamma \gamma/2$.
- ► The effect on the large deviations is [Borot, Bouttier, Duplantier, '16]

$$\frac{\log \mathbb{P}(\mathcal{N}_{\epsilon(\delta)} = \lfloor x \log(1/\delta) \rfloor)}{\log(1/\delta)} \xrightarrow{\delta \to 0} x \underbrace{(\Lambda_{\kappa} \circ 2U_{\gamma})^{*}}_{\Lambda^{*}} (1/x),$$

where U_{γ} is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

$$U_{\gamma}(\Delta) \coloneqq \frac{\gamma^2}{4} \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"Nesting in CLE_{κ} " + "KPZ" = "Nesting in O(n) on planar maps"

Main question in this talk:

Can we disentangle the LHS starting from planar map combinatorics?

A Markov process on concentric circles

◆□> ◆□> ◆豆> ◆豆> □目

- ▶ Define the Markov process (X_u) on $\{x \in \mathbb{C} : |x| \in 2\mathbb{Z}\}$ such that
 - $|X_u| \arg X_u$ is standard Brownian motion;
 - ► $|X_u|/2$ is an independent birth-death process with birth rate $\lambda_p = \frac{1}{16}(2+1/p)$ and death rate $\mu_p = \frac{1}{16}(2-1/p)$;
 - (X_u) is trapped upon hitting 0.

A Markov process on concentric circles

- ▶ Define the Markov process (X_u) on $\{x \in \mathbb{C} : |x| \in 2\mathbb{Z}\}$ such that
 - $|X_u| \arg X_u$ is standard Brownian motion;
 - ► $|X_u|/2$ is an independent birth-death process with birth rate $\lambda_p = \frac{1}{16}(2+1/p)$ and death rate $\mu_p = \frac{1}{16}(2-1/p)$;
 - (X_u) is trapped upon hitting 0.
- It a.s. hits 0 in finite time.

A Markov process on concentric circles

- ▶ Define the Markov process (X_u) on $\{x \in \mathbb{C} : |x| \in 2\mathbb{Z}\}$ such that
 - $|X_u| \arg X_u$ is standard Brownian motion;
 - ► $|X_u|/2$ is an independent birth-death process with birth rate $\lambda_p = \frac{1}{16}(2+1/p)$ and death rate $\mu_p = \frac{1}{16}(2-1/p)$;
 - (X_u) is trapped upon hitting 0.
- It a.s. hits 0 in finite time.
- ▶ Far away from 0 it resembles 2D Brownian motion.

Let (l₁, l₂, ... l_N) be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.

- Let (l₁, l₂, ... l_N) be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.
- ▶ Let (r₁, r₂,..., r_N) be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Let (l₁, l₂,... l_N) be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.
- ▶ Let (r₁, r₂,..., r_N) be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Let (l₁, l₂,... l_N) be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.
- ▶ Let (r₁, r₂,..., r_N) be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Let (l₁, l₂,... l_N) be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.
- ▶ Let (r₁, r₂,..., r_N) be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

Theorem

If $n \in (0,2]$ then $(\ell_1, \ell_2, \ldots \ell_N) \stackrel{(d)}{=} (r_1, r_2, \ldots, r_N)$ biased by $(n/2)^N$.

► Can perform a time change $t(u) = \int_0^u |X_{u'}|^2 du'$, $X_u = 2R_{t(u)}e^{i\Theta_{t(u)}}$ such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates $\hat{\lambda}_p = 4p^2\lambda_p$, $\hat{\mu}_p = 4p^2\mu_p$.

(日) (同) (三) (三) (三) (○) (○)

Can perform a time change t(u) = ∫₀^u |X_{u'}|²du', X_u = 2R_{t(u)}e<sup>iΘ_{t(u)} such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates λ̂_p = 4p²λ_p, μ̂_p = 4p²μ_p.
 If b = ¹/_π arccos(n/2), then there exists an h_b: Z₊ → ℝ such that
</sup>

 $H_b(\Theta, R) = \cos(b\Theta) h_b(R)$

is harmonic w.r.t. the Markov process $(\Theta_t, R_t)_t$ until $\Theta_t = \pm \pi$.

Can perform a time change t(u) = ∫₀^u |X_{u'}|²du', X_u = 2R_{t(u)}e<sup>iΘ_{t(u)} such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates λ̂_p = 4p²λ_p, μ̂_p = 4p²μ_p.
 If b = ¹/_π arccos(n/2), then there exists an h_b: Z₊ → ℝ such that
</sup>

 $H_b(\Theta, R) = \cos(b\Theta) h_b(R)$

is harmonic w.r.t. the Markov process $(\Theta_t, R_t)_t$ until $\Theta_t = \pm \pi$.

▶ Biasing by $(n/2)^{\mathcal{N}}$ is very similar to H_b -transforming $(\Theta_t, R_t)_t$ into $(\Theta_t^{(b)}, R_t^{(b)})_t$.

Can perform a time change t(u) = ∫₀^u |X_{u'}|²du', X_u = 2R_{t(u)}e<sup>iΘ_{t(u)} such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates λ̂_p = 4p²λ_p, μ̂_p = 4p²μ_p.
 If b = ¹/_π arccos(n/2), then there exists an h_b: Z₊ → ℝ such that
</sup>

 $H_b(\Theta, R) = \cos(b\Theta) h_b(R)$

is harmonic w.r.t. the Markov process $(\Theta_t, R_t)_t$ until $\Theta_t = \pm \pi$.

- ▶ Biasing by $(n/2)^{\mathcal{N}}$ is very similar to H_b -transforming $(\Theta_t, R_t)_t$ into $(\Theta_t^{(b)}, R_t^{(b)})_t$.
- $\Theta_t^{(b)}$ and $R_t^{(b)}$ are still independent (as long as $R_t^{(b)} \neq 0$)!
Proposition

If $(t_i)_i$ are the half-axis alternation times of $R_t^{(b)}e^{i\Theta_t^{(b)}}$ and (T_i) are the log-conformal radii of CLE_{κ} with $\kappa = 4/(1 \pm b)$, then $(t_i)_i \stackrel{(d)}{=} (\kappa T_i)_i$.

・ロト ・聞ト ・ヨト ・ヨト

ъ

Proposition

If $(t_i)_i$ are the half-axis alternation times of $R_t^{(b)}e^{i\Theta_t^{(b)}}$ and (T_i) are the log-conformal radii of CLE_{κ} with $\kappa = 4/(1 \pm b)$, then $(t_i)_i \stackrel{(d)}{=} (\kappa T_i)_i$.

• Question: Are the distributions of $\tau := \inf\{t : R_t^{(b)} = 0\}$ and $\kappa \log \frac{1}{\epsilon(\delta)}$ identical in the limit $\log(1/\delta) \sim 2 \log p \to \infty$?

- 2

• (W_i) exits at
$$\ell$$
 with prob $\sum_{n \text{ even}} \frac{p}{n} \left(\frac{n}{n-p}\right) \left(\frac{n}{2}\right) 4^{-n} \cdot \ell$ (W_i)
$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \left(\frac{n}{n-p}\right) \left(\frac{n}{2}\right) 4^{-n} \cdot \ell$$

• (W_i) exits at
$$\ell$$
 with prob $\sum_{n \text{ even}} \frac{p}{n} {n \choose \frac{n-p}{2}} {n \choose \frac{n-\ell}{2}} 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

▶ Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.

• (W_i) exits at
$$\ell$$
 with prob $\sum_{n \text{ even}} \frac{p}{n} {n \choose \frac{n-p}{2}} {n \choose \frac{n-\ell}{2}} 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

- Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on Z₊.

< ∃ >

э

• (W_i) exits at
$$\ell$$
 with prob $\sum_{n \text{ even}} \frac{p}{n} \left(\frac{n}{\frac{n-p}{2}}\right) \left(\frac{n}{\frac{n-\ell}{2}}\right) 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}$$

- Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on Z₊.
- ► The exit distribution of R_te^{iΘ_t} also determines an operator on D

$$\int_0^\infty e^{-s\mathsf{K}}\mathrm{d}F(s)$$

where $F(s) = \frac{1}{2} \mathbb{P}(\sup_{t \in (0,s)} |\Theta_t| > \pi/2)$ and **K** is the generator $\mathbf{K} e_p = \lim_{t \to 0} \frac{1}{t} \mathbb{E}[e_p - e_{R_t}]$ of R_t .

• (W_i) exits at
$$\ell$$
 with prob $\sum_{n \text{ even}} \frac{p}{n} {n \choose \frac{n-\rho}{2}} {n \choose \frac{1-\ell}{2}} 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}$$

- Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on Z₊.
- ► The exit distribution of R_te^{iΘ_t} also determines an operator on D

$$\int_0^\infty e^{-s\mathbf{K}} \mathrm{d}F(s) = \frac{1}{2}\operatorname{sech}\left(\sqrt{2\mathbf{K}}\frac{\pi}{2}\right)$$

where $F(s) = \frac{1}{2} \mathbb{P}(\sup_{t \in (0,s)} |\Theta_t| > \pi/2)$ and **K** is the generator $\mathbf{K}e_p = \lim_{t \to 0} \frac{1}{t} \mathbb{E}[e_p - e_{R_t}]$ of R_t .

• (W_i) exits at
$$\ell$$
 with prob $\sum_{n \text{ even}} \frac{p}{n} \left(\frac{n}{\frac{n-p}{2}}\right) \left(\frac{n}{\frac{n-\ell}{2}}\right) 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\left(\frac{n-p}{2}\right)} \binom{n}{\left(\frac{n-\ell}{2}\right)} 4^{-n}.$$

- Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on Z₊.
- ► The exit distribution of R_te^{iΘ_t} also determines an operator on D

$$\mathbf{J}_{k} \stackrel{!}{=} \int_{0}^{\infty} e^{-s\mathbf{K}} \mathrm{d}F(s) = \frac{1}{2}\operatorname{sech}\left(\sqrt{2\mathbf{K}}\frac{\pi}{2}\right)$$

where $F(s) = \frac{1}{2}\mathbb{P}(\sup_{t \in (0,s)} |\Theta_t| > \pi/2)$ and **K** is the generator $\mathbf{K}e_p = \lim_{t \to 0} \frac{1}{t}\mathbb{E}[e_p - e_{R_t}]$ of R_t .

Dirichlet space ${\mathcal D}$

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(dA(x + iy) := \frac{1}{\pi} dx dy)$

$$\langle f,g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) \mathrm{d}A(z)$$

Dirichlet space ${\mathcal D}$

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(dA(x + iy) := \frac{1}{\pi} dx dy)$

$$\langle f,g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) \mathrm{d}A(z) = \sum_{n=1}^{\infty} n \overline{[z^n]f(z)} [z^n]g(z).$$

・ロト ・ 雪 ト ・ ヨ ト

Dirichlet space ${\mathcal D}$

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(dA(x + iy) := \frac{1}{\pi} dx dy)$

$$\langle f,g\rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) \mathrm{d}A(z) = \sum_{n=1}^{\infty} n \overline{[z^n]f(z)} [z^n]g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ given by $e_p(z) = z^p$ with $\langle e_l, e_p \rangle_{\mathcal{D}} = p \mathbf{1}_{\{l=p\}}$.

ヘロン 人間と ヘヨン ヘヨン

-

Dirichlet space \mathcal{D}

► $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(dA(x + iy) \coloneqq \frac{1}{\pi} dx dy)$

$$\langle f,g\rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) \mathrm{d}A(z) = \sum_{n=1}^{\infty} n \overline{[z^n]f(z)} [z^n]g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ given by $e_p(z) = z^p$ with $\langle e_l, e_p \rangle_{\mathcal{D}} = p \mathbf{1}_{\{l=p\}}$.

• May represent $\mathbf{J}_k = \mathbf{\Psi}_k^{\dagger} \mathbf{\Psi}_k$ where $\mathbf{\Psi}_k$ is the operator

$$\Psi_k f := f \circ \psi_k, \qquad \psi_k(z) = \frac{1 - \sqrt{1 - k z^2}}{\sqrt{k z}}$$

イロト 不得下 イヨト イヨト

Dirichlet space \mathcal{D}

► $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(dA(x + iy) \coloneqq \frac{1}{\pi} dx dy)$

$$\langle f,g\rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) \mathrm{d}A(z) = \sum_{n=1}^{\infty} n \overline{[z^n]f(z)} [z^n]g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ given by $e_p(z) = z^p$ with $\langle e_l, e_p \rangle_{\mathcal{D}} = p \mathbf{1}_{\{l=p\}}$.

• May represent $\mathbf{J}_k = \mathbf{\Psi}_k^{\dagger} \mathbf{\Psi}_k$ where $\mathbf{\Psi}_k$ is the operator

$$\Psi_k f := f \circ \psi_k, \qquad \psi_k(z) = \frac{1 - \sqrt{1 - k z^2}}{\sqrt{k} z}$$

- By conformal invariance of the Dirichlet inner product,
 - $\langle f, \mathbf{J}_{k}g \rangle_{\mathcal{D}} = \langle \Psi_{k}f, \Psi_{k}g \rangle_{\mathcal{D}} = \langle f \circ \psi_{k}, g \circ \psi_{k} \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_{k}(\mathbb{D}))}.$

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \mathbf{\Psi}_k f, \mathbf{\Psi}_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

► To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both (·, ·)_{D(D)} and (·, ·)_{D(Ψ_k(D))}.

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \Psi_k f, \Psi_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- ► To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both ⟨·, ·⟩_{D(D)} and ⟨·, ·⟩_{D(Ψ_k(D))}.
- Look for a nice conformal mapping.

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \mathbf{\Psi}_k f, \mathbf{\Psi}_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}$$

- ► To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both (·, ·)_{D(D)} and (·, ·)_{D(Ψ_k(D))}.
- Look for a nice conformal mapping.
- An elliptic integral does the job $(k' = \sqrt{1 k^2}, k_1 = \frac{1 k'}{1 + k'})$

$$v_{k_1}(z) = \frac{1}{4K(k_1)} \int_0^z \frac{\mathrm{d}x}{\sqrt{(k_1 - x^2)(1 - k_1 x^2)}} = \frac{\arcsin\left(\frac{z}{\sqrt{k_1}}, k_1\right)}{4K(k_1)}$$

The push-forward of f ∈ D extends to an analytic function on the strip ℝ + i(−T_k, T_k) that is even around ±1/4, hence 1-periodic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- ▶ The push-forward of $f \in D$ extends to an analytic function on the strip $\mathbb{R} + i(-T_k, T_k)$ that is even around $\pm 1/4$, hence 1-periodic.
- Basis cos(2πm(· + 1/4)), m ≥ 1, is orthogonal w.r.t. Dirichlet on strip of any height.

- The push-forward of f ∈ D extends to an analytic function on the strip ℝ + i(−T_k, T_k) that is even around ±1/4, hence 1-periodic.
- Basis cos(2πm(· + 1/4)), m ≥ 1, is orthogonal w.r.t. Dirichlet on strip of any height.
- Hence basis

$$f_m(z) = \cos(2\pi m(v_{k_1}(z) + 1/4)) - \cos(\pi m/2), \quad m \ge 1$$

of \mathcal{D} is orthogonal w.r.t. $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.

- The push-forward of f ∈ D extends to an analytic function on the strip ℝ + i(−T_k, T_k) that is even around ±1/4, hence 1-periodic.
- Basis cos(2πm(· + 1/4)), m ≥ 1, is orthogonal w.r.t. Dirichlet on strip of any height.
- Hence basis

$$f_m(z) = \cos(2\pi m(v_{k_1}(z) + 1/4)) - \cos(\pi m/2), \quad m \ge 1$$

of \mathcal{D} is orthogonal w.r.t. $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.

▶ Conclusion: \mathbf{J}_k has eigenvectors $(f_m)_{m \ge 1}$ and eigenvalues

$$\frac{\langle f_m, f_m \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}}{\langle f_m, f_m \rangle_{\mathcal{D}(\mathbb{D})}} = \frac{\sinh(2m\pi T_k)}{\sinh(4m\pi T_k)} = \frac{1}{2}\operatorname{sech}(2m\pi T_k), \qquad T_k = \frac{K(k')}{4K(k)}.$$

►
$$\mathbf{J}_k = \frac{1}{2}\operatorname{sech}(\sqrt{2\mathbf{K}_k}\frac{\pi}{2})$$
 has eigenvalues $\frac{1}{2}\operatorname{sech}(2m\pi T_k)$, $m \ge 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

►
$$\mathbf{J}_k = \frac{1}{2}\operatorname{sech}(\sqrt{2\mathbf{K}_k}\frac{\pi}{2})$$
 has eigenvalues $\frac{1}{2}\operatorname{sech}(2m\pi T_k)$, $m \ge 1$.

• \mathbf{K}_k has same eigenvectors as \mathbf{J}_k and eigenvalues $8m^2T_k^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► $\mathbf{J}_k = \frac{1}{2}\operatorname{sech}(\sqrt{2\mathbf{K}_k}\frac{\pi}{2})$ has eigenvalues $\frac{1}{2}\operatorname{sech}(2m\pi T_k)$, $m \ge 1$.
- \mathbf{K}_k has same eigenvectors as \mathbf{J}_k and eigenvalues $8m^2T_k^2$
- Explicit calculation:

$$\mathbf{K}_{k}e_{p} = \left(\frac{2K(k')}{\pi}\right)^{2}\frac{p^{2}}{16}\left[\left(8-4k^{2}\right)e_{p}-\left(2\pm\frac{1}{p}\right)k^{2}e_{p\pm1}\right]$$

- ► $\mathbf{J}_k = \frac{1}{2}\operatorname{sech}(\sqrt{2\mathbf{K}_k}\frac{\pi}{2})$ has eigenvalues $\frac{1}{2}\operatorname{sech}(2m\pi T_k)$, $m \ge 1$.
- \mathbf{K}_k has same eigenvectors as \mathbf{J}_k and eigenvalues $8m^2T_k^2$
- Explicit calculation:

$$\mathbf{K}_{k} e_{p} = \left(\frac{2\mathcal{K}(k')}{\pi}\right)^{2} \frac{p^{2}}{16} \left[\left(8 - 4k^{2}\right) e_{p} - \left(2 \pm \frac{1}{p}\right) k^{2} e_{p\pm 1} \right]$$
$$\xrightarrow{k \to 1} \frac{p^{2}}{16} \left[4e_{p} - \left(2 + \frac{1}{p}\right) e_{p+1} - \left(2 - \frac{1}{p}\right) e_{p-1} \right],$$

which is exactly the generator of the birth-death process R_t .

►
$$\mathbf{J}_k = \frac{1}{2} \operatorname{sech}(\sqrt{2\mathbf{K}_k}\frac{\pi}{2})$$
 has eigenvalues $\frac{1}{2} \operatorname{sech}(2m\pi T_k)$, $m \ge 1$.

- \mathbf{K}_k has same eigenvectors as \mathbf{J}_k and eigenvalues $8m^2T_k^2$
- Explicit calculation:

$$\begin{split} \mathbf{K}_{k} e_{p} &= \left(\frac{2\mathcal{K}(k')}{\pi}\right)^{2} \frac{p^{2}}{16} \left[\left(8 - 4k^{2}\right) e_{p} - \left(2 \pm \frac{1}{p}\right) k^{2} e_{p \pm 1} \right] \\ & \xrightarrow{k \to 1} \frac{p^{2}}{16} \left[4e_{p} - \left(2 + \frac{1}{p}\right) e_{p+1} - \left(2 - \frac{1}{p}\right) e_{p-1} \right], \end{split}$$

which is exactly the generator of the birth-death process R_t .

Proposition

The sequences of locations where the diagonal random walk (W_i) and the Markov process (X_u) alternate between the x- and y-axis are equal in law.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- Consider walks with steps in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$
- Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

• Φ_p is a bijection with rooted planar maps of perimeter p with

- For each face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
- for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)

• for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)

• for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)

• for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection Φ_{ℓ,p} between walks on the slit plane from (p, 0) to (-ℓ, 0) and rooted planar maps with perimeter p and
 - a marked face of degree ℓ ,
 - For each (unmarked) face of degree d ≥ 1 an excursion above or below axis from (0,0) to (d − 2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

・ロト ・四ト ・ヨト ・ヨト

æ

- * ロ > * 個 > * 注 > * 注 > … 注 … の < @

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の(

・ロト ・聞ト ・ヨト ・ヨト

æ

・ロト ・聞ト ・ヨト ・ヨト æ

If (W_i) is a simple diagonal random walk started at (p, 0) and killed at (0, 0),
then Φ((W_i)) is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$2^{\# \text{loops}} g^{\text{total loop length}} \prod_{\text{regular faces}} q_{\text{degree}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for some $g, q_2, q_4, \ldots \in \mathbb{R}_+$.

If (W_i) is a simple diagonal random walk started at (p, 0) and killed at (0, 0), then Φ((W_i)) is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$2^{\#\text{loops}}g^{\text{total loop length}}\prod_{\text{regular faces}}q_{\text{degree}}$$

for some $g, q_2, q_4, \ldots \in \mathbb{R}_+$.

• #loops = #half-axis alternations of (W_i) .

 If (W_i) is a simple diagonal random walk started at (p, 0) and killed at (0, 0), biased by (n/2)^{#half-axis alternations}, then Φ((W_i)) is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$n^{\# \text{loops}} g^{\text{total loop length}} \prod_{\text{regular faces}} q_{\text{degree}}$$

for some $g, q_2, q_4, \ldots \in \mathbb{R}_+$.

• #loops = #half-axis alternations of (W_i) .

Thanks for you attention! Comments?

