Dynamics on random graphs
CIRM, Marseille, France - October 22, 2017

Nesting of loops versus winding of walks

Timothy Budd

timothy.budd@ipht.fr, http://www.nbi.dk/~budd/

Planar maps coupled to a rigid $O(n)$ loop model

- Planar map: planar (multi)graph properly embedded in \mathbb{R}^{2} viewed up to continuous deformations.

Planar maps coupled to a rigid $O(n)$ loop model

- Planar map: planar (multi)graph properly embedded in \mathbb{R}^{2} viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

Planar maps coupled to a rigid $O(n)$ loop model

- Planar map: planar (multi)graph properly embedded in \mathbb{R}^{2} viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

Planar maps coupled to a rigid $O(n)$ loop model

- Planar map: planar (multi)graph properly embedded in \mathbb{R}^{2} viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

Planar maps coupled to a rigid $O(n)$ loop model

- Planar map: planar (multi)graph properly embedded in \mathbb{R}^{2} viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.
- Rigid $O(n)$ loop model: add disjoint loops that intersect solely quadrangles through opposite sides. Sample with probability
 proportional to

$$
n^{\# \text { loops }} g^{\text {total loop length }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

for $n, g, q_{2}, q_{4}, q_{6}, \ldots \in \mathbb{R}_{+}$fixed.

Planar maps coupled to a rigid $O(n)$ loop model

- Planar map: planar (multi)graph properly embedded in \mathbb{R}^{2} viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.
- Rigid $O(n)$ loop model: add disjoint loops that intersect solely quadrangles through opposite sides. Sample with probability proportional to

$$
n^{\# \text { loops }} g^{\text {total loop length }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

for $n, g, q_{2}, q_{4}, q_{6}, \ldots \in \mathbb{R}_{+}$fixed.

- For $n \in(0,2]$ the model is critical iff:
- \#faces $<\infty$ a.s., but $\mathbb{E}(\#$ faces $)=\infty$,
- supports loops of length $O(p)$ as $p \rightarrow \infty$.

Loop nesting statistics

- Let N_{p} be the number of loops surrounding the marked vertex in a random map of perimeter p.

Loop nesting statistics

- Let N_{p} be the number of loops surrounding the marked vertex in a random map of perimeter p.
- For $n \in(0,2)$ we have [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17]:

$$
\frac{N_{p}}{\log p} \underset{p \rightarrow \infty}{\mathbb{P}} \frac{1}{\pi} \frac{n}{\sqrt{4-n^{2}}}
$$

Loop nesting statistics

- Let N_{p} be the number of loops surrounding the marked vertex in a random map of perimeter p.
- For $n \in(0,2)$ we have [Borot, Bouttier,

Duplantier, '16] [Chen, Curien, Maillard, '17]:

$$
\frac{N_{p}}{\log p} \underset{p \rightarrow \infty}{\mathbb{P}} \frac{1}{\pi} \frac{n}{\sqrt{4-n^{2}}}
$$

- Large deviation behaviour:

$$
\frac{\log \mathbb{P}\left(N_{p}=\lfloor x \log p\rfloor\right)}{\log p} \longrightarrow x \Lambda_{n}^{*}(1 / x)
$$

where $x \Lambda_{n}^{*}(1 / x)=-\frac{1}{\pi} J(\pi x)$ and

$$
J(x)=x \log \left(\frac{2}{n} \frac{x}{\sqrt{1+x^{2}}}\right)+\operatorname{arccot}(x)-\arccos (n / 2)
$$

Uniformization

Uniformization

Uniformization

Uniformization

Nesting in CLE $_{\kappa}$

Nesting in $C L E_{k}$

Nesting in CLE $_{k}$

- The sequence $\left(T_{i}\right)$ of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$
\mathbb{E}\left[e^{-\lambda T_{1}}\right]=\frac{-\cos \left(\frac{4 \pi}{\kappa}\right)}{\cos \left(\pi \sqrt{(1-4 / \kappa)^{2}+8 \lambda / \kappa}\right)}=: e^{\wedge_{\kappa}(\lambda)}
$$

Nesting in CLE $_{k}$

- The sequence $\left(T_{i}\right)$ of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$
\mathbb{E}\left[e^{-\lambda T_{1}}\right]=\frac{-\cos \left(\frac{4 \pi}{\kappa}\right)}{\cos \left(\pi \sqrt{(1-4 / \kappa)^{2}+8 \lambda / \kappa}\right)}=: e^{\Lambda_{\kappa}(\lambda)}
$$

- Number of loops surrounding ϵ-disk: $\mathcal{N}_{\epsilon} \approx \sup \left\{i: T_{i}<\log (1 / \epsilon)\right\}$

Nesting in CLE $_{k}$

- The sequence $\left(T_{i}\right)$ of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$
\mathbb{E}\left[e^{-\lambda T_{1}}\right]=\frac{-\cos \left(\frac{4 \pi}{\kappa}\right)}{\cos \left(\pi \sqrt{(1-4 / \kappa)^{2}+8 \lambda / \kappa}\right)}=: e^{\Lambda_{\kappa}(\lambda)}
$$

- Number of loops surrounding ϵ-disk: $\mathcal{N}_{\epsilon} \approx \sup \left\{i: T_{i}<\log (1 / \epsilon)\right\}$
- Large deviation behaviour [Miller, Watson, Wilson, '14]:

$$
\frac{\log \mathbb{P}\left(\mathcal{N}_{\epsilon}=\lfloor x \log (1 / \epsilon)\rfloor\right)}{\log (1 / \epsilon)} \xrightarrow{\epsilon \rightarrow 0} x \Lambda_{\kappa}^{*}(1 / x)
$$

LiouvilleQG: KPZ relation

- If we have a volume measure on \mathbb{D} it is more natural to fix $\delta>0$ and ask for nesting around $\epsilon(\delta)$-disk of volume δ.

LiouvilleQG: KPZ relation

- If we have a volume measure on \mathbb{D} it is more natural to fix $\delta>0$ and ask for nesting around $\epsilon(\delta)$-disk of volume δ.
- In LQG_{γ} the law of $\epsilon(\delta)$ as $\delta \rightarrow 0$ is well-understood [Duplantier, Sheffield, '08]: $\log (1 / \epsilon(\delta)) \approx$ hitting time of $\log (1 / \delta) / \gamma$ by a BM with drift $2 / \gamma-\gamma / 2$.

LiouvilleQG: KPZ relation

- If we have a volume measure on \mathbb{D} it is more natural to fix $\delta>0$ and ask for nesting around $\epsilon(\delta)$-disk of volume δ.
- In LQG_{γ} the law of $\epsilon(\delta)$ as $\delta \rightarrow 0$ is well-understood [Duplantier, Sheffield, ${ }^{\prime 08]:} \log (1 / \epsilon(\delta)) \approx$ hitting time of $\log (1 / \delta) / \gamma$ by a BM with drift $2 / \gamma-\gamma / 2$.
- The effect on the large deviations is [Borot, Bouttier, Duplantier, '16]

$$
\frac{\log \mathbb{P}\left(\mathcal{N}_{\epsilon(\delta)}=\lfloor x \log (1 / \delta)\rfloor\right)}{\log (1 / \delta)} \stackrel{\delta \rightarrow 0}{\longrightarrow} x \underbrace{\left(\Lambda_{\kappa} \circ 2 U_{\gamma}\right)^{*}}(1 / x)
$$

where U_{γ} is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

$$
U_{\gamma}(\Delta):=\frac{\gamma^{2}}{4} \Delta^{2}+\left(1-\frac{\gamma^{2}}{4}\right) \Delta .
$$

LiouvilleQG: KPZ relation

- If we have a volume measure on \mathbb{D} it is more natural to fix $\delta>0$ and ask for nesting around $\epsilon(\delta)$-disk of volume δ.
- In LQG_{γ} the law of $\epsilon(\delta)$ as $\delta \rightarrow 0$ is well-understood [Duplantier, Sheffield, ${ }^{\prime 08]:} \log (1 / \epsilon(\delta)) \approx$ hitting time of $\log (1 / \delta) / \gamma$ by a BM with drift $2 / \gamma-\gamma / 2$.
- The effect on the large deviations is [Borot, Bouttier, Duplantier, '16]
where U_{γ} is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

$$
U_{\gamma}(\Delta):=\frac{\gamma^{2}}{4} \Delta^{2}+\left(1-\frac{\gamma^{2}}{4}\right) \Delta .
$$

"Nesting in $\mathrm{CLE}_{\kappa} "+$ "KPZ" $=$ "Nesting in $O(n)$ on planar maps"

Main question in this talk:

Can we disentangle the LHS starting from planar map combinatorics?

A Markov process on concentric circles

- Define the Markov process $\left(X_{u}\right)$ on $\{x \in \mathbb{C}:|x| \in 2 \mathbb{Z}\}$ such that
- $\left|X_{u}\right| \arg X_{u}$ is standard Brownian motion;
- $\left|X_{u}\right| / 2$ is an independent birth-death process with birth rate $\lambda_{p}=\frac{1}{16}(2+1 / p)$ and death rate $\mu_{p}=\frac{1}{16}(2-1 / p)$;
- $\left(X_{u}\right)$ is trapped upon hitting 0 .

A Markov process on concentric circles

- Define the Markov process $\left(X_{u}\right)$ on $\{x \in \mathbb{C}:|x| \in 2 \mathbb{Z}\}$ such that
- $\left|X_{u}\right| \arg X_{u}$ is standard Brownian motion;
- $\left|X_{u}\right| / 2$ is an independent birth-death process with birth rate $\lambda_{p}=\frac{1}{16}(2+1 / p)$ and death rate $\mu_{p}=\frac{1}{16}(2-1 / p)$;
- $\left(X_{u}\right)$ is trapped upon hitting 0 .
- It a.s. hits 0 in finite time.

A Markov process on concentric circles

- Define the Markov process $\left(X_{u}\right)$ on $\{x \in \mathbb{C}:|x| \in 2 \mathbb{Z}\}$ such that
- $\left|X_{u}\right| \arg X_{u}$ is standard Brownian motion;
- $\left|X_{u}\right| / 2$ is an independent birth-death process with birth rate $\lambda_{p}=\frac{1}{16}(2+1 / p)$ and death rate $\mu_{p}=\frac{1}{16}(2-1 / p)$;
- $\left(X_{u}\right)$ is trapped upon hitting 0 .
- It a.s. hits 0 in finite time.
- Far away from 0 it resembles 2D Brownian motion.

Loop length versus axis crossing

- Let $\left(\ell_{1}, \ell_{2}, \ldots \ell_{N}\right)$ be the sequence of lengths of loops surrounding the marked vertex in a critical $O(n)$ loop-decorated planar map with perimeter p.

Loop length versus axis crossing

- Let $\left(\ell_{1}, \ell_{2}, \ldots \ell_{N}\right)$ be the sequence of lengths of loops surrounding the marked vertex in a critical $O(n)$ loop-decorated planar map with perimeter p.

- Let $\left(r_{1}, r_{2}, \ldots, r_{\mathcal{N}}\right)$ be the sequence of distances of the points at which $\left(X_{u}\right)$ alternates between the two half x-axes before hitting 0 when started at ($p, 0$).

Loop length versus axis crossing

- Let $\left(\ell_{1}, \ell_{2}, \ldots \ell_{N}\right)$ be the sequence of lengths of loops surrounding the marked vertex in a critical $O(n)$ loop-decorated planar map with perimeter p.

- Let $\left(r_{1}, r_{2}, \ldots, r_{\mathcal{N}}\right)$ be the sequence of distances of the points at which $\left(X_{u}\right)$ alternates between the two half x-axes before hitting 0 when started at ($p, 0$).

Loop length versus axis crossing

- Let $\left(\ell_{1}, \ell_{2}, \ldots \ell_{N}\right)$ be the sequence of lengths of loops surrounding the marked vertex in a critical $O(n)$ loop-decorated planar map with perimeter p.

- Let $\left(r_{1}, r_{2}, \ldots, r_{\mathcal{N}}\right)$ be the sequence of distances of the points at which $\left(X_{u}\right)$ alternates between the two half x-axes before hitting 0 when started at ($p, 0$).

Loop length versus axis crossing

- Let $\left(\ell_{1}, \ell_{2}, \ldots \ell_{N}\right)$ be the sequence of lengths of loops surrounding the marked vertex in a critical $O(n)$ loop-decorated planar map with perimeter p.

- Let $\left(r_{1}, r_{2}, \ldots, r_{\mathcal{N}}\right)$ be the sequence of distances of the points at which $\left(X_{u}\right)$ alternates between the two half x-axes before hitting 0 when started at ($p, 0$).

Theorem

```
If n\in(0, 2] then (\ell, , \ell2,\ldots㬴)}\stackrel{(d)}{=}(\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\ldots,\mp@subsup{r}{\mathcal{N}}{})\mathrm{ biased by }(n/2\mp@subsup{)}{}{\mathcal{N}}\mathrm{ .
```

- Can perform a time change $t(u)=\int_{0}^{u}\left|X_{u^{\prime}}\right|^{2} \mathrm{~d} u^{\prime}, X_{u}=2 R_{t(u)} e^{i \Theta_{t(u)}}$ such that $\left(\Theta_{t}\right)$ is standard Brownian motion and $\left(R_{t}\right)$ is an independent birth-death process with rates $\hat{\lambda}_{p}=4 p^{2} \lambda_{p}, \hat{\mu}_{p}=4 p^{2} \mu_{p}$.
- Can perform a time change $t(u)=\int_{0}^{u}\left|X_{u^{\prime}}\right|^{2} \mathrm{~d} u^{\prime}, X_{u}=2 R_{t(u)} e^{i \Theta_{t(u)}}$ such that $\left(\Theta_{t}\right)$ is standard Brownian motion and $\left(R_{t}\right)$ is an independent birth-death process with rates $\hat{\lambda}_{p}=4 p^{2} \lambda_{p}, \hat{\mu}_{p}=4 p^{2} \mu_{p}$.
- If $b=\frac{1}{\pi} \arccos (n / 2)$, then there exists an $h_{b}: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ such that

$$
H_{b}(\Theta, R)=\cos (b \Theta) h_{b}(R)
$$

is harmonic w.r.t. the Markov process $\left(\Theta_{t}, R_{t}\right)_{t}$ until $\Theta_{t}= \pm \pi$.

- Can perform a time change $t(u)=\int_{0}^{u}\left|X_{u^{\prime}}\right|^{2} \mathrm{~d} u^{\prime}, X_{u}=2 R_{t(u)} e^{i \Theta_{t(u)}}$ such that $\left(\Theta_{t}\right)$ is standard Brownian motion and $\left(R_{t}\right)$ is an independent birth-death process with rates $\hat{\lambda}_{p}=4 p^{2} \lambda_{p}, \hat{\mu}_{p}=4 p^{2} \mu_{p}$.
- If $b=\frac{1}{\pi} \arccos (n / 2)$, then there exists an $h_{b}: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ such that

$$
H_{b}(\Theta, R)=\cos (b \Theta) h_{b}(R)
$$

is harmonic w.r.t. the Markov process $\left(\Theta_{t}, R_{t}\right)_{t}$ until $\Theta_{t}= \pm \pi$.

- Biasing by $(n / 2)^{\mathcal{N}}$ is very similar to H_{b}-transforming $\left(\Theta_{t}, R_{t}\right)_{t}$ into $\left(\Theta_{t}^{(b)}, R_{t}^{(b)}\right)_{t}$.
- Can perform a time change $t(u)=\int_{0}^{u}\left|X_{u^{\prime}}\right|^{2} \mathrm{~d} u^{\prime}, X_{u}=2 R_{t(u)} e^{i \theta_{t(u)}}$ such that $\left(\Theta_{t}\right)$ is standard Brownian motion and $\left(R_{t}\right)$ is an independent birth-death process with rates $\hat{\lambda}_{p}=4 p^{2} \lambda_{p}, \hat{\mu}_{p}=4 p^{2} \mu_{p}$.
- If $b=\frac{1}{\pi} \arccos (n / 2)$, then there exists an $h_{b}: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ such that

$$
H_{b}(\Theta, R)=\cos (b \Theta) h_{b}(R)
$$

is harmonic w.r.t. the Markov process $\left(\Theta_{t}, R_{t}\right)_{t}$ until $\Theta_{t}= \pm \pi$.

- Biasing by $(n / 2)^{\mathcal{N}}$ is very similar to H_{b}-transforming $\left(\Theta_{t}, R_{t}\right)_{t}$ into $\left(\Theta_{t}^{(b)}, R_{t}^{(b)}\right)_{t}$.
- $\Theta_{t}^{(b)}$ and $R_{t}^{(b)}$ are still independent (as long as $R_{t}^{(b)} \neq 0$)!

Proposition

If $\left(t_{i}\right)_{i}$ are the half-axis alternation times of $R_{t}^{(b)} e^{i \Theta_{t}^{(b)}}$ and $\left(T_{i}\right)$ are the log-conformal radii of $C L E_{\kappa}$ with $\kappa=4 /(1 \pm b)$, then $\left(t_{i}\right)_{i} \stackrel{(d)}{=}\left(\kappa T_{i}\right)_{i}$.

Proposition

If $\left(t_{i}\right)_{i}$ are the half-axis alternation times of $R_{t}^{(b)} e^{i \Theta_{t}^{(b)}}$ and $\left(T_{i}\right)$ are the log-conformal radii of CLE κ with $\kappa=4 /(1 \pm b)$, then $\left(t_{i}\right)_{i} \stackrel{(d)}{=}\left(\kappa T_{i}\right)_{i}$.

- Question: Are the distributions of $\tau:=\inf \left\{t: R_{t}^{(b)}=0\right\}$ and $\kappa \log \frac{1}{\epsilon(\delta)}$ identical in the limit $\log (1 / \delta) \sim 2 \log p \rightarrow \infty$?

Connection: simple diagonal random walk on \mathbb{Z}^{2}

There exists a mapping
$\Phi:\{$ diagonal walks $\} \rightarrow\{$ maps with nested loops $\}$ such that
$\Phi\left(\left(W_{i}\right): W_{0}=(p, 0)\right)=$ critical map of perimeter p with nested $O(2)$ loops
$\left(W_{i}\right)$ and $\left(X_{u}\right)$ have same exit distribution from half-plane

Exit distribution from half plane $[\tau \mathrm{B}, 17]$

- $\left(W_{i}\right)$ exits at ℓ with prob $\sum_{n \text { even }} \frac{p}{n}\left(\frac{n-\frac{n}{2}}{2}\right)\left(\frac{n-\frac{n}{2}}{2}\right) 4^{-n}$.

$$
J_{\ell, p}(k):=\sum_{n \text { even }} k^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 4^{-n}
$$

Exit distribution from half plane $[\tau \mathrm{B}, 17]$

- $\left(W_{i}\right)$ exits at ℓ with prob $\sum_{n \text { even }} \frac{p}{n}\binom{n}{\frac{n}{2}-}\left(\begin{array}{c}n-\frac{n}{2}\end{array}\right) 4^{-n}$.

$$
J_{\ell, p}(k):=\sum_{n \text { even }} k^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 4^{-n} .
$$

- Encode in an operator \mathbf{J}_{k} on some Hilbert space \mathcal{D} with basis $\left(e_{p}\right)_{p \geq 1}: J_{k} e_{p}:=\sum_{\ell=1}^{\infty} J_{\ell, p}(k) e_{\ell}$.

Exit distribution from half plane $[\tau B, 17]$

- $\left(W_{i}\right)$ exits at ℓ with prob $\sum_{n \text { even }} \frac{p}{n}\left(\frac{n_{n}^{n}}{2}\right)\left(\frac{n_{n}^{n}}{2}\right) 4^{-n} \cdot \ell$

$$
J_{\ell, p}(k):=\sum_{n \text { even }} k^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 4^{-n} .
$$

- Encode in an operator \mathbf{J}_{k} on some Hilbert space \mathcal{D} with basis $\left(e_{p}\right)_{p \geq 1}: J_{k} e_{p}:=\sum_{\ell=1}^{\infty} J_{\ell, p}(k) e_{\ell}$.
- Let Θ_{t} be Brownian motion and R_{t} a unknown continuous time Markov process on \mathbb{Z}_{+}.

Exit distribution from half plane $[\tau B, 17]$

- $\left(W_{i}\right)$ exits at ℓ with prob $\sum_{n \text { even }} \frac{p}{n}\left(\frac{n^{n}-p}{2}\right)\left(\frac{n^{n}-\ell}{2}\right) 4^{-n} \cdot \ell$

$$
J_{\ell, p}(k):=\sum_{n \text { even }} k^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 4^{-n} .
$$

- Encode in an operator \mathbf{J}_{k} on some Hilbert space \mathcal{D} with basis $\left(e_{p}\right)_{p \geq 1}: J_{k} e_{p}:=\sum_{\ell=1}^{\infty} J_{\ell, p}(k) e_{\ell}$.
- Let Θ_{t} be Brownian motion and R_{t} a unknown continuous time Markov process on \mathbb{Z}_{+}.
- The exit distribution of $R_{t} e^{i \Theta_{t}}$ also determines an operator on \mathcal{D}

$$
\int_{0}^{\infty} e^{-s \mathbf{k}} \mathrm{~d} F(s)
$$

where $F(s)=\frac{1}{2} \mathbb{P}\left(\sup _{t \in(0, s)}\left|\Theta_{t}\right|>\pi / 2\right)$ and \mathbf{K} is the generator $\mathbf{K} e_{p}=\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left[e_{p}-e_{R_{t}}\right]$ of R_{t}.

Exit distribution from half plane $[\tau \mathbb{}, 17]$

- $\left(W_{i}\right)$ exits at ℓ with prob $\sum_{n \text { even }} \frac{p}{n}\left(\frac{n_{n}^{n}}{2}\right)\left(\frac{n_{n}^{n}}{2}\right) 4^{-n} \cdot \ell$

$$
J_{\ell, p}(k):=\sum_{n \text { even }} k^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 4^{-n} .
$$

- Encode in an operator \mathbf{J}_{k} on some Hilbert space \mathcal{D} with basis $\left(e_{p}\right)_{p \geq 1}: J_{k} e_{p}:=\sum_{\ell=1}^{\infty} J_{\ell, p}(k) e_{\ell}$.
- Let Θ_{t} be Brownian motion and R_{t} a unknown continuous time Markov process on \mathbb{Z}_{+}.
- The exit distribution of $R_{t} e^{i \Theta_{t}}$ also determines an operator on \mathcal{D}

$$
\int_{0}^{\infty} e^{-s \mathbf{K}} \mathrm{~d} F(s)=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}} \frac{\pi}{2}\right)
$$

where $F(s)=\frac{1}{2} \mathbb{P}\left(\sup _{t \in(0, s)}\left|\Theta_{t}\right|>\pi / 2\right)$ and \mathbf{K} is the generator $\mathbf{K} e_{p}=\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left[e_{p}-e_{R_{t}}\right]$ of R_{t}.

Exit distribution from half plane $[\tau B, 17]$

- $\left(W_{i}\right)$ exits at ℓ with prob $\sum_{n \text { even }} \frac{p}{n}\left(\frac{n^{n}-p}{2}\right)\left(\frac{n^{n}-\ell}{2}\right) 4^{-n} \cdot \ell$

$$
J_{\ell, p}(k):=\sum_{n \text { even }} k^{n} \frac{p}{n}\binom{n}{\frac{n-p}{2}}\binom{n}{\frac{n-\ell}{2}} 4^{-n} .
$$

- Encode in an operator \mathbf{J}_{k} on some Hilbert space \mathcal{D} with basis $\left(e_{p}\right)_{p \geq 1}: J_{k} e_{p}:=\sum_{\ell=1}^{\infty} J_{\ell, p}(k) e_{\ell}$.
- Let Θ_{t} be Brownian motion and R_{t} a unknown continuous time Markov process on \mathbb{Z}_{+}.
- The exit distribution of $R_{t} e^{i \Theta_{t}}$ also determines an operator on \mathcal{D}

$$
\mathbf{J}_{k} \stackrel{!}{=} \int_{0}^{\infty} e^{-s \mathbf{K}} \mathrm{~d} F(s)=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}} \frac{\pi}{2}\right)
$$

where $F(s)=\frac{1}{2} \mathbb{P}\left(\sup _{t \in(0, s)}\left|\Theta_{t}\right|>\pi / 2\right)$ and \mathbf{K} is the generator $\mathbf{K} e_{p}=\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left[e_{p}-e_{R_{t}}\right]$ of R_{t}.

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{\bar{f}^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ given by $e_{p}(z)=z^{p}$ with $\left\langle e_{l}, e_{p}\right\rangle_{\mathcal{D}}=p \mathbf{1}_{\{I=p\}}$.

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ given by $e_{p}(z)=z^{p}$ with $\left\langle e_{l}, e_{p}\right\rangle_{\mathcal{D}}=p \mathbf{1}_{\{I=p\}}$.
- May represent $\mathbf{J}_{k}=\boldsymbol{\Psi}_{k}^{\dagger} \boldsymbol{\Psi}_{k}$ where $\boldsymbol{\Psi}_{k}$ is the operator

$$
\boldsymbol{\Psi}_{k} f:=f \circ \psi_{k}, \quad \psi_{k}(z)=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
$$

Dirichlet space \mathcal{D}

- $\mathcal{D}=\mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with $f(0)=0$ and finite norm w.r.t. $\left(\mathrm{d} A(x+i y):=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y\right)$

$$
\langle f, g\rangle_{\mathcal{D}}=\int_{\mathbb{D}} \overline{f^{\prime}(z)} g^{\prime}(z) \mathrm{d} A(z)=\sum_{n=1}^{\infty} n \overline{\left[z^{n}\right] f(z)}\left[z^{n}\right] g(z)
$$

- Basis $\left(e_{p}\right)_{p=1}^{\infty}$ given by $e_{p}(z)=z^{p}$ with $\left\langle e_{l}, e_{p}\right\rangle_{\mathcal{D}}=p \mathbf{1}_{\{I=p\}}$.
- May represent $\mathbf{J}_{k}=\boldsymbol{\Psi}_{k}^{\dagger} \boldsymbol{\Psi}_{k}$ where $\boldsymbol{\Psi}_{k}$ is the operator

$$
\boldsymbol{\Psi}_{k} f:=f \circ \psi_{k}, \quad \psi_{k}(z)=\frac{1-\sqrt{1-k z^{2}}}{\sqrt{k} z}
$$

- By conformal invariance of the Dirichlet inner product,

$$
\left\langle f, \mathbf{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle\boldsymbol{\Psi}_{k} f, \boldsymbol{\Psi}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

$$
\left\langle f, \boldsymbol{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle\boldsymbol{\Psi}_{k} f, \boldsymbol{\Psi}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)} .
$$

- To diagonalize \mathbf{J}_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.

$$
\left\langle f, \mathbf{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle\boldsymbol{\Psi}_{k} f, \boldsymbol{\Psi}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}
$$

- To diagonalize \mathbf{J}_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.
- Look for a nice conformal mapping.

$$
\left\langle f, \mathbf{J}_{k} g\right\rangle_{\mathcal{D}}=\left\langle\boldsymbol{\Psi}_{k} f, \boldsymbol{\Psi}_{k} g\right\rangle_{\mathcal{D}}=\left\langle f \circ \psi_{k}, g \circ \psi_{k}\right\rangle_{\mathcal{D}}=\langle f, g\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}
$$

- To diagonalize \mathbf{J}_{k} it suffices to find a basis $\left(f_{m}\right)$ that is orthogonal w.r.t. both $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.
- Look for a nice conformal mapping.
- An elliptic integral does the job $\left(k^{\prime}=\sqrt{1-k^{2}}, k_{1}=\frac{1-k^{\prime}}{1+k^{\prime}}\right)$

$$
v_{k_{1}}(z)=\frac{1}{4 K\left(k_{1}\right)} \int_{0}^{z} \frac{\mathrm{~d} x}{\sqrt{\left(k_{1}-x^{2}\right)\left(1-k_{1} x^{2}\right)}}=\frac{\operatorname{arcsn}\left(\frac{z}{\sqrt{k_{1}}}, k_{1}\right)}{4 K\left(k_{1}\right)}
$$

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.
- Basis $\cos (2 \pi m(\cdot+1 / 4)), m \geq 1$, is orthogonal w.r.t. Dirichlet on strip of any height.

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.
- Basis $\cos (2 \pi m(\cdot+1 / 4)), m \geq 1$, is orthogonal w.r.t. Dirichlet on strip of any height.
- Hence basis

$$
f_{m}(z)=\cos \left(2 \pi m\left(v_{k_{1}}(z)+1 / 4\right)\right)-\cos (\pi m / 2), \quad m \geq 1
$$

of \mathcal{D} is orthogonal w.r.t. $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right)}$.

- The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R}+i\left(-T_{k}, T_{k}\right)$ that is even around $\pm 1 / 4$, hence 1 -periodic.
- Basis $\cos (2 \pi m(\cdot+1 / 4)), m \geq 1$, is orthogonal w.r.t. Dirichlet on strip of any height.
- Hence basis

$$
f_{m}(z)=\cos \left(2 \pi m\left(v_{k_{1}}(z)+1 / 4\right)\right)-\cos (\pi m / 2), \quad m \geq 1
$$

of \mathcal{D} is orthogonal w.r.t. $\langle\cdot, \cdot\rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle\cdot, \cdot\rangle_{\mathcal{D}\left(\Psi_{k}(\mathbb{D})\right) \text {. }}$

- Conclusion: \mathbf{J}_{k} has eigenvectors $\left(f_{m}\right)_{m \geq 1}$ and eigenvalues

$$
\frac{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}\left(\psi_{k}(\mathbb{D})\right)}}{\left\langle f_{m}, f_{m}\right\rangle_{\mathcal{D}(\mathbb{D})}}=\frac{\sinh \left(2 m \pi T_{k}\right)}{\sinh \left(4 m \pi T_{k}\right)}=\frac{1}{2} \operatorname{sech}\left(2 m \pi T_{k}\right), \quad T_{k}=\frac{K\left(k^{\prime}\right)}{4 K(k)}
$$

- $\mathbf{J}_{k}=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}_{k}} \frac{\pi}{2}\right)$ has eigenvalues $\frac{1}{2} \operatorname{sech}\left(2 m \pi T_{k}\right), m \geq 1$.
- $\mathbf{J}_{k}=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}_{k}} \frac{\pi}{2}\right)$ has eigenvalues $\frac{1}{2} \operatorname{sech}\left(2 m \pi T_{k}\right), m \geq 1$.
- \mathbf{K}_{k} has same eigenvectors as \mathbf{J}_{k} and eigenvalues $8 m^{2} T_{k}^{2}$
- $\mathbf{J}_{k}=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}_{k}} \frac{\pi}{2}\right)$ has eigenvalues $\frac{1}{2} \operatorname{sech}\left(2 m \pi T_{k}\right), m \geq 1$.
- \mathbf{K}_{k} has same eigenvectors as \mathbf{J}_{k} and eigenvalues $8 m^{2} T_{k}^{2}$
- Explicit calculation:

$$
\mathbf{K}_{k} e_{p}=\left(\frac{2 K\left(k^{\prime}\right)}{\pi}\right)^{2} \frac{p^{2}}{16}\left[\left(8-4 k^{2}\right) e_{p}-\left(2 \pm \frac{1}{p}\right) k^{2} e_{p \pm 1}\right]
$$

- $\mathbf{J}_{k}=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}_{k}} \frac{\pi}{2}\right)$ has eigenvalues $\frac{1}{2} \operatorname{sech}\left(2 m \pi T_{k}\right), m \geq 1$.
- \mathbf{K}_{k} has same eigenvectors as \mathbf{J}_{k} and eigenvalues $8 m^{2} T_{k}^{2}$
- Explicit calculation:

$$
\begin{aligned}
\mathbf{K}_{k} e_{p} & =\left(\frac{2 K\left(k^{\prime}\right)}{\pi}\right)^{2} \frac{p^{2}}{16}\left[\left(8-4 k^{2}\right) e_{p}-\left(2 \pm \frac{1}{p}\right) k^{2} e_{p \pm 1}\right] \\
& \xrightarrow{k \rightarrow 1} \frac{p^{2}}{16}\left[4 e_{p}-\left(2+\frac{1}{p}\right) e_{p+1}-\left(2-\frac{1}{p}\right) e_{p-1}\right]
\end{aligned}
$$

which is exactly the generator of the birth-death process R_{t}.

- $\mathbf{J}_{k}=\frac{1}{2} \operatorname{sech}\left(\sqrt{2 \mathbf{K}_{k}} \frac{\pi}{2}\right)$ has eigenvalues $\frac{1}{2} \operatorname{sech}\left(2 m \pi T_{k}\right), m \geq 1$.
- \mathbf{K}_{k} has same eigenvectors as \mathbf{J}_{k} and eigenvalues $8 m^{2} T_{k}^{2}$
- Explicit calculation:

$$
\begin{aligned}
\mathbf{K}_{k} e_{p} & =\left(\frac{2 K\left(k^{\prime}\right)}{\pi}\right)^{2} \frac{p^{2}}{16}\left[\left(8-4 k^{2}\right) e_{p}-\left(2 \pm \frac{1}{p}\right) k^{2} e_{p \pm 1}\right] \\
& \xrightarrow{k \rightarrow 1} \frac{p^{2}}{16}\left[4 e_{p}-\left(2+\frac{1}{p}\right) e_{p+1}-\left(2-\frac{1}{p}\right) e_{p-1}\right]
\end{aligned}
$$

which is exactly the generator of the birth-death process R_{t}.

Proposition

The sequences of locations where the diagonal random walk $\left(W_{i}\right)$ and the Markov process $\left(X_{u}\right)$ alternate between the x - and y-axis are equal in law.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

Building planar maps from walks

- Consider walks with steps in $\{-1,0,1\}^{2} \backslash\{(0,0)\}$
- Excursion w in upper-half plane from $(0,0)$ to $(-p-2,0), p \geq 1$.
- Wish to cut w into excursions from $(0,0)$ to $(d-2,0), d \geq 0$.

- Φ_{p} is a bijection with rooted planar maps of perimeter p with
- for each face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

Walks on the slit plane

- This extends to a bijection $\Phi_{\ell, p}$ between walks on the slit plane from $(p, 0)$ to $(-\ell, 0)$ and rooted planar maps with perimeter p and
- a marked face of degree ℓ,
- for each (unmarked) face of degree $d \geq 1$ an excursion above or below axis from $(0,0)$ to $(d-2,0)$
- for each vertex an excursion above axis from $(0,0)$ to $(-2,0)$.

$\Phi_{\ell, p}$

From walks to loop-decorated maps

From walks to loop-decorated maps

- If $\left(W_{i}\right)$ is a simple diagonal random walk started at $(p, 0)$ and killed at $(0,0)$, then $\Phi\left(\left(W_{i}\right)\right)$ is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$
2^{\# \text { loops }} g^{\text {total loop length }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

for some $g, q_{2}, q_{4}, \ldots \in \mathbb{R}_{+}$.

From walks to loop-decorated maps

- If $\left(W_{i}\right)$ is a simple diagonal random walk started at $(p, 0)$ and killed at $(0,0)$, then $\Phi\left(\left(W_{i}\right)\right)$ is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$
2^{\# \text { loops }} g^{\text {total loop length }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

for some $g, q_{2}, q_{4}, \ldots \in \mathbb{R}_{+}$.

- \#loops $=$ \#half-axis alternations of $\left(W_{i}\right)$.

From walks to loop-decorated maps

- If $\left(W_{i}\right)$ is a simple diagonal random walk started at $(p, 0)$ and killed at $(0,0)$, biased by $(n / 2)^{\# \text { \#half-axis alternations }}$, then $\Phi\left(\left(W_{i}\right)\right)$ is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$
n^{\text {\#loops }} g^{\text {total loop length }} \prod_{\text {regular faces }} q_{\text {degree }}
$$

for some $g, q_{2}, q_{4}, \ldots \in \mathbb{R}_{+}$.

- \#loops $=\#$ half-axis alternations of $\left(W_{i}\right)$.

Thanks for you attention!
Comments?

