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The Cori—Vauquelin—Schaeffer bijection
[ 1 [Cori, Vauquelin, '81]

[Schaeffer, '98]
t+1

t-1
t+1

» Quadrangulation — mark a point — distance labeling — apply rules
— labelled tree.

> Labelled tree — add squares — identify corners — quadrangulation.
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> We will be using the bijection:

Quadrangulations with origin Rooted planar trees <7
and marked edge labelled by +,0, — 2
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> If we take the origin at t = 0 and the root at final time, all edges of
the tree are labeled —.

» Quadrangulations <> labeled trees. Causal quadr. <> trees.

» As a direct consequence: With N squares we can build

#{%} = C(N), #{

o } —2c(N)3Y, C(N)= ﬁ (2,01)
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» A quadrangulations with
boundary length 2/ and an
origin.

> Applying the same prescription
we obtain a forest rooted at the
boundary.

» The labels on the boundary
arise from a (closed) random
walk.

> A (possibly empty) tree grows
at the end of every +-edge.

» There is a bijection [Bettinelli]

{ Quadrangulations with origin

I
and boundary length 2/ } © {(+, —)-sequences} x {tree}
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w(g, x' = ———— A —

; ! z(g) 1—4z(g)x
Generating function \ Generating function
for unlabeled trees: /I \ for labeled trees:
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» Expanding around critical point in terms of “lattice spacing” e:
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» Expanding around critical point in terms of “lattice spacing” e:
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Continuum limit

1

1—zx

w(g,x) =

Z=+A

» Expanding around critical point in terms of “lattice spacing” e:

g = gC(]- - /\62)7

» CDT disk amplitude: Wix(X) =
» DT disk amplitude with marked point: W;(X)

w.r.t. A to remove mark: Wi(X) = 5(X — %\/K) X+

z(g) = ze(1 - Ze),

1
X+VA

x = x:(1 — Xe)

1

X+

Integrate
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» Assign coupling a to the local maxima of the
distance function.

» In terms of labeled trees: +00 \/a
0/—
» Local maximum if +/0 Y

coming in and any number
of 0/—'s going out.
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» We can write down equations for the generating functions

P=ex (2D =e(-2-2-9°
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» Combine into one equation for z_(g,a) = 1:
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» Combine into one equation for z_(g, a) =

3z% — 4722 4 (1+2g(1—2a)z> —g*>=0

> Phase diagram for weighted labeled trees (constant a):
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N = 7000, a = 0.004, Ny = 221




N = 4000, a = 0.02, Npax = 362




N = 2500, a =1, Npax = 1216
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Therefore, to obtain a finite continuum density of critical points one
should scale a o N=3/2 i.e. a = g.e3 as observed in [ALwz 07].

This is the only scaling leading to a continuum limit qualitatively
different from DT and CDT. s
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The number of local maxima Np.x(a) scales with N at the critical
. -~
point,

(Nmax(a)) v (3>2/3 (Nmax(a =1))n
LmaQd)IN o (2 Amaxds — N 172
Therefore, to obtain a finite continuum density of critical points one
should scale a o N=3/2 i.e. a = g.e3 as observed in [ALwz 07].

This is the only scaling leading to a continuum limit qualitatively
different from DT and CDT.

Continuum limit g = gc(a)(1 — A€?),
z. =2z (1 Ze), a= gse:

73 <A+3(%)2/3>Z—g5:0

“Cup function” Wi(X) = 3. Agrees with
[ALWZ '07].
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Two

loop identity in generalized CDT

Consider surfaces with two boundaries separated
by a geodesic distance D.

One can assign time Ty, T, to the boundaries
(|T1 — T2] < D) and study a "merging” process.
For a given surface the foliation depends on

Ty — T, hence also N,,.x and its weight.
However, in [aALwZ '07] it was shown that the
amplitude is independent of T; — T>.

Refoliation symmetry at the quantum level in the
presence of topology change!

Can we better understand this symmetry at the
discrete level?

For simplicity set the boundarylengths to zero.
Straightforward generalization to finite boundaries.
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> No local minima = the labeling is canonical!
» There exists a bijection preserving the number of local maxima:
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Conclusions & Outlook

» Conlusions

» The Cori—-Vauquelin—Schaeffer bijection encodes 2d geometry in
trees, which are simple objects from an analytical point of view.

> The bijection is ideal for studying “proper-time foliations” of random
surfaces.

> In the setting of generalized CDT, the bijection exposes symmetries
in certain amplitudes with prescibed time on the boundaries.

» What I've not shown (see our forthcoming paper)
> Similar bijections exist for triangulations, but more involved.
» Explicit expressions can be derived for transition amplitudes
G(L1, Ly; T) in generalized CDT.
» Outlook
» What is the exact structure of these symmetries? Related to
conformal symmetry (Virasoro algebra)?

» Straightforward extension to higher genus. Sum over topologies in
non-critical string theory?



Merry Christmas!
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