In Search for Quantum Gravity: CDT \& Friends,

 Dec. 11-14, 2012, Nijmegen
CDT \& Trees

Timothy Budd
Niels Bohr Institute, Copenhagen. budd@nbi.dk

Collaboration with J. Ambjørn

Outline

- Quadrangulations \& Trees:
- CDT \& Trees:

- Generalized CDT \& Trees:
- Loop amplitudes \& Planar maps:

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules

The Cori-Vauquelin-Schaeffer bijection
[Cori, Vauquelin, '81]

[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules

The Cori-Vauquelin-Schaeffer bijection
[Cori, Vauquelin, '81]

[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules

The Cori-Vauquelin-Schaeffer bijection

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares \rightarrow identify corners

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares \rightarrow identify corners

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares \rightarrow identify corners \rightarrow quadrangulation.

Rooting the tree (Miermont, Bouttier, Guitter, Le Gall,...)

Rooting the tree (Miermont, Bouttier, Guitter, Le Gall, ...)

Rooting the tree (Miermont, Bouttier, Guitter, Le Gall,...)

Rooting the tree (Miermont, Bouttier, Guitter, Le Gall.,..)

Rooting the tree (Miermont, Bouttier, Guitter, Le Gall,..)

- We will be using the bijection:
$\left\{\begin{array}{l}\text { Quadrangulations with origin } \\ \text { and marked edge }\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}\text { Rooted planar trees } \\ \text { labelled by }+, 0,-\end{array}\right\} \times \mathbb{Z}_{2}$

Causal triangulations/quadrangulations

[Krikun, Yambartsev '08]
[Durhuus, Jonsson, Wheater '09]
(Wednesday's talks!)

Causal triangulations/quadrangulations

[Krikun, Yambartsev '08]
[Durhuus, Jonsson, Wheater '09]
(Wednesday's talks!)

Causal triangulations/quadrangulations

[Krikun, Yambartsev '08]
[Durhuus, Jonsson, Wheater '09]
(Wednesday's talks!)

- If we take the origin at $t=0$ and the root at final time, all edges of the tree are labeled - .

Causal triangulations/quadrangulations

[Krikun, Yambartsev '08]
[Durhuus, Jonsson, Wheater '09]
(Wednesday's talks!)

- If we take the origin at $t=0$ and the root at final time, all edges of the tree are labeled -.
- Quadrangulations \leftrightarrow labeled trees. Causal quadr. \leftrightarrow trees.

Causal triangulations/quadrangulations

- If we take the origin at $t=0$ and the root at final time, all edges of the tree are labeled -.
- Quadrangulations \leftrightarrow labeled trees. Causal quadr. \leftrightarrow trees.
- As a direct consequence: With N squares we can build

$$
\#\left\}_{N}=C(N), \quad \#\{ \}_{N}=2 C(N) 3^{N}, C(N)=\frac{1}{N+1}\binom{2 N}{N}\right.
$$

Including boundaries [Bettinelli '11]

- A quadrangulations with boundary length $2 /$

Including boundaries [Bettinelli '11]

- A quadrangulations with boundary length $2 /$ and an origin.

Including boundaries [Bettinelli '11]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.

Including boundaries [Bettinelli '11]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.
- The labels on the boundary arise from a (closed) random walk.

Including boundaries [Bettinelli '11]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.
- The labels on the boundary arise from a (closed) random walk.

- A (possibly empty) tree grows at the end of every +-edge.

Including boundaries [Bettinelli '11]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.
- The labels on the boundary arise from a (closed) random walk.

- A (possibly empty) tree grows at the end of every +-edge.
- There is a bijection [Bettinelli]

$\left\{\begin{array}{l}\text { Quadrangulations with origin } \\ \text { and boundary length 2/ }\end{array}\right\} \leftrightarrow\{(+,-)$-sequences $\} \times\{\text { tree }\}^{\prime}$

Disk amplitudes

Disk amplitudes

Disk amplitudes

$$
\begin{aligned}
& w(g, l)=z(g)^{\prime} \\
& w(g, x)=\sum_{l=0}^{\infty} w(g, l) x^{\prime}=\frac{1}{1-z(g) x}
\end{aligned}
$$

$$
\begin{aligned}
w(g, l) & =\binom{2 /}{l} z(g)^{\prime} \\
w(g, x) & =\frac{1}{\sqrt{1-4 z(g) x}}
\end{aligned}
$$

Disk amplitudes

$$
\begin{aligned}
w(g, l) & =z(g)^{\prime} \\
w(g, x) & =\sum_{l=0}^{\infty} w(g, l) x^{\prime}=\frac{1}{1-z(g) x}
\end{aligned}
$$

$$
\begin{aligned}
w(g, l) & =\binom{2 I}{l} z(g)^{\prime} \\
w(g, x) & =\frac{1}{\sqrt{1-4 z(g) x}}
\end{aligned}
$$

Generating function for unlabeled trees:

$$
z(g)=\frac{1-\sqrt{1-4 g}}{2 g}
$$

Generating function for labeled trees:

$$
z(g)=\frac{1-\sqrt{1-12 g}}{6 g}
$$

Continuum limit

Continuum limit

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

Continuum limit

$\begin{aligned} & w(g, x)=\frac{1}{1-z x} \\ & W_{\wedge}(X)=\frac{1}{X+Z} \end{aligned}$	$\begin{aligned} w(g, x) & =\frac{1}{\sqrt{1-4 z x}} \\ W_{\wedge}^{\prime}(X) & =\frac{1}{\sqrt{X+Z}} \end{aligned}$
$\left\{\Uparrow \left\{\begin{array}{l} z(g)=\frac{1-\sqrt{1-4 g}}{2 g} \\ Z=\sqrt{\Lambda} \end{array}\right.\right.$	保价 $\begin{aligned} & z(g)=\frac{1-\sqrt{1-12 g}}{6 g} \\ & Z=\sqrt{\Lambda}\end{aligned}$

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

Continuum limit

$\begin{aligned} & w(g, x)=\frac{1}{1-z x} \\ & W_{\wedge}(X)=\frac{1}{X+Z} \end{aligned}$	$\begin{aligned} w(g, x) & =\frac{1}{\sqrt{1-4 z x}} \\ W_{\wedge}^{\prime}(X) & =\frac{1}{\sqrt{X+Z}} \end{aligned}$
$\left\{1 \left\{\begin{array}{l} z(g)=\frac{1-\sqrt{1-4 g}}{2 g} \\ z=\sqrt{\Lambda} \end{array}\right.\right.$	$\begin{array}{ll} & z(g)=\frac{1-\sqrt{1-12 g}}{6 g} \\ Z=\sqrt{\Lambda} \end{array}$

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

- CDT disk amplitude: $W_{\Lambda}(X)=\frac{1}{X+\sqrt{\Lambda}}$

Continuum limit

$\begin{aligned} & w(g, x)=\frac{1}{1-z x} \\ & W_{\wedge}(X)=\frac{1}{X+Z} \end{aligned}$	$\begin{aligned} w(g, x) & =\frac{1}{\sqrt{1-4 z x}} \\ W_{\wedge}^{\prime}(X) & =\frac{1}{\sqrt{X+Z}} \end{aligned}$
$\wedge_{1}\left\{\begin{array}{l} z(g)=\frac{1-\sqrt{1-4 g}}{2 g} \\ Z=\sqrt{\Lambda} \end{array}\right.$	(f) $\begin{aligned} & z(g)=\frac{1-\sqrt{1-12 g}}{6 g} \\ & Z=\sqrt{\Lambda}\end{aligned}$

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

- CDT disk amplitude: $W_{\wedge}(X)=\frac{1}{X+\sqrt{\Lambda}}$
- DT disk amplitude with marked point: $W_{\wedge}^{\prime}(X)=\frac{1}{\sqrt{X+\sqrt{\Lambda}}}$. Integrate w.r.t. Λ to remove mark: $W_{\Lambda}(X)=\frac{2}{3}\left(X-\frac{1}{2} \sqrt{\Lambda}\right) \sqrt{X+\sqrt{\Lambda}}$.

Generalized CDT [Ambjorn, Loll, Westra, Zohren 'or]

- Assign coupling a to the local maxima of the distance function.

Generalized CDT [Ambjorn, Loll, Westra, Zohren '07]

- Assign coupling a to the local maxima of the distance function.
- In terms of labeled trees:

Generalized CDT [Ambjorn, Loll, Westra, Zohren '07]

- Assign coupling a to the local maxima of the distance function.
- In terms of labeled trees:

Generalized CDT [Ambjorn, Loll, Westra, Zohren '07]

- Assign coupling a to the local maxima of the distance function.
- In terms of labeled trees:

Generalized CDT [Ambjorn, Loll, Westra, Zohren '07]

- Assign coupling a to the local maxima of the distance function.
- In terms of labeled trees:
- Local maximum if $+/ 0$ coming in and any number of $0 /-$'s going out.

Generalized CDT [Ambjorn, Loll, Westra, Zohren '07]

- Assign coupling a to the local maxima of the distance function.
- In terms of labeled trees:
- Local maximum if $+/ 0$ coming in and any number of $0 /-$'s going out.

- We can write down equations for the generating functions

$$
\left.\left.Q_{-}=g \sum_{k=0}^{\infty}\left(\wp_{-}+Q_{0}+\right\}_{+}\right)^{k}=g(1-\}_{-}-\bigcap_{0}-\bigcap_{+}\right)^{-1}
$$

Generalized CDT [Ambjorn, Loll, Westra, Zohren '07]

- Assign coupling a to the local maxima of the distance function.
- In terms of labeled trees:
- Local maximum if $+/ 0$ coming in and any number of $0 /-$'s going out.

- We can write down equations for the generating functions

$$
\begin{aligned}
& \hat{F}=g \sum_{k=0}^{\infty}\left(\hat{Y}_{-}+\hat{Y}_{0}+\hat{Y}_{+}\right)^{k}=g\left(1-\hat{Y}_{-}-\hat{p}_{0}-\hat{Y}_{+}\right)^{-1} \\
& \hat{F}^{+}=\hat{F}_{0}=g\left[\sum_{k=0}^{\infty}\left(\hat{Y}_{-}+\hat{Y}_{0}+\hat{F}_{+}\right)^{k}+(a-1) \sum_{k=0}^{\infty}\left(\hat{F}_{-}+\hat{Y}_{0}\right)^{k}\right] \\
& =\mathrm{F}_{-}+g(a-1)\left(1-\mathrm{F}_{-}-\mathrm{O}_{0}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
Q_{-} & =g\left(1-Q-Q_{0}-Q_{F}\right)^{-1} \\
Q_{+}=Q_{0} & =q+g(a-1)\left(1-q-Q_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $z_{-}(g, a)=\mathrm{F}_{-}$:

$$
3 z_{-}^{4}-4 z_{-}^{3}+(1+2 g(1-2 a)) z_{-}^{2}-g^{2}=0
$$

$$
\begin{aligned}
\mathrm{F}_{-} & =g\left(1-\mathrm{F}_{-}-\mathrm{Q}_{0}-\mathrm{Y}_{+}\right)^{-1} \\
\mathrm{~F}_{+}=\mathrm{F}_{0} & =\mathrm{F}_{-}+g(a-1)\left(1-\mathrm{F}_{-}-\mathrm{Q}_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $z_{-}(g, a)=\oint_{-}$:

$$
3 z_{-}^{4}-4 z_{-}^{3}+(1+2 g(1-2 a)) z_{-}^{2}-g^{2}=0
$$

- Phase diagram for weighted labeled trees (constant a):

$$
\begin{gathered}
\mathrm{Y}_{-}=g\left(1-\mathrm{F}_{-}-\mathrm{Q}_{0}-\mathrm{Y}_{+}\right)^{-1} \\
\mathrm{~F}_{+}=\mathrm{F}_{0}=\mathrm{F}_{-}+g(a-1)\left(1-\mathrm{F}_{-}-\mathrm{Q}_{0}\right)^{-1}
\end{gathered}
$$

- Combine into one equation for $\left.z_{-}(g, a)=\right\}_{-}$:

$$
3 z_{-}^{4}-4 z_{-}^{3}+(1+2 g(1-2 a)) z_{-}^{2}-g^{2}=0
$$

- Phase diagram for weighted labeled trees (constant a):

$$
\begin{aligned}
\mathrm{F}_{-} & =g\left(1-\mathrm{F}_{-}-\mathrm{O}_{0}-\mathrm{F}_{+}\right)^{-1} \\
\mathrm{~F}_{+}=\mathrm{F}_{0} & =\mathrm{F}_{-}+g(a-1)\left(1-\mathrm{F}_{-}-\mathrm{O}_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $\left.z_{-}(g, a)=\right\}_{-}$:

$$
3 z_{-}^{4}-4 z_{-}^{3}+(1+2 g(1-2 a)) z_{-}^{2}-g^{2}=0
$$

- Phase diagram for weighted labeled trees (constant a):

$$
N=2000, a=0, N_{\max }=0
$$

$$
N=5000, a=0.00007, N_{\max }=11
$$

$$
N=7000, a=0.0002, N_{\max }=37
$$

$$
N=4000, a=0.02, N_{\max }=362
$$

$$
N=2500, a=1, N_{\max }=1216
$$

- The number of local maxima $N_{\max }(a)$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(a)\right\rangle_{N}}{N}=2\left(\frac{a}{2}\right)^{2 / 3}+\mathcal{O}(a), \quad \frac{\left\langle N_{\max }(a=1)\right\rangle_{N}}{N}=1 / 2
$$

- The number of local maxima $N_{\max }(a)$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(a)\right\rangle_{N}}{N}=2\left(\frac{a}{2}\right)^{2 / 3}+\mathcal{O}(a), \quad \frac{\left\langle N_{\max }(a=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $a \propto N^{-3 / 2}$, i.e. $a=g_{s} \epsilon^{3}$ as observed in [ALWZ $\left.{ }^{\prime} 07\right]$.
- The number of local maxima $N_{\max }(a)$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(a)\right\rangle_{N}}{N}=2\left(\frac{a}{2}\right)^{2 / 3}+\mathcal{O}(a), \quad \frac{\left\langle N_{\max }(a=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $a \propto N^{-3 / 2}$, i.e. $a=g_{s} \epsilon^{3}$ as observed in [ALWZ '07].
- This is the only scaling leading to a continuum limit qualitatively different from DT and CDT.
- The number of local maxima $N_{\max }(a)$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(a)\right\rangle_{N}}{N}=2\left(\frac{a}{2}\right)^{2 / 3}+\mathcal{O}(a), \quad \frac{\left\langle N_{\max }(a=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $a \propto N^{-3 / 2}$, i.e. $a=g_{s} \epsilon^{3}$ as observed in [ALWZ '07].
- This is the only scaling leading to a continuum limit qualitatively different from DT and CDT.
- Continuum limit $g=g_{c}(a)\left(1-\Lambda \epsilon^{2}\right)$,

$$
z_{-}=z_{-, c}(1-Z \epsilon), a=g_{s} \epsilon^{3}:
$$

- The number of local maxima $N_{\max }(a)$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(a)\right\rangle_{N}}{N}=2\left(\frac{a}{2}\right)^{2 / 3}+\mathcal{O}(a), \quad \frac{\left\langle N_{\max }(a=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $a \propto N^{-3 / 2}$, i.e. $a=g_{s} \epsilon^{3}$ as observed in [ALWZ '07].
- This is the only scaling leading to a continuum limit qualitatively different from DT and CDT.
- Continuum limit $g=g_{c}(a)\left(1-\Lambda \epsilon^{2}\right)$,

$$
\begin{aligned}
z_{-}= & z_{-, c}(1-Z \epsilon), a=g_{s} \epsilon^{3}: \\
& Z^{3}-\left(\Lambda+3\left(\frac{g_{s}}{2}\right)^{2 / 3}\right) Z-g_{s}=0
\end{aligned}
$$

- "Cup function" $W_{\Lambda}(X)=\frac{1}{X+Z}$. Agrees with [ALWZ '07].

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries $\left(\left|T_{1}-T_{2}\right| \leq D\right)$ and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries $\left(\left|T_{1}-T_{2}\right| \leq D\right)$ and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.
- Refoliation symmetry at the quantum level in the presence of topology change!

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.
- Refoliation symmetry at the quantum level in the presence of topology change!
- Can we better understand this symmetry at the discrete level?

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.
- Refoliation symmetry at the quantum level in the presence of topology change!
- Can we better understand this symmetry at the discrete level?
- For simplicity set the boundarylengths to zero. Straightforward generalization to finite boundaries.

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

?

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

- No local minima \Rightarrow the labeling is canonical!

- No local minima \Rightarrow the labeling is canonical!

- No local minima \Rightarrow the labeling is canonical!

- No local minima \Rightarrow the labeling is canonical!
- There exists a bijection preserving the number of local maxima:

$$
\{\cap\}_{T_{1}, T_{2}} \longleftrightarrow\left\{\{ \}_{T_{1}, T_{2}} \longleftrightarrow\{ \}_{T_{1}, T_{2}^{\prime}}\right.
$$

Conclusions \& Outlook

- Conlusions
- The Cori-Vauquelin-Schaeffer bijection encodes 2d geometry in trees, which are simple objects from an analytical point of view.
- The bijection is ideal for studying "proper-time foliations" of random surfaces.
- In the setting of generalized CDT, the bijection exposes symmetries in certain amplitudes with prescibed time on the boundaries.

Conclusions \& Outlook

- Conlusions
- The Cori-Vauquelin-Schaeffer bijection encodes 2d geometry in trees, which are simple objects from an analytical point of view.
- The bijection is ideal for studying "proper-time foliations" of random surfaces.
- In the setting of generalized CDT, the bijection exposes symmetries in certain amplitudes with prescibed time on the boundaries.
- What I've not shown (see our forthcoming paper)
- Similar bijections exist for triangulations, but more involved.
- Explicit expressions can be derived for transition amplitudes $G\left(L_{1}, L_{2} ; T\right)$ in generalized CDT.

Conclusions \& Outlook

- Conlusions
- The Cori-Vauquelin-Schaeffer bijection encodes 2d geometry in trees, which are simple objects from an analytical point of view.
- The bijection is ideal for studying "proper-time foliations" of random surfaces.
- In the setting of generalized CDT, the bijection exposes symmetries in certain amplitudes with prescibed time on the boundaries.
- What I've not shown (see our forthcoming paper)
- Similar bijections exist for triangulations, but more involved.
- Explicit expressions can be derived for transition amplitudes $G\left(L_{1}, L_{2} ; T\right)$ in generalized CDT.
- Outlook
- What is the exact structure of these symmetries? Related to conformal symmetry (Virasoro algebra)?
- Straightforward extension to higher genus. Sum over topologies in non-critical string theory?

Merry Christmas!

Appendix: canonical labeling

