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The Cori–Vauquelin–Schaeffer bijection
[Cori, Vauquelin, ’81]

[Schaeffer, ’98]

I Quadrangulation

→ mark a point → distance labeling → apply rules
→ labelled tree.

I Labelled tree

→ add squares → identify corners → quadrangulation.
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Rooting the tree (Miermont, Bouttier, Guitter, Le Gall,...)

I We will be using the bijection:{
Quadrangulations with origin
and marked edge

}
↔
{

Rooted planar trees
labelled by +, 0,−

}
×Z2
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Causal triangulations/quadrangulations

1

2

3

4

5

6

7

8

9

10

11

12

13

t

[Krikun, Yambartsev ’08]

[Durhuus, Jonsson, Wheater ’09]

(Wednesday’s talks!)

I If we take the origin at t = 0 and the root at final time, all edges of
the tree are labeled −.

I Quadrangulations ↔ labeled trees. Causal quadr. ↔ trees.
I As a direct consequence: With N squares we can build

#
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= 2C (N)3N , C (N) =
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Including boundaries [Bettinelli ’11]

I A quadrangulations with
boundary length 2l

and an
origin.

I Applying the same prescription
we obtain a forest rooted at the
boundary.

I The labels on the boundary
arise from a (closed) random
walk.

I A (possibly empty) tree grows
at the end of every +-edge.

I There is a bijection [Bettinelli]
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and boundary length 2l
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↔ {(+,−)-sequences} × {tree}l
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Disk amplitudes

w(g , l) = z(g)l

w(g , x) =
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l=0

w(g , l)x l =
1

1− z(g)x

w(g , l) =

(
2l
l

)
z(g)l

w(g , x) =
1√

1− 4z(g)x

Generating function
for unlabeled trees:

z(g) =
1−
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Generating function
for labeled trees:

z(g) =
1−
√

1− 12g
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Continuum limit
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I Expanding around critical point in terms of “lattice spacing” ε:

g = gc(1− Λε2), z(g) = zc(1− Zε), x = xc(1− X ε)

I CDT disk amplitude: WΛ(X ) = 1
X+
√

Λ

I DT disk amplitude with marked point: W ′Λ(X ) = 1√
X+
√

Λ
. Integrate

w.r.t. Λ to remove mark: WΛ(X ) = 2
3 (X − 1

2

√
Λ)
√

X +
√
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Generalized CDT [Ambjørn, Loll, Westra, Zohren ’07]

I Assign coupling a to the local maxima of the
distance function.

I In terms of labeled trees:

I Local maximum if +/0
coming in and any number
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N = 2000, a = 0, Nmax = 0



N = 5000, a = 0.00007, Nmax = 11



N = 7000, a = 0.0002, Nmax = 37



N = 7000, a = 0.004, Nmax = 221



N = 4000, a = 0.02, Nmax = 362



N = 2500, a = 1, Nmax = 1216



I The number of local maxima Nmax(a) scales with N at the critical
point,

〈Nmax(a)〉N
N

= 2
(a

2

)2/3

+O(a),
〈Nmax(a = 1)〉N

N
= 1/2

I Therefore, to obtain a finite continuum density of critical points one
should scale a ∝ N−3/2, i.e. a = gsε

3 as observed in [ALWZ ’07].

I This is the only scaling leading to a continuum limit qualitatively
different from DT and CDT.

I Continuum limit g = gc(a)(1− Λε2),
z− = z−,c(1− Zε), a = gsε

3:

Z 3 −
(

Λ + 3
(gs

2

)2/3
)
Z − gs = 0

I “Cup function” WΛ(X ) = 1
X+Z . Agrees with

[ALWZ ’07].
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Two loop identity in generalized CDT

I Consider surfaces with two boundaries separated
by a geodesic distance D.

I One can assign time T1, T2 to the boundaries
(|T1 − T2| ≤ D) and study a “merging” process.

I For a given surface the foliation depends on
T1 − T2, hence also Nmax and its weight.

I However, in [ALWZ ’07] it was shown that the
amplitude is independent of T1 − T2.

I Refoliation symmetry at the quantum level in the
presence of topology change!

I Can we better understand this symmetry at the
discrete level?

I For simplicity set the boundarylengths to zero.
Straightforward generalization to finite boundaries.
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Conclusions & Outlook

I Conlusions
I The Cori–Vauquelin–Schaeffer bijection encodes 2d geometry in

trees, which are simple objects from an analytical point of view.
I The bijection is ideal for studying “proper-time foliations” of random

surfaces.
I In the setting of generalized CDT, the bijection exposes symmetries

in certain amplitudes with prescibed time on the boundaries.

I What I’ve not shown (see our forthcoming paper)
I Similar bijections exist for triangulations, but more involved.
I Explicit expressions can be derived for transition amplitudes

G(L1, L2;T ) in generalized CDT.

I Outlook
I What is the exact structure of these symmetries? Related to

conformal symmetry (Virasoro algebra)?
I Straightforward extension to higher genus. Sum over topologies in

non-critical string theory?
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