

Outline

- Introduction to (generalized) CDT in 2d
- Enumeration using labeled trees
- Continuum limit and two-point function
- Scaling limit of planar maps
- Loop identities

Causal Dynamical Triangulations in 2d

- CDT in 2 d is a statistical system with partition function

$$
Z_{C D T}=\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} g^{N(\mathcal{T})}
$$

- $Z_{C D T}(g)$ is a generating function for the number of causal triangulations \mathcal{T} of S^{2} with N triangles.

Causal Dynamical Triangulations in 2d

- CDT in 2d is a statistical system with partition function

$$
Z_{C D T}=\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} g^{N(\mathcal{T})}
$$

- $Z_{C D T}(g)$ is a generating function for the number of causal triangulations \mathcal{T} of S^{2} with N triangles.
- The triangulations have a foliated structure

Causal Dynamical Triangulations in 2d

- CDT in 2 d is a statistical system with partition function

$$
Z_{C D T}=\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} g^{N(\mathcal{T})}
$$

- $Z_{C D T}(g)$ is a generating function for the number of causal triangulations \mathcal{T} of S^{2} with N triangles.
- The triangulations have a foliated structure
- May as well view them as causal quadrangulations with a unique local maximum of the distance function from the origin.

Causal Dynamical Triangulations in 2d

- CDT in 2d is a statistical system with partition function

$$
Z_{C D T}=\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} g^{N(\mathcal{T})}
$$

- $Z_{C D T}(g)$ is a generating function for the number of causal triangulations \mathcal{T} of S^{2} with N triangles.
- The triangulations have a foliated structure
- May as well view them as causal quadrangulations with a unique local maximum of the distance function from the origin.
- What if we allow more than one local maximum?

Generalized CDT

- Allow spatial topology to change in time. Assign a coupling \mathfrak{g}_{s} to each baby universe.

Generalized CDT

- Allow spatial topology to change in time. Assign a coupling \mathfrak{g}_{s} to each baby universe.
- The model was solved in the continuum by gluing together chunks of CDT. [Ambjprn,
Loll, Westra, Zohren '07]

Generalized CDT

- Allow spatial topology to change in time. Assign a coupling \mathfrak{g}_{s} to each baby universe.
- The model was solved in the continuum by gluing together chunks of CDT. [Ambjørn,
Loll, Westra, Zohren '07]
- Can we understand the geometry in more detail by obtaining generalized CDT as a scaling limit of a discrete model?

Generalized CDT

- Allow spatial topology to change in time. Assign a coupling \mathfrak{g}_{s} to each baby universe.
- The model was solved in the continuum by gluing together chunks of CDT. [Ambjørn,
Loll, Westra, Zohren '07]
- Can we understand the geometry in more detail by obtaining generalized CDT as a scaling limit of a discrete model?
- Generalized CDT partition function

$$
Z(g, \mathfrak{g})=\sum_{\mathcal{Q}} \frac{1}{C_{\mathcal{Q}}} g^{N_{\mathfrak{g}} N_{\max }}
$$

sum over quadrangulations \mathcal{Q} with N faces, a marked origin, and $N_{\text {max }}$ local maxima of the distance to the origin.

Generalized CDT

- Allow spatial topology to change in time. Assign a coupling \mathfrak{g}_{s} to each baby universe.
- The model was solved in the continuum by gluing together chunks of CDT. [Ambjørn,
Loll, Westra, Zohren '07]
- Can we understand the geometry in more detail by obtaining generalized CDT as a scaling limit of a discrete model?
- Generalized CDT partition function

$$
Z(g, \mathfrak{g})=\sum_{\mathcal{Q}} \frac{1}{C_{\mathcal{Q}}} g^{N^{\prime}} \mathfrak{g}^{N_{\max }}
$$

sum over quadrangulations \mathcal{Q} with N faces, a marked origin, and $N_{\text {max }}$ local maxima of the distance to the origin.

$$
N=2000, \mathfrak{g}=0, N_{\max }=1
$$

$$
N=5000, \mathfrak{g}=0.00007, N_{\max }=12
$$

$$
N=7000, \mathfrak{g}=0.0002, N_{\max }=38
$$

$$
N=4000, \mathfrak{g}=0.02, N_{\max }=362
$$

$$
N=2500, \mathfrak{g}=1, N_{\max }=1216
$$

Causal triangulations and trees

Causal triangulations and trees

- Union of all left-most geodesics running away from the origin.

Causal triangulations and trees

- Union of all left-most geodesics running away from the origin.
- Simple enumeration of planar trees:
$\#\left\}_{N}=C(N), \quad C(N)=\frac{1}{N+1}\binom{2 N}{N}\right.$
[Malyshev, Yambartsev, Zamyatin '01]
[Krikun, Yambartsev '08]
[Durhuus, Jonsson, Wheater '09]

Causal triangulations and trees

- Union of all left-most geodesics running away from the origin.
- Simple enumeration of planar trees:

$$
\begin{aligned}
& \#\left\}_{N}=C(N), C(N)=\frac{1}{N+1}\binom{2 N}{N}\right. \\
& \text { [Malyshev, Yambartsev, Zamyatin '01] } \\
& \text { [Krikun, Yambartsev '08] } \\
& \text { [Durhuus, Jonsson, Wheater '09] }
\end{aligned}
$$

- Union of all left-most geodesics running towards the origin.

Causal triangulations and trees

- Union of all left-most geodesics running away from the origin.
- Simple enumeration of planar trees:

$$
\begin{aligned}
& \#\left\}_{N}=C(N), \quad C(N)=\frac{1}{N+1}\binom{2 N}{N}\right. \\
& \text { [Malyshev, Yambartsev, Zamyatin '01] } \\
& \text { [Krikun, Yambartsev '08] } \\
& \text { [Durhuus, Jonsson, Wheater '09] }
\end{aligned}
$$

- Union of all left-most geodesics running towards the origin.
- Both generalize to generalized CDT leading to different representations.

Causal triangulations and trees

Causal triangulations and trees

- Labeled planar trees: Schaeffer's bijection.

Causal triangulations and trees

- Labeled planar trees: Schaeffer's bijection.

- Unlabeled planar maps (one face per local maximum).

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]

[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules

The Cori-Vauquelin-Schaeffer bijection
[Cori, Vauquelin, '81]

[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares \rightarrow identify corners

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares \rightarrow identify corners

The Cori-Vauquelin-Schaeffer bijection

[Cori, Vauquelin, '81]
[Schaeffer, '98]

- Quadrangulation \rightarrow mark a point \rightarrow distance labeling \rightarrow apply rules \rightarrow labelled tree.
- Labelled tree \rightarrow add squares \rightarrow identify corners \rightarrow quadrangulation.

Rooting the tree [e.g. Chassaing, Schaeffer '04]

Rooting the tree ${ }_{\text {[.g.g. Chassaing, Schaeffer '04] }}$

Rooting the tree ${ }_{\text {[.g.g. Chassaing, Schaeffer '04] }}$

Rooting the tree ${ }_{[\text {e.g. Chassaing, Schaeffer '04] }}$

Rooting the tree ${ }_{[\text {e.g. Chassaing, Schaeffer '04] }}$

- We will be using the bijection:
$\left\{\begin{array}{l}\text { Quadrangulations with origin } \\ \text { and marked edge }\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}\text { Rooted planar trees } \\ \text { labelled by }+, 0,-\end{array}\right\}$

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.
- In terms of labeled trees:

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.
- In terms of labeled trees:

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.
- In terms of labeled trees:

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.
- In terms of labeled trees:

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.
- In terms of labeled trees:
- Generating function $z_{0}(g, \mathfrak{g})$ for number of rooted labeled trees with N edges and $N_{\text {max }}$ local maxima.
- Similarly $z_{1}(g, \mathfrak{g})$ but local maximum at the root not counted.

Assigning couplings to local maxima

- Assign coupling \mathfrak{g} to the local maxima of the distance function.
- In terms of labeled trees:
- Generating function $z_{0}(g, \mathfrak{g})$ for number of rooted labeled trees with N edges and $N_{\text {max }}$ local maxima.
- Similarly $z_{1}(g, \mathfrak{g})$ but local maximum at the root not counted.
- Satisfy recursion relations:

$$
\begin{aligned}
z_{1} & =\sum_{k=0}^{\infty}\left(z_{1}+z_{0}+z_{0}\right)^{k} g^{k}=\left(1-g z_{1}-2 g z_{0}\right)^{-1} \\
z_{0} & =\sum_{k=0}^{\infty}\left(z_{1}+z_{0}+z_{0}\right)^{k} g^{k}+(\mathfrak{g}-1) \sum_{k=0}^{\infty}\left(z_{1}+z_{0}\right)^{k} g^{k} \\
& =z_{1}+(\mathfrak{g}-1)\left(1-g z_{1}-g z_{0}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& z_{1}=\left(1-g z_{1}-2 g z_{0}\right)^{-1} \\
& z_{0}=z_{1}+(\mathfrak{g}-1)\left(1-g z_{1}-g z_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $z_{1}(g, \mathfrak{g})$:

$$
3 g^{2} z_{1}^{4}-4 g z_{1}^{3}+(1+2 g(1-2 \mathfrak{g})) z_{1}^{2}-1=0
$$

$$
\begin{aligned}
& z_{1}=\left(1-g z_{1}-2 g z_{0}\right)^{-1} \\
& z_{0}=z_{1}+(\mathfrak{g}-1)\left(1-g z_{1}-g z_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $z_{1}(g, \mathfrak{g})$:

$$
3 g^{2} z_{1}^{4}-4 g z_{1}^{3}+(1+2 g(1-2 \mathfrak{g})) z_{1}^{2}-1=0
$$

- Phase diagram for weighted labeled trees (constant \mathfrak{g}):

$$
\begin{aligned}
& z_{1}=\left(1-g z_{1}-2 g z_{0}\right)^{-1} \\
& z_{0}=z_{1}+(\mathfrak{g}-1)\left(1-g z_{1}-g z_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $z_{1}(g, \mathfrak{g})$:

$$
3 g^{2} z_{1}^{4}-4 g z_{1}^{3}+(1+2 g(1-2 \mathfrak{g})) z_{1}^{2}-1=0
$$

- Phase diagram for weighted labeled trees (constant \mathfrak{g}):

$$
\begin{aligned}
& z_{1}=\left(1-g z_{1}-2 g z_{0}\right)^{-1} \\
& z_{0}=z_{1}+(\mathfrak{g}-1)\left(1-g z_{1}-g z_{0}\right)^{-1}
\end{aligned}
$$

- Combine into one equation for $z_{1}(g, \mathfrak{g})$:

$$
3 g^{2} z_{1}^{4}-4 g z_{1}^{3}+(1+2 g(1-2 \mathfrak{g})) z_{1}^{2}-1=0
$$

- Phase diagram for weighted labeled trees (constant \mathfrak{g}):

- The number of local maxima $N_{\max }(\mathfrak{g})$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(\mathfrak{g})\right\rangle_{N}}{N}=2\left(\frac{\mathfrak{g}}{2}\right)^{2 / 3}+\mathcal{O}(\mathfrak{g}), \quad \frac{\left\langle N_{\max }(\mathfrak{g}=1)\right\rangle_{N}}{N}=1 / 2
$$

- The number of local maxima $N_{\max }(\mathfrak{g})$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(\mathfrak{g})\right\rangle_{N}}{N}=2\left(\frac{\mathfrak{g}}{2}\right)^{2 / 3}+\mathcal{O}(\mathfrak{g}), \quad \frac{\left\langle N_{\max }(\mathfrak{g}=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $\mathfrak{g} \propto N^{-3 / 2}$, i.e. $\mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}$ as observed in [ALWZ $\left.{ }^{\prime} 07\right]$.
- The number of local maxima $N_{\max }(\mathfrak{g})$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(\mathfrak{g})\right\rangle_{N}}{N}=2\left(\frac{\mathfrak{g}}{2}\right)^{2 / 3}+\mathcal{O}(\mathfrak{g}), \quad \frac{\left\langle N_{\max }(\mathfrak{g}=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $\mathfrak{g} \propto N^{-3 / 2}$, i.e. $\mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}$ as observed in [ALWZ '07].
- This is the only scaling leading to a continuum limit qualitatively different from DT and CDT.
- The number of local maxima $N_{\max }(\mathfrak{g})$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(\mathfrak{g})\right\rangle_{N}}{N}=2\left(\frac{\mathfrak{g}}{2}\right)^{2 / 3}+\mathcal{O}(\mathfrak{g}), \quad \frac{\left\langle N_{\max }(\mathfrak{g}=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $\mathfrak{g} \propto N^{-3 / 2}$, i.e. $\mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}$ as observed in [ALWZ '07].
- This is the only scaling leading to a continuum limit qualitatively different from DT and CDT.
- Continuum limit $g=g_{c}(\mathfrak{g})\left(1-\Lambda \epsilon^{2}\right)$, $z_{1}=z_{1, c}\left(1-Z_{1} \epsilon\right), \mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}:$

$$
Z_{1}^{3}-\left(\Lambda+3\left(\frac{\mathfrak{g}_{s}}{2}\right)^{2 / 3}\right) Z_{1}-\mathfrak{g}_{s}=0
$$

- The number of local maxima $N_{\max }(\mathfrak{g})$ scales with N at the critical point,

$$
\frac{\left\langle N_{\max }(\mathfrak{g})\right\rangle_{N}}{N}=2\left(\frac{\mathfrak{g}}{2}\right)^{2 / 3}+\mathcal{O}(\mathfrak{g}), \quad \frac{\left\langle N_{\max }(\mathfrak{g}=1)\right\rangle_{N}}{N}=1 / 2
$$

- Therefore, to obtain a finite continuum density of critical points one should scale $\mathfrak{g} \propto N^{-3 / 2}$, i.e. $\mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}$ as observed in [ALWZ '07].
- This is the only scaling leading to a continuum limit qualitatively different from DT and CDT.
- Continuum limit $g=g_{c}(\mathfrak{g})\left(1-\Lambda \epsilon^{2}\right)$,

$$
\begin{aligned}
z_{1}= & z_{1, c}\left(1-Z_{1} \epsilon\right), \mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}: \\
& Z_{1}^{3}-\left(\Lambda+3\left(\frac{\mathfrak{g}_{s}}{2}\right)^{2 / 3}\right) Z_{1}-\mathfrak{g}_{s}=0
\end{aligned}
$$

- Can compute:

Two-point function

- Amplitude for having root at distance T from origin.

Two-point function

- Amplitude for having root at distance T from origin.
- Given by T-derivative of $Z_{0}(T)$ and $Z_{1}(T)$, which are the scaling limits of the generating functions $z_{0}(t)$ and $z_{1}(t)$ of labeled trees with label t on the root.

Two-point function

- Amplitude for having root at distance T from origin.
- Given by T-derivative of $Z_{0}(T)$ and $Z_{1}(T)$, which are the scaling limits of the generating functions $z_{0}(t)$ and $z_{1}(t)$ of labeled trees with label t on the root.
- They satisfy

$$
\begin{aligned}
& z_{1}(t)=\frac{1}{1-g z_{1}(t-1)-g z_{0}(t)-g z_{0}(t+1)} \\
& z_{0}(t)=z_{1}(t)+\frac{\mathfrak{g}-1}{1-g z_{1}(t-1)-g z_{0}(t)}
\end{aligned}
$$

- Solution is (using methods of [Bouttier, Di Francesco, Guitter, '03]]):

$$
\begin{aligned}
& z_{1}(t)=z_{1} \frac{1-\sigma^{t}}{1-\sigma^{t+1}} \frac{1-(1-\beta) \sigma-\beta \sigma^{t+3}}{1-(1-\beta) \sigma-\beta \sigma^{t+2}} \\
& z_{0}(t)=z_{0} \frac{1-\sigma^{t}}{1-(1-\beta) \sigma-\beta \sigma^{t+1}} \frac{(1-(1-\beta) \sigma)^{2}-\beta^{2} \sigma^{t+3}}{1-(1-\beta) \sigma-\beta \sigma^{t+2}}
\end{aligned}
$$

with $\beta=\beta(g, \mathfrak{g})$ and $\sigma=\sigma(g, \mathfrak{g})$ fixed by

$$
\begin{array}{r}
g(1+\sigma)(1+\beta \sigma) z_{1}-\sigma\left(1-2 g z_{0}\right)=0, \\
(1-\beta) \sigma-g(1+\sigma) z_{1}+g(1-\sigma+2 \beta \sigma) z_{0}=0 .
\end{array}
$$

- Solution is (using methods of [Bouttier, Di Francesco, Guitter, '03]):

$$
\begin{aligned}
& z_{1}(t)=z_{1} \frac{1-\sigma^{t}}{1-\sigma^{t+1}} \frac{1-(1-\beta) \sigma-\beta \sigma^{t+3}}{1-(1-\beta) \sigma-\beta \sigma^{t+2}} \\
& z_{0}(t)=z_{0} \frac{1-\sigma^{t}}{1-(1-\beta) \sigma-\beta \sigma^{t+1}} \frac{(1-(1-\beta) \sigma)^{2}-\beta^{2} \sigma^{t+3}}{1-(1-\beta) \sigma-\beta \sigma^{t+2}}
\end{aligned}
$$

with $\beta=\beta(g, \mathfrak{g})$ and $\sigma=\sigma(g, \mathfrak{g})$ fixed by

$$
\begin{array}{r}
g(1+\sigma)(1+\beta \sigma) z_{1}-\sigma\left(1-2 g z_{0}\right)=0, \\
(1-\beta) \sigma-g(1+\sigma) z_{1}+g(1-\sigma+2 \beta \sigma) z_{0}=0 .
\end{array}
$$

- Continuum limit, $\mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}, g=g_{c}\left(1-\Lambda \epsilon^{2}\right), t=T / \epsilon$, gives

$$
\frac{d Z_{0}(T)}{d T}=\Sigma^{3} \frac{\mathfrak{g}_{s}}{\alpha} \frac{\Sigma \sinh \Sigma T+\alpha \cosh \Sigma T}{(\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T)^{3}}
$$

- Solution is (using methods of [Bouttier, Di Francesco, Guitter, '03]):

$$
\begin{aligned}
& z_{1}(t)=z_{1} \frac{1-\sigma^{t}}{1-\sigma^{t+1}} \frac{1-(1-\beta) \sigma-\beta \sigma^{t+3}}{1-(1-\beta) \sigma-\beta \sigma^{t+2}} \\
& z_{0}(t)=z_{0} \frac{1-\sigma^{t}}{1-(1-\beta) \sigma-\beta \sigma^{t+1}} \frac{(1-(1-\beta) \sigma)^{2}-\beta^{2} \sigma^{t+3}}{1-(1-\beta) \sigma-\beta \sigma^{t+2}}
\end{aligned}
$$

with $\beta=\beta(g, \mathfrak{g})$ and $\sigma=\sigma(g, \mathfrak{g})$ fixed by

$$
\begin{array}{r}
g(1+\sigma)(1+\beta \sigma) z_{1}-\sigma\left(1-2 g z_{0}\right)=0, \\
(1-\beta) \sigma-g(1+\sigma) z_{1}+g(1-\sigma+2 \beta \sigma) z_{0}=0 .
\end{array}
$$

- Continuum limit, $\mathfrak{g}=\mathfrak{g}_{s} \epsilon^{3}, g=g_{c}\left(1-\Lambda \epsilon^{2}\right), t=T / \epsilon$, gives

$$
\begin{aligned}
\frac{d Z_{0}(T)}{d T} & =\Sigma^{3} \frac{\mathfrak{g}_{s}}{\alpha} \frac{\Sigma \sinh \Sigma T+\alpha \cosh \Sigma T}{(\Sigma \cosh \Sigma T+\alpha \sinh \Sigma T)^{3}} \\
& \xrightarrow{\mathfrak{g}_{s} \rightarrow \infty} \Lambda^{3 / 4} \frac{\cosh \left(\Lambda^{1 / 4} T^{\prime}\right)}{\sinh ^{3}\left(\Lambda^{1 / 4} T^{\prime}\right)} \quad T^{\prime}=\mathfrak{g}_{s}^{1 / 6} T
\end{aligned}
$$

- DT two-point function appears as $\mathfrak{g}_{s} \rightarrow \infty$! [Ambjørn, Watabiki, '95]

Planar maps

- Bijection between quadrangulations with $N_{\max }$ local maxima and planar maps with $N_{\text {max }}$ faces!

Planar maps

- Bijection between quadrangulations with $N_{\max }$ local maxima and planar maps with $N_{\max }$ faces!

Two-point function for planar maps

- We know generating functions for trees and therefore obtain an explicit generating function

$$
z_{0}(t+1)-z_{0}(t)=\sum_{N=0}^{\infty} \sum_{n=0}^{\infty} \mathcal{N}_{t}(N, n) g^{N} \mathfrak{g}^{n}
$$

for the number $\mathcal{N}_{t}(N, n)$ of planar maps with N edges, n faces, and a marked point at distance t from the root.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries $\left(\left|T_{1}-T_{2}\right| \leq D\right)$ and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWz '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.
- Refoliation symmetry at the quantum level in the presence of topology change!

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.
- Refoliation symmetry at the quantum level in the presence of topology change!
- Can we better understand this symmetry at the discrete level?

Two loop identity in generalized CDT

- Consider surfaces with two boundaries separated by a geodesic distance D.
- One can assign time T_{1}, T_{2} to the boundaries ($\left|T_{1}-T_{2}\right| \leq D$) and study a "merging" process.
- For a given surface the foliation depends on $T_{1}-T_{2}$, hence also $N_{\max }$ and its weight.
- However, in [ALWZ '07] it was shown that the amplitude is independent of $T_{1}-T_{2}$.
- Refoliation symmetry at the quantum level in the presence of topology change!
- Can we better understand this symmetry at the discrete level?
- For simplicity set the boundarylengths to zero.
 Straightforward generalization to finite boundaries.

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=0 \\
& T_{2}=0 \\
& D=4
\end{aligned}
$$

- Only need to keep the labels of the marked points!

- Only need to keep the labels of the marked points!

- Only need to keep the labels of the marked points!

- Only need to keep the labels of the marked points!
- There exists a bijection preserving the number of local maxima:

$$
\{\cap\}_{T_{1}, T_{2}} \longleftrightarrow\left\{\{ \}_{T_{1}, T_{2}} \longleftrightarrow\{ \}_{T_{1}, T_{2}^{\prime}}\right.
$$

Conclusions \& Outlook

- Conlusions
- The Cori-Vauquelin-Schaeffer bijection is ideal for studying "proper-time foliations" of random surfaces.
- Generalized CDT appears naturally as the scaling limit of random planar maps with a fixed finite number of faces.
- Continuum DT (Brownian map?) seems to be recovered by taking $\mathfrak{g}_{s} \rightarrow \infty$.
- The relation to planar maps explains the mysterious loop-loop identities in the continuum.

Conclusions \& Outlook

- Conlusions
- The Cori-Vauquelin-Schaeffer bijection is ideal for studying "proper-time foliations" of random surfaces.
- Generalized CDT appears naturally as the scaling limit of random planar maps with a fixed finite number of faces.
- Continuum DT (Brownian map?) seems to be recovered by taking $\mathfrak{g}_{s} \rightarrow \infty$.
- The relation to planar maps explains the mysterious loop-loop identities in the continuum.
- Outlook
- Is there a convergence towards a random measure on metric spaces, i.e. analogue of the Brownian map? Should first try to understand 2d geometry of random causal triangulations.
- What is the structure of the symmetries mentioned above?
- Various stochastic processes involved in generalized CDT. How are they related?

Conclusions \& Outlook

- Conlusions
- The Cori-Vauquelin-Schaeffer bijection is ideal for studying "proper-time foliations" of random surfaces.
- Generalized CDT appears naturally as the scaling limit of random planar maps with a fixed finite number of faces.
- Continuum DT (Brownian map?) seems to be recovered by taking $\mathfrak{g}_{s} \rightarrow \infty$.
- The relation to planar maps explains the mysterious loop-loop identities in the continuum.
- Outlook
- Is there a convergence towards a random measure on metric spaces, i.e. analogue of the Brownian map? Should first try to understand 2d geometry of random causal triangulations.
- What is the structure of the symmetries mentioned above?
- Various stochastic processes involved in generalized CDT. How are they related?

Further reading: arXiv:1302.1763
These slides and more: http://www.nbi.dk/~budd/
Questions?

Appendix: canonical labeling

Including boundaries [Bouttier, Guitter '09, Bettinelli '11, Curien, Miermont '12]

- A quadrangulations with boundary length $2 /$

Including boundaries [Bouttier, Guitter '09, Bettinelli '11, Curien, Miermont '12]

- A quadrangulations with boundary length $2 /$ and an origin.

Including boundaries [Bouttier, Guitter 'o9, Bettinelli '11, Curien, Miemoort '12]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.

Including boundaries [Bouttier, Guitter 'oo, Bettinelli '11, Curien, Miemont '12]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.
- The labels on the boundary arise from a (closed) random walk.

Including boundaries [Bouttier, Guitter 'o9, Bettinell '11, Curien, Miemoort '12]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.
- The labels on the boundary arise from a (closed) random walk.

- A (possibly empty) tree grows at the end of every +-edge.

Including boundaries [Bouttier, Guitter '09, Bettinelli' '11, Curien, Miermont '12]

- A quadrangulations with boundary length $2 /$ and an origin.
- Applying the same prescription we obtain a forest rooted at the boundary.
- The labels on the boundary arise from a (closed) random walk.

- A (possibly empty) tree grows at the end of every +-edge.
- There is a bijection [Bettinelli]

$\left\{\begin{array}{l}\text { Quadrangulations with origin } \\ \text { and boundary length 2/ }\end{array}\right\} \leftrightarrow\{(+,-)$-sequences $\} \times\{\text { tree }\}^{\prime}$

Disk amplitudes

Disk amplitudes

Disk amplitudes

$$
\begin{aligned}
& w(g, l)=z(g)^{\prime} \\
& w(g, x)=\sum_{l=0}^{\infty} w(g, l) x^{\prime}=\frac{1}{1-z(g) x}
\end{aligned}
$$

$$
\begin{aligned}
& w(g, I)=\binom{2 I}{l} z(g)^{\prime} \\
& w(g, x)=\frac{1}{\sqrt{1-4 z(g) x}}
\end{aligned}
$$

Disk amplitudes

$$
\begin{aligned}
& w(g, l)=z(g)^{\prime} \\
& w(g, x)=\sum_{l=0}^{\infty} w(g, l) x^{\prime}=\frac{1}{1-z(g) x}
\end{aligned}
$$

Generating function for unlabeled trees:

$$
z(g)=\frac{1-\sqrt{1-4 g}}{2 g}
$$

Generating function for labeled trees:

$$
z(g)=\frac{1-\sqrt{1-12 g}}{6 g}
$$

Continuum limit

Continuum limit

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

Continuum limit

$\begin{aligned} & w(g, x)=\frac{1}{1-z x} \\ & W_{\wedge}(X)=\frac{1}{X+Z} \end{aligned}$	$\begin{aligned} w(g, x) & =\frac{1}{\sqrt{1-4 z x}} \\ W_{\wedge}^{\prime}(X) & =\frac{1}{\sqrt{X+Z}} \end{aligned}$
$\left\{\Uparrow \left\{\begin{array}{l} z(g)=\frac{1-\sqrt{1-4 g}}{2 g} \\ Z=\sqrt{\Lambda} \end{array}\right.\right.$	保价 $\begin{aligned} & z(g)=\frac{1-\sqrt{1-12 g}}{6 g} \\ & Z=\sqrt{\Lambda}\end{aligned}$

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

Continuum limit

$\begin{aligned} & w(g, x)=\frac{1}{1-z x} \\ & W_{\wedge}(X)=\frac{1}{X+Z} \end{aligned}$	$\begin{aligned} w(g, x) & =\frac{1}{\sqrt{1-4 z x}} \\ W_{\wedge}^{\prime}(X) & =\frac{1}{\sqrt{X+Z}} \end{aligned}$
$\left\{\Uparrow \left\{\begin{array}{l} z(g)=\frac{1-\sqrt{1-4 g}}{2 g} \\ Z=\sqrt{\Lambda} \end{array}\right.\right.$	保价 $\begin{aligned} & z(g)=\frac{1-\sqrt{1-12 g}}{6 g} \\ & Z=\sqrt{\Lambda}\end{aligned}$

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

- CDT disk amplitude: $W_{\wedge}(X)=\frac{1}{X+\sqrt{\Lambda}}$

Continuum limit

$\begin{aligned} & w(g, x)=\frac{1}{1-z x} \\ & W_{\wedge}(X)=\frac{1}{X+Z} \end{aligned}$	$\begin{aligned} w(g, x) & =\frac{1}{\sqrt{1-4 z x}} \\ W_{\wedge}^{\prime}(X) & =\frac{1}{\sqrt{X+Z}} \end{aligned}$
$\left\{\Uparrow \left\{\begin{array}{l} z(g)=\frac{1-\sqrt{1-4 g}}{2 g} \\ Z=\sqrt{\Lambda} \end{array}\right.\right.$	保价 $\begin{aligned} & z(g)=\frac{1-\sqrt{1-12 g}}{6 g} \\ & Z=\sqrt{\Lambda}\end{aligned}$

- Expanding around critical point in terms of "lattice spacing" ϵ :

$$
g=g_{c}\left(1-\Lambda \epsilon^{2}\right), \quad z(g)=z_{c}(1-Z \epsilon), \quad x=x_{c}(1-X \epsilon)
$$

- CDT disk amplitude: $W_{\wedge}(X)=\frac{1}{X+\sqrt{\Lambda}}$
- DT disk amplitude with marked point: $W_{\wedge}^{\prime}(X)=\frac{1}{\sqrt{X+\sqrt{\Lambda}}}$. Integrate w.r.t. Λ to remove mark: $W_{\Lambda}(X)=\frac{2}{3}\left(X-\frac{1}{2} \sqrt{\Lambda}\right) \sqrt{X+\sqrt{\Lambda}}$.

