Random Planar Structures and Statistical Mechanics, Isaac Newton Institute, Cambridge, 20-04-2015

Scaling constants and the lazy peeling of infinite

 Boltzmann planar mapsNiels Bohr Institute
University of Copenhagen budd@nbi.dk http://www.nbi.dk/~budd/

Timothy Budd

Distances on a planar map

Outline

- Introduce lazy peeling of planar maps
- Description of the associated perimeter and volume processes
- Scaling limit
- Scaling constants from peeling:
- First-passage time
- Hop count
- Dual graph distance
- Miermont's scaling constant for the graph distance
- Example: uniform infinite planar map.
- From lazy to simple peeling.
- Open questions.

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki, ${ }^{25]}$ to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...

- Precise scaling limits have been obtained for the perimeter and volume of the explored region in the UIPT and UIPQ [Curien, Le Gall, '14], Le Gall's talk!

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.
- After finite number of steps the unexplored region contains only the
 marked vertex.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and marked vertex.
- Take the contour of the outer face to be "frontier", which separates the "explored region" from the "unexplored region".
- Choose peel edge and explore adjacent face or prune baby universe.
- After finite number of steps the unexplored region contains only the marked vertex.
- First goal: given a random disk, what is the law of the perimeter $\left(I_{i}\right)_{i \geq 0}$, i.e. the length of the frontier after i steps?

Boltzmann planar maps [Miermont, '06]

- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Call \mathbf{q} bipartite if $q_{k}=0$ for all odd k, and non-bipartite otherwise. For now assume \mathbf{q} non-bipartite, but all I am going to say is also true in bipartite case.

Boltzmann planar maps [Miermont, '06]

- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Call \mathbf{q} bipartite if $q_{k}=0$ for all odd k, and non-bipartite otherwise. For now assume q non-bipartite, but all I am going to say is also true in bipartite case.
- Define the disk function

$$
\begin{equation*}
W^{(I)}=W^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)} \tag{1}
\end{equation*}
$$

where the sum is over rooted planar maps m with root face degree I

Boltzmann planar maps [Miermont, '06]

- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Call \mathbf{q} bipartite if $q_{k}=0$ for all odd k, and non-bipartite otherwise. For now assume q non-bipartite, but all I am going to say is also true in bipartite case.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{\bullet}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)} \tag{1}
\end{equation*}
$$

where the sum is over rooted planar maps m with root face degree I and a marked vertex.

Boltzmann planar maps [Miermont, 'o6]

- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Call \mathbf{q} bipartite if $q_{k}=0$ for all odd k, and non-bipartite otherwise. For now assume \mathbf{q} non-bipartite, but all I am going to say is also true in bipartite case.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{\bullet}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)} \tag{1}
\end{equation*}
$$

where the sum is over rooted planar maps m with root face degree I and a marked vertex. If $W_{\bullet}^{(I)}$ finite, the summands determine a probability measure, which we call the q-BPM.

Boltzmann planar maps [Miermont, 'O6]

- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Call \mathbf{q} bipartite if $q_{k}=0$ for all odd k, and non-bipartite otherwise. For now assume \mathbf{q} non-bipartite, but all I am going to say is also true in bipartite case.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{\bullet}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)} \tag{1}
\end{equation*}
$$

where the sum is over rooted planar maps m with root face degree I and a marked vertex. If $W_{\bullet}^{(I)}$ finite, the summands determine a probability measure, which we call the \mathbf{q}-BPM.

- Call \mathbf{q} admissible if $Z_{\bullet}:=W_{\bullet}^{(2)}<\infty$. [Miermont, '06]

Boltzmann planar maps [Miermont, '06]

- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Call \mathbf{q} bipartite if $q_{k}=0$ for all odd k, and non-bipartite otherwise. For now assume \mathbf{q} non-bipartite, but all I am going to say is also true in bipartite case.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{\bullet}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)} \tag{1}
\end{equation*}
$$

where the sum is over rooted planar maps m with root face degree I and a marked vertex. If $W_{\bullet}^{(I)}$ finite, the summands determine a probability measure, which we call the q-BPM.

- Call \mathbf{q} admissible if $Z_{\bullet}:=W_{\bullet}^{(2)}<\infty$. [Miermont, '06]

Theorem (Miermont, '06)

$$
f(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\circ}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that $f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}$
\square

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\diamond}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that $\quad f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}$ and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ \frac{z^{+}}{z^{\circ}} \partial_{x} f^{\diamond}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ \frac{\left(z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\circ}\right) & 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\diamond}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that $\quad f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}$ and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ \frac{z^{+}}{z^{\circ}} \partial_{x} f^{\diamond}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ \frac{\left(z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\circ}\right) & 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\diamond}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\diamond}>0$ such that and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ \frac{z^{+}}{z^{\circ}} \partial_{x} f^{\circ}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ \frac{\left(z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\diamond}\right) & 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\circ}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that
$f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}$ and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ \frac{z^{+}}{z^{\circ}} \partial_{x} f^{\circ}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ \frac{\left(z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\circ}\right) & 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\diamond}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that

$$
f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}
$$

$$
\text { and the matrix } \quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}
0 & 0 & z^{+}-1 \\
z^{+} \\
\frac{z}{}_{+}^{z^{+}} \partial_{x} f^{\diamond}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\
\frac{\left.z^{+}\right)^{+}}{z^{+}-1} \partial_{x} f \bullet\left(z^{+}, z^{\circ}\right) & \frac{z^{+}+{ }^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\diamond}\right) & 0
\end{array}\right) \quad \text { has spectral radius } \leq 1 .
$$

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.
- Decompose root face:

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\diamond}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that
and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ \frac{z^{+}}{z^{+}} \partial_{x} f^{\circ}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ \frac{\left(z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\circ}\right) & 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.
- Decompose root face: zero-sum sequence $\in\{-1,0,1\}^{\prime}$

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\circ}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\diamond}>0$ such that

$$
f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}
$$

$$
\text { and the matrix } \quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\diamond}\right):=\left(\begin{array}{ccc}
0 & 0 & z^{+}-1 \\
z^{+} \\
\frac{z}{}_{+}^{z^{+}} \partial_{x} f^{\diamond}\left(z^{+}, z^{\diamond}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\diamond}\right) & 0 \\
\frac{\left.z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\diamond}\right) & \frac{z^{+}+{ }^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\diamond}\right) & 0
\end{array}\right) \quad \text { has spectral radius } \leq 1 \text {. }
$$

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.
- Decompose root face: zero-sum sequence $\in\{-1,0,1\}^{\prime}$

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\circ}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\circ}>0$ such that $\quad f^{\bullet}\left(z^{+}, z^{\circ}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\circ}\right)=z^{\circ}$ and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ \frac{z^{+}}{z^{+}} \partial_{x} f^{\circ}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ \frac{\left(z^{+}\right)^{2}}{z^{+}-1} \partial_{x} f^{\bullet}\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\circ}\right) & 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.
- Decompose root face: zero-sum sequence $\in\{-1,0,1\}^{\prime}$ and submobiles, for which z^{+}, z^{\diamond} are generating functions.

$$
f^{\bullet}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}+1}{k+1}\binom{k+k^{\prime}}{k} q_{2+2 k+k^{\prime}}, \quad f^{\diamond}(x, y):=\sum_{k, k^{\prime}=0}^{\infty} x^{k} y^{k^{\prime}}\binom{2 k+k^{\prime}}{k}\binom{k+k^{\prime}}{k} q_{1+2 k+k^{\prime}} .
$$

The sequence \mathbf{q} is admissible if and only if there exist $z^{+}, z^{\diamond}>0$ such that $\quad f^{\bullet}\left(z^{+}, z^{\diamond}\right)=1-\frac{1}{z^{+}}, \quad f^{\circ}\left(z^{+}, z^{\diamond}\right)=z^{\circ}$ and the matrix $\quad \mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\circ}\right):=\left(\begin{array}{ccc}0 & 0 & z^{+}-1 \\ z^{+} \\ \frac{z^{\circ}}{z^{+}} \partial_{x} f^{\circ}\left(z^{+}, z^{\circ}\right) & \partial_{y} f^{\circ}\left(z^{+}, z^{\circ}\right) & 0 \\ z^{+}-1 & \partial_{x} f \bullet\left(z^{+}, z^{\circ}\right) & \frac{z^{+} z^{\circ}}{z^{+}-1} \partial_{y} f^{\bullet}\left(z^{+}, z^{\diamond}\right) \\ 0\end{array}\right) \quad$ has spectral radius ≤ 1.

- Proof based on the Bouttier-Di Francesco-Guitter bijection between pointed planar maps and labeled mobiles.
- Decompose root face: zero-sum sequence $\in\{-1,0,1\}^{\prime}$ and submobiles, for which z^{+}, z^{\diamond} are generating functions.
- Hence, we can express

$$
W_{\bullet}^{(I)}=\sum_{k=0}^{\lfloor I / 2\rfloor} \frac{l!}{(k!)^{2}(I-2 k)!}\left(z^{+}\right)^{k}\left(z^{\diamond}\right)^{I-2 k}=\left[z^{-I-1}\right] \frac{1}{\sqrt{\left(z-z^{\diamond}\right)^{2}-4 z^{+}}}
$$

Ingredients for peeling

- Disk function: \mathbf{q} admissible iff there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(l)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

Notation: $c_{ \pm}=z^{\diamond} \pm 2 \sqrt{z^{+}} \quad$ and $\quad r:=-c_{-} / c_{+} \in(-1,1]$.

Ingredients for peeling

- Disk function: \mathbf{q} admissible iff there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(l)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

Notation: $c_{ \pm}=z^{\diamond} \pm 2 \sqrt{z^{+}} \quad$ and $\quad r:=-c_{-} / c_{+} \in(-1,1]$.

- Markov property: the distribution of the unexplored region depends only on the perimeter I_{i} of the frontier. In particular, $\mathbb{P}\left(I_{i+1}=l_{i}+k \mid l_{i}\right)$ is independent of the chosen peel edge.

Ingredients for peeling

- Disk function: \mathbf{q} admissible iff there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(l)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

Notation: $c_{ \pm}=z^{\diamond} \pm 2 \sqrt{z^{+}} \quad$ and $\quad r:=-c_{-} / c_{+} \in(-1,1]$.

- Markov property: the distribution of the unexplored region depends only on the perimeter I_{i} of the frontier. In particular, $\mathbb{P}\left(I_{i+1}=l_{i}+k \mid l_{i}\right)$ is independent of the chosen peel edge.
- Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{I-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

Ingredients for peeling

- Disk function: \mathbf{q} admissible iff there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(l)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

Notation: $c_{ \pm}=z^{\diamond} \pm 2 \sqrt{z^{+}} \quad$ and $\quad r:=-c_{-} / c_{+} \in(-1,1]$.

- Markov property: the distribution of the unexplored region depends only on the perimeter I_{i} of the frontier. In particular, $\mathbb{P}\left(I_{i+1}=I_{i}+k \mid l_{i}\right)$ is independent of the chosen peel edge.
- Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{l-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

- Read off: $\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{w_{0}^{(1+k)}}{w_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \\ 2 W^{(-k-2)} & k \leq-2\end{cases}$

$$
\mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)=\frac{W_{\bullet}^{(I+k)}}{W_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \tag{2}\\ 2 W^{(-k-2)} & k \leq-2\end{cases}
$$

- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{l \rightarrow \infty} \mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

$$
\mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)=\frac{W_{\bullet}^{(I+k)}}{W_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \tag{2}\\ 2 W^{(-k-2)} & k \leq-2\end{cases}
$$

- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{I \rightarrow \infty} \mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Define function $h_{r}^{(0)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ by

$$
h_{r}^{(0)}(I)=\left[y^{-I-1}\right] \frac{1}{\sqrt{(y-1)(y+r)}}
$$

Then $W_{\bullet}^{(I)}=c_{+}^{\prime} h_{r}^{(0)}(I)\left(\right.$ recall $\left.r:=-c_{-} / c_{+}\right)$.

$$
\mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)=\frac{W_{\bullet}^{(I+k)}}{W_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \tag{2}\\ 2 W^{(-k-2)} & k \leq-2\end{cases}
$$

- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{I \rightarrow \infty} \mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Define function $h_{r}^{(0)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ by

$$
h_{r}^{(0)}(I)=\left[y^{-I-1}\right] \frac{1}{\sqrt{(y-1)(y+r)}}
$$

Then $W_{\bullet}^{(I)}=c_{+}^{\prime} h_{r}^{(0)}(I)\left(\right.$ recall $\left.r:=-c_{-} / c_{+}\right)$.

- (2) implies $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$, i.e.

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0 \tag{3}
\end{equation*}
$$

$$
\mathbb{P}\left(l_{i+1}=I+k \mid I_{i}=I\right)=\frac{W_{\bullet}^{(I+k)}}{W_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \tag{2}\\ 2 W^{(-k-2)} & k \leq-2\end{cases}
$$

- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{I \rightarrow \infty} \mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Define functions $h_{r}^{(k)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ by

$$
h_{r}^{(k)}(I)=\left[y^{-l-1}\right] \frac{1}{(y-1)^{k+1 / 2} \sqrt{y+r}} .
$$

Then $W_{\bullet}^{(I)}=c_{+}^{\prime} h_{r}^{(0)}(I)\left(\right.$ recall $\left.r:=-c_{-} / c_{+}\right)$.

- (2) implies $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$, i.e.

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0 \tag{3}
\end{equation*}
$$

- Obtained a map: $\{$ admissible $\mathbf{q}\} \rightarrow\left\{(\nu, r): h_{r}^{(0)}\right.$ is ν-harmonic $\}$

$$
\nu(k)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Obtained a map: $\{$ admissible $\mathbf{q}\} \rightarrow\left\{(\nu, r): h_{r}^{(0)}\right.$ is ν-harmonic $\}$

$$
\nu(k)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Clearly injective, since $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$. Image?
- Obtained a map: $\{$ admissible $\mathbf{q}\} \rightarrow\left\{(\nu, r): h_{r}^{(0)}\right.$ is ν-harmonic $\}$

$$
\nu(k)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Clearly injective, since $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$. Image?
- The harmonicity of $h_{r}^{(0)}$ on $\mathbb{Z}_{\geq 3}$ fixes $(\nu(k))_{k=-\infty}^{-3}$ in terms of $(\nu(k))_{k=-2}^{\infty}$
- Obtained a map: $\{$ admissible $\mathbf{q}\} \rightarrow\left\{(\nu, r): h_{r}^{(0)}\right.$ is ν-harmonic $\}$

$$
\nu(k)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Clearly injective, since $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$. Image?
- The harmonicity of $h_{r}^{(0)}$ on $\mathbb{Z}_{\geq 3}$ fixes $(\nu(k))_{k=-\infty}^{-3}$ in terms of $(\nu(k))_{k=-2}^{\infty}$, while harmonicity of $h_{r}^{(0)}$ on $\{1,2\}$ is equivalent to

$$
f^{\bullet}\left(z^{+}, z^{\diamond}\right)=1-\frac{1}{z^{+}}, \quad f^{\diamond}\left(z^{+}, z^{\diamond}\right)=z^{\diamond} . \quad\left(c_{ \pm}=z^{\diamond} \pm 2 \sqrt{z^{+}}\right)
$$

- Can check that spectral radius of $\mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\diamond}\right)$ is ≤ 1 iff

$$
\sum_{k=0}^{\infty}\left(\sum_{p=0}^{k} h_{r}^{(0)}(p)\right) \nu(k)=: \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1 .
$$

Moreover, if ν is regular, i.e. $\sum_{k=0}^{\infty} \nu(k) C^{k}<\infty$ for some $C>1$, then this is equivalent to ν having non-positive drift, i.e.
$\sum_{k=-\infty}^{\infty} k \nu(k) \leq 0$.

- Obtained a map: $\{$ admissible $\mathbf{q}\} \rightarrow\left\{(\nu, r): h_{r}^{(0)}\right.$ is ν-harmonic $\}$

$$
\nu(k)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- Clearly injective, since $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$. Image?
- The harmonicity of $h_{r}^{(0)}$ on $\mathbb{Z}_{\geq 3}$ fixes $(\nu(k))_{k=-\infty}^{-3}$ in terms of $(\nu(k))_{k=-2}^{\infty}$, while harmonicity of $h_{r}^{(0)}$ on $\{1,2\}$ is equivalent to

$$
f^{\bullet}\left(z^{+}, z^{\diamond}\right)=1-\frac{1}{z^{+}}, \quad f^{\diamond}\left(z^{+}, z^{\diamond}\right)=z^{\diamond} . \quad\left(c_{ \pm}=z^{\diamond} \pm 2 \sqrt{z^{+}}\right)
$$

- Can check that spectral radius of $\mathfrak{M}_{\mathbf{q}}\left(z^{+}, z^{\diamond}\right)$ is ≤ 1 iff

$$
\sum_{k=0}^{\infty}\left(\sum_{p=0}^{k} h_{r}^{(0)}(p)\right) \nu(k)=: \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1 .
$$

Moreover, if ν is regular, i.e. $\sum_{k=0}^{\infty} \nu(k) C^{k}<\infty$ for some $C>1$, then this is equivalent to ν having non-positive drift, i.e.
$\sum_{k=-\infty}^{\infty} k \nu(k) \leq 0$.

- Call q critical if equality holds. [Miermont,'06]

Proposition

We have the following bijection between weight sequences \mathbf{q} and random walks $\left(X_{i}\right)_{i \geq 0}$ with step probabilities ν :

$$
\{\text { admissible } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} .
$$

Proposition

We have the following bijection between weight sequences \mathbf{q} and random walks $\left(X_{i}\right)_{i \geq 0}$ with step probabilities ν :

$$
\{\text { admissible } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} .
$$

- The perimeter process $\left(l_{i}\right)_{i \geq 0}$ is determined by

$$
\begin{equation*}
\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{h_{r}^{(0)}(I+k)}{h_{r}^{(0)}(I)} \nu(k) \quad(I \geq 1) \tag{4}
\end{equation*}
$$

Proposition

We have the following bijection between weight sequences \mathbf{q} and random walks $\left(X_{i}\right)_{i \geq 0}$ with step probabilities ν :

$$
\{\text { admissible } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} .
$$

The perimeter process $\left(l_{i}\right)_{i \geq 0}$ associated to the peeling of a pointed q-Boltzmann planar map is the Doob transform of $\left(X_{i}\right)_{i \geq 0}$ w.r.t. $h_{r}^{(0)}$.

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ is determined by

$$
\begin{equation*}
\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{h_{r}^{(0)}(I+k)}{h_{r}^{(0)}(I)} \nu(k) \quad(I \geq 1) \tag{4}
\end{equation*}
$$

Proposition

We have the following bijection between weight sequences \mathbf{q} and random walks $\left(X_{i}\right)_{i \geq 0}$ with step probabilities ν :

$$
\{\text { admissible } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} .
$$

The perimeter process $\left(l_{i}\right)_{i \geq 0}$ associated to the peeling of a pointed q-Boltzmann planar map is the Doob transform of $\left(X_{i}\right)_{i \geq 0}$ w.r.t. $h_{r}^{(0)}$.

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ is determined by

$$
\begin{equation*}
\mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)=\frac{h_{r}^{(0)}(I+k)}{h_{r}^{(0)}(I)} \nu(k) \quad(I \geq 1) \tag{4}
\end{equation*}
$$

- Since $h_{r}^{(0)}(0)=1$ and $h_{r}^{(0)}(k)=0$ for $k<0$, this corresponds to conditioning $\left(X_{i}\right)_{i \geq 0}$ to hit 0 before it hits $\mathbb{Z}_{<0}$.

Proposition

We have the following bijection between weight sequences \mathbf{q} and random walks $\left(X_{i}\right)_{i \geq 0}$ with step probabilities ν :

$$
\{\text { admissible } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} .
$$

The perimeter process $\left(l_{i}\right)_{i \geq 0}$ associated to the peeling of a pointed q-Boltzmann planar map is the Doob transform of $\left(X_{i}\right)_{i \geq 0}$ w.r.t. $h_{r}^{(0)}$.

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ is determined by

$$
\begin{equation*}
\mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)=\frac{h_{r}^{(0)}(I+k)}{h_{r}^{(0)}(I)} \nu(k) \quad(I \geq 1) \tag{4}
\end{equation*}
$$

- Since $h_{r}^{(0)}(0)=1$ and $h_{r}^{(0)}(k)=0$ for $k<0$, this corresponds to conditioning $\left(X_{i}\right)_{i \geq 0}$ to hit 0 before it hits $\mathbb{Z}_{<0}$.
- Analogous to (and inspired by) the "simple" peeling result in [Le Gall, Curien, '14]. See Le Gall's talk.

Proposition

We have the following bijection between weight sequences \mathbf{q} and random walks $\left(X_{i}\right)_{i \geq 0}$ with step probabilities ν :

$$
\{\text { admissible } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} .
$$

The perimeter process $\left(l_{i}\right)_{i \geq 0}$ associated to the peeling of a pointed q-Boltzmann planar map is the Doob transform of $\left(X_{i}\right)_{i \geq 0}$ w.r.t. $h_{r}^{(0)}$.

- The perimeter process $\left(I_{i}\right)_{i \geq 0}$ is determined by

$$
\begin{equation*}
\mathbb{P}\left(I_{i+1}=I+k \mid I_{i}=I\right)=\frac{h_{r}^{(0)}(I+k)}{h_{r}^{(0)}(I)} \nu(k) \quad(I \geq 1) \tag{4}
\end{equation*}
$$

- Since $h_{r}^{(0)}(0)=1$ and $h_{r}^{(0)}(k)=0$ for $k<0$, this corresponds to conditioning $\left(X_{i}\right)_{i \geq 0}$ to hit 0 before it hits $\mathbb{Z}_{<0}$.
- Analogous to (and inspired by) the "simple" peeling result in [Le Gall, Curien, '14]. See Le Gall's talk.
- Remarkable property of "lazy" peeling: the h-function $h_{r}^{(0)}$ hardly depends on \mathbf{q} ! In particular it is the same for all bipartite \mathbf{q}, i.e. $r=1: h_{1}^{(0)}(k)=2^{-k}\binom{k}{k / 2}$ for even $k \geq 0$ and 0 otherwise.

Infinite Boltzmann planar maps (IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Infinite Boltzmann planar maps (IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the $\mathbf{q}-I B P M$) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along an appropriate subsequence of \mathbb{Z}).

Infinite Boltzmann planar maps (IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the \mathbf{q}-IBPM) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along an appropriate subsequence of \mathbb{Z}).

- Since $h_{r}^{(0)}(k)=h_{r}^{(1)}(k+1)-h_{r}^{(1)}(k)$, and \mathbf{q} critical $\Leftrightarrow \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=1=h_{r}^{(1)}(1)$, we have a bijection

$$
\{\text { critical } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): h_{r}^{(1)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0}\right\}
$$

Infinite Boltzmann planar maps (IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the \mathbf{q}-IBPM) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along an appropriate subsequence of \mathbb{Z}).

- Since $h_{r}^{(0)}(k)=h_{r}^{(1)}(k+1)-h_{r}^{(1)}(k)$, and \mathbf{q} critical $\Leftrightarrow \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=1=h_{r}^{(1)}(1)$, we have a bijection

$$
\{\text { critical } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): h_{r}^{(1)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0}\right\}
$$

- Since $h_{r}^{(1)}(k)=0$ for $k \leq 0$, the Doob transform w.r.t. $h_{r}^{(1)}$ corresponds to conditioning $\left(X_{i}\right)_{i \geq 0}$ to stay positive. This must be the perimeter process $\left(l_{i}\right)_{i \geq 0}$ of the \mathbf{q}-IBPM!

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(I) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, I):=\sum_{p=0}^{I-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(I) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{i-1} h_{f}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed case: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(I) \quad(k \geq 1)$ $\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right)$.
- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed case: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].
Then also $\nu(-k) \sim k^{-\alpha-1}$. Converges to α-stable process with skewness $\beta=-\cot ^{2}(\pi \alpha / 2)$.

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$ $\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right)$.
- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed case: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].
Then also $\nu(-k) \sim k^{-\alpha-1}$. Converges to α-stable process with skewness $\beta=-\cot ^{2}(\pi \alpha / 2)$. Asymmetric except when $\alpha=1$, for example:

$$
\nu(k)=1 /\left(k^{2}-1\right) \text { for even } k \neq 0, \text { otherwise } \nu(k)=0
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, I) \nu(I) \quad(k \geq 1)$ $\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right)$.
- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed case: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].
- Non-heavy-tailed case: $\mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)<\infty$. ($\left.h_{r}^{(2)}(k) \sim k^{3 / 2}\right) \quad$ Asymptotics of $\mathcal{R}_{r}(k, l)$ gives

$$
\nu(-k) \sim \frac{3 \mathcal{L}_{\mathbf{q}} \sqrt{1+r}}{4 \sqrt{\pi}} k^{-5 / 2}
$$

Scaling limit when $\mathcal{L}_{\mathbf{q}}<\infty$

- If $\mathcal{L}_{\mathbf{q}}<\infty$ the characteristic function of ν satisfies

$$
\varphi_{\nu}(\theta):=\sum_{k=-\infty}^{\infty} \nu(k) e^{i k \theta}=1-\sqrt{\frac{1+r}{2}} \mathcal{L}_{\mathbf{q}}|\theta|^{1 / 2}(|\theta|-i \theta)+\mathcal{O}\left(|\theta|^{5 / 2}\right)
$$

Scaling limit when $\mathcal{L}_{\mathbf{q}}<\infty$

- If $\mathcal{L}_{\mathbf{q}}<\infty$ the characteristic function of ν satisfies

$$
\varphi_{\nu}(\theta):=\sum_{k=-\infty}^{\infty} \nu(k) e^{i k \theta}=1-\sqrt{\frac{1+r}{2}} \mathcal{L}_{\mathbf{q}}|\theta|^{1 / 2}(|\theta|-i \theta)+\mathcal{O}\left(|\theta|^{5 / 2}\right)
$$

- Compare to the characteristic function of a 3/2-stable process $S_{3 / 2}$ with no positive jumps:

$$
\mathbb{E} \exp \left(i \theta S_{3 / 2}(t)\right)=\exp \left[-t|\theta|^{1 / 2}(|\theta|-i \theta) / \sqrt{2}\right]
$$

Scaling limit when $\mathcal{L}_{\mathbf{q}}<\infty$

- If $\mathcal{L}_{\mathbf{q}}<\infty$ the characteristic function of ν satisfies

$$
\varphi_{\nu}(\theta):=\sum_{k=-\infty}^{\infty} \nu(k) e^{i k \theta}=1-\sqrt{\frac{1+r}{2}} \mathcal{L}_{\mathbf{q}}|\theta|^{1 / 2}(|\theta|-i \theta)+\mathcal{O}\left(|\theta|^{5 / 2}\right)
$$

- Compare to the characteristic function of a $3 / 2$-stable process $S_{3 / 2}$ with no positive jumps:

$$
\mathbb{E} \exp \left(i \theta S_{3 / 2}(t)\right)=\exp \left[-t|\theta|^{1 / 2}(|\theta|-i \theta) / \sqrt{2}\right]
$$

- It follows that we have the convergence in distribution in the sense of Skorokhod

$$
\begin{equation*}
\left(\frac{X_{\lfloor n t\rfloor}}{\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}} n\right)^{\frac{2}{3}}}\right) \underset{t \geq 0}{\stackrel{(\mathrm{~d})}{\longrightarrow \rightarrow \infty}} S_{3 / 2}(t) \tag{5}
\end{equation*}
$$

Scaling limit when $\mathcal{L}_{\mathbf{q}}<\infty$

- If $\mathcal{L}_{\mathbf{q}}<\infty$ the characteristic function of ν satisfies

$$
\varphi_{\nu}(\theta):=\sum_{k=-\infty}^{\infty} \nu(k) e^{i k \theta}=1-\sqrt{\frac{1+r}{2}} \mathcal{L}_{\mathbf{q}}|\theta|^{1 / 2}(|\theta|-i \theta)+\mathcal{O}\left(|\theta|^{5 / 2}\right)
$$

- Compare to the characteristic function of a 3/2-stable process $S_{3 / 2}$ with no positive jumps:

$$
\mathbb{E} \exp \left(i \theta S_{3 / 2}(t)\right)=\exp \left[-t|\theta|^{1 / 2}(|\theta|-i \theta) / \sqrt{2}\right]
$$

- It follows that we have the convergence in distribution in the sense of Skorokhod

$$
\begin{equation*}
\left(\frac{l_{\lfloor n t\rfloor}}{\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}} n\right)^{\frac{2}{3}}}\right) \underset{t \geq 0}{\stackrel{(\mathrm{~d})}{\longrightarrow \rightarrow \infty}} S_{3 / 2}^{+}(t) \tag{5}
\end{equation*}
$$

- Because perimeter process $\left(l_{i}\right)_{i \geq 0}$ is obtained from $\left(X_{i}\right)_{i \geq 0}$ by conditioning to stay positive, it follows from invariance principle in [Caravenna, Chaumont, '08] that it converges to $S_{3 / 2}^{+}$. See [Curien, Le Gall, '14] and Le Gall's talk.

Scaling limit when $\mathcal{L}_{\mathbf{q}}<\infty$

- If $\mathcal{L}_{\mathbf{q}}<\infty$ the characteristic function of ν satisfies

$$
\varphi_{\nu}(\theta):=\sum_{k=-\infty}^{\infty} \nu(k) e^{i k \theta}=1-\sqrt{\frac{1+r}{2}} \mathcal{L}_{\mathbf{q}}|\theta|^{1 / 2}(|\theta|-i \theta)+\mathcal{O}\left(|\theta|^{5 / 2}\right)
$$

- Compare to the characteristic function of a 3/2-stable process $S_{3 / 2}$ with no positive jumps:

$$
\mathbb{E} \exp \left(i \theta S_{3 / 2}(t)\right)=\exp \left[-t|\theta|^{1 / 2}(|\theta|-i \theta) / \sqrt{2}\right]
$$

- It follows that we have the convergence in distribution in the sense of Skorokhod

$$
\begin{equation*}
\left(\frac{l_{\lfloor n t\rfloor}}{\mathbf{p}_{\mathbf{q}}^{\ell} n^{2 / 3}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} S_{3 / 2}^{+}(t) \tag{5}
\end{equation*}
$$

- Because perimeter process $\left(I_{i}\right)_{i \geq 0}$ is obtained from $\left(X_{i}\right)_{i \geq 0}$ by conditioning to stay positive, it follows from invariance principle in [Caravenna, Chaumont, '08] that it converges to $S_{3 / 2}^{+}$. See [Curien, Le Gall, '14] and Le Gall's talk. Notation: $\mathbf{p}_{\mathbf{q}}^{\ell}=\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}}\right)^{2 / 3}$.

Volume process

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of fully explored vertices after i steps in the peeling process.

Volume process

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of fully explored vertices after i steps in the peeling process.
- $V_{i+1}>V_{i}$ iff $I_{i+1} \leq I_{i}-2$

Volume process

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of fully explored vertices after i steps in the peeling process.
- $V_{i+1}>V_{i}$ iff $I_{i+1} \leq I_{i}-2$

Volume process

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of fully explored vertices after i steps in the peeling process.
- $V_{i+1}>V_{i}$ iff $I_{i+1} \leq I_{i}-2$
$\mathbb{E}\left(V_{i+1}-V_{i} \mid I_{i}-I_{i+1}-2=I \geq 0\right)=\frac{W_{\bullet}^{(I)}}{W^{(I)}}$

Volume process

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of fully explored vertices after i steps in the peeling process.
- $V_{i+1}>V_{i}$ iff $I_{i+1} \leq I_{i}-2$

$$
\begin{gathered}
\mathbb{E}\left(V_{i+1}-V_{i} \mid l_{i}-l_{i+1}-2=I \geq 0\right)=\frac{W_{\bullet}^{(I)}}{W^{(I)}} \\
\quad=\frac{h_{r}^{(0)}(I) \nu(-2)}{\nu(-I-2)} \sim \frac{8}{3 c_{+}^{2}(1+r) \mathcal{L}_{\mathbf{q}}} I^{2}
\end{gathered}
$$

Volume process

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of fully explored vertices after i steps in the peeling process.
- $V_{i+1}>V_{i}$ iff $I_{i+1} \leq I_{i}-2$

$$
\begin{gathered}
\mathbb{E}\left(V_{i+1}-V_{i} \mid l_{i}-l_{i+1}-2=I \geq 0\right)=\frac{W_{\bullet}^{(I)}}{W^{(I)}} \\
\quad=\frac{h_{r}^{(0)}(I) \nu(-2)}{\nu(-I-2)} \sim \frac{8}{3 c_{+}^{2}(1+r) \mathcal{L}_{\mathbf{q}}} l^{2}
\end{gathered}
$$

- Checking the details of the proof of Curien and Le Gall one gets (see Le Gall's talk for definition of process $Z(t))$:

Theorem (Direct consequence of [Curien, Le Gall, '14])

The perimeter $\left(l_{i}\right)_{i \geq 0}$ and volume $\left(V_{i}\right)_{i \geq 0}$ of a peeling of a regular critical \mathbf{q}-IBPM converge jointly in distribution in the sense of Skorokhod to

$$
\left(\frac{l_{\lfloor n t\rfloor}}{\mathbf{p}_{\mathbf{q}}^{\ell} n^{2 / 3}}, \frac{V_{\lfloor n t\rfloor}}{\mathbf{v}_{\mathbf{q}}^{\ell} n^{4 / 3}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}\left(S_{3 / 2}^{+}(t), Z(t)\right)_{t \geq 0} \quad \begin{array}{ll}
\mathbf{p}_{\mathbf{q}}^{\ell}=\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}}\right)^{2 / 3} \\
\mathbf{v}_{\mathbf{q}}^{\ell}=\frac{8}{3 c_{+}^{2}}\left(\frac{\mathcal{L}_{\mathbf{q}}}{1+r}\right)^{1 / 3}
\end{array}
$$

First-passage percolation

First-passage percolation

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Conditional on $I_{i}, T_{i+1}-T_{i}$ is distributed exponentially with mean $1 / l_{i}$.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Conditional on $I_{i}, T_{i+1}-T_{i}$ is distributed exponentially with mean $1 / l_{i}$.

- Conditional on the perimeter $\left(I_{i}\right)_{i \geq 0}$ we can write $T_{i}=\sum_{j=0}^{i-1} \frac{c_{j}}{I_{j}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Conditional on $I_{i}, T_{i+1}-T_{i}$ is distributed exponentially with mean $1 / l_{i}$.

- Conditional on the perimeter $\left(I_{i}\right)_{i \geq 0}$ we can write $T_{i}=\sum_{j=0}^{i-1} \frac{c_{j}}{I_{j}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.
- In particular $\mathbb{E} T_{i}=\sum_{j=0}^{i-1} l_{j}^{-1}$ and $\operatorname{Var}\left(T_{i}\right)=\sum_{j=0}^{i-1} l_{j}^{-2}$.

First-passage percolation

- Assign random $\exp (1)$-lengths to dual edges.
- In the associated peeling the peel edge is chosen uniformly in the frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Conditional on $I_{i}, T_{i+1}-T_{i}$ is distributed exponentially with mean $1 / l_{i}$.

- Conditional on the perimeter $\left(I_{i}\right)_{i \geq 0}$ we can write $T_{i}=\sum_{j=0}^{i-1} \frac{c_{j}}{I_{j}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.
- In particular $\mathbb{E} T_{i}=\sum_{j=0}^{i-1} l_{j}^{-1}$ and $\operatorname{Var}\left(T_{i}\right)=\sum_{j=0}^{i-1} l_{j}^{-2}$.
- Following [Curien, Le Gall, '14], this suggests that:

$$
\left(\frac{l_{\lfloor n t\rfloor}}{\mathbf{p}_{\mathbf{q}}^{\ell} n^{2 / 3}}, \frac{T_{\lfloor n t\rfloor}}{\left(\mathbf{p}_{\mathbf{q}}^{\ell}\right)^{-1} n^{1 / 3}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}\left(S_{3 / 2}^{+}(t), \int_{0}^{t} \frac{\mathrm{~d} t^{\prime}}{S_{3 / 2}^{+}\left(t^{\prime}\right)}\right)_{t \geq 0}
$$

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.
- Markov property: conditional on $\left(I_{i}\right)_{i \geq 0}$ the probability P_{i+1} that $H_{i+1}(n)-H_{i}(n)=1$ is

$$
P_{i+1}= \begin{cases}0 & \text { if } I_{i+1}<I_{i} \\ \frac{I_{i+1}-I_{i}+1}{I_{i+1}} & \text { if } I_{i+1} \geq I_{i}\end{cases}
$$

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.
- Markov property: conditional on $\left(I_{i}\right)_{i \geq 0}$ the probability P_{i+1} that $H_{i+1}(n)-H_{i}(n)=1$ is

$$
P_{i+1}= \begin{cases}0 & \text { if } I_{i+1}<I_{i} \\ \frac{I_{i+1}-I_{i}+1}{I_{i+1}} & \text { if } I_{i+1} \geq I_{i}\end{cases}
$$

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.
- Markov property: conditional on $\left(l_{i}\right)_{i \geq 0}$ the probability P_{i+1} that $H_{i+1}(n)-H_{i}(n)=1$ is

$$
P_{i+1}= \begin{cases}0 & \text { if } I_{i+1}<I_{i} \\ \frac{I_{i+1}-I_{i+1}}{I_{i+1}} & \text { if } I_{i+1} \geq I_{i}\end{cases}
$$

- Law of $H_{i}(n)$ independent of n (as long as $n>i$. Let us define the hop count process $\left(H_{i}\right)_{i \geq 0}$ as the large n limit. Then $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process with $H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \mathfrak{b}_{j} \in\{0,1\}, \mathbb{P}\left(\mathfrak{b}_{i}=1\right)=P_{i}$.

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.
- Markov property: conditional on $\left(I_{i}\right)_{i \geq 0}$ the probability P_{i+1} that $H_{i+1}(n)-H_{i}(n)=1$ is

$$
P_{i+1}= \begin{cases}0 & \text { if } I_{i+1}<I_{i} \\ \frac{I_{i+1}-I_{i+1}}{I_{i+1}} & \text { if } I_{i+1} \geq I_{i}\end{cases}
$$

- Law of $H_{i}(n)$ independent of n (as long as $n>i$. Let us define the hop count process $\left(H_{i}\right)_{i \geq 0}$ as the large n limit. Then $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process with $H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \mathfrak{b}_{j} \in\{0,1\}, \mathbb{P}\left(\mathfrak{b}_{i}=1\right)=P_{i}$.
- For regular critical q we have
$\mathbb{E}\left(H_{i+1}-H_{i} \mid l_{i}\right)=\sum_{k=0}^{\infty} \nu(k) \frac{k+1}{k+l_{i}} \frac{h_{r}^{(1)}\left(k+l_{i}\right)}{h_{r}^{(1)}\left(l_{i}\right)}$

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.
- Markov property: conditional on $\left(I_{i}\right)_{i \geq 0}$ the probability P_{i+1} that $H_{i+1}(n)-H_{i}(n)=1$ is

$$
P_{i+1}= \begin{cases}0 & \text { if } I_{i+1}<l_{i} \\ \frac{i_{i+1}-I_{i}+1}{I_{i+1}} & \text { if } I_{i+1} \geq I_{i}\end{cases}
$$

- Law of $H_{i}(n)$ independent of n (as long as $\left.n>i\right)$. Let us define the hop count process $\left(H_{i}\right)_{i \geq 0}$ as the large n limit. Then $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process with $H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \mathfrak{b}_{j} \in\{0,1\}, \mathbb{P}\left(\mathfrak{b}_{i}=1\right)=P_{i}$.
- For regular critical q we have

$$
\mathbb{E}\left(H_{i+1}-H_{i} \mid l_{i}\right)=\sum_{k=0}^{\infty} \nu(k) \frac{k+1}{k+l_{i}} \frac{h_{r}^{(1)}\left(k+l_{i}\right)}{h_{r}^{(1)}\left(l_{i}\right)}=\sum_{k=0}^{\infty}(k+1) \nu(k) \mathbb{E}\left(T_{i+1}-T_{i} \mid l_{i}\right)+\mathcal{O}\left(l_{i}^{-1}\right)
$$

Hop count

- Let γ_{n} be the shortest-time path to the edge explored at n 'th step.
- Let $H_{i}(n)$ be the $\#$ of edges of γ_{n} explored after $i<n$ steps.
- Markov property: conditional on $\left(I_{i}\right)_{i \geq 0}$ the probability P_{i+1} that $H_{i+1}(n)-H_{i}(n)=1$ is

$$
P_{i+1}= \begin{cases}0 & \text { if } I_{i+1}<l_{i} \\ \frac{i_{i+1}-I_{i}+1}{I_{i+1}} & \text { if } I_{i+1} \geq I_{i}\end{cases}
$$

- Law of $H_{i}(n)$ independent of n (as long as $\left.n>i\right)$. Let us define the hop count process $\left(H_{i}\right)_{i \geq 0}$ as the large n limit. Then $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process with $H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \mathfrak{b}_{j} \in\{0,1\}, \mathbb{P}\left(\mathfrak{b}_{i}=1\right)=P_{i}$.
- For regular critical \mathbf{q} we have $\quad \mathcal{H}_{\mathbf{q}} \approx \lim _{i \rightarrow \infty} H_{i} / T_{i}$

$$
\mathbb{E}\left(H_{i+1}-H_{i} \mid l_{i}\right)=\sum_{k=0}^{\infty} \nu(k) \frac{k+1}{k+l_{i}} \frac{h_{r}^{(1)}\left(k+l_{i}\right)}{h_{r}^{(1)}\left(l_{i}\right)}=\overbrace{\sum_{k=0}^{\infty}(k+1) \nu(k)} \mathbb{E}\left(T_{i+1}-T_{i} \mid l_{i}\right)+\mathcal{O}\left(l_{i}^{-1}\right)
$$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$
 edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$
 edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$
 edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.
- If $N_{i}^{(d)}$ and $N_{i}^{(d+1)}$ both large then

$$
\mathbb{E}\left(N_{i+1}-N_{i} \mid l_{i}\right)=1+\sum_{k=0}^{\infty}(k+1) \nu(k)+\mathcal{O}\left(1 / l_{i}\right)
$$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.
- If $N_{i}^{(d)}$ and $N_{i}^{(d+1)}$ both large then

$$
\mathbb{E}\left(N_{i+1}-N_{i} \mid l_{i}\right)=1+\sum_{k=0}^{\infty}(k+1) \nu(k)+\mathcal{O}\left(1 / l_{i}\right)=1+\mathcal{H}_{\mathbf{q}}+\mathcal{O}\left(1 / l_{i}\right)
$$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.
- If $N_{i}^{(d)}$ and $N_{i}^{(d+1)}$ both large then

$\mathbb{E}\left(N_{i+1}-N_{i} \mid l_{i}\right)=1+\sum_{k=0}^{\infty}(k+1) \nu(k)+\mathcal{O}\left(1 / l_{i}\right)=1+\mathcal{H}_{\mathbf{q}}+\mathcal{O}\left(1 / l_{i}\right)$
- Takes roughly $\frac{2 l_{i}}{1+\mathcal{H}_{q}}$ steps to peel a full layer, since the perimeter does not change significantly in order- l_{i} steps.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.
- If $N_{i}^{(d)}$ and $N_{i}^{(d+1)}$ both large then

$\mathbb{E}\left(N_{i+1}-N_{i} \mid l_{i}\right)=1+\sum_{k=0}^{\infty}(k+1) \nu(k)+\mathcal{O}\left(1 / l_{i}\right)=1+\mathcal{H}_{\mathbf{q}}+\mathcal{O}\left(1 / l_{i}\right)$
- Takes roughly $\frac{2 l_{i}}{1+\mathcal{H}_{q}}$ steps to peel a full layer, since the perimeter does not change significantly in order- l_{i} steps.
- Let \tilde{T}_{i} have the same law as the first-passage time T_{i} before. Then \tilde{T}_{i} increases by $\frac{2}{1+\mathcal{H}_{q}}$ when peeling a full layer.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Frontier always of the form: $N_{i}^{(d)}$ edges adjacent to distance d face followed by $N_{i}^{(d+1)}$ edges adjacent to distance $d+1$ face.
- Write $N_{i}:=N_{i}^{(d+1)}-N_{i}^{(d)}$.
- If $N_{i}^{(d)}$ and $N_{i}^{(d+1)}$ both large then

$$
\mathbb{E}\left(N_{i+1}-N_{i} \mid l_{i}\right)=1+\sum_{k=0}^{\infty}(k+1) \nu(k)+\mathcal{O}\left(1 / l_{i}\right)=1+\mathcal{H}_{\mathbf{q}}+\mathcal{O}\left(1 / l_{i}\right)
$$

- Takes roughly $\frac{2 l_{i}}{1+\mathcal{H}_{9}}$ steps to peel a full layer, since the perimeter does not change significantly in order- l_{i} steps.
- Let \tilde{T}_{i} have the same law as the first-passage time T_{i} before. Then \tilde{T}_{i} increases by $\frac{2}{1+\mathcal{H}_{9}}$ when peeling a full layer.
- This suggests the asymptotic relation:

$$
d_{\mathrm{gr}^{*}} \approx \frac{1}{2}\left(1+\mathcal{H}_{\mathbf{q}}\right) \tilde{T} \approx \frac{1}{2}\left(1+\mathcal{H}_{\mathbf{q}}\right) T \approx \frac{1}{2}(T+H)
$$

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be closest frontier edge. In case of UIPT and UIPQ distances on boundary behave nicely (see Le Gall's talk).

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be closest frontier edge. In case of UIPT and UIPQ distances on boundary behave nicely (see Le Gall's talk).
- Let $\overline{B_{d}}\left(m_{\infty}\right)$ be the hull of the ball of radius d and $\partial \overline{B_{d}}\left(m_{\infty}\right)$ its boundary

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be closest frontier edge. In case of UIPT and UIPQ distances on boundary behave nicely (see Le Gall's talk).
- Let $\overline{B_{d}}\left(m_{\infty}\right)$ be the hull of the ball of radius d and $\partial \overline{B_{d}}\left(m_{\infty}\right)$ its boundary
- Curien \& Le Gall prove convergence in distribution of the number of vertices in both:

$$
\left(\frac{\left(\mathbf{h}_{\triangle}\right)^{2}}{\mathbf{p}_{\triangle k^{2}}}\left|\partial \overline{B_{\lfloor k t\rfloor}}\left(m_{\infty}\right)\right|, \frac{\left(\mathbf{h}_{\triangle}\right)^{4}}{\mathbf{v}_{\triangle} k^{4}}\left|\overline{B_{\lfloor k t\rfloor}}\left(m_{\infty}\right)\right|\right)_{t \geq 0} \xrightarrow{(\mathrm{~d})}(\mathcal{L}(t), \mathcal{M}(t))_{t \geq 0}
$$

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be closest frontier edge. In case of UIPT and UIPQ distances on boundary behave nicely (see Le Gall's talk).
- Let $\overline{B_{d}}\left(m_{\infty}\right)$ be the hull of the ball of radius d and $\partial \overline{B_{d}}\left(m_{\infty}\right)$ its boundary
- Curien \& Le Gall prove convergence in distribution of the number of vertices in both:

$$
\left(\frac{\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{2}}{\mathbf{p}_{\mathbf{q}}^{\ell} k^{2}}\left|\partial \overline{B_{\lfloor k t\rfloor}}\left(m_{\infty}\right)\right|, \frac{\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{4}}{\mathbf{v}_{\mathbf{q}}^{\ell} k^{4}}\left|\overline{B_{[k t]}}\left(m_{\infty}\right)\right|\right)_{t \geq 0} \xrightarrow{?}(\mathcal{L}(t), \mathcal{M}(t))_{t \geq 0}
$$

- In general the distances on the frontier are not so nice. Little hope of generalizing the convergence to arbitrary \mathbf{q}-IBPM's. Can we at least determine what the constants should be?

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be closest frontier edge. In case of UIPT and UIPQ distances on boundary behave nicely (see Le Gall's talk).
- Let $\overline{B_{d}}\left(m_{\infty}\right)$ be the hull of the ball of radius d and $\partial \overline{B_{d}}\left(m_{\infty}\right)$ its boundary
- Curien \& Le Gall prove convergence in distribution of the number of vertices in both:

$$
\left(\frac{\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{2}}{\mathbf{p}_{\mathbf{q}}^{\ell} k^{2}}\left|\partial \overline{B_{\lfloor k t\rfloor}}\left(m_{\infty}\right)\right|, \frac{\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{4}}{\mathbf{v}_{\mathbf{q}}^{\ell} k^{4}}\left|\overline{B_{[k t]}}\left(m_{\infty}\right)\right|\right)_{t \geq 0} \xrightarrow{?}(\mathcal{L}(t), \mathcal{M}(t))_{t \geq 0}
$$

- In general the distances on the frontier are not so nice. Little hope of generalizing the convergence to arbitrary \mathbf{q}-IBPM's. Can we at least determine what the constants should be?
- Convergence implies $\lim _{k \rightarrow \infty} \frac{\mathbb{E}\left|\overline{B_{[k t]}}\left(m_{\infty}\right)\right|}{k^{4}}=\frac{\mathbf{v}_{\mathrm{q}}^{\ell}}{\left(\mathbf{h}_{\mathrm{q}}\right)^{4}} \mathbb{E} \mathcal{M}(t)=\frac{\mathrm{v}_{\mathrm{q}}^{\ell}}{\left(\mathrm{h}_{\mathrm{q}}^{\mathrm{e}}\right)^{4}} \frac{3}{64} t^{4}$.
- Luckily there is a different route:

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a random (rooted) \mathbf{q}-Boltzmann planar map conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty}
$$

- Luckily there is a different route:

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a random (rooted) \mathbf{q}-Boltzmann planar map conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty}
$$

- Miermont also outline an algorithm to compute $\mathcal{C}_{\mathbf{q}}$. With some work:

Proposition

$$
\mathcal{C}_{\mathbf{q}}=\left(\left.\frac{2}{9}\left(z^{+}\right)^{3 / 2}\left(\partial_{y}+\sqrt{x} \partial_{x}\right)^{2} f^{\diamond}(x, y)\right|_{\substack{x=z^{+} \\ y=z^{\circ}}}\right)^{1 / 4}=\left(\frac{c_{+}^{2}}{96}(1+r)^{3} \mathcal{L}_{\mathbf{q}}\right)^{1 / 4} .
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left|B_{\left\lfloor\mathcal{C}_{\mathbf{q}} n^{1 / 4} d\right\rfloor}\left(m_{n}\right)\right|=\mathbb{P}\left(d_{\infty}<d\right)
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \right\rvert\, B_{\left\lfloor\mathcal{C}_{\left.n^{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right) \mid=\mathbb{P}\left(d_{\infty}<d\right), ~\right)}
$$

$$
\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right|}{k^{4}} \underset{k \rightarrow \infty}{ } \quad ? \times t^{4}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \right\rvert\, B_{\left\lfloor\mathcal{C}_{\left.n^{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right) \mid=\mathbb{P}\left(d_{\infty}<d\right), ~\right)}
$$

$$
(\mathbf{q}-\mathrm{IBPM}, d) \longrightarrow\left(\text { Brownian plane }, D^{\prime}\right)
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left|B_{\left\lfloor\mathcal{C}_{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right)\right|=\mathbb{P}\left(d_{\infty}<d\right)
$$

$$
\left(\mathbf{q}-\mathrm{BPM}_{n}, d\right)
$$

$$
\underset{\text { limit }}{\substack{\text { local } \\ \text { lim }}}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \right\rvert\, B_{\left\lfloor\mathcal{C}_{\left.n^{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right) \mid=\mathbb{P}\left(d_{\infty}<d\right), ~\right)}
$$

$$
\begin{aligned}
& \left(\mathbf{q}-\mathrm{BPM}_{n}, d\right) \xrightarrow{\frac{d=D n^{1 / 4}}{n \rightarrow \infty}}(\text { Brownian map, } D) \\
& \underset{\substack{\text { local } \\
\text { limit }}}{ } \downarrow \rightarrow \infty \\
& (\mathbf{q}-\mathrm{IBPM}, d) \xrightarrow{\longrightarrow}\left(\text { Brownian plane }, D^{\prime}\right)
\end{aligned}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \right\rvert\, B_{\left\lfloor\mathcal{C}_{\left.n^{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right) \mid=\mathbb{P}\left(d_{\infty}<d\right), ~\right)}
$$

$$
\begin{aligned}
& \left(\mathbf{q}-\mathrm{BPM}_{n}, d\right) \underset{(\text { Brownian map, } D)}{\stackrel{d=D n^{1 / 4}}{n \rightarrow \infty}}\left(\begin{array}{l}
\text { (Brownian plane, } \left.D^{\prime}\right)
\end{array}\right. \\
& \begin{array}{c}
\text { local } \\
\text { limit } \\
\text { local } \\
\text { limit }
\end{array} \\
& (\mathbf{q}-\mathrm{IBPM}, d) \\
& \downarrow
\end{aligned}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left|B_{\left\lfloor\mathcal{C}_{\mathbf{q}} n^{1 / 4} d\right\rfloor}\left(m_{n}\right)\right|=\mathbb{P}\left(d_{\infty}<d\right)
$$

$$
\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{n}\right)\right|}{k^{4}}
$$

$$
\underset{\text { limit }}{\text { local }} \downarrow n \rightarrow \infty
$$

$$
\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right|}{k^{4}} \underset{k \rightarrow \infty}{ } \quad ? \times t^{4}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \right\rvert\, B_{\left\lfloor\mathcal{C}_{\left.n^{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right) \mid=\mathbb{P}\left(d_{\infty}<d\right), ~\right)}
$$

$$
\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{n}\right)\right|}{k^{4}} \frac{k=r n^{1 / 4}}{n \rightarrow \infty}
$$

$$
\underset{\text { limit }}{\text { local }} \downarrow n \rightarrow \infty
$$

$$
\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right|}{k^{4}} \underset{k \rightarrow \infty}{ } \quad ? \times t^{4}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \right\rvert\, B_{\left\lfloor\mathcal{C}_{\left.n^{n^{1 / 4}} d\right\rfloor}\left(m_{n}\right) \mid=\mathbb{P}\left(d_{\infty}<d\right), ~\right)}
$$

$$
\begin{aligned}
& \left.\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{n}\right)\right|}{k^{4}} \frac{k=r n^{1 / 4}}{n \rightarrow \infty}\right\rangle \\
& =\frac{1}{r^{4}} \mathbb{P}\left(d_{\infty}<\frac{r t}{\mathcal{C}_{\mathbf{q}}}\right) \\
& \begin{array}{l}
\left.\begin{array}{l}
\text { local } \\
\text { limit } \\
\mathcal{c}_{\mathbf{q}}
\end{array}\right)^{4}+\mathcal{O}(r)
\end{array} \\
& \begin{array}{l}
\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right| \\
k^{4} \\
k \rightarrow \infty
\end{array} \\
& ? \times t^{4}
\end{aligned}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left|B_{\left\lfloor\mathcal{C}_{q} n^{1 / 4} d\right\rfloor}\left(m_{n}\right)\right|=\mathbb{P}\left(d_{\infty}<d\right)
$$

$$
\begin{aligned}
& \underset{\text { local }}{\text { limit }} \downarrow n \rightarrow \infty \quad \begin{array}{l}
\text { local } \\
\text { limit } \\
\text { lim }
\end{array} r \rightarrow 0 \\
& \frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right|}{k^{4}} \underset{k \rightarrow \infty}{ } \quad \frac{2}{21} \frac{1}{\mathcal{C}_{\mathbf{q}}^{4}} t^{4}
\end{aligned}
$$

- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left|B_{\left\lfloor\mathcal{C}_{\mathbf{q}} n^{1 / 4} d\right\rfloor}\left(m_{n}\right)\right|=\mathbb{P}\left(d_{\infty}<d\right)
$$

$$
\begin{aligned}
& \begin{aligned}
\frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{n}\right)\right|}{k^{4}} \frac{k=r n^{1 / 4}}{n \rightarrow \infty} & \begin{array}{l}
\frac{1}{r^{4}} \mathbb{P}\left(d_{\infty}<\frac{r t}{\mathcal{C}_{\mathbf{q}}}\right) \\
\\
=\frac{2}{21}\left(\frac{t}{\mathcal{C}_{\mathbf{q}}}\right)^{4}+\mathcal{O}(r)
\end{array}
\end{aligned} \\
& \underset{\text { local }}{\text { limit }} \downarrow n \rightarrow \infty \quad \begin{array}{l}
\text { local } \\
\text { limit } \\
\text { lim }
\end{array} r \rightarrow 0 \\
& \frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right|}{k^{4}} \underset{k \rightarrow \infty}{ } \frac{2}{21} \frac{1}{\mathcal{C}_{\mathbf{q}}^{4}} t^{4}
\end{aligned}
$$

- Assume $\lim _{d \rightarrow \infty} \frac{\mathbb{E}\left|\overline{B_{d}}\left(m_{\infty}\right)\right|}{\mathbb{E}\left|B_{d}\left(m_{\infty}\right)\right|}=\frac{7}{2}$ (see e.g. [Curien, Le Gall, "Hull...", '14])
- Let $\left|B_{d}(m)\right|$ be the number of vertices at distance $\leq d$ from the root vertex.
- Corollary: with m_{n} as before

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left|B_{\left\lfloor\mathcal{C}_{q} n^{1 / 4} d\right\rfloor}\left(m_{n}\right)\right|=\mathbb{P}\left(d_{\infty}<d\right)
$$

$$
\begin{aligned}
& \frac{\mathbb{E}\left|B_{\lfloor k t\rfloor}\left(m_{\infty}\right)\right|}{k^{4}} \underset{k \rightarrow \infty}{ } \quad \frac{2}{21} \frac{1}{\mathcal{C}_{\mathbf{q}}^{4}} t^{4}
\end{aligned}
$$

- Assume $\lim _{d \rightarrow \infty} \frac{\mathbb{E}\left|\overline{B_{d}}\left(m_{\infty}\right)\right|}{\mathbb{E}\left|B_{d}\left(m_{\infty}\right)\right|}=\frac{7}{2}$ (see e.g. [Curien, Le Gall, "Hull...", '14])
- Then we finally get: $\frac{\mathbf{v}_{\mathbf{q}}^{\ell}}{\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{4}}=\frac{64}{3} \frac{7}{2} \frac{2}{21} \frac{1}{\mathcal{C}_{\mathbf{q}}^{4}}$, i.e. $\mathbf{h}_{\mathbf{q}}^{\ell}=\sqrt{\frac{3}{8}}\left(\mathbf{v}_{\mathbf{q}}^{\ell}\right)^{1 / 4} \mathcal{C}_{\mathbf{q}}$.

$$
\mathbf{h}_{\mathbf{q}}^{\ell}=\frac{1}{4}(1+r)^{2 / 3} \mathcal{L}_{\mathbf{q}}^{1 / 3}
$$

Conjectures (in search of mathematicians!)

$$
\mathbf{p}_{\mathbf{q}}^{\ell}=\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}}\right)^{2 / 3}, \quad \mathbf{v}_{\mathbf{q}}^{\ell}=\frac{8}{3 c_{+}^{2}}\left(\frac{\mathcal{L}_{\mathbf{q}}}{1+r}\right)^{1 / 3}, \quad \mathbf{h}_{\mathbf{q}}^{\ell}=\frac{1}{4}(1+r)^{2 / 3} \mathcal{L}_{\mathbf{q}}^{1 / 3}
$$

- Notice the simple expression $\mathbf{p}_{\mathbf{q}}^{\ell} /\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{2}=\left(\frac{4}{1+r}\right)^{2}$, which is 4 in the bipartite case.

Conjectures (in search of mathematicians!)

$$
\mathbf{p}_{\mathbf{q}}^{\ell}=\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}}\right)^{2 / 3}, \quad \mathbf{v}_{\mathbf{q}}^{\ell}=\frac{8}{3 c_{+}^{2}}\left(\frac{\mathcal{L}_{\mathbf{q}}}{1+r}\right)^{1 / 3}, \quad \mathbf{h}_{\mathbf{q}}^{\ell}=\frac{1}{4}(1+r)^{2 / 3} \mathcal{L}_{\mathbf{q}}^{1 / 3}
$$

- Notice the simple expression $\mathbf{p}_{\mathbf{q}}^{\ell} /\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{2}=\left(\frac{4}{1+r}\right)^{2}$, which is 4 in the bipartite case.

Conjecture

Let $\left(L_{d}\right)_{d \geq 0}$ be the length of the frontier when all vertices at distance d are discovered in a lazy peeling adapted to the distance of a bipartite regular \mathbf{q}-IBPM. Then $\left(n^{-2} L_{\lfloor n t\rfloor}\right)_{t \geq 0}$ converges in distribution to a process independent of \mathbf{q} (namely $4 \mathcal{L}(t)$, see Le Gall's talk).

Conjectures (in search of mathematicians!)

$$
\mathbf{p}_{\mathbf{q}}^{\ell}=\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}}\right)^{2 / 3}, \quad \mathbf{v}_{\mathbf{q}}^{\ell}=\frac{8}{3 c_{+}^{2}}\left(\frac{\mathcal{L}_{\mathbf{q}}}{1+r}\right)^{1 / 3}, \quad \mathbf{h}_{\mathbf{q}}^{\ell}=\frac{1}{4}(1+r)^{2 / 3} \mathcal{L}_{\mathbf{q}}^{1 / 3}
$$

- Notice the simple expression $\mathbf{p}_{\mathbf{q}}^{\ell} /\left(\mathbf{h}_{\mathbf{q}}^{\ell}\right)^{2}=\left(\frac{4}{1+r}\right)^{2}$, which is 4 in the bipartite case.

Conjecture

Let $\left(L_{d}\right)_{d \geq 0}$ be the length of the frontier when all vertices at distance d are discovered in a lazy peeling adapted to the distance of a bipartite regular \mathbf{q}-IBPM. Then $\left(n^{-2} L_{\lfloor n t\rfloor}\right)_{t \geq 0}$ converges in distribution to a process independent of \mathbf{q} (namely $4 \mathcal{L}(t)$, see Le Gall's talk).

Conjecture

Let v be a random vertex at distance $d_{g r}$ from the root in a regular q-IBPM, then we have the following limits in probability as $d_{\mathrm{gr}} \rightarrow \infty$ for its first-passage time T, hop count H, and dual graph distance $d_{\mathrm{gr}^{*}}$:

$$
\frac{H}{T} \rightarrow \mathcal{H}_{\mathbf{q}}, \quad \frac{d_{\mathrm{gr}^{*}}}{T} \rightarrow \frac{1+\mathcal{H}_{\mathbf{q}}}{2}, \quad \frac{d_{\mathrm{gr}}}{T} \rightarrow \mathbf{p}_{\mathbf{q}}^{\ell} \mathbf{h}_{\mathbf{q}}^{\ell}=\frac{1}{4}(1+r) \mathcal{L}_{\mathbf{q}}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
& h_{r}^{(1)}(1)=\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \\
& h_{r}^{(1)}(2)=\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
& h_{r}^{(1)}(3)=\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \\
h_{r}^{(1)}(2) & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
h_{r}^{(1)}(2) & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\nu(-2)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
& 1=\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
& \frac{3-r}{2}=\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
& \frac{3}{8}\left(5-2 r+r^{2}\right)=\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\frac{2}{c_{+}^{2}}
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
& 1=\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
& \frac{3-r}{2}=\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
& \frac{3}{8}\left(5-2 r+r^{2}\right)=\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\frac{2}{c_{+}^{2}}
\end{aligned}
$$

- Can easily compute various constants:

$$
\begin{aligned}
\mathcal{H}_{\mathbf{q}}:=\sum_{k=0}^{\infty}(k+1) \nu(k)=\sqrt{\frac{3 \sigma-1}{1-\sigma}}, \quad \mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)=\frac{\sigma}{1-\sigma}, \\
\frac{d_{\mathrm{gr}^{*}}}{d_{\mathrm{gr}}} \rightarrow 2 \frac{1+\mathcal{H}_{\mathbf{q}}}{(1+r) \mathcal{L}_{\mathbf{q}}}=\frac{2}{\mathcal{H}_{\mathbf{q}}-1}, \quad \quad \begin{array}{l}
\text { vertices } \\
\text { faces }
\end{array}=\frac{\left(\mathcal{H}_{\mathbf{q}}+3\right)\left(\mathcal{H}_{\mathbf{q}}-1\right)}{8 \mathcal{H}_{\mathbf{q}}} .
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Take \mathbf{q} to be a geometric sequence. Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$ and $0<\sigma<1, \alpha>0$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
& 1=\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
& \frac{3-r}{2}=\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
& \frac{3}{8}\left(5-2 r+r^{2}\right)=\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\frac{2}{c_{+}^{2}}
\end{aligned}
$$

- Can easily compute various constants:

$$
\begin{gathered}
\mathcal{H}_{\mathbf{q}}:=\sum_{k=0}^{\infty}(k+1) \nu(k)=\sqrt{\frac{3 \sigma-1}{1-\sigma}}, \quad \mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)=\frac{\sigma}{1-\sigma}, \\
\frac{d_{\mathrm{gr}^{*}}}{d_{\mathrm{gr}}} \rightarrow 2 \frac{1+\mathcal{H}_{\mathbf{q}}}{(1+r) \mathcal{L}_{\mathbf{q}}}=\frac{2}{\mathcal{H}_{\mathbf{q}}-1}, \quad \frac{\text { vertices }}{\text { faces }}=\frac{\left(\mathcal{H}_{\mathbf{q}}+3\right)\left(\mathcal{H}_{\mathbf{q}}-1\right)}{8 \mathcal{H}_{\mathbf{q}}} .
\end{gathered}
$$

- Notice UIPM is $\sigma=\frac{5}{6}, \mathcal{H}_{q}=3$, and duality: $\frac{\mathcal{H}_{q}-1}{2} \leftrightarrow \frac{2}{\mathcal{H}_{q}-1}$.

More examples

	r	c_{+}	$\mathcal{L}_{\text {q }}$	\mathcal{C}_{q}^{4}	$\rho_{\text {q }}$
Triangulations	$2 \sqrt{3}-2$	$\sqrt{6+4 \sqrt{3}}$	$\frac{1}{2}\left(1+\frac{1}{\sqrt{3}}\right)$	1/3	$1+\sqrt{3}$
Quadrangulations	1	$\sqrt{8}$	4/3	8/9	3
Pentangulations	0.70878...	$2.6098 \ldots$	2.1704...	0.7683...	$3.3207 \ldots$
$2 p$-angulations	1	$\sqrt{\frac{4 p}{p-1}}$	$\frac{4}{3}(p-1)$	$\frac{4}{9} p$	$\frac{p-1}{4-p p\left(\begin{array}{l}\text { p }\end{array}\right)-\frac{1}{2}}$ - 1
Uniform planar maps	3/5	$5 / \sqrt{3}$	5	16/9	5
Uniform planar maps (biv.)	$\frac{\mathcal{H}^{2}-3}{\mathcal{H}^{2}+1}$	$\frac{(\mathcal{H}-1)^{3 / 2} \sqrt{\mathcal{H}+3}}{2\left(\mathcal{H}^{2}+3\right)}$	$\frac{1}{2}\left(\mathcal{H}^{2}+1\right)$	$\frac{(\mathcal{H}+1)^{3}}{6(\mathcal{H}+1)}$	$\frac{\mathcal{H}^{2}+1}{\mathcal{H}-1}$
	$\frac{\text { vertices }}{\text { faces }}$	$H / T=\mathcal{H}_{\text {q }}$	T / d_{gr}	$d_{\text {gr* }} / d_{\text {gr }}$	
Triangulations	1/2	$1+\frac{1}{\sqrt{3}}$	$2 \sqrt{3}$	$1+2 \sqrt{3}$	
Quadrangulations	1	2	3/2	9/4	
Pentangulations	3/2	2.3608...	1.0785...	1.8123...	
$2 p$-angulations	$p-1$	$\frac{2 p-1}{\rho\binom{2 p}{p}} 2^{2 p-1}$	$\frac{3}{2(p-1)}$	$\frac{3}{4}\left(\frac{1}{P-1}+\frac{2^{2 p-2}}{p\left(\begin{array}{c}2 p-2\end{array}\right)}\right)$	
Uniform planar maps	1	3	1/2	1	
Uniform planar maps (biv.)	$\frac{(\mathcal{H}+3)(\mathcal{H}-1)^{2}}{8 \mathcal{H}}$	\mathcal{H}	$\frac{4}{\mathcal{H}^{2}-1}$	$\frac{2}{\mathcal{H}-1}$	

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .
- ... requires less peeling steps, $n^{s}(T)<n^{\ell}(T)$

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .
- ...requires less peeling steps, $n^{s}(T)<n^{\ell}(T)$
- ... results in a shorter frontier, $I^{s}(T)<I^{\ell}(T)$.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .
- ...requires less peeling steps, $n^{s}(T)<n^{\ell}(T)$
- ... results in a shorter frontier, $I^{s}(T)<I^{\ell}(T)$.

- After passage-time T the explored region in the simple peeling should agree in law with the hull of the explored region in the lazy peeling.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .
- ...requires less peeling steps, $n^{s}(T)<n^{\ell}(T)$
- ... results in a shorter frontier, $I^{s}(T)<I^{\ell}(T)$.

- After passage-time T the explored region in the simple peeling should agree in law with the hull of the explored region in the lazy peeling.
- The fraction of the length-I boundary of a (regular) q-IBPM that is "simple" converges in probability as $I \rightarrow \infty$ to $1 / \rho_{\mathbf{q}}$ with

$$
\rho_{\mathbf{q}}:=\mathbb{E}_{\nu}(-k-1 \mid k \leq-2)=\frac{\mathcal{H}_{\mathbf{q}}-1}{\mathbb{P}_{\nu}(k \leq-2)}>1
$$

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .
- ...requires less peeling steps, $n^{s}(T)<n^{\ell}(T)$
- ... results in a shorter frontier, $I^{s}(T)<I^{\ell}(T)$.

- After passage-time T the explored region in the simple peeling should agree in law with the hull of the explored region in the lazy peeling.
- The fraction of the length-/ boundary of a (regular) q-IBPM that is "simple" converges in probability as $I \rightarrow \infty$ to $1 / \rho_{\mathbf{q}}$ with

$$
\rho_{\mathbf{q}}:=\mathbb{E}_{\nu}(-k-1 \mid k \leq-2)=\frac{\mathcal{H}_{\mathbf{q}}-1}{\mathbb{P}_{\nu}(k \leq-2)}>1
$$

- Therefore as $T \rightarrow \infty, \frac{l^{\ell}(T)}{l^{s}(T)} \rightarrow \rho_{\mathbf{q}}$ and must also have $\frac{n^{\ell}(T)}{n^{s}(T)} \rightarrow \rho_{\mathbf{q}}$.

From lazy to simple peeling

- During simple peeling the frontier is kept simple, i.e. it does not touch itself.
- Compared to lazy peeling there are two aspects that affect the scaling constants: When exploring, say, up to passage-time T the simple peeling. . .
- ...requires less peeling steps, $n^{s}(T)<n^{\ell}(T)$
- ... results in a shorter frontier, $I^{s}(T)<I^{\ell}(T)$.

- After passage-time T the explored region in the simple peeling should agree in law with the hull of the explored region in the lazy peeling.
- The fraction of the length-I boundary of a (regular) q-IBPM that is "simple" converges in probability as $I \rightarrow \infty$ to $1 / \rho_{\mathbf{q}}$ with

$$
\rho_{\mathbf{q}}:=\mathbb{E}_{\nu}(-k-1 \mid k \leq-2)=\frac{\mathcal{H}_{\mathbf{q}}-1}{\mathbb{P}_{\nu}(k \leq-2)}>1
$$

- Therefore as $T \rightarrow \infty, \frac{I^{\ell}(T)}{l^{s}(T)} \rightarrow \rho_{\mathbf{q}}$ and must also have $\frac{n^{\ell}(T)}{n^{s}(T)} \rightarrow \rho_{\mathbf{q}}$.

$$
\mathbf{p}_{\mathbf{q}}^{s}=\rho_{\mathbf{q}}^{-1 / 3} \mathbf{p}_{\mathbf{q}}^{\ell}, \quad \mathbf{v}_{\mathbf{q}}^{s}=\rho_{\mathbf{q}}^{4 / 3} \mathbf{v}_{\mathbf{q}}^{\ell}, \quad \mathbf{h}_{\mathbf{q}}^{s}=\rho_{\mathbf{q}}^{1 / 3} \mathbf{h}_{\mathbf{q}}^{\ell}
$$

Open problems

- Given that the peeling process of the \mathbf{q}-IBPM is so simple, is there a way to use it to construct the \mathbf{q}-IBPM directly? (Curien's talk?)

Open problems

- Given that the peeling process of the \mathbf{q}-IBPM is so simple, is there a way to use it to construct the q-IBPM directly? (Curien's talk?)
- Can the scaling constants $\mathcal{C}_{\mathbf{q}}$ and $\mathbf{h}_{\mathbf{q}}^{\ell}$ associated to the graph distance be derived from a peeling process?

Open problems

- Given that the peeling process of the \mathbf{q}-IBPM is so simple, is there a way to use it to construct the q-IBPM directly? (Curien's talk?)
- Can the scaling constants $\mathcal{C}_{\mathbf{q}}$ and $\mathbf{h}_{\mathbf{q}}^{\ell}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}}{ }^{*} \approx(H+T) / 2$. Does it hold more generally? Empirically it seems to be a good heuristic for many other types of graphs.

Open problems

- Given that the peeling process of the \mathbf{q}-IBPM is so simple, is there a way to use it to construct the q-IBPM directly? (Curien's talk?)
- Can the scaling constants $\mathcal{C}_{\mathbf{q}}$ and $\mathbf{h}_{\mathbf{q}}^{\ell}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}^{*}} \approx(H+T) / 2$. Does it hold more generally? Empirically it seems to be a good heuristic for many other types of graphs.
- On a 2d lattice the relative fluctuations of d_{gr} and T are conjecture to be described by the Kardar-Parisi-Zhang universality class. Can we start to say something about the situation on random graphs?

Open problems

- Given that the peeling process of the \mathbf{q}-IBPM is so simple, is there a way to use it to construct the q-IBPM directly? (Curien's talk?)
- Can the scaling constants $\mathcal{C}_{\mathbf{q}}$ and $\mathbf{h}_{\mathbf{q}}^{\ell}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}}{ } \approx(H+T) / 2$. Does it hold more generally? Empirically it seems to be a good heuristic for many other types of graphs.
- On a 2d lattice the relative fluctuations of d_{gr} and T are conjecture to be described by the Kardar-Parisi-Zhang universality class. Can we start to say something about the situation on random graphs?
- Do any of the geometric constructions still make sense in the heavy-tailed case $\left(\alpha \in\left[\frac{1}{2}, \frac{3}{2}\right]\right)$? Le Gall and Miermont have shown that w.r.t. the graph distance such finite maps converge to a metric space with Hausdorff dimension $2 \alpha+1$. The metric space w.r.t. dual graph distance is quite different. Does it have a limit?

