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Outline

I Introduce lazy peeling of planar maps

I Description of the associated perimeter and volume processes

I Scaling limit

I Scaling constants from peeling:
I First-passage time
I Hop count
I Dual graph distance

I Miermont’s scaling constant for the graph distance

I Example: uniform infinite planar map.

I From lazy to simple peeling.

I Open questions.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14],
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Lazy peeling of a pointed planar map

I Start with a planar map with a
distinguished outer face and marked
vertex.

I Take the contour of the outer face to
be “frontier”, which separates the
“explored region” from the
“unexplored region”.

I Choose peel edge and explore adjacent
face or prune baby universe.

I After finite number of steps the
unexplored region contains only the
marked vertex.

I First goal: given a random disk, what
is the law of the perimeter (li )i≥0, i.e.
the length of the frontier after i steps?
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Boltzmann planar maps [Miermont, ’06]

I Let q = (qk)∞k=1 be a weight sequence of non-negative reals, such
that qk > 0 for at least one k ≥ 3.

I Call q bipartite if qk = 0 for all odd k , and non-bipartite otherwise.
For now assume q non-bipartite, but all I am going to say is also
true in bipartite case.

I Define the disk function

W
(l)

•

= W
(l)

•

(q) :=
∑

m∈M(l)

•

∏
non-root faces f

qdeg(f ), (1)

where the sum is over rooted planar maps m with root face degree l

and a marked vertex. If W
(l)
• finite, the summands determine a

probability measure, which we call the q-BPM.

I Call q admissible if Z• := W
(2)
• <∞. [Miermont, ’06]

Theorem (Miermont, ’06)

f •(x , y) :=
∞∑

k,k′=0

xkyk′
(

2k + k ′ + 1

k + 1

)(
k + k ′

k

)
q2+2k+k′ , f �(x , y) :=

∞∑
k,k′=0

xkyk′
(

2k + k ′

k

)(
k + k ′

k

)
q1+2k+k′ .

The sequence q is admissible if and only if there exist z+, z� > 0 such that f •(z+, z�) = 1− 1
z+ , f �(z+, z�) = z�

and the matrix Mq(z+, z�) :=

 0 0 z+ − 1
z+

z� ∂x f �(z+, z�) ∂y f �(z+, z�) 0
(z+)2

z+−1∂x f •(z+, z�) z+z�

z+−1∂y f •(z+, z�) 0

 has spectral radius ≤ 1.
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I Proof based on the
Bouttier-Di Francesco-Guitter bijection
between pointed planar maps and
labeled mobiles.

I Decompose root face:

zero-sum
sequence ∈ {−1, 0, 1}l and submobiles,
for which z+, z� are generating
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Ingredients for peeling

I Disk function: q admissible iff there exist c± ∈ R such that for
z > c+ > c−,

W•(z) :=
∞∑
l=0

W
(l)
• z−l−1 =

1√
(z − c+)(z − c−)

.

Notation: c± = z� ± 2
√

z+ and r := −c−/c+ ∈ (−1, 1].

I Markov property: the distribution of the unexplored region depends
only on the perimeter li of the frontier. In particular,
P(li+1 = li + k|li ) is independent of the chosen peel edge.

I Loop equations: W
(l)
• =

∑∞
k=0 qkW

(l+k−2)
• + 2

∑l−2
p=0 W (p)W

(l−p−2)
•

I Read off: P(li+1 = l + k|li = l) = W
(l+k)
•

W
(l)
•
×

{
qk+2 k ≥ −1

2W (−k−2) k ≤ −2
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P(li+1 = l + k|li = l) =
W

(l+k)
•

W
(l)
•
×

{
qk+2 k ≥ −1

2W (−k−2) k ≤ −2
(2)

I In the limit l →∞ this defines a random walk (Xi )i≥0 with step
probabilities

ν(k) := lim
l→∞

P(li+1 = l + k |li = l) =

{
qk+2ck

+ k ≥ −1

2W (−k−2)ck
+ k ≤ −2

I Define function

s

h
(0)
r : Z→ R for r ∈ (−1, 1] by

h(0)
r (l) = [y−l−1]

1√
(y − 1)(y + r)

.

Then W
(l)
• = c l

+h
(0)
r (l) (recall r := −c−/c+).

I (2) implies h
(0)
r is ν-harmonic on Z>0, i.e.

∞∑
k=−∞

h(0)
r (l + k)ν(k) = h(0)

r (l) for all l > 0. (3)
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I Obtained a map: {admissible q} → {(ν, r) : h
(0)
r is ν-harmonic}

ν(k) =

{
qk+2ck

+ k ≥ −1

2W (−k−2)ck
+ k ≤ −2

I Clearly injective, since qk = (ν(−2)/2)(k−2)/2ν(k − 2). Image?

I The harmonicity of h
(0)
r on Z≥3 fixes (ν(k))−3

k=−∞ in terms of

(ν(k))∞k=−2

, while harmonicity of h
(0)
r on {1, 2} is equivalent to

f •(z+, z�) = 1− 1

z+
, f �(z+, z�) = z�. (c± = z� ± 2

√
z+)

I Can check that spectral radius of Mq(z+, z�) is ≤ 1 iff

∞∑
k=0

(
k∑

p=0

h(0)
r (p)

)
ν(k) =:

∞∑
k=0

h(1)
r (k + 1)ν(k) ≤ 1.

Moreover, if ν is regular, i.e.
∑∞

k=0 ν(k)C k <∞ for some C > 1,
then this is equivalent to ν having non-positive drift, i.e.∑∞

k=−∞ kν(k) ≤ 0.
I Call q critical if equality holds. [Miermont,’06]
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Proposition

We have the following bijection between weight sequences q and random
walks (Xi )i≥0 with step probabilities ν:

{admissible q} ↔

{
(ν, r) :

h
(0)
r is ν-harmonic on Z>0

and
∑∞

k=0 h
(1)
r (k +1)ν(k) ≤ 1

}
.

The perimeter process (li )i≥0 associated to the peeling of a pointed

q-Boltzmann planar map is the Doob transform of (Xi )i≥0 w.r.t. h
(0)
r .

I The perimeter process (li )i≥0 is determined by

P(li+1 = l + k|li = l) =
h

(0)
r (l + k)

h
(0)
r (l)

ν(k) (l ≥ 1). (4)

I Since h
(0)
r (0) = 1 and h

(0)
r (k) = 0 for k < 0, this corresponds to

conditioning (Xi )i≥0 to hit 0 before it hits Z<0.

I Analogous to (and inspired by) the “simple” peeling result in [Le Gall,

Curien, ’14]. See Le Gall’s talk.

I Remarkable property of “lazy” peeling: the h-function h
(0)
r hardly

depends on q! In particular it is the same for all bipartite q, i.e.

r = 1: h
(0)
1 (k) = 2−k

(
k

k/2

)
for even k ≥ 0 and 0 otherwise.
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Infinite Boltzmann planar maps (IBPM)
I Local topology: “Two rooted planar maps are close if they have

identical geodesic balls of large radius around the root; the larger the
radius, the closer they are.”

Theorem (Stephenson, ’14)

Let q be a critical weight sequence and mn be rooted and pointed
q-Boltzmann planar maps conditioned to have n vertices. Then there
exists a random infinite planar map m∞ (the q-IBPM) such that

mn
(d)−−→ m∞ in the local topology as n→∞ (along an appropriate

subsequence of Z).

I Since h
(0)
r (k) = h

(1)
r (k + 1)− h

(1)
r (k), and q critical

⇔
∑∞

k=0 h
(1)
r (k + 1)ν(k) = 1 = h

(1)
r (1), we have a bijection

{critical q} ↔ {(ν, r) : h(1)
r is ν-harmonic on Z>0}

I Since h
(1)
r (k) = 0 for k ≤ 0, the Doob transform w.r.t. h

(1)
r

corresponds to conditioning (Xi )i≥0 to stay positive. This must be
the perimeter process (li )i≥0 of the q-IBPM!
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Properties of critical ν
I Linear map: ν(−k) =

∑∞
l=1Rr (k , l)ν(l) (k ≥ 1)

Rr (k , l) :=
∑l−1

p=0 h
(1)
r (m − p)

(
h

(−2)
r (k + p − 1) + r h

(−2)
r (k + p − 2)

)
.

I Since h
(1)
r (k) ∼

√
k as k →∞, need

∑∞
k=1 ν(k)

√
k <∞.

I Distinguish different cases:

I Heavy-tailed case: ν(k) ∼ k−α−1, α ∈ [1/2, 3/2]. See also
[Le Gall, Miermont, ’11].

Then also ν(−k) ∼ k−α−1. Converges to α-stable process
with skewness β = − cot2(πα/2). Asymmetric except when
α = 1, for example:

ν(k) = 1/(k2 − 1) for even k 6= 0, otherwise ν(k) = 0
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I Non-heavy-tailed case: Lq :=
∑∞

k=1 h
(2)
r (k + 1)ν(k) <∞.

(h
(2)
r (k) ∼ k3/2) Asymptotics of Rr (k, l) gives

ν(−k) ∼ 3Lq

√
1 + r

4
√
π

k−5/2



Scaling limit when Lq <∞
I If Lq <∞ the characteristic function of ν satisfies

ϕν(θ) :=
∞∑

k=−∞

ν(k)e ikθ = 1−
√

1 + r

2
Lq|θ|1/2(|θ| − iθ) +O(|θ|5/2)

I Compare to the characteristic function of a 3/2-stable process S3/2

with no positive jumps:

E exp(iθS3/2(t)) = exp
[
−t|θ|1/2(|θ| − iθ)/

√
2
]

I It follows that we have the convergence in distribution in the sense
of Skorokhod  Xbntc(√

1 + rLqn
) 2

3


t≥0

(d)−−−→
n→∞

S

+

3/2(t) (5)

I Because perimeter process (li )i≥0 is obtained from (Xi )i≥0 by
conditioning to stay positive, it follows from invariance principle in
[Caravenna, Chaumont, ’08] that it converges to S+

3/2. See [Curien, Le Gall, ’14]

and Le Gall’s talk.

Notation: p`q = (
√

1 + rLq)2/3

.
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Scaling limit when Lq <∞
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Volume process
I Let (Vi )i≥0 be the number of fully

explored vertices after i steps in the
peeling process.

I Vi+1 > Vi iff li+1 ≤ li − 2

E(Vi+1 − Vi |li − li+1 − 2 = l ≥ 0) =
W

(l)
•

W (l)

=
h

(0)
r (l)ν(−2)

ν(−l − 2)
∼ 8

3c2
+(1 + r)Lq

l2

I Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall’s talk for definition of process Z (t)):

Theorem (Direct consequence of [Curien, Le Gall, ’14])

The perimeter (li )i≥0 and volume (Vi )i≥0 of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to(

lbntc

p`qn2/3
,

Vbntc

v`qn4/3

)
t≥0

(d)−−−→
n→∞

(S+
3/2(t),Z (t))t≥0

p`q = (
√

1 + rLq)2/3

v`q = 8
3c2

+

(
Lq

1+r

)1/3



Volume process
I Let (Vi )i≥0 be the number of fully

explored vertices after i steps in the
peeling process.

I Vi+1 > Vi iff li+1 ≤ li − 2

E(Vi+1 − Vi |li − li+1 − 2 = l ≥ 0) =
W

(l)
•

W (l)

=
h

(0)
r (l)ν(−2)

ν(−l − 2)
∼ 8

3c2
+(1 + r)Lq

l2

I Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall’s talk for definition of process Z (t)):

Theorem (Direct consequence of [Curien, Le Gall, ’14])

The perimeter (li )i≥0 and volume (Vi )i≥0 of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to(

lbntc

p`qn2/3
,

Vbntc

v`qn4/3

)
t≥0

(d)−−−→
n→∞

(S+
3/2(t),Z (t))t≥0

p`q = (
√

1 + rLq)2/3

v`q = 8
3c2

+

(
Lq

1+r

)1/3



Volume process
I Let (Vi )i≥0 be the number of fully

explored vertices after i steps in the
peeling process.

I Vi+1 > Vi iff li+1 ≤ li − 2

E(Vi+1 − Vi |li − li+1 − 2 = l ≥ 0) =
W

(l)
•

W (l)

=
h

(0)
r (l)ν(−2)

ν(−l − 2)
∼ 8

3c2
+(1 + r)Lq

l2

I Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall’s talk for definition of process Z (t)):

Theorem (Direct consequence of [Curien, Le Gall, ’14])

The perimeter (li )i≥0 and volume (Vi )i≥0 of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to(

lbntc

p`qn2/3
,

Vbntc

v`qn4/3

)
t≥0

(d)−−−→
n→∞

(S+
3/2(t),Z (t))t≥0

p`q = (
√

1 + rLq)2/3

v`q = 8
3c2

+

(
Lq

1+r

)1/3



Volume process
I Let (Vi )i≥0 be the number of fully

explored vertices after i steps in the
peeling process.

I Vi+1 > Vi iff li+1 ≤ li − 2

E(Vi+1 − Vi |li − li+1 − 2 = l ≥ 0) =
W

(l)
•

W (l)

=
h

(0)
r (l)ν(−2)

ν(−l − 2)
∼ 8

3c2
+(1 + r)Lq

l2

I Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall’s talk for definition of process Z (t)):

Theorem (Direct consequence of [Curien, Le Gall, ’14])

The perimeter (li )i≥0 and volume (Vi )i≥0 of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to(

lbntc

p`qn2/3
,

Vbntc

v`qn4/3

)
t≥0

(d)−−−→
n→∞

(S+
3/2(t),Z (t))t≥0

p`q = (
√

1 + rLq)2/3

v`q = 8
3c2

+

(
Lq

1+r

)1/3



Volume process
I Let (Vi )i≥0 be the number of fully

explored vertices after i steps in the
peeling process.

I Vi+1 > Vi iff li+1 ≤ li − 2

E(Vi+1 − Vi |li − li+1 − 2 = l ≥ 0) =
W

(l)
•

W (l)

=
h

(0)
r (l)ν(−2)

ν(−l − 2)
∼ 8

3c2
+(1 + r)Lq

l2

I Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall’s talk for definition of process Z (t)):

Theorem (Direct consequence of [Curien, Le Gall, ’14])

The perimeter (li )i≥0 and volume (Vi )i≥0 of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to(

lbntc

p`qn2/3
,

Vbntc

v`qn4/3

)
t≥0

(d)−−−→
n→∞

(S+
3/2(t),Z (t))t≥0

p`q = (
√

1 + rLq)2/3

v`q = 8
3c2

+

(
Lq

1+r

)1/3



Volume process
I Let (Vi )i≥0 be the number of fully

explored vertices after i steps in the
peeling process.

I Vi+1 > Vi iff li+1 ≤ li − 2

E(Vi+1 − Vi |li − li+1 − 2 = l ≥ 0) =
W

(l)
•

W (l)

=
h

(0)
r (l)ν(−2)

ν(−l − 2)
∼ 8

3c2
+(1 + r)Lq

l2

I Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall’s talk for definition of process Z (t)):

Theorem (Direct consequence of [Curien, Le Gall, ’14])

The perimeter (li )i≥0 and volume (Vi )i≥0 of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to(

lbntc

p`qn2/3
,

Vbntc

v`qn4/3

)
t≥0

(d)−−−→
n→∞

(S+
3/2(t),Z (t))t≥0

p`q = (
√

1 + rLq)2/3

v`q = 8
3c2

+

(
Lq

1+r

)1/3



First-passage percolation

I Assign random exp(1)-lengths to
dual edges.

I In the associated peeling the peel
edge is chosen uniformly in the
frontier.

I Let (Ti )i≥0 be time at which the
i ’th peeling step occurs.

I Conditional on li , Ti+1 − Ti is
distributed exponentially with
mean 1/li .

I Conditional on the perimeter (li )i≥0 we can write Ti =
∑i−1

j=0
ej
lj

,

where ej are independent exp(1) random variables.

I In particular ETi =
∑i−1

j=0 l−1
j and Var(Ti ) =

∑i−1
j=0 l−2

j .

I Following [Curien, Le Gall, ’14], this suggests that:(
lbntc

p`
qn

2/3 ,
Tbntc

(p`
q)−1n1/3

)
t≥0

(d)−−−→
n→∞

(
S+

3/2(t),
∫ t

0
dt′

S+
3/2

(t′)

)
t≥0
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I Conditional on the perimeter (li )i≥0 we can write Ti =
∑i−1

j=0
ej
lj

,

where ej are independent exp(1) random variables.

I In particular ETi =
∑i−1

j=0 l−1
j and Var(Ti ) =

∑i−1
j=0 l−2

j .

I Following [Curien, Le Gall, ’14], this suggests that:(
lbntc

p`
qn

2/3 ,
Tbntc

(p`
q)−1n1/3

)
t≥0

(d)−−−→
n→∞

(
S+

3/2(t),
∫ t

0
dt′

S+
3/2

(t′)

)
t≥0



Hop count
I Let γn be the shortest-time path

to the edge explored at n’th step.

I Let Hi (n) be the # of edges of
γn explored after i < n steps.

I Markov property: conditional on
(li )i≥0 the probability Pi+1 that
Hi+1(n)− Hi (n) = 1 is

Pi+1 =

{
0 if li+1 < li
li+1−li+1

li+1
if li+1 ≥ li

I Law of Hi (n) independent of n (as long as n > i). Let us define the
hop count process (Hi )i≥0 as the large n limit. Then (li ,Ti ,Hi )i≥0 is

a Markov process with Hi =
∑i

j=1 bj , bj ∈ {0, 1},P(bi = 1) = Pi .
I For regular critical q we have

E(Hi+1−Hi |li )=
∞∑
k=0

ν(k)
k +1

k +li

h
(1)
r (k +li )

h
(1)
r (li )

=

Hq ≈ limi→∞ Hi/Ti︷ ︸︸ ︷

∞∑
k=0

(k + 1)ν(k) E(Ti+1−Ti |li )+O(l−1
i )
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Dual graph distance
I Choose peel edge deterministically:

breadth first exploration.

I Frontier always of the form: N
(d)
i

edges adjacent to distance d face

followed by N
(d+1)
i edges adjacent

to distance d +1 face.

I Write Ni := N
(d+1)
i − N

(d)
i .

I If N
(d)
i and N

(d+1)
i both large then

E(Ni+1−Ni |li ) = 1+
∞∑
k=0

(k+1)ν(k)+O(1/li )

= 1+Hq+O(1/li )

I Takes roughly 2li
1+Hq

steps to peel a full layer, since the perimeter

does not change significantly in order-li steps.

I Let T̃i have the same law as the first-passage time Ti before. Then
T̃i increases by 2

1+Hq
when peeling a full layer.

I This suggests the asymptotic relation:
dgr∗ ≈ 1

2 (1 +Hq)T̃ ≈ 1
2 (1 +Hq)T ≈ 1

2 (T + H)
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Graph distance
I Can adapt peeling process to graph

distance: take peel edge to be closest
frontier edge. In case of UIPT and
UIPQ distances on boundary behave
nicely (see Le Gall’s talk).

I Let Bd(m∞) be the hull of the ball of
radius d and ∂Bd(m∞) its boundary

I Curien & Le Gall prove convergence in
distribution of the number of vertices
in both:(

(h4)2

p4k2
|∂Bbktc(m∞)|, (h4)4

v4k4
|Bbktc(m∞)|

)
t≥0

(d)−−−→
k→∞

(L(t),M(t))t≥0

I In general the distances on the frontier are not so nice. Little hope
of generalizing the convergence to arbitrary q-IBPM’s. Can we at
least determine what the constants should be?

I Convergence implies limk→∞
E|Bbktc(m∞)|

k4 =
v`

q

(h`
q)4 EM(t) =

v`
q

(h`
q)4

3
64 t4.
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I Luckily there is a different route:

Theorem (Miermont, ’06)

If q is regular critical and mn is a random (rooted) q-Boltzmann planar
map conditioned to have n vertices and v1, v2 are random vertices, then
there exists a Cq > 0 and a q-independent random variable d∞ s.t.

dmn(v1, v2)

Cqn1/4

(d)−−−→
n→∞

d∞.

I Miermont also outline an algorithm to compute Cq. With some work:

Proposition

Cq =

(
2

9
(z+)3/2

(
∂y +
√

x∂x
)2

f �(x , y)
∣∣∣
x=z+

y=z�

)1/4

=

(
c2

+

96
(1 + r)3Lq

)1/4

.
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I Let |Bd(m)| be the number of vertices at
distance ≤ d from the root vertex.

I Corollary: with mn as before

lim
n→∞

1
nE
∣∣∣BbCqn1/4dc(mn)

∣∣∣ = P(d∞ < d)

I

I Assume limd→∞
E|Bd (m∞)|
E|Bd (m∞)| = 7

2 (see e.g. [Curien, Le Gall, ”Hull. . . ”, ’14])

I Then we finally get:
v`

q

(h`
q)4 = 64

3
7
2

2
21

1
C4

q
, i.e. h`q =

√
3
8 (v`q)1/4Cq.

h`q = 1
4 (1 + r)2/3L1/3

q
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Conjectures (in search of mathematicians!)

p`q = (
√

1 + rLq)2/3, v`q =
8

3c2
+

(
Lq

1 + r

)1/3

, h`q =
1

4
(1 + r)2/3L1/3

q

I Notice the simple expression p`q/(h`q)2 =
(

4
1+r

)2

, which is 4 in the

bipartite case.

Conjecture

Let (Ld)d≥0 be the length of the frontier when all vertices at distance d
are discovered in a lazy peeling adapted to the distance of a bipartite
regular q-IBPM. Then (n−2Lbntc)t≥0 converges in distribution to a
process independent of q (namely 4L(t), see Le Gall’s talk).

Conjecture

Let v be a random vertex at distance dgr from the root in a regular
q-IBPM, then we have the following limits in probability as dgr →∞ for
its first-passage time T , hop count H, and dual graph distance dgr∗ :

H

T
→ Hq,

dgr∗

T
→ 1 +Hq

2
,

dgr

T
→ p`qh`q = 1

4 (1 + r)Lq.
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Example: Uniform infinite planar map (bivariate)
I Take q to be a geometric sequence. Then necessarily ν(k) = ασk is

a geometric sequence as well for k ≥ −1 and 0 < σ < 1, α > 0.

I Now impose that h
(1)
r is ν-harmonic:

h(1)
r (1) =

∞∑
k=0

h(1)
r (k +1)ν(k)

=
α

(1− σ)3/2
√

1 + rσ

h(1)
r (2) =

∞∑
k=−1

h(1)
r (k +2)ν(k)

=
1

σ

α

(1− σ)3/2
√

1 + rσ

h(1)
r (3) =

∞∑
k=−2

h(1)
r (k +3)ν(k)

=
1− α
σ2

+ ν(−2)

I Can easily compute various constants:

Hq :=
∞∑
k=0

(k + 1)ν(k) =

√
3σ − 1

1− σ
, Lq :=

∞∑
k=1

h(2)
r (k +1)ν(k) =

σ

1− σ
,

dgr∗

dgr
→ 2

1 +Hq

(1 + r)Lq
=

2

Hq − 1
,

vertices

faces
=

(Hq + 3)(Hq − 1)

8Hq
.

I Notice UIPM is σ = 5
6 , Hq = 3, and duality:

Hq−1
2 ↔ 2

Hq−1 .
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r c+ Lq C4
q ρq
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√

3− 2
√

6 + 4
√

3 1
2

(
1 + 1√

3

)
1/3 1 +

√
3

Quadrangulations 1
√

8 4/3 8/9 3
Pentangulations 0.70878 . . . 2.6098 . . . 2.1704 . . . 0.7683 . . . 3.3207 . . .

2p-angulations 1
√

4p
p−1

4
3 (p − 1) 4

9 p p−1

4−pp(2p
p )− 1

2

− 1

Uniform planar maps 3/5 5/
√

3 5 16/9 5

Uniform planar maps (biv.) H2−3
H2+1

(H−1)3/2
√
H+3

2(H2+3)
1
2 (H2 + 1) (H+1)3

6(H+1)
H2+1
H−1

vertices
faces H/T = Hq T/dgr dgr∗/dgr
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3

2
√

3 1 + 2
√

3

Quadrangulations 1 2 3/2 9/4
Pentangulations 3/2 2.3608 . . . 1.0785 . . . 1.8123 . . .

2p-angulations p − 1 2p−1

p(2p
p )

22p−1 3
2(p−1)

3
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(
1

p−1 + 22p−2

p(2p−2
p )

)
Uniform planar maps 1 3 1/2 1

Uniform planar maps (biv.) (H+3)(H−1)2

8H H 4
H2−1

2
H−1



From lazy to simple peeling
I During simple peeling the frontier is kept

simple, i.e. it does not touch itself.

I Compared to lazy peeling there are two
aspects that affect the scaling constants:
When exploring, say, up to passage-time T
the simple peeling. . .

I . . . requires less peeling steps, ns(T ) < n`(T )
I . . . results in a shorter frontier, l s(T )< l`(T ).

I After passage-time T the explored region in the simple peeling
should agree in law with the hull of the explored region in the lazy
peeling.

I The fraction of the length-l boundary of a (regular) q-IBPM that is
“simple” converges in probability as l →∞ to 1/ρq with

ρq := Eν(−k − 1|k ≤ −2) =
Hq − 1

Pν(k ≤ −2)
> 1

I Therefore as T →∞, l`(T )
l s (T ) → ρq and must also have n`(T )

ns (T ) → ρq.

ps
q = ρ−1/3

q p`q, vs
q = ρ4/3

q v`q, hs
q = ρ1/3

q h`q
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ns (T ) → ρq.
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Open problems
I Given that the peeling process of the q-IBPM is so simple, is there a

way to use it to construct the q-IBPM directly? (Curien’s talk?)

I Can the scaling constants Cq and h`q associated to the graph
distance be derived from a peeling process?

I For q-IBPM’s we have conjectured a universal asymptotic relation
between the passage-time, hop count, and dual graph distance:
dgr∗ ≈ (H + T )/2. Does it hold more generally? Empirically it
seems to be a good heuristic for many other types of graphs.

I On a 2d lattice the relative fluctuations of dgr∗ and T are conjecture
to be described by the Kardar–Parisi–Zhang universality class. Can
we start to say something about the situation on random graphs?

I Do any of the geometric constructions still make sense in the
heavy-tailed case (α ∈ [ 1

2 ,
3
2 ])? Le Gall and Miermont have shown

that w.r.t. the graph distance such finite maps converge to a metric
space with Hausdorff dimension 2α + 1. The metric space w.r.t.
dual graph distance is quite different. Does it have a limit?

Thanks for your attention!
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