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Introduce lazy peeling of planar maps
Description of the associated perimeter and volume processes
Scaling limit
Scaling constants from peeling:
> First-passage time
» Hop count
> Dual graph distance

Miermont’s scaling constant for the graph distance
Example: uniform infinite planar map.

From lazy to simple peeling.

Open questions.
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Peeling process of random surfaces introduced

in [Watabiki,'95] to study their geometry.

Lead to the first (approximate) derivation of

the 2-point function of random triangulations.

[Ambjgrn, Watabiki, '95].

> Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage
time 2-point function” [Ambjgrn, TB,'14].

Peeling was formalized in the setting of infinite

triangulations (UIPT) in [Angel, '03].

Important tool to study properties of the UIPT

and UIPQ: distances, percolation, random

walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien

'13]...

Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, '14],

Le Gall's talk!
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Lazy peeling of a pointed planar map

» Start with a planar map with a
distinguished outer face and marked
vertex.

> Take the contour of the outer face to
be “frontier”, which separates the . 3
“explored region” from the . A
“unexplored region”. .

> Choose peel edge and explore adjacent .
face or prune baby universe. . ©

» After finite number of steps the
unexplored region contains only the
marked vertex. wf

» First goal: given a random disk, what = =Py C

is the law of the perimeter (/;)i>o, i.e. i
the length of the frontier after i/ steps?

Ca
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Disk function: q admissible iff there exist cx € R such that for
zZ>Cy >cC,

= 3 W.(l)z#*1 = ! .
2 Je—e—c)
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Notation: cx = z°+2vz+t and r:=-—c_/cy € (-1,1].
Markov property: the distribution of the unexplored region depends

only on the perimeter /; of the frontier. In particular,
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Loop equations: W{" =>re0d qewWie 2)—1-22/ 2 w2
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Wi {qm k> -1

Read off: P(liy1 =1+ k|li=1)= e SW-k-2) k< o



Wi i k> -1
Pllivr =1kl =1) = W 2W(=k=2) < 9
> In the limit / — oo this defines a random walk (X;);>o with step
probabilities
k> -1

k
v(k) = lim P(lyy = |+ k[l = 1) = { P2 o=
I=00 2W(k=2 ek < -2
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(I+k) ;
A k> -1 L
Pl = |+ k|l = ) = —>— x {qk“ = )=

> In the limit / — oo this defines a random walk (X;);>o with step
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> Define function A" :Z — R for r € (—1,1] by
1
W) =y ———.
(y =1y +r)

Then W = cihﬁo)(/) (recall r :== —c_/cy).
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Obtained a map: {admissible q} — {(v,r) : O is v-harmonic}

k
qurQCJr kZ -1
k) =
v(k) {2W(—k—2>c¢ k< -2

Clearly injective, since qx = (v(—2)/2)*=2/2y(k — 2). Image?

(0) 3

The harmonicity of h;” on Zx>3 fixes (v(k)),>_. in terms of

o0

(v(k))%2 _,, while harmonicity of A on {1,2} is equivalent to

1
o/ + —
f(z azo)*l_;a

fo(zt,2°)=2% (ce =2°£2Vzt)

Can check that spectral radius of Mg(z",z°%) is < 1 iff

00 k o]
Z (Z hﬁo)(p)> v(k) =: Z AV (k 4+ 1)(k) <1
k=0
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Moreover, if v is regular, i.e. Ziio v(k)Ck < oo for some C > 1,

then this is equivalent to v having non-positive drift, i.e.

2k —oo ki(k) <0
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Obtained a map: {admissible q} — {(v,r) : O is v-harmonic}

k
qurQCJr kZ -1
k) =
v(k) {2W(—k—2>c¢ k< -2

Clearly injective, since qx = (v(—2)/2)*=2/2y(k — 2). Image?

(0) 3

The harmonicity of h;” on Zx>3 fixes (v(k)),>_. in terms of

o0

(v(k))%2 _,, while harmonicity of A on {1,2} is equivalent to

1
o + _
f(z azo)*l_;a

fo(zt,2°)=2% (ce =2°£2Vzt)

Can check that spectral radius of Mg(z",z°%) is < 1 iff

00 k o]
Z (Z hﬁo)(p)> v(k) =: Z AV (k 4+ 1)(k) <1
k=0

k=0 \p=0

Moreover, if v is regular, i.e. Ziio v(k)Ck < oo for some C > 1,
then this is equivalent to v having non-positive drift, i.e.

Dz oo kr(k) < 0.

Call q crltlcal if equality holds. [Miermont, 06]
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Proposition

We have the following bijection between weight sequences q and random
walks (X;)i>o with step probabilities v:

.. hSO) is v- harmonic on Z~q
{admissible q} <> ¢ (v, r) : .
and Y 72 0h (k+1)1/(k) <1
The perimeter process (I;)i>o associated to the peeling of a pointed
q-Boltzmann planar map is the Doob transform of (X;)i>o w.r.t. hﬁo).

> The perimeter process (/;)i>o is determined by
hO(1 + k)
© =
he(1)

» Since h(0) = 1 and (k) = 0 for k < 0, this corresponds to
conditioning (X;)i>o to hit 0 before it hits Zo.

]P(/H_l = I+ k|/l = /) =

» Analogous to (and inspired by) the “simple” peeling result in [Le Gall,
Curien, '14]. See Le Gall's talk.
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Proposition

We have the following bijection between weight sequences q and random
walks (X;)i>o with step probabilities v:

A s 1- harmonic on Zq
{admissible q} <> < (v,r): " = :
and Y 72 0h (k+1)1/(k) <1

The perimeter process (I;)i>o associated to the peeling of a pointed
q-Boltzmann planar map is the Doob transform of (X;)i>o w.r.t. hﬁo).

> The perimeter process (/;)i>o is determined by
hO(1 + k)
© =
he(1)

» Since h(0) = 1 and (k) = 0 for k < 0, this corresponds to
conditioning (X;)i>o to hit 0 before it hits Zo.

]P(/H_l = I+ k|/l = /) =

» Analogous to (and inspired by) the “simple” peeling result in [Le Gall,
Curien, '14]. See Le Gall's talk.

» Remarkable property of “lazy” peeling: the h-function hSO) hardly
depends on q! In particular it is the same for all bipartite q, i.e.

r=1: hOk)=2-* (k/z) for even k > 0 and 0 otherwise.
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» Local topology: “Two rooted planar maps are close if they have
identical geodesic balls of large radius around the root; the larger the
radius, the closer they are.”
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q-Boltzmann planar maps conditioned to have n vertices. Then there

exists a random infinite planar map m., (the q-IBPM) such that
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mp, —> My, in the local topology as n — oo (along an appropriate
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» Local topology: “Two rooted planar maps are close if they have
identical geodesic balls of large radius around the root; the larger the
radius, the closer they are.”

Theorem (Stephenson, '14)

Let q be a critical weight sequence and m,, be rooted and pointed
q-Boltzmann planar maps conditioned to have n vertices. Then there

exists a random infinite planar map m., (the q-IBPM) such that

(d) g .
mp, —> My, in the local topology as n — oo (along an appropriate

subsequence of 7).

> Since h£0)(k) = hﬁl)(k +1)— hﬁl)(k), and q critical
& 3% hY (k+ 1)u(k) =1 = h(1), we have a bijection

{critical q} <> {(v, r) : Y is v-harmonic on Zs} J

r




Infinite Boltzmann planar maps (IBPM) {%
v

» Local topology: “Two rooted planar maps are close if they have
identical geodesic balls of large radius around the root; the larger the
radius, the closer they are.”

Theorem (Stephenson, '14)

Let q be a critical weight sequence and m,, be rooted and pointed
q-Boltzmann planar maps conditioned to have n vertices. Then there

exists a random infinite planar map m., (the q-IBPM) such that

(d) ; .
mp, —> Mo in the local topology as n — oo (along an appropriate

subsequence of 7).

> Since h£0)(k) = hﬁl)(k +1)— h£1)(k), and q critical
& 3% hY (k+ 1)u(k) =1 = h(1), we have a bijection

{critical q} <> {(v, r) : Y is v-harmonic on Zs} ]

» Since h£1)(k) =0 for k <0, the Doob transform w.r.t. hﬁl)
corresponds to conditioning (X;)i>o to stay positive. This must be
the perimeter process (/;)i>o of the g-IBPM!
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Properties of critical v
» Linear map: v(—k) = Y72, R.(k,v(l) (k>1)
Ro(k,1) = Y0 b (m — p) (hﬁ)(k +p—1)+rh(k+p— 2)).

» Since hﬁl)(k) ~ Vk as k — oo, need 7% v(k)Vk < 0. =112

~{pe

» Distinguish different cases: 9
> Heavy-tailed case: v(k) ~ k™71, a € [1/2,3/2]. See also *E_g:l
[Le Gall, Miermont, '11]. 2
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Properties of critical v #

» Linear map: v(—k) = Y72, R.(k,v(l) (k>1)
Rk, 1) == Yh b b (m — p) (hE*Z)(k Tp—1)+rh Pk +p— 2)).

» Since hﬁl)(k) ~ Vk as k — oo, need 7% v(k)Vk < 0. o=112

» Distinguish different cases: E
> Heavy-tailed case: v(k) ~ k=71, a € [1/2,3/2]. See also Sla=1
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Properties of critical v %
» Linear map: v(—k) = Y72, R.(k,v(l) (k>1)
Rk, 1) == Yh b b (m — p) (hE*Z)(k Tp—1)+rh Pk +p— 2)).

» Since hﬁl)(k) ~ Vk as k — oo, need 7% v(k)Vk < 0. o=112

©
» Distinguish different cases: 9
> Heavy-tailed case: v(k) ~ k™ a € [1/2,3/2]. See also ‘E_(_x:l
[Le Gall, Miermont, '11]. %
Then also v(—k) ~ k~*~'. Converges to a-stable process £
with skewness 3 = — cot?(ma/2). Asymmetric except when — Jo=32
a =1, for example: liq<°°
v(k) = 1/(k* — 1) for even k # 0, otherwise v(k) = 0
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Properties of critical v %

» Linear map: v(—k) = Y72, R.(k,v(l) (k>1)
Ro(k,1) = Y0 b (m — p) (hﬁ)(k +p—1)+rh(k+p— 2)).

> Since AV (k) ~ Vk as k — 0o, need 0% v(k)Vk < 00, 42712

» Distinguish different cases: E
> Heavy-tailed case: v(k) ~ k=7, a €[1/2,3/2]. See also 2 |g=1

[Le Gall, Miermont, '11]. %

(]
> Non-heavy-tailed case: Lq :=> 2, hgz)(k +v(k) <oo. T _s,
(h® (k) ~ k¥?)  Asymptotics of R, (k, /) gives :1-'tq<°°

(7k) 3£q\/1+rk75/2
47 B
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Scaling limit when L4 < 0o

> If L4 < oo the characteristic function of v satisfies

pu(0) = 32w =1\ [T Lol 2(10] i) + 0(02)

k=—oc0

» Compare to the characteristic function of a 3/2-stable process S35
with no positive jumps:

Eexp(i6S3a(t)) = exp [ tl6]"/%(6] - 6)/ V7]

» It follows that we have the convergence in distribution in the sense
of Skorokhod
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Scaling limit when L4 < 0o

> If L4 < oo the characteristic function of v satisfies

pu(0) = 32w =1\ [T Lol 2(10] i) + 0(02)

k=—oc0

» Compare to the characteristic function of a 3/2-stable process S35
with no positive jumps:

Eexp(i6S3a(t)) = exp [ tl6]"/%(6] - 6)/ V7]

» It follows that we have the convergence in distribution in the sense

of Skorokhod
/
Lnt] ) ot
i) S (5)
rlqn 10

> Because perimeter process (/;)i>o is obtained from (X;)i>o by
conditioning to stay positive, it follows from invariance principle in
[Caravenna, Chaumont, '08] that it converges to S3+/2. See [Curien, Le Gall, '14]

and Le Gall's talk.



Scaling limit when L4 < 0o

> If L4 < oo the characteristic function of v satisfies

pu(0) = Y v(k)e" =1~ \/Hrﬁ 01/2(161 — i6) + O(16]*/?)

k=—oc0

» Compare to the characteristic function of a 3/2-stable process S35
with no positive jumps:

Eexp(i0S3a(t)) = exp [—tl6]"/%(10] - i6)/ V2]

» It follows that we have the convergence in distribution in the sense

of Skorokhod
\nt] +
(o) 7 st ®)
a t>0

> Because perimeter process (/;);>o is obtained from (X;)i>o by
conditioning to stay positive, it follows from invariance principle in
[Caravenna, Chaumont, '08] that it converges to 5;/2 See [Curien, Le Gall, '14]

and Le Gall's talk. Notation: pfj = (v/1+ rLq)?/>3.
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Volume process

> Let (Vi)i>o be the number of fully
explored vertices after i steps in the
peeling process.

> Vi > Viiff ly <=2

w

E(Visr = Villi = ha =2 =12 0) = 75
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Volume process
> Let (V;)i>o be the number of fully

explored vertices after i steps in the
peeling process. ‘
> Viga > Viiff i <=2

s

wl
E(Vier = Vilh =l —2=1>0) = -5 ‘
_n0p=2) 8,

v(—1—2) 3c2(1+r)Lq
» Checking the details of the proof of Curien and Le Gall one gets (see
Le Gall's talk for definition of process Z(t)):

Theorem (Direct consequence of [curien, Le Gall, 14])

The perimeter (I;)i>0 and volume (V;)i>o of a peeling of a regular critical
q-IBPM converge jointly in distribution in the sense of Skorokhod to

( | nt) Vint) ) (d) (S5,.(1), Z(1)) pfl = (\/m‘cil/);/3
) 3/2\t)s t>0 L
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First-passage percolation

> Assign random exp(1)-lengths to
dual edges.

> In the associated peeling the peel
edge is chosen uniformly in the
frontier.

> Let (7;)i>o0 be time at which the
i'th peeling step occurs.

» Conditional on /;, Tiy1 — T; is
distributed exponentially with
mean 1//;.

» Conditional on the perimeter (/;)j>o we can write T; = Z};é %L

where ¢; are independent exp(1) random variables.
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First-passage percolation A%

> Assign random exp(1)-lengths to
dual edges.

> In the associated peeling the peel
edge is chosen uniformly in the
frontier.

> Let (7;)i>o0 be time at which the
i'th peeling step occurs.

» Conditional on /;, Tiy1 — T; is
distributed exponentially with
mean 1//;.

» Conditional on the perimeter (/;)j>o we can write T; = Z ‘0 %L

where ¢; are independent exp(1) random variables.

> In particular ET; = Z' ll_ and Var(T;) = Zj';é 172
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First-passage percolation

> Assign random exp(1)-lengths to
dual edges.

> In the associated peeling the peel
edge is chosen uniformly in the
frontier.

> Let (7;)i>o0 be time at which the
i'th peeling step occurs.

» Conditional on /;, Tiy1 — T; is
distributed exponentially with
mean 1//;.

» Conditional on the perimeter (/;)j>o we can write T; = Z ‘0 %L

where ¢; are independent exp(1) random variables.
> In particular ET; = Z' ll_ and Var(T;) = Zj';é 172
» Following [Curien, Le Gall, '14], thls suggests that:

[ Tot) ) @, (s t qr’
t
(Pﬁ"2/3’ (CORLEE >0 oo 3/2( )afo S;r/z(t’) >0
o =
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Hop count

> Let 7, be the shortest-time path
to the edge explored at n'th step.

> Let H;(n) be the # of edges of
Y, explored after i < n steps.

» Markov property: conditional on
(I))i>o the probability P;y; that
H,-+1(n) — H,-(n) =1is

0 if I; < [;
Pii1= { v
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» Law of H;(n) independent of n (as long as n > i). Let us define the
hop count process (H;)i>o as the large n limit. Then (I, Tiy Hi)iso is
a Markov process with H; = 37, b;,b; € {0,1},P(b; = 1) = P;.
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> Let 7, be the shortest-time path
to the edge explored at n'th step.

> Let H;(n) be the # of edges of
Y, explored after i < n steps.

» Markov property: conditional on
(I))i>o the probability P;y; that
H,-+1(n) — H,-(n) =1is

0 if i<
Pii1= { v

lipi—hi+1 -
Ii+1 If /,'+]_ Z /,'

» Law of H;(n) independent of n (as long as n > i). Let us define the
hop count process (H;)i>o as the large n limit. Then (/;, T;, H;)i>o is
a Markov process with H; = 37, b;,b; € {0,1},P(b; = 1) = P;

» For regular critical g we have
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Hop count Ab

> Let 7, be the shortest-time path F'
to the edge explored at n'th step.

> Let H;(n) be the # of edges of
Y, explored after i < n steps.

» Markov property: conditional on
(I))i>o the probability P;y; that
H,-+1(n) — H,-(n) =1is

0 if i<
Pii1= { v

lipi—hi+1 -
/i+1 If /,'+]_ Z /,'

» Law of H;(n) independent of n (as long as n > i). Let us define the
hop count process (H;)i>o as the large n limit. Then (/;, T;, H;)i>o is
a Markov process with H; = 37, b;,b; € {0,1},P(b; = 1) = P;

» For regular critical g we have
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Hop count AQA

> Let 7, be the shortest-time path ;')
to the edge explored at n'th step.

> Let H;(n) be the # of edges of
Y, explored after i < n steps.

» Markov property: conditional on
(I))i>o the probability P;y; that
H,-+1(n) — H,-(n) =1is

0 if i<
Pii1= { v

lipi—hi+1 -
/i+1 If /,'+]_ Z /,'

» Law of H;(n) independent of n (as long as n > i). Let us define the
hop count process (H;)i>o as the large n limit. Then (I, Tiy Hi)iso is
a Markov process with H; = 37, b;,b; € {0,1},P(b; = 1) = P;

> For regular critical g we have He ~ im0 Hi/ T;
> et WO (k1) &
E(Hisa—Hill)= _v(k s 1)(, = _(k+ 1)u(k) E(Tia=Til)+O( )
k=0 k=0
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» Choose peel edge deterministically:
breadth first exploration.
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» Choose peel edge deterministically:
breadth first exploration.
(d)

> Frontier always of the form: N;
edges adjacent to distance d face
followed by N,-(d+l) edges adjacent
to distance d+1 face.

» Write N,' = N’.(d+1) — Nl(d)
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>

Choose peel edge deterministically:

breadth first exploration.

Frontier always of the form: N,.(d)
edges adjacent to distance d face
followed by N@+D edges adjacent

1

to distance d+1 face.
Write N; := N9TD — (@),
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» Choose peel edge deterministically:

breadth first exploration.

» Frontier always of the form: N,-(d)
edges adjacent to distance d face
followed by N,-(d+1) edges adjacent
to distance d+1 face.

> Write N; := N — y(@)
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Dual graph distance

» Choose peel edge deterministically:
breadth first exploration.

» Frontier always of the form: N,-(d) q prey
edges adjacent to distance d face je—
followed by N,-(d+1) edges adjacent
to distance d+1 face. — ‘_._._

> Write N; .= N,.(dH) — Nl.(d). : J—

> If N,.(d) and N,.(dH) both large then : .7

d d+1
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Dual graph distance

» Choose peel edge deterministically:
breadth first exploration.

» Frontier always of the form: N,.(d) a prey

edges adjacent to distance d face ' j—

followed by N,-(d+1) edges adjacent

to distance d+1 face. s ‘_._._M —
> Write N; := N,.(dH) — Nl.(d). : I '
> 1f N and N both large then |/ \

E(Nj1—Ni|l;) = 1+i(k+1)u(k)+0(i//;) = 1+Hq+0(1/1;)
k=0



Dual graph distance

>

Choose peel edge deterministically:
breadth first exploration.
(d)

Frontier always of the form: N; .
edges adjacent to distance d face pees———
followed by N,-(d+l) edges adjacent :

to distance d+1 face. -
Write Nj := N _ p@) ’ S
If N and N both large then :

E(Niz1—Nill) = 14> (k+1)u(k)+O(1/1) = 14+Hq+O(1/1)
k=0
» Takes roughly lf;"{q steps to peel a full layer, since the perimeter

does not change significantly in order-/; steps.
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>

Choose peel edge deterministically:

breadth first exploration.
Frontier always of the form: N,.(d)
edges adjacent to distance d face
followed by N,-(d+l) edges adjacent
to distance d+1 face.

Write N; := N — y@),

If N,-(d) and N,-(dH) both large then

d d+1
. \
—_— "
d d+1
d d+1

E(Nj1—Ni|l;) = 1+i(k+1)u(k)+0(i//;) = 14+Hq+0O(1/1;)

k= 0

» Takes roughly 1 steps to peel a full layer, since the perimeter
does not change sngnn‘lcantly in order-/; steps.

» Let T; have the same law as the first-passage time T; before. Then
T: increases by 1+7—t when peeling a full layer.




Dual graph distance

» Choose peel edge deterministically:
breadth first exploration.
(d)

> Frontier always of the form: N; q a1
edges adjacent to distance d face pees———
followed by N,-(d+l) edges adjacent :

to distance d+1 face. -
> Write N; := N,.(d+1) - Nl.(d). ' J—
> If N,-(d) and N,-(dH) both large then ’

d d+1

E(Niz1—Nill) = 14> (k+1)u(k)+O(1/1) = 14+Hq+O(1/1)
k= 0
» Takes roughly 1 steps to peel a full layer, since the perimeter

does not change sngnn‘lcantly in order-/; steps.
» Let T; have the same law as the first-passage time T; before. Then
T: increases by 1+7—t when peeling a full layer.

> This suggests the asymptotic relation:
e 2 L1+ Ho) T =~ 2(1+Hq) T =~ 3(T + H)



Graph distance

» Can adapt peeling process to graph
distance: take peel edge to be closest
frontier edge. In case of UIPT and
UIPQ distances on boundary behave
nicely (see Le Gall's talk).

u]
o)
I

i
it
)
»
Q



Graph distance
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distance: take peel edge to be closest
frontier edge. In case of UIPT and
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Graph distance

» Can adapt peeling process to graph

(

distance: take peel edge to be closest
frontier edge. In case of UIPT and
UIPQ distances on boundary behave
nicely (see Le Gall's talk).

Let By(moo) be the hull of the ball of
radius d and 0By(m) its boundary
Curien & Le Gall prove convergence in
distribution of the number of vertices
in both:

(ha)?

__ ha)t
pAkz |aBthJ(moo)|a (VAk)48thJ(mOO)|)

>0

(d)

k—o0

—— (L(t), M(1)) >0
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Graph distance

» Can adapt peeling process to graph
distance: take peel edge to be closest
frontier edge. In case of UIPT and
UIPQ distances on boundary behave \\/\
nicely (see Le Gall's talk).

> Let By(ma) be the hull of the ball of \//\
radius d and 0By(m) its boundary

. . N2
» Curien & Le Gall prove convergence in N /\
distribution of the number of vertices //

in both:

(hg) ~— hg)* —— ?
0B k) (o)l Bl (mo) | (£(8), M(1)),6
pq Vq k—o0
>0
> In general the distances on the frontier are not so nice. Little hope
of generalizing the convergence to arbitrary g-IBPM’s. Can we at
least determine what the constants should be?
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distance

Can adapt peeling process to graph
distance: take peel edge to be closest
frontier edge. In case of UIPT and
UIPQ distances on boundary behave \\/\
nicely (see Le Gall's talk). —J
Let By(mo.) be the hull of the ball of \//\
radius d and 0By(m) its boundary /\ \/\7
Curien & Le Gall prove convergence in \7\
distribution of the number of vertices //
in both:
(hg) ~— (hg)* =— ?
pgkz |8BthJ (moo)|7 W'BLMJ (moo)| m} ('C(t)v M(t))tzo
>0

In general the distances on the frontier are not so nice. Little hope
of generalizing the convergence to arbitrary g-IBPM’s. Can we at
least determine what the constants should be?

T E|B| ) (Moo v v
Convergence implies limy_, o —=4—= = (hgf')4E/\/l(t) = (hf?)“ %t“.

.o



> Luckily there is a different route:

Theorem (Miermont, '06)

If q is regular critical and m, is a random (rooted) q-Boltzmann planar
map conditioned to have n vertices and vy, v» are random vertices, then
there exists a Cq > 0 and a q-independent random variable d.. s.t.
dm,(v1,v2) (d)
an1/4 n— oo

@soc

4




> Luckily there is a different route:

Theorem (Miermont, '06)

If q is regular critical and m, is a random (rooted) q-Boltzmann planar
map conditioned to have n vertices and vy, v» are random vertices, then
there exists a Cq > 0 and a q-independent random variable d.. s.t.
dm,(v1,v2) (d)
an1/4 n— oo

@soc

> Miermont also outline an algorithm to compute Cq. With some work:

Proposition

9 , 1/4 2 1/4
Cq= <g(z+)3/z (0y+/x0x) fo(x7y)’X_zZ> = (9%(1 + r)3gq) )

y=z

ﬁ/ “;h;;




> Let |By(m)| be the number of vertices at
distance < d from the root vertex.
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> Let |By(m)| be the number of vertices at
distance < d from the root vertex.
» Corollary: with m, as before

lim i1E

n—soo N

’BLan1/4dJ(mn) = P(doo < d)

d = Dn'/4
(gq-BPM,,, d) # (Brownian map, D)

local
> 1imitln — 00

(g-IBPM, d) H (Brownian plane, D’)




> Let |By(m)| be the number of vertices at
distance < d from the root vertex.

» Corollary: with m, as before

lim 1E

n—o0

’BLanl/“dJ (mn)

=P(ds < d)

d = Dn'/4
(gq-BPM,,, d) # (Brownian map, D)

local local
> limit\kl — 00 limit\L

(g-IBPM, d) H (Brownian plane, D’)




> Let |By(m)| be the number of vertices at
distance < d from the root vertex
» Corollary: with m, as before
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> Let |By(m)| be the number of vertices at
distance < d from the root vertex
» Corollary: with m, as before

lim IE

n—oo
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E|B|jt|(my)| k=11
S ke A )] —

local
> hmltﬁ —
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> Let |By(m)| be the number of vertices at
distance < d from the root vertex
» Corollary: with m, as before

lim IE

n—oo

’BLC nt/4d| (mn)

=P(ds < d)

/4 Lp
EIBthJ(mnN# = (

rt
< G)
=2 (CL) +0(r)
local
> hmltﬁ —

E|B| ) (moo)|
k4

AN
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> Let |By(m)| be the number of vertices at
distance < d from the root vertex
» Corollary: with m, as before

lim IE

n—oo
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=P(ds < d)

1 rt
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11mltﬁ —

local
limit [ — 0
E|B|gt)(moo)| N2 1
= o arer




> Let |By(m)| be the number of vertices at
distance < d from the root vertex
» Corollary: with m, as before

lim IE

n—oo

’BLC nt/4d| (mn)

= P(ds < d)
/4 L rt
EIBLmJ(mn)Ii> = (d < )
=4 (&) +o0
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= o arer
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1 (see e.g. [Curien, Le Gall, "Hull
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> Let |By(m)| be the number of vertices at
distance < d from the root vertex
» Corollary: with m, as before

lim IE

n—oo

)BLC nt/4d| (mn)

=P(ds < d)

1 rt
E|Bl_ktJ(mn)|%n4_4 (d < )

=4 (&) +o0
local
> hmItﬁ —

et |r =0
E|B gt (moo)] N2
% e aros tt
» Assume limy_ oo % = I (see e.g. [Curien, Le Gall, " Hull
» Then we finally get (,:'5)4 = 6—;%%% i

)
ie. hf= \/g(vf;)l/“cq.

h = 21+ r)*3Ly3




Conjectures (in search of mathematicians!)

8 L 1/3 1
¢ _ 2/3 L a e _ 1 2/3 1/3
= (V14 rL = h = —(1+ L
Pq = o)™ vq 3c3r(1+r> ’ ; 4( r) a
> Notice the simple expression p§/(h{)? = (—lir) , which is 4 in the
bipartite case.
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> Notice the simple expression p§/(h{)? = (—Jﬂ) , which is 4 in the
bipartite case.

Conjecture

Let (Lg)g>0 be the length of the frontier when all vertices at distance d
are discovered in a lazy peeling adapted to the distance of a bipartite
regular g-IBPM. Then (n_QLLntJ)tZO converges in distribution to a
process independent of q (namely 4£(t), see Le Gall's talk).
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8 L 13 1
¢ 2/3 L a e _ 1 2/3 p1/3
=(1+rL = h, = —(1 L
Pq (V14 rLy)", Vg 3&(1 r) ) : 4( +r) q
> Notice the simple expression p§/(h{)? = <—1ir) , which is 4 in the

bipartite case.

Conjecture

Let (Lg)g>0 be the length of the frontier when all vertices at distance d
are discovered in a lazy peeling adapted to the distance of a bipartite
regular g-IBPM. Then (n_QLLntJ)tZO converges in distribution to a
process independent of q (namely 4£(t), see Le Gall's talk).

Conjecture

Let v be a random vertex at distance d,, from the root in a regular
g-IBPM, then we have the following limits in probability as dgx — oo for
its first-passage time T, hop count H, and dual graph distance dg,:

H Ao 1+Hq dy

7 Mo o 7—>pf;hf;:%(1+r)£q.

.s\pr
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a geometric sequence as well for k > —1land 0 <o <1, a>0.
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a
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a
1= h k+1
Z (1—0)3/2m

S-r_ > A (k+2)v(k) = % (=0>3)



Example: Uniform infinite planar map (bivariate)

» Take q to be a geometric sequence. Then necessarily v(k) = ac* is

a geometric sequence as well for k > —1land 0 <o <1, a>0.
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» Take q to be a geometric sequence. Then necessarily v(k) = ac* is
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» Take q to be a geometric sequence. Then necessarily v(k) = ok is ¥

a geometric sequence as well for k > —1land 0 <o <1, a>0.
(1) -

» Now impose that h; |s v-harmonic:

a
1= h k+1
Z (1—0)3/2m

o0

3—r 1 1 1

S LA G ORI G
3 l—« 2
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Example: Uniform infinite planar map (bivariate)

» Take q to be a geometric sequence. Then necessarily v(k) = ac* is

a geometric sequence as well for k > —1land 0 <o <1, a>0.
(1) -

» Now impose that h; |s v-harmonic:

«
1= h k—|—1
Z (1—0)3/2m
3—r >

= 3 A2k =§ (0>

k=—1

3 l—« 2
~(5=2 h (k+3)v —
8( rr?) = k;2 +3)v(k) = p + 2

» Can easily compute various constants:

&

>

= 30 -1 o
Ho =D (k+ u(k) =/ T— q—Zh (k+1)v(k) = 7—,
k=0
o N 1+Hqg 2 vertices  (Hq +3)(Hq — 1).
gy 1+rLqy He—1 faces 8H,q

> Notice UIPM is 0 = %, Hy = 3, and duality: 4= ¢ -2




More examples

r

c+ Lq q Pq
Triangulations | 2v3-2 | Ve+4v3 [1(1+) 1/3 1+ V3
Quadrangulations 1 V8 4/3 8/9 3
Pentangulations | 0.70878... 2.6098. .. 2.1704... 0.7683 . 3.3207...
. 4 4 4 -1
2p-angulations 1 p—fl 3(p—1) 5P “"&T—% -1
Uniform planar maps 3/5 5/\V3 5 16/9 5
: - 2 H—1)*/H+3 H+1)* 2
Uniform planar maps (biv.) Zbrf % %(H2 +1) (6(7:;;) %
e H/T =Hq T/ der v~/ der
Triangulations 1/2 1+ % 2V3 1+2V3
Quadrangulations 1 2 3/2 9/4
Pentangulations 3/2 2.3608... 1.0785. 1.8123...
i _ 2p—152p—1 3 3( 1 22
2p-angulations p—1 p(Q:)2 P -0 il T o(77)
Uniform planar maps 1 3 1/2 1
Uniform planar maps (biv.) % H T et
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From lazy to simple peeling

» During simple peeling the frontier is kept
simple, i.e. it does not touch itself.

» Compared to lazy peeling there are two
aspects that affect the scaling constants:
When exploring, say, up to passage-time T
the simple peeling. ..
> ...requires less peeling steps, n*(T) < n*(T)
> .. .results in a shorter frontier, I*(T)< /*(T).
> After passage-time T the explored region in the simple peeling
should agree in law with the hull of the explored region in the lazy
peeling.
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>

Given that the peeling process of the q-IBPM is so simple, is there a
way to use it to construct the g-IBPM directly? (Curien’s talk?)

Can the scaling constants Cq and hf; associated to the graph
distance be derived from a peeling process?

For g-IBPM’s we have conjectured a universal asymptotic relation
between the passage-time, hop count, and dual graph distance:
dgr» = (H+ T)/2. Does it hold more generally? Empirically it
seems to be a good heuristic for many other types of graphs.

On a 2d lattice the relative fluctuations of dy» and T are conjecture
to be described by the Kardar—Parisi-Zhang universality class. Can
we start to say something about the situation on random graphs?

Do any of the geometric constructions still make sense in the
heavy-tailed case (a € [%,% )? Le Gall and Miermont have shown
that w.r.t. the graph distance such finite maps converge to a metric
space with Hausdorff dimension 2« + 1. The metric space w.r.t.

dual graph distance is quite different. Does it have a limit?

Thanks for your attention!




