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Course Contents

| .Introduction

2.Quantum Electrodynamics

< heuristic derivation of Feynman diagrams

3.Strong Interaction and Quantum Chromodynamics

< hadrons and the static quark model

< dynamics: deep-inelastic scattering

« QCD

4.Weak Interaction

< |leptons: unitarity, gauge bosons

< Higgs mechanism

< quarks: CKM-matrix, discrete symmetries, CP violation

< (neutrino oscillations)
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Course Strategy

Main aim: explain how the Standard Model “works”

Emphasis on theoretical aspects

< but information from experiment is indispensable! VWherever relevant or
useful, experimental results will be discussed

No time for aspects of instrumentation

< but see next pages for generally relevant properties
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Particles in the Standard Model




Current Research

The Standard Model is extraordinarily successful in describing

elementary particles and their EM, weak, and strong interactions...
but it is incomplete!

The Higgs boson has not been found yet

© an important research topic

There are theoretical problems (“fine tuning” / “hierarchy”) related to the
Higgs boson, and the Standard Model cannot describe gravitation

© searches for experimental evidence for models for “beyond the Standard
Model” physics

The Standard Model does not explain the existence of dark matter and
dark energy

< interaction with astrophysics (cosmology, ...)
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Not an Aim: understanding of detectors

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

Toroid Magnets Solenoid éMagnet SCT Tracker Pixel Detector TRT Tracker
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But: which particles are measured?

Typical functionality of a multi-purpose collider detector

< charged particles are identified and and their momenta measured in
tracking detectors

< electrons, positrons, and photons are absorbed, identified, and their energy
measured in the electromagnetic calorimeter

< strongly interacting particles (hadrons) are absorbed and their energy
measured in the hadronic calorimeter

< muons are identified (and, in some experiments, their momentum measured)
in the muon system

< short-lived particles are reconstructed through their decay products
< (high-energy) quarks/gluons manifest themselves as hadron jets

< peutrinos escape undetected

We will also encounter examples of detectors with more specific
measurement purposes
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Atlas Experiment: Animation
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Example: Event Display

L ——
e ~

charged particle
trajectories

identified

muon . .
neutrino hypothesis

(apparent lack of
momentum
conservation)

identified electron or positron
9
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Non-relativistic: Schrodinger equation

2m 2m

multiply by Q* \ / multiply by @

i (w* (f)%w(f) + w(ﬂ%w*) - L (w* (F)V2y(F) — y(@)Viy* (f))

72 J 2
i%w(f) = (V— +V(x)> Wy (X) —in Y (X) = (—V— +V(x)> Y (X)

W@ =V (v Y@ - vETY )

Continuity equation:

) v mee P = YO
oI m = v @V - v@ Ve @)
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Negative-energy solutions

X A
2"d order process: scattering of a
particle off of two potentials
>
C
ldentical effect on “the e* (E>0) e” (-E<0)
system” (quantum numbers): '/7

I

© emission of an anti-particle Q'
© absorption of a (E<0) particle
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Discovery of the positron

g ,“ Path length much longer than

expected for protons:a light particle

Larger curvature above than
below the Pb plate:

particle travels upward

Sign of the curvature in the B-field:
positively charged particle
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Perturbation theory

Add perturbation term V to system Ho which can be solved completely:
H — H() —l— V(}, t), H()(l)n — En(l)n W|th /d3x¢;(})¢m(}) — Bnm.
Expand wavefunction in terms of unperturbed basis:

$(%,t) = Y an(t)on(X)e~"Ent.

n
This yields an equation describing the time evolution of the respective
coefficients:

iawg_;, H = ; an()_())e_iEnt (Enan(t) + da(;t(t))
= (Ho+ V(X )0 =Y (Ho + V(X, D)an(t)on(X)e'Ent
= Y (En+ V(X ) an(t)pn(R)e 50!
i) da&( D oo Ent = 3"V, Dan()on(x)e Ent
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Perturbation theory (2)

Multiply by ¢ e and integrate over space:

daf —/Zan (En = BNt v(r),  with V(1) /d?’ngf dn(X)
Integrate (formally) over time, assuming initial state i:

ar(t) = o

Make Lorentz-covariant:

. 5
dn(X) = dn(R)e~Ent = ay(t) = i / dt / 68X 67 (3) V (X)1(X).
This yields: -7
t— oo Ty — —i / d*x¢7 (x) V(X)pi(x)

< NB:in the last two equations only first-order terms were retained
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Delbruck scattering

Observed (1973, G. Jarlskog et al.) in scattering of high-energy (E ~ 7 GeV)
photons off uranium

¢ effect ~ Z4
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Small scattering
angles (~ mrad)!

do/_b
dt\Gev?
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FIG. 9. Measured differential cross sections for Delbriick scattering versus momentum transfer for uranium targets
compared to theoretical predictions (Refs. 5 and 16). (a) Small momentum transfers; (b) large momentum transfers.



Electron Magnetic Moment

Dirac equation reduced to two-component spinors:
(5 (B + eZ\))2 Up = ((E + eA%)2 — m?)uy,
Spatial (LHS) part:
(5 (B + eZ\))2 = oo (p’p’ + AN +e(p A + A’p’))
= (65 +ie™ ") (p’p’ + 2AA + e(p' A + A’p’))
= pp'+ PAA +e(P A+ Ap') + ie(p' A + A'p))e¥ "
= (B+eAP+elV x A7
- (Bp+eAP+e7 B
RHS, non-relativistic limit:
((E + eA%? — m?) = (m+ (E + eA® — m))? — m?) = 2m(E + eA® — m)
Conclusion:

= A\2
(p+ eA) eA°+i6-B> Up

2m 2m

(E—mua = (
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Discovery of the charged pion

(and of the muon...)

= o
AT SR
SRR

| .charged pion is stopped
2.pion decays

3.resulting muon is stopped
4 muon decays
5.electron/positron escapes | 1

20
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Discovery of “strange” particles

charged kaon: VO (Ks, \):“vertices”,
angle and energy e’ momenta of outgoing particles
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Lifetimes of “strange” particles

particle | mass (MeV) lifetime (s) (main) decay modes

spin 0
K~ 494 12-10°° u 0, 7 7
((_g 498 9.10~""  g*gx—, V70 ]
(8 498 5.1078% gFeTu,, 7T:|:,LL:FVM, mta— 7m0, 07070
A spin 172 ~
A 1116 26-10""% pr—, na’
(Y + 1189  8-10~"" px? na*)
y 0 1193 7-10720 Ay
2 1197 15-107° nppr— |
=" 1322 1.6-107'9 Ax—
=0 1315 3-10710 AzO

(s and K| are “mixtures”’ of K° and K°
© will be covered in context of weak interaction

2%, 2" are not antiparticles!
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S=1------
S=0---m
S=—t-mmn--
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Meson octets

P=0)- JP=1-
0 - *0
K K K
S=1------
0 + - 0
TC,T] T S=O__ P p’(l)
- N S=—le--o-- :
K . K . K-
Q-1 Q=0 Q=1 QL 1
24

+
P
\
\
\
\
\
*O \
\ \
\ \
\ \
Q=0 Q=1



Baryon octet and decuplet

S=0---- )

S = —1- ¢ S A

S=-—2----_"
QL-1

25
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Discovery of the {2 particle

i qqr...__l... J-?L‘:.l.h.-:-h-r-l-'i'_‘-ﬁﬁl-uv-'-lli--l' -
H H y I i e d

-

Photographed using a “bubble chamber”

< nearly boiling fluid, charged particles cause bubbles

26
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Baryon masses in the spin interaction model

M=m1+m2+m3+A(S1.82+S1'83+82.S3)

m4 Mo m4ims moIms

Particle | Predicted mass (GeV) Measured mass (GeV)
n, p 0.89 0.939
A 1.08 1.116
> 1.15 1.193
= 1.32 1.318
A 1.07 1.232
> * 1.34 1.385
=* 1.50 1.533
Q- 1.68 1.673
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Meson masses in the spin interaction model

Particle | Predicted mass (GeV) Measured mass (GeV)
T 0.15 0.137
K 0.46 0.496
n 0.57 0.549
0 0.77 0.770
W 0.77 0.782
K* 0.87 0.892
0 1.03 1.020
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Discovery of the /'Y particle
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Spectroscopy of heavy mesons
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Inelastic electron-proton scattering

© Experiments by

Friedman, Kendall, Taylor
et al., 1969:

© F. =20 GeV

© measurement of inclusive
cross sections (i.e., not
only e-p final states are
being considered)

© First indication of the
proton’s composite
nature
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Bjorken scaling

+ B o |8°
x |0° a 26°
Experiment: deep-inelastic 05 e —
electron-proton scattering, 04 L
< 20 GeV NERITRT I
© 0.3 |- |7 % ¢ # ‘H’
Q? 2t |
2 W, GF o2
P ol L x=0.25
0 | 1 I | 1 1 |
0 2 e &
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Gell-Mann matrices

O O O T
| P o -0

_00000100
O —-00 0~ —

~ — — -8
I

~ ~ ~

—

oOoo+~o0o0© | ©
—OO0OO0OO0O0OO0O O '~

O~ 0O OO~ 0O 0O O
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(source: PDG)
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Q? dependence of s
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Measurements of F2(x,Q?)

© |og-log scale!

® data for different values of
x moved by a factor 2!

(for readability)

(source: PDG)
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©®© same data versus X

Measurements of F2(x,Q?)

F,(x,Q%)

(source: PDG)
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Fig. 3.24

e*e” —hadrons: jets

{a) ZZENE

(b) 32326A

Examples of three-jet events observed in the JADE and
TASS0 detectors as viewed aTong the beam axis. The dimsert in (b
shows a top view of the event,

Events with 3 jets: first direct evidence for the existence of the

gluon
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e"e'—had

normalised to
O(e'e = U™ ")

(source: PDG)
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Neutrino-nucleon scattering

©® in both cases: muon neutrinos

© shown: O/E
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Evidence for the Z boson

© Gargamelle experiment (bubble chamber), 1973

Y conversion

Y conversion

l
atomic electron

(source: CERN)
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Discovery of the Z boson

© UAI experiment, 983
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Number of neutrino generations

© Totale Z boson decay width
[ z: width of the resonance

M | | | | |
=2 0
© Partial decay width [paq: L o 2o
. s W s _
cross section at the peak of = ALEPH =
s DELPHI
the resonance _ L3 : _
30 = OPAL » -
© same for the decay to _ :
lepton pairs I ot _
© more complicated for ' b \ '
decay to e'e:interference ¢ Mincreased by tactor 10
. L. . 10 [ —— o from fit 7]
© Radiative corrections need " ... QED unfolded
to be applied! :
N SR T R R T N .\i/MZI oo
© in particular, initial state 86 88 90 92 94
E. [GeV]

photon radiation

lz=Thag+Tee+1.,5
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Extra slides
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Parity violation as a tool

© T TTVr decays
© Fin the lab frame directly 1000__
related to decay angle O in % -
the T rest frame S
O
© Used at LEP | to measure “s |
T polarisation S 500- =
e -
© this too arises from parity £ T T
violation, but in the < T P
production and decay of the . L]
Z boson 07007 77
0 0.5 1
— E /E
TU T
_}9_ - beam
T (source: CERN)
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Evidence for the decay K =117 1T-

© Consider large decay
times (so that only K.
remain)

© Reconstruct TT'TT-
invariant mass (m’) and
direction with respect to
the beam (cos0)

Kaons from the beam
clearly visible

© other particles:
combinatorial backgrounds
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CP violation in other decays

008
- CHARGE ASYMMETRY IN THE DECAYS K/ miety
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Solar neutrino flux
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Super-Kamiokande detector

50 kton water, viewed by phototubes
ORI ¢
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Oscillations: Super-Kamiokande

Data/Prediction (null

— — 2l - 3l - 4
1 10 10 10 10
L/E (km/GeV)

relation between zenith
angle and path length
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Oscillations: KamLAND

e Data-BG-GeoV,
]' —— Expectation based on osci. parameters
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