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Chapter 1

Introduction

This introductory chapter covers several topics that, a priori, are not the main focus of the course,
but that are nevertheless necessary for a proper understanding of the remaining material.

1.1 Purpose of this course
Our present understanding of elementary particles and their interactions is best expressed in
terms of the so-called Standard Model of particle physics. It deals with the particles mentioned
below:

left-handed quarks:
(

u
d

)

L

(
c
s

)

L

(
t
b

)

L

right-handed quarks:
uR
dR

cR
sR

tR
bR

left-handed leptons:
(

νe
e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L

right-handed leptons:
νe,R(?)

e−R

νµ,R(?)
µ
−
R

ντ,R(?)
τ
−
R

Table 1.1: Elementary fermions in the Standard Model. Each quark flavour occurs in three
“colours”, not indicated here but generally denoted as red, green, and blue.

EM interaction: γ

Weak interaction: W±, Z
Strong interaction: g1. . . g8

Table 1.2: Interactions described by the Standard Model, and corresponding gauge bosons.
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One of the main goals of this lecture course is to elucidate the structure encountered in Ta-
ble 1.1 (why are the fermions ordered in doublets, and why the families? Are these three families
all there are? What does the handedness mean?). Besides the structure, the interactions between
these particles will be discussed in detail. (Don’t worry if at this point you don’t know what all
of this means: it should become clear during the course!)

The course will follow (more or less) the three interactions that are described by the Standard
Model: the electromagnetic, the strong, and the weak interaction. The approach is a roughly
historical one.

1.2 Observables

1.2.1 Particle Physics or High-Energy Physics?

The birth of the field of subatomic physics is most properly marked by Rutherford’s famous
experiments in 1908, involving α particles (produced by radioactive decays, already known at
the time even if not understood in detail) scattered off a gold foil. These α particles (now known
to be helium nuclei) had energies of O(1 MeV). Correspondingly, their de Broglie wavelength
λ = h/p was sufficiently small to probe length scales much smaller than the 1 Å typical for
atomic dimensions. This led to the discovery of the nucleus, with dimensions of the order of
several femtometers (1 fm = 10−15 m).

As far as we can tell at present, the particles listed above are indeed point particles (and
the Standard Model considers them as such). To verify this hypothesis to smaller and smaller
distances, obviously, higher and higher momenta (and hence energies) have to be used. Thus the
name high-energy physics or HEP.

Another reason for high energies is the equivalence of mass and energy, as embedded in
Einstein’s theory of Relativity. It is this equivalence that allows us to accelerate relatively low-
mass particles like electrons and protons, and by making them collide with other particles create
much heavier particles. The highest energies are therefore required to gain access to previously
unexplored regions of particle physics.

1.2.2 Scattering Experiments

These high energies generally imply (ultra-)relativistic particles, and therefore very short inter-
action times. Except in very dense media (e.g. neutron stars, and to some extent in stars like our
Sun), one cannot hope to confine more than two particles to a volume smaller than the size of
a nucleus and within the corresponding timespan of ∼ 10−24 s. Therefore, the only scattering
processes that are of general relevance to this field are two-body scattering processes.

The most important observable associated with such scattering processes is the (total or dif-
ferential) cross section. This concept is well known from scattering theory in (non-relativistic)
quantum mechanics, and in general, we will use the same approach here: we consider inter-
actions that at large distances are sufficiently weak that long before and after the collision, the
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particles can effectively be regarded as free. This implies that a treatment in terms of plane-wave
states is appropriate (obviously, the story is more complicated when bound states are involved).

Nevertheless, our treatment differs in several some respects. The first one follows from our
venture into the relativistic domain: we are not anymore dealing with elastic scattering processes
anymore, but instead need to consider inelastic processes as well. Such inelastic collisions in-
volve a conversion between mass and (kinetic) energy, so that a proper treatment using relativistic
kinematics is required!

The second is that we will not in general be interested in the behaviour of a particle in the
presence of a macroscopic potential. Rather, we will be considering particle collisions, implying
that the potential of interest in fact originates from another microscopic object (i.e., the other
particle). An important consequence is that it is no longer the (magnitude of the) momentum |~p|
and kinetic energy Ekin of a single particle that can be considered to be conserved. Instead, this
is in fact another reason for the requirement of a proper treatment using relativistic kinematics.

Since this course deals with interactions of subatomic particles, it is perhaps not surprising
that the cross sections pertaining to representative interactions are generally small. It is for this
reason that they are typically expressed in so-called barns: 1b = 10−28m2. This is well matched
to e.g. the size of the atomic nucleus.

Differential cross section

The concept of a differential cross section is made most intuitive by considering a classical
scattering process: that of point particles scattering elastically off hard spheres. This situation
is displayed in Fig. 1.1. In this classical situation, it is “obvious” that the total scattering cross

!
! "

R

b

Figure 1.1: Elastic scattering of point a particle off a hard sphere.

section is πR2: it is only for b < R that any scattering occurs. But besides the total cross section,
this situation is amenable to more detailed analysis. The elastic nature of the scattering process
relates the scattering angle θ to the angle of incidence on the sphere α by

θ = π−2α.

In addition we find that the impact parameter of the collision is related to α by

b = Rsinα;

3



Combining the above two equations yields

b = Rsin(
1
2
(π−θ)) = Rcos(θ/2)

The total cross section of the sphere, as seen by incident point particles, can now be seen as re-
sulting from the contributions from different impact parameters (and different azimuthal angles:
we are considering a 3D problem!),

dσ = bdbdφ .

We now rewrite this in terms of the contributions to the total scattering cross section from differ-
ent scattering angles:

dσ = b
db
dθ

dθdφ =
1
2

R2 cos(θ/2)sin(θ/2)dθdφ

=
1
4

R2 sinθdθdφ =
1
4

R2dcosθdφ =
1
4

R2dΩ.

(Here, in the second step we have tacitly omitted the minus sign and simultaneously reversed the
θ integration boundaries; the last step makes use of the fact that the solid angle dΩ subtended by
an infinitesimal cone at angles (θ ,φ ) is just dΩ = sinθdθdφ .) So in this case we find that

dσ

dΩ
= R2/4 (1.1)

(and it is easy to verify that integrated, this yields the total cross section we started out with).
So the differential cross section, in this case, identifies the contributions to the total cross section
from scattering processes at different angles. Also in a proper relativistic context, in the simplest
case (final states featuring two particles only), the scattering angles θ and φ exhaust the kine-
matic degrees of freedom. In final states containing more particles, the situation becomes more
complex as the magnitudes of particle momenta in general also vary (but we will not be doing
detailed computations for such cases anyway).

(Note that cross sections for specific interactions may be infinite! A good example of this
is given by elastic scattering processes of charged particles as described by Quantum Electrody-
namics, which will be discussed in some detail in Chapter 2.)

Luminosity

The measurent of (total or differential) cross sections typically consists of aiming a beam of
particles at a target (or two beams of particles at each other). The number and distribution of
particles in such a beam will both affect the number of interactions that are observed; therefore
this has to be dealt with.

The above case of point particles scattering off hard spheres is again a good example to
explain this with. Let us assume first that a beam consists of some number of point particles N1,
randomly distributed over the beam’s cross-sectional area A, and that furthermore A� σ . In
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that case, the number of interactions is simply given by the fraction of particles that happen to
intersect the sphere:

Nint = N1
σ

A
.

The second step consists of assuming that distributed over the area A there is not just one
sphere, but some number N2. We then have

Nint = N1N2
σ

A
=

N1N2

A
σ ,

where the trivial reordering of the last step serves to make a more explicit separation in the
variables describing the experimental details on the one hand, and the process-specific variable
σ on the other hand. (Note that the above assumes implicitly that the number of spheres is still
sufficiently small as not to lead to multiple scattering of individual point particles – this would
distort the measurements!)

The final step follows from the notion that not all scatters (necessarily) take place all at
once. Instead, they may occur over some time interval T , and in that case the total number of
interactions is usually written as

Nint = σ

∫ t0+T

t0
L (t)dt, (1.2)

where the quantity L (t) collects the experimental details at a given time t. It is called the
(instantaneous) luminosity; the time integral in Eqn. 1.2 is usually denoted as the integrated
luminosity. (Note that in the above, the total cross section σ may be replaced everywhere with
the differential cross section for some process: the formalism is exactly the same.)

1.2.3 Particle Decays
As seen in the beginning of this chapter, our present understanding is that there are three gen-
erations of matter particles (spin-1/2 fermions). However, in practice we “observe” only the
fermions of the first generation: the electron, the up and down quarks (the latter being bound in
protons and neutrons, a topic we will get to later), and – with a lot of effort – the (electron?) neu-
trino. The reason for this is simple: they are the lightest existing fermions. All other fermions
are sufficiently heavy that they are unstable: they decay. (Feynman’s adagio that in physics,
“everything that is not forbidden is mandatory” applies here!)

Total decay width

Consider a collection of (identical) unstable particles. The basic thesis is that the probability for
one particle to decay in a short time dt does not depend either on the presence of other particles,
or on the time the particle has lived so far. This means that in this short time dt, the number of
particles N(t) is expected to change as

dN(t) =−ΓN(t)dt,
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where Γ is a constant of proportionality. This differential equation is easily solved to yield

N(t) = N(0)e−Γt . (1.3)

This statement about the behaviour of an ensemble of particles can also be recast as the proba-
bility that any individual particle still exists after a time t. This exponential behaviour is entirely
general.

It is easily verified that Eqn. 1.3 leads to an average lifetime 〈t〉= 1/Γ. In the following, this
average lifetime will generally be denoted as τ . (It is much more relevant than the lifetime of
individual particles, by the stochastic nature of the decay process.)

The quantity Γ is called the particle’s total decay width. It has yet another important meaning:
it turns out that the mass of individual unstable particles is not exactly the same (i.e., a delta
function) but instead describes a resonance curve of finite width. This width is exactly Γ.

Partial and differential decay width

But one can go further: by Feynman’s adagio, it may well be possible for a particle to decay in
more than one way. For instance, the Λ particle (which we will encounter later) has two decay
modes:

Λ → p+π
−

Λ → n+π
0

The total decay width is then simply the sum of the corresponding partial decay widths:

Γ≡ Γtot = Γ(Λ→ p+π
−)+Γ(Λ→ n+π

0).

The decay time distribution is still given by Eqn. 1.3, with Γ still equal to the total decay width.
The only refinement is that the Λ particle of this example, when it decays, will do so to the indi-
vidual final states with branching fractions according to the partial decay widths: Bi ≡ Γi/Γtot
(so the branching fractions necessarily sum up to unity). The relevance of this refinement is that
knowing a particle’s partial decay widths may teach us something about the physics of the decay.

The final refinement is that even the partial decay width itself is, in principle, obtained as an
integral over decay variable distributions. In the case of a spin-0 particle decaying to two other
particles, there is no preferential direction and the outgoing particles are monochromatic, so this
isn’t very interesting. However, particles of nonzero spin (like the Λ above, which has spin 1/2)
may be polarized, and then the decay angle with respect to the polarization axis may again teach
us something about the physics involved in the decay. In that case, we have

Γ(Λ→ p+π
−) =

∫
dΩ

dΓ(Λ→ p+π−)
dΩ

.
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1.2.4 Masses
In the case of the fundamental fermions of Table 1.1, their masses cannot be computed from first
principles (at least not without a deeper understanding than the Standard Model), so knowing
these may not a priori of great interest. But most cross sections and decay widths will in fact
depend on the masses of the particles involved, and they may therefore be of indirect importance.
In addition, quarks and/or antiquarks are usually bound in hadrons like the nucleons, and know-
ing the masses of these compound particles allows us to learn something about the interaction
between their constituents.

1.3 Relativistic Kinematics
The practical use of relativistic kinematics will turn out to be important in all aspects of ex-
perimental particle physics. After a brief discussion of the covariant notation commonly used,
Lorentz transformations, some common Lorentz frames, and some often-used relativistic invari-
ants will be discussed in some detail. The same material is covered somewhat more extensively
in Chapter 3 of the book by Griffiths.

1.3.1 Notation
We will be making extensive use of the so-called covariant notation. In this notation, we write
e.g. the space-time coordinates as coordinates of a 4-dimensional vector called Lorentz vector or
four-vector:

xµ =




ct
x
y
z




Note the µ being written as a superscript. This denotes a contravariant vector, as opposed to a
covariant one (which we will construct shortly). The “length” squared of this Lorentz vector is
now given by

x2 ≡ Σµ,νgµνxµxν = (ct)2− x2− y2− z2.

What we have implicitly defined here is the so-called metric tensor gµν , which in special rela-
tivity always takes the form (if one insists on considering it as a matrix – some caveats will be
discussed below)

gµν = diag(1,−1,−1,−1)≡




1
−1

−1
−1




(the blanks denote 0 elements). The indices here are denoted by subscripts, indicating that the
metric tensor is a covariant tensor. A further notational issue is the Einstein summation con-
vention, which states that the explicit summation signs over contra- and covariant indices (also
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called contraction of these indices) can be dropped. So the equation above could also be written
as

x2 = gµνxµxν .

A contravariant vector can be transformed into a covariant one by contracting it with the metric
tensor:

xµ = xνgµν ,

and similarly, a covariant vector can be transformed into a covariant vector:

xµ = xνgµν .

The contravariant tensor gµν has the same form as its covariant relative (it’s left as an exercise to
show this). Our vector’s length squared can now also be written as

x2 = xµxµ .

On a practical note, it is hopefully obvious from the above discussion that covariant and con-
travariant indices must not be confused. Nor is it very helpful to think as a contravariant vector
as being a column vector, and a covariant vector as being a row vector: the two forms of the
metric tensor above are not consistent with that picture. Also, it is conceivable to think of tensors
that have multiple contravariant and/or covariant indices (the metric tensor is one such case; see
below for another example).

Finally, while the above discussion has dealt with a position four-vector only, it is important
to realise that relativistic kinematics is by no means restricted to working with coordinates only.
In fact, much more used in the context of scattering processes are four-momenta. These are often
written as pµ (or something similar) and are defined as

pµ =




E/c
px
py
pz


 .

By construction, pµ pµ is a Lorentz scalar, and it is easy to see that it is in fact equal to m2c2, just
from the familiar equation

E2 = ~p2c2 +m2c4.

Concerning the mass occurring in this formula, it is perhaps useful to point out that we will
always be referring to rest mass and never to relativistic mass: the latter concept is really useful
only to yield formulas taking the same shape as in non-relativistic mechanics; and there are
limitations to even that application.

1.3.2 Lorentz Transformations
The basis of special relativity is that quantities such as the above length are invariant under
Lorentz transformations. To make this explicit, such quantities are called Lorentz scalars, and
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they do not carry any Lorentz indices. This in contrast to e.g. the above Lorentz vector, which
transforms as

xµ → xµ ′ = Λ
µ

νxν .

For definiteness, a “standard” choice for the transformation Λ is a boost −β along the z axis (i.e.
in the boosted system, a particle that moves with a velocity βc along the z axis in the lab frame
is at rest):

Λ
µ

ν =




γ 0 0 −βγ

0 1 0 0
0 0 1 0

−βγ 0 0 γ


 with γ =

1√
1−β 2

.

One benefit of the covariant notation is immediately obvious: just from the indices (which are
denoted using Greek characters) it is obvious how a quantity transforms under Lorentz transfor-
mations. Similarly, for a tensor quantity we would have

Aµν → Aµν ′ = Λ
µ

ρΛ
ν

σ Aρσ .

For a covariant vector, we would have

xµ → x′µ = Λ
ν

µ xν .

Note the placement of the contra- and covariant indices: this matrix is different from the Λ
µ

ν

encountered above. In fact, it is easy (and left as an exercise) to show that

Λ
ν

µ = gµρΛ
ρ

σ gσν

(and this is also consistent with the conversion from covariant indices to contravariant ones, and
vice versa).

It is noteworthy that the metric tensor (let’s use its contravariant form gµν here) is itself a
contravariant tensor: this implies that it should follow the appropriate transformation rules under
Lorentz transformations. However, we also write the metric tensor as a constant! This paradox
is resolved by turning it into an equation:

gµν = Λ
µ

ρΛ
ν

σ gρσ .

This condition has to hold for any Lorentz transformation. In other words, it defines the possible
Lorentz transformations. Or in group theoretical terms: it defines the Lorentz group. Note that,
although the above has dealt with boosts (i.e. transformations involving both spatial and time
coordinates) exclusively, the Lorentz group also comprises the usual rotations (which involve
only spatial coordinates).

1.3.3 Collisions
The scattering of point particles off hard spheres discussed in Sect. 1.2.2 is not quite representa-
tive for the situations considered in following chapters: the hard sphere is a macroscopic body,
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while in the following we will invariably be concerned with collisions between microscopic par-
ticles. This has one important consequence for the kinematics of scattering processes: rather than
merely conserving energy, in particle collisions the total four-momentum is conserved.

When considering collision processes, two specific Lorentz frames are often used:

• the laboratory frame, representing the collisions as they would be observed “in the lab”;

• given that the lab frame depends (by definition) on experimental circumstances, the centre-
of-mass or CM frame is often used instead. In this frame, the total momentum (but not
energy) is zero.

1.4 Natural Units
It will be convenient for many computations in this course to use so-called natural units, i.e.,
setting h̄ = c = 1. (In more detail, we will be using so-called Gaussian units, following e.g. the
book by Griffiths. This explains the absence of factors 4π e.g. in Sect. 2.2.2.)
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Chapter 2

QED: Quantum Electrodynamics

2.1 Negative-Energy States: Antiparticles

2.1.1 Setting the Stage: Non-Relativistic Quantum Mechanics
In non-relativistic Quantum Mechanics, it was seen that (in the “standard” position representa-
tion) essentially everything can be derived by the substitution

E → i
∂

∂ t
(2.1)

~p → −i~∇ (2.2)

(remember that we have set h̄ = 1). This substitution directly converts the classical Hamiltonian

H =
~p2

2m
+V (~x)

into the Schrödinger equation

i
∂

∂ t
ψ(~x) =

(
−
~∇2

2m
+V (x)

)
ψ(~x)

acting on the wave function ψ(~x).
Once we have found a wave function ψ(~x) satisfying the Schrödinger equation, we can also

take the complex conjugate expression:

−i
∂

∂ t
ψ
∗(~x) =

(
−
~∇2

2m
+V (x)

)
ψ
∗(~x)

We then multiply the original Schrödinger equation by ψ∗(~x), and its conjugate by ψ(~x). Sub-
tracting the two yields

i
(

ψ
∗(~x)

∂

∂ t
ψ(~x)+ψ(~x)

∂

∂ t
ψ
∗
)
=− 1

2m

(
ψ
∗(~x)~∇2

ψ(~x)−ψ(~x)~∇2
ψ
∗(~x)

)
.

11



It is easily seen that this can be written alternatively as

i
∂

∂ t
|ψ(~x)|2 =− 1

2m
~∇ ·
(

ψ
∗(~x)~∇ψ(~x)−ψ(~x)~∇ψ

∗(~x)
)
.

Thus, this leads us to the continuity equation

∂

∂ t
ρ(~x)+~∇ ·~j(~x) = 0,

with

ρ(~x) = |ψ(~x)|2 and

~j(~x) =
−i
2m

(
ψ
∗(~x)~∇ψ(~x)−ψ(~x)~∇ψ

∗(~x)
)

The quantity ρ(~x) occurring in this equation is positive definite, making the interpretation of
|ψ(~x)|2 as the probability density of finding a particle at the position~x a proper one.

2.1.2 Translation to the Relativistic Case
The approach in the case of relativistic Quantum Mechanics is exactly the same; however, this
time it must be applied to the “Hamiltonian” of special relativity. Restricting ourselves to free
particles, V (x) = 0, the basic classical equation is then

pµ pµ = m2 or E2 = ~p2 +m2. (2.3)

When we again make the substitutions of Eqn. 2.2, and make the resulting equation act on a wave
function φ(x) (this notation combines the spatial and temporal dependence), the result is

(
∂ 2

∂ t2 −~∇
2 +m2

)
φ(x) = 0,

or, in explicitly covariant form:

(∂µ∂
µ +m2)φ(x)≡ ( +m2)φ(x) = 0. (2.4)

This is the Klein-Gordon equation.
Unsurprisingly, for our case of free particles, this equation is easily solved to yield plane

waves just like in the non-relativistic case:

φ(x) = Ne−ip · x = Ne−i(Et−~p ·~x), (2.5)

with N an a priori arbitrary normalization constant, and the four-momentum components E and
~p satisfying our original classical Eqn. 2.3.

But here we are in trouble! For the solution to Eqn. 2.3 is

E =±
√
~p2 +m2.
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While the solution with the + sign gives us a “standard” picture, the solution with the − sign
cannot be ignored. As a consequence, the system has no ground state (it is unbounded from
below), and hence no meaningful physical interpretation seems possible.

To make things worse, also the continuity equation becomes problematic. As in the non-
relativistic case, it is obtained by taking also the complex conjugate of the Klein-Gordon equation
and multiplying it with φ(x), and combining it with the original equation multiplied with φ∗(x).
However, due to the fact that the Klein-Gordon equation involves a second order rather than a
first order time derivative, this time we have to subtract the two. The result is

∂

∂ t

(
i(φ∗(x)

∂φ(x)
∂ t
−φ(x)

∂φ∗(x)
∂ t

)

)
+~∇ ·

(
−i(φ∗(x)~∇φ(x)−φ(x)~∇φ

∗(x))
)
= 0,

which can again be considered as a continuity equation, but with

ρ(x) = i(φ∗(x)
∂φ(x)

∂ t
−φ(x)

∂φ∗(x)
∂ t

),

~j(x) = −i(φ∗(x)~∇φ(x)−φ(x)~∇φ
∗(x)). (2.6)

This can again be cast into explicitly Lorentz-covariant form:

∂µ jµ(x) = 0, with jµ(x) = i(φ∗(x)∂ µ
φ(x)−φ(x)∂ µ

φ
∗(x)). (2.7)

When we now substitute the free-particle solution of Eqn. 2.5 in Eqn. 2.6, we find that

jµ(x) = 2pµ |N|2. (2.8)

In particular, we have ρ(x) = 2E|N|2. So in the case of a negative-energy solution, we also find
that ρ(x) becomes negative, i.e., it can no longer be interpreted as a probability density.

2.1.3 The Feynman-Stückelberg Interpretation
A way out of this conundrum is offered by the Feynman-Stückelberg interpretation. It asso-
ciates the negative-energy states with antiparticles. Considering again the plane-wave solution
of Eqn. 2.5, we write

e−ip · x = e−i(−p) · (−x),

suggesting that a negative-energy state propagating forward in time might as well be described
as a positive-energy state propagating backward in time. In turn, this can be described as a
positive-energy antiparticle state propagating forward in time.

In that context, it is constructive to consider again Eqn. 2.7 and multiply it by (−e). By
construction, this still constitutes a conserved quantity, but now with the dimension of a current
multiplied by an electrical charge. This begs for a re-interpretation as a (conserved) electrical
current. It is then easily seen that the free-particle conserved current of Eqn. 2.8 can be written
as

jµ(x) =−2epµ |N|2 =+2e(−pµ)|N|2.
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Hence, also the electron current written down for a negative-energy solution is perfectly consis-
tent with that of a positive-energy positron.

If you don’t find the above arguments entirely convincing, don’t worry: a proper derivation
can only be made in the context of Quantum Field Theory. In that context, φ is a field rather
than a wave function, and its plane-wave expansion leads to particle creation operators for the
positive energies combined with antiparticle annihilation operators for the negative energies.
Incidentally, this also resolves another issue, namely that of the interference between positive-
and negative-energy states. In general, the fact that the plane-wave expansion involves both of
the above would lead to rapid oscillations, which are not observed in Nature. The operator nature
of the fields avoids such issues. (But it is not the purpose of this course to venture too far into the
realm of Quantum Field Theory. Suffice it to say that it addresses all conceptual issues present
in a quantum mechanical treatment.)

Of course, one would hope for experimental evidence of the existence of the positron. It was
first observed in 1932, in a cloud chamber exposed to cosmic rays (see Fig. 2.1). Its discovery
earned Anderson [1] the 1936 Nobel Prize. (The discovery followed the prediction of the positron
by Dirac by only a year. Dirac used a different interpretation of negative-energy states, though,
which is not appropriate for the description of bosons.)

So what about the continuity equation, and the fact that there doesn’t appear to be a conserved
quantity (i.e., one occurring in a continuity equation) that can be associated with a probability
density? The fact of the matter is that the (conserved) probability density is a concept that is
useful in non-relativistic quantum mechanics (non-conservation would correspond to the creation
or disappearance of particles). However, in a relativistic context, it is perfectly acceptable for
(anti-)particles to be created or annihilated (and the operator nature of quantum fields allows to
describe such processes). So it doesn’t make sense to ask for a conserved probability density.

2.1.4 Principle of Least Action and Euler-Lagrange Equations; Noether
Theorem

Accepting that we need a field-theoretical interpretation (per Sect. 2.1.3), we can now also use
a different starting point for our computations than the Klein-Gordon equation. Going back to a
classical single-particle system of a single degree of freedom q(t), we can express the action S
as S =

∫ t1
t0 dtL(q, q̇), where L represents the Lagrangian. Demanding that S be stationary under

arbitrary but small changes of q(t) at each t results in the requirement

δS =
∫ t1

t0
dt
(

∂L
∂q

δq+
∂L
∂ q̇

δ q̇
)
= 0.

Interchanging the order of the time derivative and the δ operation and carrying out an integration
by parts then results in the condition

∫ t1

t0
dt
(

∂L
∂q
− d

dt

(
∂L
∂ q̇

))
δq = 0.
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Figure 2.1: Photograph made of a positron bent in a magnetic field and traversing (and losing
energy in) a Pb plate. The positron hypothesis follows from (1) the sign of the curvature, indi-
cating a positively charged particle; and (2) the track length after having traversed the plate and
before being stopped, indicating a particle much lighter than a proton.

If this equality is to hold for arbitrary δq(t), then we immediately arrive at the Euler-Lagrange
equation

∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= 0.

In a field-theoretical setting, things work in much the same way. The essential difference is that
the Lagrangian L is obtained as the spatial integral of the Lagrange density L (φ(x),∂µφ(x)),
where ∂µφ ≡ ∂

∂ ( ∂φ

∂xµ )
refers to the time as well as spatial derivatives of φ . The action therefore

becomes a four-dimensional integral – convenient since this allows us to express it in a covariant
form. The arbitrary changes are then in the field φ(x), and the principle of least action becomes

δS =
∫

d4x
(

∂L

∂φ
δφ(x)+

∂L

∂ (∂µφ)
δ∂µφ(x)

)
= 0. (2.9)
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The same manipulations as for the above single degree of freedom then lead to the Euler-
Lagrange equation for the field:

∂L

∂φ
−∂µ(

∂L

∂µφ
) = 0. (2.10)

We will make use of this equation, as well as of properties of the Lagrange density, later in
this and in other chapters. Note that in these lecture notes we will follow the common particle
physicists’ sloppiness and simply call L the Lagrangian. For now, suffice it to say that the
Klein-Gordon equation can be recovered from the following choice of Lagrangian:

L =
1
2

∂µφ∂
µ

φ − 1
2

m2
φ

2. (2.11)

The Noether theorem is related to so-called internal symmetries, which we will cover later
in more detail, but which for now we can illustrate using the relativistic wavefunction φ of
Section 2.1.2, which we subsequently concluded should really be treated as a quantum field. In
the wavefunction picture, Quantum Mechanics dictates that the physics should not depend on
any complex phase of φ . Now in the field theoretical context, it is quite well possible to posit a
real scalar field; however as an alternative we can posit a complex scalar field φ , and still make
the assumption that the physics described by the Langrangian indeed does not depend on the
phase of φ . This is arguably the simplest example of an internal symmetry.

Under an infinitesimal phase change, which we will describe more generally as a group
transformation (see Appendix B for more details), we can then write the transformation of the
field φ as

φ → φ
′ = φ + iαT φ ,

where α is the infinitesimal phase change, and T is the generator of the group transformation. In
the case of phase changes, we know the transformation properties:

φ → φ
′ = eiα

φ = φ + iαφ , (2.12)

so we simply have T = 1. We now require again that the action be invariant under this transfor-
mation, so we obtain the condition

δS = i
∫

d4x
(

∂L

∂φ
αT φ +

∂L

∂ (∂µφ)
∂µ(αT φ)

)

= i
∫

d4x
(

∂µ

(
∂L

∂ (∂µφ)

)
αT φ +

∂L

∂ (∂µφ)
∂µ(αT φ)

)

= i
∫

d4x∂µ

(
∂L

∂ (∂µφ)
αT φ

)
= 0.

Requiring that this equality hold for any α and integration boundaries, we find that

∂µ jµ = 0, with jµ = i
(

∂L

∂ (∂µφ)
T φ

)
.

This is the essence of the Noether theorem: every symmetry brings with it a conserved quantity.
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2.2 Perturbation Theory and Electromagnetic Interactions

2.2.1 Perturbation Theory
A theory describing only free particles is not terribly exciting. . . therefore, let us see how inter-
actions can be incorporated. The aim here is not to be entirely rigourous, but rather to provide
a heuristic introduction to the computation of scattering amplitudes that can be understood as a
reasonably straightforward extension of (time-dependent) non-relativistic perturbation theory.

Suppose that the Hamiltonian of a system is described by

H = H0 +V (~x, t)

and that the system corresponding to the unperturbed Hamiltonian H0 can be solved exactly,

H0φn = Enφn with
∫

d3xφ
∗
n (~x)φm(~x) = δnm.

(Here we are assuming that the system leads to a set of discrete eigenstates. That limitation does
not affect the following argument.) We now want to know the time evolution of a system that at
a time t is in the state ψ(~x). To this end, we decompose ψ in terms of the eigenfunctions of the
unperturbed Hamiltonian:

ψ(~x, t) = ∑
n

an(t)φn(~x)e−iEnt .

Applying the Schrödinger equation then yields

i
∂ψ(~x, t)

∂ t
= ∑

n
φn(~x)e−iEnt

(
Enan(t)+

dan(t)
dt

)

= (H0 +V (~x, t))ψ = ∑
n
(H0 +V (~x, t))an(t)φn(~x)e−iEnt

= ∑
n
(En +V (~x, t))an(t)φn(~x)e−iEnt

⇒ i∑
n

dan(t)
dt

φn(~x)e−iEnt = ∑
n

V (~x, t)an(t)φn(~x)e−iEnt . (2.13)

Now assume that the interaction V (~x, t) is switched off for large times T → ∞, so that the de-
composition into eigenstates of the unperturbed system is the “proper” thing to do for such large
times. Multiplying Eqn. 2.13 by φ∗f (~x)e

iE f t and integrating the result over all space then yields

da f (t)
dt

= −i∑
n

an(t)e−i(En−E f )t ·Vf n(t), with

Vf n(t) =
∫

d3xφ
∗
f (~x)V (~x, t)φn(~x)

This is just the well-known Dyson series from non-relativistic Quantum Mechanics.
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Also the solution of this integro-differential equation proceeds in the same way as in non-
relativstic Quantum Mechanics. In addition, suppose that before the interaction is switched on
the system is in an eigenstate of the unperturbed Hamiltonian, i.e., an(−T ) = δni. Order by order,
we have

a f (t) = δ f i

+ (−i)
∫ t

−T
dt ′Vf i(t ′)e−i(Ei−E f )t ′

+ (−i)2
∑
n

∫ t

−T
dt ′Vf n(t ′)e−i(En−E f )t ′

·
∫ t ′

−T
dt ′′Vni(t ′′)e−i(Ei−En)t ′′

+ . . .

At this point, we formulate the above equation in a more covariant form by setting

φn(x)≡ φn(~x)e−iEnt .

Retaining only the lowest-order (nontrivial) transition, we then obtain

a f (t) = −i
∫ t

−T
dt ′
∫

d3x
(

φ f (~x)e−iE f t
)∗

V (~x, t ′)
(

φi(~x)e−iEit
)

= −i
∫ t

−T
dt ′
∫

d3xφ
∗
f (x)V (x)φi(x).

Finally, considering this quantity far after the interaction, at t = T , and letting T → ∞, this leads
to the transition amplitude

Tf i =−i
∫

d4xφ
∗
f (x)V (x)φi(x). (2.14)

2.2.2 Covariant Formulation of Classical Electrodynamics
Before proceeding to the implementation in Eqn. 2.14, it is useful to pay some attention to the
covariant formulation of classical electrodynamics. The starting point is the Maxwell equations:

~∇ ·~E = ρ (Gauss), (2.15)

~∇×~B− ∂~E
∂ t

= ~j (Ampère), (2.16)

~∇ ·~B = 0 (Gauss), (2.17)

~∇×~E +
∂~B
∂ t

= 0 (Faraday). (2.18)

Eqn. 2.17 indicates that ~B can be written as

~B = ~∇×~A,
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where ~A is called the vector potential. Combining this with Eqn. 2.18, it follows that ~E can be
written as

~E =−~∇Φ− ∂~A
∂ t

,

with Φ the scalar potential. With this notation, it then follows that Eqn. 2.16 can be written as

~∇×~B− ∂~E
∂ t

=
(
−~∇2~A+~∇ · (~∇ ·~A)

)
+~∇

∂Φ

∂ t
+

∂ 2~A
∂ t2

= ~A+~∇(~∇ ·~A+
∂Φ

∂ t
) = ~j.

Finally, we have
~∇ ·~E =−~∇2

Φ− ∂

∂ t

(
~∇ ·~A

)
= ρ.

When we add and subtract here a term ∂ 2Φ

∂ t2 , this last equation can be rewritten as

Φ− ∂

∂ t

(
~∇ ·~A+

∂Φ

∂ t

)
= ρ.

The two rewritten inhomogeneous equations now have a very similar form; defining

Aµ = (Φ,~A) and jµ = (ρ,~j)

allows us to finally put the inhomogeneous equations into a manifestly covariant form:

Aµ −∂
µ(∂νAν) = jµ ,

which can also be written as

∂µFµν = jν , with Fµν ≡ ∂µAν −∂νAµ . (2.19)

The quantity Fµν is called the electromagnetic field tensor, and it turns out that its elements are
just ~E and ~B.

(Of course, putting these equations into a nicely covariant-looking form does not guarantee
the right -known- behaviour of ~E and ~B under Lorentz transformations. But that can be verified
explicitly and turns out to be in good order.)

Even this nice formula can be simplified further. The field tensor Fµν encodes the physical
information. Therefore, a change in Aµ

Aµ → A′µ = Aµ +∂
µ

χ, (2.20)

with χ an arbitrary function, does not affect the physics. This is the gauge freedom of electro-
magnetism.

As a consequence, we can choose χ such that ∂νAν = 0: this is called the Lorentz condition.
So finally

Aµ = jµ . (2.21)

19



This choice for Aµ is also called the Lorentz gauge. It is to be emphasised again that the choice
of gauge does not affect the physics of the system (and other choices are indeed used, such as
the Coulomb gauge, in which ~∇ ·~A = 0).

A last ingredient that will be extremely useful in the following is the fact that the interaction
of particles with an electromagnetic field can be described simply by the minimal substitution1:

pµ → pµ + eAµ . (2.22)

The usefulness of this substitution is that we can use it instead of a “proper” field theoretical
treatment of gauge symmetries: the so-called covariant derivative corresponding to the U(1)
symmetry group relevant for this treatment of QED yields precisely the same result.

2.2.3 The covariant derivative, and implications of U(1) symmetry
As discussed in the exercises, the use of the minimal substitution allows for a derivation of the
Lorentz force in classical electrodynamics. If we are to extend this validity to the realm of
(non-relativistic) quantum mechanics, this results in a Schrödinger equation

(
1

2m
(−i~∇+ e~A)2 +qV

)
ψ(~x, t) = i

∂ψ(~x, t)
∂ t

. (2.23)

However, the requirement that the gauge transformation of Eqn. 2.20 should not affect the physics
(i.e., should leave the form of eqn. 2.23 invariant) now has a nontrivial consequence. For it
can be shown that this invariance is only achieved if simultaneously with Eqn. 2.20, also the
wavefunction transforms:

ψ(~x, t)→ ψ
′(~x, t) = e−ieχ(~x,t)

ψ(~x, t). (2.24)

Although the above is done in the framework of non-relativistic quantum mechanics, exactly
the same conclusion (Eqn. 2.24) holds in the relativistic case. In conclusion, we end up with a
space- and time-dependent phase transformation of the wavefunction, which does not affect any
physics. In group theoretical terms, the U(1) symmetry group can be identified exactly with all
possible phase transformations – hence the statement that QED implements a U(1) symmetry.

But having drawn this conclusion, matters can in fact be turned around: let us suppose that
we require that Eqn. 2.24 does not affect any physics. Then it can be shown that the quantum
mechanical analogue of Eqn. 2.22,

i∂µ → iDµ ≡ i∂µ + eAµ , (2.25)

precisely achieves this. The quantity Dµ is called the covariant derivative.
Note that this phase change looks a lot like the one encountered in Eqn. 2.12. An essential

difference is that rather than merely requiring invariance under global phase changes, we now

1The derivation of this property is lengthy and we will not venture into it here. More details can be found e.g. in
Jackson [2], Chapter 12. Also one of the exercises offers a partial justification.
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impose this requirement even for local (i.e., space and time dependent) phase changes. Another
important difference, although we will not prove it here, is that we now require not merely the
action to be invariant under the transformation, but also the Lagrangian itself!

Of course, all of the above hinges on the known properties of QED. However, it turns out that
the gauge principle (starting here with the assumed phase transformation property of the wave-
function – or field – and constructing the appropriate covariant derivative, which then ultimately
describes the interaction of charged particles with the electromagnetic field) is very powerful.
The same principle will be used later to describe the strong and weak interactions.

2.2.4 Transition Amplitudes
We now have all the required ingredients in hand to proceed further. In the Klein-Gordon equa-
tion, we make the minimal substitution of Eqn. 2.22; the resulting equation can be recast as

( +m2)ψ =−V ψ, (2.26)

with the “potential” V given by

V ψ =−ie(∂µAµ +Aµ
∂µ)ψ− e2A2

ψ

(note the operator character of the derivative: it acts on ψ as well as on A). We will neglect the
last term in this equation, on account of the fact that e is small. Retaining only the first two terms,
we then have

Tf i = −i
∫

d4xφ
∗
f (x)V (x)φi(x)

= i
∫

d4xφ
∗
f (x)(ie)(A

µ
∂µ +∂µAµ)φi(x).

The last term is amenable to integration by parts, and neglecting the resulting surface integral the
result becomes

Tf i =−i
∫

d4x jµ

f i(x)Aµ(x) with jµ

f i(x) =−ie
(
φ
∗
f (x)∂

µ
φi(x)− (∂ µ

φ
∗
f (x))φi(x)

)
. (2.27)

Note that the quantity jµ

f i(x) looks almost exactly like the quantity jµ(x) in Eqn. 2.7. There
is however a difference in that jµ

f i(x) involves two different wavefunctions, those of both the
initial and final states. The proper interpretation of jµ

f i(x) is that of the current involved in the
interaction of a microscopic particle. This is relevant in that the absorption or emission of a
photon (we’ll see later that this picture is appropriate) may affect the particle noticeably.

Eqn. 2.27 is appropriate for the description of the interaction of a particle with a general
electromagnetic field. However, this is not the situation typically of interest in particle physics.
Rather, our interest is in scattering particles off each other, i.e., in electromagnetic fields caused
by other particles: the field satisfies

Aµ = jµ(2)
f i (2.28)
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relating it to the current of the other particle (which we will also assume to be an electron).
We will also restrict the further discussion to plane-wave initial and final states (as appropriate

for our discussion of scattering experiments where long before and after the scattering process,
the participating particles can be considered as free particles). In this case, the current jµ(2)

f i takes
on the simple form

jµ(2)
f i (x) =−e|N|2

(
p(2)i + p(2)f

)µ

e−i(p(2)i − p(2)f ) · x
,

and it is not hard to see that Eqn. 2.28 is satisfied by

Aµ(x) =−
jµ(2)

f i (x)

q2 with qµ = (p(2)i − p(2)f )µ . (2.29)

Therefore, the final transition amplitude is given by

Tf i = −i
∫

d4x jµ(1)
f i (x)

−gµν

q2 jν(2)
f i (x)

= |N|4
∫

d4xe−i(p(1)i − p(1)f + p(2)i − p(2)f ) · x

·
(

ie(p(1)i + p(1)f )µ

)
· −igµν

q2 ·
(

ie(p(2)i + p(2)f )ν

)
(2.30)

= |N|4(2π)4
δ

4(p(1)i + p(2)i − p(1)f − p(2)f ) ·
(

ie(p(1)i + p(1)f )µ

)
· −igµν

q2 ·
(

ie(p(2)i + p(2)f )ν

)
.

A few remarks are in order at this point:

1. For clarity, a label (1) has been attached to the current representing particle 1 (the particle
that is scattered by the potential caused by particle 2). However, Eqn. 2.31 is clearly
symmetric in the treatment of the two particles under consideration. This is in fact to be
expected! For in our -now microscopic- setup, we are scattering two electrons off each
other, and there really isn’t any physics reason to treat them differently.

2. The factor (2π)4δ 4(. . .) arises from the integration over all of spacetime of the plane-wave
exponents. Its effect is to impose conservation of four-momentum, as desirable for these
scatterings. In fact, this is not at all particular to the process we are considering here, but
is instead related to the assumption of asymptotically free states.

3. Implicit in Eqn. 2.31 is the assumption that the normalization N is independent of the
momentum. This is in fact correct, but we will not bother with such normalization issues.

Therefore, in general we will be simplifying the discussion of the transition amplitude to that of
the so-called matrix element, generically denoted by M . Their relation is defined by

Tf i =−i(2π)4
δ

4(p(1)i + p(2)i −∑
j

p j)NM , (2.31)
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where the sum is over all particles in the final state, and N takes care of the above normalization.
In this case, M is given by

− iM =
(

ie(p(1)i + p(1)f )µ

)
· −igµν

q2 ·
(

ie(p(2)i + p(2)f )ν

)
. (2.32)

Limitation

The thing that makes the above derivation heuristic is Eqn. 2.26, in which a “potential”
term is added to the equation of motion for a free particle (and not to the free particle Hamil-
tonian). Clearly this is not a proper thing to do. Fortunately, it turns out that in a proper
quantum field-theoretical context, we can use the actual Hamiltonian for a complex scalar
field (which we lack the formalism to construct explicitly), and it can be shown that the
expression for the transition amplitude is correct.

2.2.5 Feynman Diagrams and Feynman Rules
The transition amplitude of Eqn. 2.31 is our way to Feynman diagrams. Apart from the delta
function and normalization factors, it contains three ingredients:

• two terms originating from the currents involving the two particles (and which are called
the couplings);

• and one term that represents the electromagnetic field, as per Eqn. 2.29.

In addition, that same equation shows us that the four-momentum qµ occurring in the term corre-
sponding to the electromagnetic field corresponds precisely to the difference between the initial-
and final-state particles, or in other words, their momentum transfer. This leads us to a very
simple picture, especially given that we are aware of the particle nature of the photon: in this
process, a photon is exchanged between the two electrons, absorbing four-momentum from one
electron and transferring it to the other. The −gµν/q2 term is called the photon propagator.

This picture can in fact be translated easily to a graphical equivalent, as shown in Fig. 2.2,
called the Feynman diagram corresponding to this amplitude. In it, the exchanged photon is
clearly recognizable, as is its coupling to the electrons. The corresponding Feynman rules (given
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Figure 2.2: Graphical representation of the matrix element of Eqn. 2.32.

without proof – that is rather a topic for a course on Quantum Field Theory) then tell us how to
go back from the diagram to the matrix element:
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1. Each Feynman diagram consists of external and internal lines (in Fig. 2.2, the electron
and photon lines, respectively) and of vertices, which are associated with the couplings of
particles to each other.

2. Each vertex involves a factor

(2π)4
δ

4(∑
i

ki) ·
(
ie(pi + p f )

µ
)

where the delta function expresses four-momentum conservation at each vertex (all the ki
are taken to be incoming; this is a generic feature of all Feynman diagrams) and in the
coupling e(pi + p f )

µ the electron four-momenta “follow the arrows”, as in Fig. 2.2.

3. Each internal photon (i.e., each photon propagator) is represented by a “wavy” line and
corresponds to a term ∫ d4q

(2π)4
−igµν

q2 ,

where qµ is the photon’s four-momentum (meaning that each internal four-momentum is
integrated over).

4. The result contains a factor (2π)4 times a delta function expressing overall four-momentum
conservation. This factor is discarded (but of course is to be kept in mind when doing actual
computations); the result is equal to −iM .

5. The complete matrix element for a given process (i.e., for given -completely specified-
initial and final states) in general corresponds to multiple Feynman diagrams, the individ-
ual matrix elements of which have to be summed. (In fact, to obtain the complete matrix
element all possible Feynman diagrams need to be summed. This is a consequence of the
Dyson series: we have restricted ourselves to the computation of the first term in perturba-
tion theory, and ideally we would like to compute higher-order terms as well.)

It may be noted that the photon’s four-momentum qµ does not in general satisfy q2 = 0. On
the one hand this is good (as otherwise the transition amplitude would diverge), but on the other
hand the question is how this relates to the masslessness of the photon!

The resolution of this issue rests on the fact that the interaction (i.e., the exchange of the pho-
ton) takes place on very short timescales. On such timescales, the Heisenberg uncertainty prin-
ciple dictates that a photon of (squared) “mass” q2 may exist for an amount of time ∼ 1/

√
|q2|.

Such photons are called virtual (since they cannot propagate over macroscopic distances) or off-
shell. In fact we will also encounter many examples of other off-shell particles being exchanged
in interactions.

On a more practical note, while the process under consideration here is the elastic scatter-
ing of two particles, we could have equally well chosen to consider the scattering of a particle
and an anti-particle instead (e.g., electron-positron scattering). Now recall that in the Feynman-
Stückelberg approach, anti-particles are (loosely speaking) considered as particles moving back-
ward in time, and are associated with the negative-energy solutions. In Feynman diagrams, this
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difference between particles and anti-particles is expressed by reversing the direction of the ar-
rows; so for anti-particles the direction of the arrows is always opposite the physical propagation
in time. As a corollary, the conservation of (electrical) current implies that the arrows in a single
“current line” (the external and internal lines featuring electrons and/or positrons) must always
be in the same direction along the line.

Returning now to our computation of electron-electron scattering, it is not too hard to realize
that the above Feynman rules give rise to another diagram, even at the lowest order in pertur-
bation theory. Both of them are shown in Fig. 2.3. The second diagram arises because we are
dealing with indistinguishable particles (this is why it is not immediately obvious that we did not
find it straight from our original treatment of this process, in which we started out not making
any assumptions as to the nature of the “other” particle). This process is called Møller scattering.
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Figure 2.3: Diagrams contributing (in lowest order) to the Møller scattering process
e−+ e−→ e−+ e−.

2.3 The Dirac Equation

2.3.1 Dirac’s Attempt

As mentioned in Sect. 2.1, in a quantum mechanical setting there are two problems with the
Klein-Gordon equation (perceived problems, as they are addressed by a proper field-theoretic
treatment):

1. it involves a second order time derivative, giving rise to negative-energy states and a system
that has no ground state;

2. and these same negative-energy states lead to a continuity equation that is not amenable to
a probability interpretation.

Even if in the context of field theory there is no direct problem, Dirac’s attempt to address
the above “issues” by constructing an equivalent equation that only involves a first order time
derivative has proven to be of great importance, as it leads us to a proper description of spin-1/2
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particles (the discussion above has not mentioned spin at all, but of course we know that electrons
are spin-1/2 particles).

The Dirac equation for free spin-1/2 particles (like the Schrödinger equation, in the position
representation) is

(i∂µγ
µ −m)ψ(x) = 0, (2.33)

with the quantities γµ satisfying the anticommutation relation

{γµ ,γν} ≡ γ
µ

γ
ν + γ

ν
γ

µ = 2gµν . (2.34)

Clearly this equation cannot be satisfied by ordinary numbers, and therefore a (four-dimensional)
matrix representation is used. Multiple conventions are possible, but the one most often used (the
Björken and Drell convention) is

γ
0 =

(
1 0
0 −1

)
, γ

i =

(
0 σ i

−σ i 0

)
, (2.35)

where the σ i represent the Pauli matrices (so also the right-hand side of Eqn. 2.34 formally
needs to be multiplied by the 4×4 unit matrix 1). Also ψ(x) cannot be a “simple” scalar-valued
wavefunction anymore; instead it becomes a column vector of dimension four, called a bi-spinor.

(That the Dirac equation is sufficient can be seen by multiplying it from the left by (i∂νγν +
m). This simply yields the Klein-Gordon equation, so we have proven that it is a sufficient
condition for the Dirac equation to be satisfied.)

Clearly, given that we are again considering free particles here, it is to be expected that the
solutions to the Dirac equation are plane waves. Now in particular, let us consider those plane-
wave solutions corresponding to a particle at rest. Given the 2× 2 block form of the gamma
matrices, write

ψ =

(
ψA
ψB

)
.

In this case, the Dirac equation can be rewritten as

(i
∂

∂ t
−m)ψA = 0,

(−i
∂

∂ t
−m)ψB = 0.

Clearly the solution ψA ∼ e−imt corresponds to a “normal” positive-energy solution; however,
ψB ∼ e+imt again corresponds to a negative-energy solution. By now, however, aware of the
antiparticle interpretation of E < 0 states, we proceed undeterred.

Like in the case of the Klein-Gordon equation, we take the hermitian conjugate of the Dirac
equation. The result is

−i∂µψ
†(x)γµ†−mψ

†(x) = 0.
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We manipulate this by noting, from Eqn. 2.35, that γ0† = γ0 and γ i† = −γ i (since the Pauli
matrices are hermitian). Using Eqn. 2.34, this can be written concisely as γµ† = γ0γµγ0. So we
have

−i∂µψ
†(x)γ0

γ
µ

γ
0−mψ

†(x) = 0.

Next, we multiply the whole equation by -γ0 from the right; the result is

i∂µψ(x)γµ +mψ(x) = 0, with ψ(x)≡ ψ
†(x)γ0.

With this conjugate equation in hand, we proceed to construct again a continuity equation.
This is easily done by multiplying Eqn. 2.33 by ψ(x) from the left, the conjugate equation by
ψ(x) from the right, and summing the result. This yields

i∂µ(ψ(x)γµ
ψ(x)) = 0.

Considering in particular the time component, we therefore find that we have

ψ(x)γ0
ψ(x) = ψ

†(x)ψ(x),

So we have found a solution where a probability interpretation makes sense! However, again
because of the antiparticle interpretation we will not make further attempts in this direction, but
instead consider this as a conserved electric current:

jµ =−eψ(x)γµψ(x). (2.36)

2.3.2 Spin-1/2 Particles
The virtue of the Dirac equation is that it allows for a description of spin-1/2 particles. This
is perhaps to be expected already simply from the presence of the gamma matrices containing
Pauli matrices (which also in non-relativistic Quantum Mechanics are associated with the spin
operators for spin-1/2 particles). However, it can also be seen in more detail from considering
the general Dirac equation, and again writing it in its 2×2 block form,

ψ(x) =
(

uA
uB

)
e−ip · x,

i.e., splitting off the plane-wave piece from the spinors uA and uB (at this stage we haven’t yet
specified whether the solution involves positive or negative energies). For nonzero momenta, we
obtain coupled equations for the spinors:

(~σ ·~p)uB = (E−m)uA,

(~σ ·~p)uA = (E +m)uB. (2.37)

Restricting ourselves to the positive-energy solution, we can now choose two independent solu-
tions for uA:

u(1)A = χ
(1) =

(
1
0

)
, u(2)A = χ

(2) =

(
0
1

)
.
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The second equation in Eqn. 2.37 then yields

uB
(1,2) =

(~σ ·~p)
E +m

u(1,2)A .

Similarly, in the case of negative-energy solutions, we choose two independent solutions for uB,
u(1,2)B = χ(1,2), and find (from the first equation in Eqn. 2.37):

uA
(1,2) =

−(~σ ·~p)
−E +m

u(1,2)B .

The minus sign has been carried over to the four-momentum components here. The reason is
that in this case, the physical four-momentum contains an extra minus sign relative to the four-
momentum occurring in Eqn. 2.37. (Note that we might as well have started with the independent
solutions for uB in the case of positive-energy solutions, and vice versa. The important point is
that in the non-relativistic limit, for positive-energy solutions, uA� uB, while for negative-energy
solutions, uB� uA.)

Summarizing, ψ represents four independent degrees of freedom, two for E > 0 and two for
E < 0. These two are of course nothing but the two solutions corresponding to different spin
states. When doing practical calculations, the four solutions are typically written as

u(1,2)(p) = N

(
χ(1,2)

(~σ ·~p)
E+m χ(1,2)

)
, u(3,4)(p) = N

(
−(~σ ·~p)
−E+m χ(1,2)

χ(1,2)

)
.

In addition, the negative-energy bi-spinors are usually written in terms of the physical four-
momentum, leading to

v(1)(p)≡ u(4)(−p) and v(2)(p)≡−u(3)(−p).

2.3.3 Perturbation Theory

The step from free to interacting spin-1/2 particles is made in exactly the same fashion as in the
case of spin-0 particles: by means of the minimal substitution (see Sect. 2.2.2). In that case, the
Dirac equation is modified to

(i∂µγ
µ −m)ψ(x) = (i

∂

∂ t
γ

0 + i~∇ ·~γ−m)ψ(x) =−eAµγ
µ

ψ(x). (2.38)

The reason for separating the time and spatial components is that we can use this equation to
construct explicitly a Hamiltonian suited for spin-1/2 particles. To do so, multiply (from the left)
by γ0; we then have

i
∂

∂ t
ψ(x) = (−i~∇ · γ0~γ + γ

0m)ψ(x)− eAµγ
0
γ

µ
ψ(x),
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the right-hand side of which nicely has the form H = H0 +V , so that we can identify the term
−eAµγ0γµ with a perturbing potential V . Inserting this in Eqn. 2.14, we obtain

Tf i = −i
∫

d4xψ
†
f (x)(−eAµγ

0
γ

µ)ψi(x)

= −i
∫

d4x jµ

f i(x)Aµ(x), with jµ

f i(x) =−eψ f (x)γ
µ

ψi(x).

Also here, we restrict ourselves to plane-wave states, and assume that the electromagnetic field
is generated by another particle. This implies that we can again insert Eqn. 2.29 – this time of
course with a current that is appropriate for spin-1/2 particles. From here, it is not hard to see
that also the rest of the computation of the transition amplitude proceeds as for scalar particles.

2.3.4 Feynman Rules for Spin-1/2 Particles
Without further ado, we quote here the Feynman rules appropriate for the computation of matrix
elements in QED:

1. The basic “building blocks” of Feynman diagrams are again propagators and vertices.

2. Each photon propagator again corresponds to a factor

∫ d4q
(2π)4

−igµν

q2 .

3. Each fermion propagator corresponds to a factor

∫ d4q
(2π)4

i( /q+m)

q2−m2 .

Note that we have introduced here the notation /a≡ aµγµ for any aµ .

4. Each vertex corresponds to a factor

(2π)4
δ

4(∑
i

ki) · ieγ
µ ,

where all four-momenta are again taken to be towards the vertex.

5. External lines now need to be dealt with more precisely, as the fermions can be labeled
by their spins, and we also allow for external photon lines corresponding to specific spin
states:

incoming fermion: u outgoing fermion: ū
incoming antifermion: v̄ outgoing antifermion: v
incoming photon: εµ outgoing photon: εµ∗
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6. All appropriate Feynman diagrams should again be summed. A small refinement compared
to the case of “scalar QED”, however, is that when combining matrix elements that differ
only in the exhange of two identical fermions, a relative minus sign must be added. (This
is because wavefunctions must be fully antisymmetric under exchange of any two identical
fermions.)

7. The overall (2π)4δ 4(. . .) is again discarded, and the result is again −iM .

They are shown here mostly for completeness, as we will not attempt to perform complete cal-
culations of Feynman diagrams; nevertheless, it is important to be aware of the differences with
the “scalar QED” case.

Polarization states of spin-1 bosons

The polarization vectors εµ mentioned in the above merit some further discussion. Let
us first discuss the case of massive spin-1 bosons. In this case, one can transform to the
particle’s rest frame, so that the polarization vectors from a non-relativistic treatment are
appropriate:

~ε1 =




1
0
0


 , ~ε2 =




0
1
0


 , ~ε3 =




0
0
1




for plane polarization states, and (taking the z axis as our quantisation axis)

~ελ=1 =
−1√

2




1
i
0


 , ~ελ=−1 =

1√
2




1
−i
0


 , ~ελ=0 =




0
0
1




for circularly polarized states. These polarization states are orthonormal:

~ε∗
λ
·~ελ ′ = δλλ ′ .

Next, we promote these polarization vectors to proper four-vectors and require that they
remain orthonormal:

ε(p;λ ) · p = 0,

ε
∗(p;λ ) · ε(p;λ

′) = −δλλ ′ .

For a boost e.g. along the z axis, the transverse polarization states (λ = ±1) do not change
under this transformation. However, the λ = 0 (“longitudinal”) polarization state does
change. From the orthonormality conditions it is not hard to see that for a momentum
pµ = (E,0,0, p), a vector

εµ(p;λ = 0) =
1
m
(p,0,0,E)

is required, where m is the particle mass. (Note: it is far from obvious to see how the
polarization vectors transform under general Lorentz transformations! Suffice it to say that
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a proper covariant expression can be found, in the form of the so-called Pauli-Lubanski
vector.) A final useful property of these polarization vectors is

∑
λ

ε
µ(p;λ )εν∗(p;λ ) =−gµν + pµ pν/m2.

(This can either be verified explicitly, or by realising that the result cannot depend anymore
on any specific polarization vector, and hence only terms proportional to gµν and pµ pν

remain. The orthonormality conditions can then be used to determine the corresponding
coefficients.)

Let us now consider the case of massless spin-1 bosons. As discussed in Sect. 2.2.2,
the QED gauge freedom allows for transformations Aµ → Aµ − ∂µ χ , with χ an arbitrary
function. Specialising to plane waves

Aµ
∝ ε

µe−iq · x,

these gauge transformations amount to changes of the polarization vectors

ε
µ → ε

′µ = ε
µ +αqµ .

(Note that this does not violate the orthogonality condition ε · q = 0: after all, for on-shell
massless particles we have q2 = 0.) This means that we can in fact choose χ such that ε0 = 0.
Given the Lorentz condition, this implies~ε ·~q = 0. So only the transverse polarization states
survive (but of course this is well known from classical electrodynamics!).

2.4 The Electron’s Magnetic Moment
As a final application of our manipulations involving spin-1/2 particles, consider the interaction
of an electron with an external magnetic field. The non-relativistic quantum mechanical treat-
ment of this phenomenon is to posit an interaction term ~µ ·~B in the total Hamiltonian, leading
to the Zeeman splitting in the presence of a (weak) static magnetic field. In this term, ~µ is the
electron’s magnetic moment. It is typically expressed in terms of the Bohr magneton µB ≡ e/2m
as

~µ = gµB~S,

where ~S is the electron’s spin vector. For electrons in a quantum mechanical treatment, we have
~S = 1

2~σ , ~σ denoting the Pauli matrices as usual. In summary, we find a term in the Hamiltonian
equal to

1
2

gµB~σ ·~B. (2.39)

The issue is that in a “simple” quantum mechanical context, the Landé factor g cannot be com-
puted from first principles. The following calculation shows that QED does provide a prediction
for g – and a correct one at that!

We start again from the Dirac equation with the interaction with an electromagnetic field
added through the minimal substitution, as in Eqn. 2.38. Writing in 2× 2 block form, we have
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(cf. Eqn. 2.37)

~σ · (~p+ e~A)uB = (E + eA0−m)uA,

~σ · (~p+ e~A)uA = (E + eA0 +m)uB.

Combining these equations yields
(
~σ · (~p+ e~A)

)2
uA = ((E + eA0)2−m2)uA.

Next, we simplify the left-hand side of this equation, but keeping in mind the operator character
of ~p! This yields

(
~σ · (~p+ e~A)

)2
= σ

i
σ

j (pi p j + e2AiA j + e(piA j +Ai p j)
)

= (δi j + iε i jk
σ

k)
(

pi p j + e2AiA j + e(piA j +Ai p j)
)

= pi pi + e2AiAi + e(piAi +Ai pi)+ ie(piA j +Ai p j)ε i jk
σ

k

= (~p+ e~A)2 + e(~∇×~A) ·~σ
= (~p+ e~A)2 + e~σ ·~B.

Here, repeated indices are to be summed over (from 1 to 3). Clearly, this square almost trivially
reduces to the first term on the one-but-last line. It is precisely the operator nature of ~p, piA j =
A j pi− i∂ iA j, which leads to the nontrivial additional term.

Next, we consider the right-hand side of the equation for uA, in the non-relativistic limit. This
implies that the kinetic energy and A0 are small compared to m, so

((E + eA0)2−m2) = ((m+(E + eA0−m))2−m2)≈ 2m(E + eA0−m).

With that approximation and dividing by 2m, we obtain

(E−m)uA =

(
(~p+ e~A)2

2m
− eA0 +

e
2m

~σ ·~B
)

uA. (2.40)

The last term clearly corresponds to the interaction of a magnetic moment with an external mag-
netic field, with g = 2 (by comparison with Eqn. 2.39).

So is the equation g = 2 exact? Not quite, in fact. The static external magnetic field is
“merely” one form of an electromagnetic field, and as such the interaction that is of important
at the diagrammatic level is that of an electron with the photon, i.e., a diagram consisting es-
sentially only of the eeγ vertex (this is possible kinematically since the external magnetic field
represents virtual rather than real photons). But higher-order perturbative corrections, exempli-
fied in Fig. 2.4, need to be applied.

In fact, the electron’s anomalous magnetic moment ae ≡ (ge−2)/2 has been computed very
accurately:

ae =
1
2

(
α

π

)
−0.328478965

(
α

π

)2
+1.1761

(
α

π

)3
+ . . .

It is one of the great achievements of QED that the measured and predicted values of ae agree
with each other, within exceedingly small uncertainties of several parts in 109.
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Figure 2.4: Fundamental vertex and “vertex correction” diagram describing the interaction of
electrons with electromagnetic fields.
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Chapter 3

QCD: The Strong Interaction

This chapter covers our understanding of quarks and gluons: how do they explain the existence
of hadrons as bound states, what evidence do we have for the existence of quarks and gluons,
and do they manifest themselves in the present high-energy collider experiments?

3.1 From Hadrons to the Quark Model

3.1.1 Isospin

One very striking feature of the nucleons (proton and neutron) is the similarity of their masses,
938.28 MeV for the proton and 939.57 MeVfor the neutron. Also there is no evidence (from
studies of the nucleus) that they behave differently under the strong interaction. Of course they
do interact differently with electromagnetic fields (after all, the proton is electrically charged
while the neutron is neutral), and also behave differently under the weak interaction (e.g. in
the form of β decay). However, on short distance scales (smaller than O(1 fm)), the strong
interaction is indeed so much stronger that we will ignore these differences for now.

What that leaves us with is two particles which – as far as the strong interaction is concerned
– are really no different. Here, Heisenberg used the analogy with the non-relativistic quantum
mechanical formulation of spin. In this formulation, one uses the fact that the physics describing
the interaction of a particle’s spin with other parts of a Hamiltonian system depends only on
the relative orientation of the spin with respect to those other parts, and not on some absolute
orientation (this is expressed much more elegantly in the form of the Noether theorem, which
-applied to this case- states that invariance of “the physics” under rotation is directly related to
conservation of angular momentum; see Section 2.1.4 for more details). This can be exploited by
choosing a quantisation axis and calling this the z axis of the system, corresponding to definite
eigenstates of the Sz operator. Now, in the case of spin-1/2 particles, ~S is represented by the Pauli
matrices, and Sz =

1
2σ3. The analogy consists in associating the proton and neutron with the

eigenstates of σ3:

p =

(
1
0

)
, n =

(
0
1

)
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in a so-called isospin doublet. So isospin (a short-hand for “isotopic spin”) is the equivalent
of spin, but it is an internal symmetry, involving different particles rather than different spatial
orientations of the same particle.

Again in analogy to spin, rotations in “isospin space” are generated by the isospin operator~I:
a rotation over an angle ω about an axis ê can be written as

R(ω, ê) = e−iω ê ·~I .
Also, isospin eigenstates can be (fully) classified according to their total isospin I and the eigen-
value of the I3 operator, so: |I, I3〉. In the above case, we are dealing with a doublet representation
as we know of no charge -1 or +2 particles with otherwise the same properties (mass, spin) as
the proton and neutron. Hence the proton and neutron are also denoted by |12 , 1

2〉 and |12 ,−1
2〉,

respectively.
(We now know that isospin as discussed here is not really an appropriate formalism for the

discussion of interactions at high energies. However, at low energies it is indeed a useful formal-
ism, as we will see later in this section. In addition, the concept of internal symmetries turns out
to be extremely useful in other areas.)

Comparison with QED

The concept of internal symmetries was in fact introduced already in Sect. 2.2.2; see in
particular Eqn. 2.24. The difference is that the QED case concerns itself only with phase
transformations, while isospin symmetry deals with the transformations between different
particle types. This difference is artificial, however: what we referred to as a wavefunction
in Sect. 2.2.2 should more properly be regarded as a (quantum) field. Again we will not
dwell on all differences between the two; but at this point it is useful to consider the fact that
fields do not need to be complex but might as well be real; the complex nature exhibited by
Eqn. 2.24 is equivalent to dealing with rotations between the two real fields that are the real
and imaginary parts of the original, complex field.

3.1.2 The Pion
From elastic scattering experiments it is known that the strong interaction between nuclei has
a finite range, R ≈ 1.2 fm. Given that we now know that interactions between particles can be
thought of as being mediated by other particles, it becomes natural to ask what particles could
mediate the strong interaction. To answer this question, consider static solutions to the Klein-
Gordon equation, i.e.:

~∇2
φ(~x)−m2

φ(~x) = 0.

If we further restrict ourselves to sperically symmetric solutions, this can be further rewritten as

1
r2

∂

∂ r

(
r2 ∂φ(r)

∂ r

)
−m2

φ(r) = 0,

and it is easily verified that

φ(r)∼ 1
r

e−mr
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is a proper solution. This indicates an interaction of finite range R = 1/m, and hence it becomes
very natural to associate the 1.2 fm range of the strong interaction with a particle of mass ∼
160 MeV. This is the Yukawa hypothesis, after Yukawa who first proposed it in the 1930’s.

Such a particle has in fact been found! In 1947, Powell et al. [3], in emulsion plates exposed
to cosmic rays, discovered a new particle, which they called the pion, as shown in Fig. 3.1. The
charged pion, π±, turns out to have a mass of 139.6 MeV, sufficiently close to the 160 MeV
above to qualify as the mediator of the strong interaction between nucleons. (In fact the same
photographs show the pion’s decay – its lifetime is now well known, τπ± ≈ 26 ns – to yet another
new particle. This is the muon µ±, which we will discuss in more detail in the context of the
weak interaction. Also, at least one neutral particle must be involved in this decay, to conserve
momentum. This, too, belongs to the topic of the weak interaction.)

Figure 3.1: Trajectories of charged particles in emulsion plates exposed to cosmic rays. From
the ionization density and their range (the distance they travel before being stopped) the masses
of the particles involved can be inferred.

But this is not the whole story: in 1950, an electrically neutral partner to the π± was dis-
covered. The π0 is most easily recognized through its decay to two photons, π0 → γγ and a
much shorter lifetime, τπ0 ≈ 8 · 10−17 s. Its mass (135.0 MeV) is only slightly lower than that
of the charged pion. This implies that the three pions nicely fit into an isospin triplet, i.e., states
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with I = and I3 =−1,0,1. Combining now the idea of the pion mediating the strong interaction
between nucleons with that of isospin symmetry, we find that we can make use of all pions to
mediate this interaction. An example is shown in Fig. 3.2.

p p

nn

!!

p n

pn

!"

Figure 3.2: The strong interaction between a proton and a neutron, as mediated by pions.

Now that we are aware of the existence of pions, it is time to learn more about their properties.
A variety of methods have been devised to do so, and here we mention a few.

Spin of the pion: detailed balance. This method uses the reaction

π
++d→ p+p (3.1)

where d denotes the deuteron (the p-n bound state), as well as its reverse reaction. As seen
in one of the exercises, the differential cross section for such 2→ 2 body processes is given
by

dσ

dΩ
=

1
64π2s

S
|~p f |
|~pi|
|M |2, (3.2)

where |~p f | (|~pi|) is the magnitude of the momentum of (either of) the particles in the final
(initial) state, and S is a “spin factor”.

At this point it is necessary to specify more precisely the meaning of this spin factor. It
is due to the fact that the matrix element M depends on the spins of the particles in the
initial and final states. A fairly common situation is to start from unpolarized particles in
the initial state, and not to measure the final-state spins. In that case, the procedure is to

• average over initial-state spin states; and

• sum over final-state spin states.

As a result, for the above scattering process S takes the form

S = (2sp +1)2

if we replace simultaneously M 2 with its spin-averaged value; for the reverse process it
takes the value (2sπ +1)(2sd +1).

The issue now is that when comparing the (differential) cross section for the process of
Eqn. 3.1 with that for its reverse reaction, this spin-averaged squared matrix element value
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(usually denoted by 〈|M 2|〉) remains the same. So the cross section ratio (of course it
needs to be evaluated at the same centre-of-mass energy) becomes

σ(π++d→ p+p)
σ(p+p→ π++d)

=
(2sp +1)2

(2sπ +1)(2sd +1)
|~ppp|2
|~pπd|2

.

With the spins of the proton (sp = 1/2) and the deuteron (sd = 1) known, the actual mea-
surement of the cross section ratio implies that sπ = 0.

Parity of the pion. Parity is the discrete symmetry associated with spatial inversion, i.e., the
replacement of spatial coordinates with their inverse, ~r→−~r. In a quantum mechanical
context, the parity operator (denoted P) also commutes with the orbital angular momen-
tum and spin operators~L and ~S, and hence with ~J =~L+~S: this implies that states can be
simultaneously parity and angular momentum eigenstates.

A case that is easily dealt with is the parity associated with bound states. The angular wave
functions corresponding to states of definite L and m are described by spherical harmonic
functions Y m

L (θ ,ϕ):
Y m

L (θ ,ϕ) ∝ eimϕPm
L (cosθ),

with

Pm
L (x)≡ (1− x2)|m|/2

(
d
dx

)|m|
PL(x), PL(x)≡

1
2LL!

(
d
dx

)L

(1− x2)L.

It is readily seen that parity conjugation (θ→ π−θ , ϕ→ϕ+π) changes the wave function
by a factor (−1)L.

However, in situations where particles can be created or annihilated, it turns out that also
an intrinsic parity eigenvalue needs to be associated with particles.

• From the Dirac equation, it can be shown that the intrinsic parity of fermions and their
antiparticles is opposite (but no definite assignment can be made; by convention, the
particles are assigned P =+1).

• Also in the case of the baryons (hadrons of half-integer spin; the hadrons of integer
spin are collectively known as mesons), a convention is necessary. The choice made
is P(p) = P(n) = +1.

The above has been used to determine the parity of the charged pion from the reaction
π−+d→ n+n, in a setup where the pion is captured at very low velocity. In this situation,
the pion’s orbital angular momentum is likely to be L = 0. This implies that the total
angular momentum in the initial state is also J = 1. The same must therefore hold in the
final state, implying that the nn system has either L = 0 and S = 1, or L = 1 and S = 0,1:

• in the L = 0, S = 1 case, the neutrons are in a symmetric state, which is forbidden by
the Pauli exclusion principle;

• the same holds for the case that L= 1 and S= 0. Therefore, only L= S= 1 is allowed.
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But L = 1 in the final state implies that its parity is P(nn) = −1. Conservation of parity
then means that P(π) ·P(d) = P(π) =−1 (as the deuteron has P(d) = +1).

Charge Conjugation. There is another discrete symmetry operation that is best covered at this
point, namely charge conjugation. This changes particles into their antiparticles, while
leaving their other properties (momentum, position, and spin) unchanged. Now if a particle
is its own antiparticle, they become eigenstates of the charge conjugation operator:

C|ψ〉=±|ψ〉,

as is easily realized from the fact that applying C twice is simply the identity operation.
But its scope is broader than that:

• also particle-antiparticle bound states can be assigned a definite C eigenvalue. In the
case of π+π− bound states, for instance, one has

C|π+
π
−;L〉= (−1)L|π+

π
−;L〉,

as can be seen from the fact that in this case, charge conjugation has the same effect
as parity conjugation;

• within the context of field theory, it can be shown that fermion-antifermion bound
states satisfy

C| f f̄ ;L,S〉= (−1)L+S| f f̄ ;L,S〉.

The above can be applied easily to determine the C eigenvalue of the π0: it decays to γγ

final states (this is an electromagnetic decay, as is to be expected from the presence of
photons). Given that such decays conserve C (this can be shown explicitly for QED), the
π0 must have C(π0) = (C(γ))2 = 1. (Also the strong interaction conserves C, a fact that
we will state without proof.)

Given the electromagnetic decay π0 → γγ , it might be expected that the decay to three
photons (π0→ γγγ) is suppressed relative to the two-photon decay mode by an order α .
However, experimentally this decay has never been observed, and it is limited to Γ(π−→
γγγ)/Γ(π−→ γγ)< 3 ·10−8. This can be explained if C(γ) =−1.

3.1.3 Resonances
With increasing beam energies attainable through more and more powerful accelerators, the
1950’s brought a slew of new particles observable as resonances (with total decay widths of tens
to hundreds of MeV) in the cross section for scattering processes. For sufficiently low centre-
of-mass energies,

√
s . 2 GeV, isospin symmetry provides an adequate description of these pro-

cesses. An important case in point is the so-called ∆ resonances, with masses m∆ ≈ 1232 MeV.
The total decay width of these particles is approximately 118 MeV, corresponding to very short
lifetimes (of order 10−23 s).
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We consider the total pion-nucleon scattering cross sections, ignoring final states other than
πN (this is a good approximation at low energy). With the pion and nucleon isospin assignments
known, we can now use the Clebsch-Gordan coefficients (see, e.g., Appendix A) to decompose
the πN states into states of definite total isospin:

π
+p : |12 , 1

2〉|1,1〉 = |3
2
,
3
2
〉,

π
+n : |12 ,−1

2〉|1,1〉 =

√
1
3
|3
2
,
1
2
〉+
√

2
3
|1
2
,
1
2
〉,

π
0p : |12 , 1

2〉|1,0〉 =

√
2
3
|3
2
,
1
2
〉−
√

1
3
|1
2
,
1
2
〉,

π
0n : |12 ,−1

2〉|1,0〉 =

√
2
3
|3
2
,−1

2
〉+
√

1
3
|1
2
,−1

2
〉,

π
−p : |12 , 1

2〉|1,−1〉 =

√
1
3
|3
2
,−1

2
〉−
√

2
3
|1
2
,−1

2
〉,

π
−n : |12 ,−1

2〉|1,−1〉 = |3
2
,−3

2
〉.

Furthermore we exploit the fact that the conservation of isospin by the strong interaction implies
that transition amplitudes depend only on the total isospin, and denote

〈I, I3|V |I′, I′3〉= δI,I′δI3,I′3
AI.

(where AI may still depend on kinematical quantities – and it typically does). This can be used
to parametrize the various possible transition amplitudes:

〈π+p|V |π+p〉 = A 3
2
,

〈π0n|V |π−p〉 =

√
2

3
(A 3

2
−A 1

2
),

〈π−p|V |π−p〉 =
1
3

A 3
2
+

2
3

A 1
2
.

Squaring these transition amplitudes, it is easy to verify that the following results are obtained
for the cross sections:

σtot(π
+p) ∼ |A 3

2
|2,

σtot(π
−p) = σtot(π

−p→ π
−p)+σtot(π

−p→ π
0n) ∼ 2

9
|A 3

2
−A 1

2
|2 + 1

9
|A 3

2
+2A 1

2
|2

=
1
3
|A 3

2
|2 + 2

3
|A 1

2
|2.

If a resonance occurs, it is often easily discernible in the total cross section for pion-nucleon
scattering, as a function of centre-of-mass energy. Our central hypothesis is now that a resonance
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has either I = 1
2 or I = 3

2 . Given the resonant behaviour, this implies that the |A 1
2
| � |A 3

2
| in the

first case, and |A 3
2
| � |A 1

2
| in the second. Neglecting the smaller term, this then has direct

consequences for the ratio of total πN scattering cross sections:‘

σtot(π+p)
σtot(π−p)

=

{
3 if |A 3

2
| � |A 1

2
|

0 if |A 1
2
| � |A 3

2
|

This cross section ratio has been measured, and found to be very close to 3, implying that the
∆(1232) resonance has I = 3/2. If this indeed the case, then the resonances observed in π±p
scattering must be the I3 = 3/2 (∆++) and I3 = −1/2 (∆0) members of a quartet, and also ∆+

and ∆− particles are to be expected. These have indeed been found! The ∆(1232) resonances
have been analyzed further, and found to have also J = 3/2. This will turn out to be of some
importance later in this chapter.

3.1.4 Strangeness
Around the time of the discovery of the charged pion, yet other particles were discovered in
studies of cosmic-ray events in photographic emulsions and cloud chambers. Fig. 3.3 shows
the earliest such photographs. From detailed studies of these events, it became obvious that the
particles involved have masses well above mπ , some of them below mp and some of them above.
By present standards, they are long-lived, with lifetimes ranging from 200 ps to 80 ns. Table 3.1
provides a brief overview of these new particles.

Figure 3.3: Discoveries of “strange” particles. Left: discovery of the charged kaon through its
collision with an atomic electron. Right: observation of a long-lived neutral particle decaying to
two charged particles (marked by arrows). This is now interpreted as the decay K0→ π+π−.

The most peculiar feature of this class of particles was noticed in experiments using a 1.5 GeV
pion beam colliding with hydrogen atoms in a cloud chamber: their production cross section is
of similar magnitude as that for the productions of pions, protons, or resonances, even if their
lifetimes are much longer than expected for decays mediated by the strong interaction (remember
the large decay widths of Sect. 3.1.3)! In addition, they are produced in pairs.

These particles were called “strange”, and this nomenclature can be formalized by introduc-
ing Strangeness (usually denoted as S) as a new quantum number, and positing that S is conserved
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particle mass (MeV) lifetime (s) (main) decay modes
spin 0

K− 494 1.2 ·10−8 µ−ν̄µ , π−π0

K0
S 498 9 ·10−11 π+π−, π0π0

K0
L 498 5 ·10−8 π±e∓νe, π±µ∓νµ , π+π−π0, π0π0π0

spin 1/2
Λ 1116 2.6 ·10−10 pπ−, nπ0

Σ+ 1189 8 ·10−11 pπ0, nπ+

Σ0 1193 7 ·10−20 Λγ

Σ− 1197 1.5 ·10−10 nπ−

Ξ− 1322 1.6 ·10−10 Λπ−

Ξ0 1315 3 ·10−10 Λπ0

Table 3.1: Properties of the lightest strange particles.

in the strong interaction responsible for their production, but not in their decay (which is now
known to be due to the weak interaction – but more on that later).

Strangeness is known to be an additive quantum number, like isospin, and not a multiplicative
one like parity. This follows from the fact that e.g. K+Σ− and K0Λ pairs are produced in such
interactions, but not K−Σ+. (Keep in mind that the K+ is the K−’s antiparticle, and therefore
must carry the opposite value of S compared to the K−. This is not so for the Σ+ compared to
the Σ−, as can easily be seen from the fact that they have unequal masses – see Table 3.1.)

3.1.5 From the Eightfold Way to the Static Quark Model

Besides these long-lived strange particles, also strange resonances turn out to exist, decaying
(through the strong interaction) to the lightest strange particles. As a result, a great multitude of
hadrons is now known. The question is how to make sense of this multitude?

The answer to this question came through careful studies of these particles to determine their
quantum numbers (spin, isospin, parity). In particular, the assumption that isospin is part of a
more extended internal symmetry turns out to be a fruitful one. It implies that all hadrons in
the same multiplet (the equivalent of the singlets, doublets, and triplets we have seen above for
isospin, but in a more involved structure due to the extended symmetry) should have the same
spin and parity! This leads to a lot more order. Gell-Mann and Ne’eman were the first to use
this to construct the multiplets given in Figs. 3.4 and 3.5. The anti-baryons (the antiparticles
corresponding to the baryons in Fig. 3.5) have also been observed (in the meson case, particles
and antiparticles reside in the same multiplet).

The symmetry represented by this “eightfold way” (the name refers in particular to the octets
visible in these figures) is broken fairly badly by the large mass differences between particles
with different strangeness (see e.g. Table 3.1) – significantly more so than isospin symmetry.
Nevertheless, taking it seriously does allow us to make progress. For the multiplets observed are
very indicative of an SU(3) internal symmetry. On that basis, Gell-Mann in fact predicted the
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existence of the Ω− baryon, as well as its mass. The subsequent discovery of this particle (with
τΩ− = 8 ·10−11 s and m(Ω−) = 1672 MeV) meant a great triumph for this ordering principle. The
Ω− decays to ΛK− (68%), Ξ0π− (24%), and Ξ−π0, consistent with the strangeness-changing
decay of an S =−3 particle. Moreover, it was observed in the reaction K−p→Ω−K+K0, estab-
lishing definitively that S(Ω−) =−3.

But if these multiplets are all proper representations of an SU(3) symmetry (in group theo-
retical parlance), it begs the question whether there is a fundamental representation that can be
identified! Indeed this exists, and it is expressed by the quark hypothesis due to Gell-Mann and
Zweig. According to this hypothesis, all mesons are quark-antiquark bound states, and baryons
are bound states consisting of three quarks (and similarly, antibaryons consist of antiquarks).
To account for the half-integer spin of baryons versus the integer spin of mesons, the quarks
then need to have half-integer spins; we will assume that they are spin-1/2 particles. The meson
JP = 0− and 1− octets are then obtained as L = 0 bound states with total spin S = 0 and S = 1,
respectively (it is easily verified that this leads to the correct parity).

The fundamental representation is shown in Fig. 3.6. The isospin assignments of the quarks

44



d u

s

Q = −1/3

Q = 2/3S = −1

S = 0

Figure 3.6: Fundamental representation of (flavour) SU(3).

then become

u = |1
2
,
1
2
〉

d = |1
2
,−1

2
〉

d̄ = −|1
2
,
1
2
〉

ū = |1
2
,−1

2
〉

(the minus sign for d̄ follows from group theory). The quark assignment of the particles in the
pseudoscalar meson octet then becomes that of Table 3.2. There is an additional pseudoscalar
meson, the η ′, which is an SU(3) singlet: its quark content is 1√

3
(uū+dd̄+ ss̄).

π+: ud̄ K+: us̄
π0: 1√

2
(uū−dd̄) K0: ds̄

π−: dū K0: −sd̄
η : 1√

6
(uū+dd̄−2ss̄) K−: sū

Table 3.2: Quark content of pseudoscalar meson octet constituents

The case of the vector mesons is very similar, except that mixing takes place between the
octet and the singlet. As a result, we have

ω = (uū+dd̄)/
√

2 and φ = ss̄.

(This different quark content can be seen e.g. from the decay modes of the φ : it decays mostly
to K+K−, K0K0, and π+π−π0. But we will not dwell on this mixing phenomenon further.)

Based on the above, it is reasonable to ask whether multiplets corresponding to higher values
of L exist? Indeed they do: multiplets of up to L = 2 and J = 2 have meanwhile been identified,
with particles of substantially higher mass (∼ 1700 MeV) than for the pseudoscalar and vector
mesons.

3.1.6 The Baryon Decuplet and Colour
Revisiting the baryon octet and decuplet of Fig. 3.5, we find that their interpretation in the context
of the static quark model leads to a very interesting observation, in particular for the decuplet.
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We assume that the octet and decuplet correspond to L = 0, S = 1/2 and L = 0, S = 3/2 bound
states, respectively. That means that these baryons are in a completely symmetric spin state.
Choosing an arbitrary quantization axis, and denoting the spin component of the three quarks
along this axis by arrows:

|3
2
,
3
2
〉 = | ↑↑↑〉,

|3
2
,
1
2
〉 =

1√
3
(| ↓↑↑〉+ | ↑↓↑〉+ | ↑↑↓〉) ,

|3
2
,−1

2
〉 =

1√
3
(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉) ,

|3
2
,−3

2
〉 = | ↓↓↓〉.

But this is not all: also the flavour state is completely symmetric, i.e.

∆
++ = |uuu〉,
∆
+ =

1√
3
(|duu〉+ |udu〉+ |uud〉) ,

etc. The result is that we have states that are completely symmetric under the exchange of any
two particles. But quarks are fermions, so this violates the Pauli exclusion principle!

To mend this problem, a new degree of freedom has been invoked, called colour. This has
little to do with the electromagnetic spectrum; rather, it posits yet another internal (SU(3)) sym-
metry with “orientations” in this internal space denoted by red, green, and blue. Each quark can
then come in any of these three colours (or a linear superposition thereof). This can be used
to construct a three-particle colour state that is antisymmetric under the exchange of any two
quarks, namely

1√
6
(|rgb〉− |rbg〉+ |brg〉− |bgr〉+ |gbr〉− |grb〉) . (3.3)

When combined with the symmetric flavour and spin states, this yields a state that is completely
antisymmetric under the exchange of any two particles – exactly as required by Fermi-Dirac
statistics. (This is of course a very ad hoc argument. However, we will see in the next section
that this colour SU(3) interaction indeed provides a proper description of the strong interaction
in many other respects.)

Eqn. 3.3 in fact describes a colour singlet state, meaning that it does not transform under a
colour SU(3) transformation, i.e., a change of orientation in this new internal space. Also for
mesons, such a colour singlet state can be constructed:

1√
3

(
|rr̄〉+ |gḡ〉+ |bb̄〉

)
. (3.4)

Here, r̄ etc. denote the colour of the antiquark (remember, all quantum numbers are reversed go-
ing from particles to antiparticles). It has been posited that only colour-singlet states correspond
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to physical hadrons. As it turns out, the question how (anti)quarks bind into hadrons cannot be
answered using perturbation theory only. However, it can be argued that indeed, antisymmetric
colour combinations for quarks and symmetric quark-antiquark colour combinations give rise to
attractive interactions, whereas other combinations lead to repulsive interactions. (See Sect. 8.4
of the book by Griffiths for the details.)

3.1.7 Hadron Masses and Magnetic Dipole Moments
The quark model also allows us to say more about the masses of these hadrons. We start from
two observations:

1. While the mass differences within isospin multiplets are generally small, large differences
are seen between isospin multiplets with different strangeness S (which we now associate
with the presence of different numbers of s (anti)quarks). A straightforward interpreta-
tion of this dependence is that the hadron mass is determined in part by the masses of its
constituent quarks, with ms� md ≈ mu.

2. There is a substantial mass difference between vector and pseudoscalar mesons with the
same quark content, and similarly between baryon decuplet and octet states with the same
quark content. As we have seen above, the only difference between them is their spin state.
A natural thing to do is therefore to introduce a spin-spin interaction term in the Hamil-
tonian describing these bound states, akin to the hyperfine splitting term in the hydrogen
atom proportional to ~µe ·~µp ∝~Se ·~Sp/memp.

Baryons

For the baryons, this leads to a Hamiltonian

m1 +m2 +m3 +A

(
~S1 ·~S2

m1m2
+
~S1 ·~S3

m1m3
+
~S2 ·~S3

m2m3

)
. (3.5)

The consequences of this assumption for a few specific cases are readily calculated:

1. If all consituent quarks have the same mass m, Eqn. 3.5 reduces to

3m+A(~S1 ·~S2 +~S1 ·~S3 +~S2 ·~S3)/m2.

Realizing also that in the absence of orbital momentum, the total spin J, or more precisely
~J2, can be written as

~J2 = (~S1 +~S2 +~S3)
2 =~S2

1 +~S2
2 +~S2

3 +2(~S1 ·~S2 +~S1 ·~S3 +~S2 ·~S3),

and with ~S2
1,2,3 =

3
4 , we find that

(~S1 ·~S2 +~S1 ·~S3 +~S2 ·~S3) =

{ 3
4 for J = 3

2
−3

4 for J = 1
2
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From this (and with mu ≈ md) , it follows that

mn,p = 3mu−
3
4

A
m2

u
,

m∆ = 3mu +
3
4

A
m2

u
,

mΩ = 3ms +
3
4

A
m2

s
.

2. In the case of the J = 3/2 decuplet, all spins are parallel; therefore we must have

(~Si +~S j)
2 =

3
2
+2~Si ·~S j = 2⇒~Si ·~S j =

1
4
.

From this, we find that

mΣ∗ = 2mu +ms +
A
4

(
1

m2
u
+

2
mums

)
,

mΞ∗ = mu +2ms +
A
4

(
1

m2
s
+

2
mums

)
.

3. A harder case is that of the Λ and the Σ. But the Λ has isospin 0, meaning that its wave-
function is antisymmetric under the exchange of the u and d quarks (irrespective of their
particle label). This means that also its spin wavefunction should be antisymmetric under
the exchange of these two quarks, and hence ~Su ·~Sd =−3

4 . For the Σ, with I = 1, the argu-
ment works just the other way around, so for the Σ0 have ~Su ·~Sd =

1
4 . We therefore find a

mass

2mu +ms +A

(
~Su ·~Sd

m2
u

+
(~Su +~Sd) ·~Ss

mums

)

= 2mu +ms +A

(
~Su ·~Sd

m2
u

+
(~Su +~Sd +~Ss)

2− (~Su +~Sd)
2−~S2

s
2mums

)

=





2mu +ms +
A
4

(
− 3

m2
u

)
(Λ)

2mu +ms +
A
4

(
1

m2
u
− 4

mums

)
(Σ)

Clearly, with only three parameters (two quark masses and the interaction strength parameter
A) and with a substantial number of baryons, there is an overconstrained system of equations,
and the consistency of this model can be checked. With mu = 308 MeV, ms = 482 MeV, and
A = 0.0225 GeV3, we find the results in Table 3.3. The agreement is not perfect, but qualitatively
the observed masses are reproduced well enough. (Remember that at this point, we do not know
yet what interaction binds the quarks into baryons, so asking for perfect agreement is not very
reasonable. But detailed – and complicated – computations of hadron masses have meanwhile
been made in the framework of Lattice Gauge Theory, and they reproduce the observed spectrum
of light hadrons very well.)
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Particle Predicted Measured
n, p 0.89 0.939
Λ 1.08 1.116
Σ 1.15 1.193
Ξ 1.32 1.318
∆ 1.07 1.232
Σ∗ 1.34 1.385
Ξ∗ 1.50 1.533
Ω− 1.68 1.673

Table 3.3: Baryon octet and decuplet predicted and measured masses (in GeV)

Mesons

The case of the mesons is easier. With the same basic assumptions we arrive at the following
formula for the meson mass:

M(qq̄) = mq +mq̄ +A′
~Sq ·~Sq̄

mqmq̄
. (3.6)

With only two particles, the spin-spin interaction term is easily evaluated to be −3/4 for the
JP = 0− octet, and 1/4 for the JP = 1− octet. The only difficulty is with the fact that some of
the mesons are superpositions of quark-antiquark states. For these cases, the operator nature of
Eqn. 3.6 has to be exploited. For instance, for the η we have

m(η) =
1
6
〈uū+dd̄−2ss̄|M(qq̄)|uū+dd̄−2ss̄〉

=
1
6

(
2(2mu−

3
4

A′

m2
u
)+4(2ms−

3
4

A′

m2
s
)

)
.

With the same quark masses, but a different interaction strength parameter A′ ≈ 0.06 GeV3, we
find the results as presented in Table 3.4. The same conclusion holds: there is a good (qualitative)
agreement.

Particle Predicted Measured
π 0.15 0.137
K 0.46 0.496
η 0.57 0.549
ρ 0.77 0.770
ω 0.77 0.782
K∗ 0.87 0.892
φ 1.03 1.020

Table 3.4: Predicted and measured masses (in GeV) for the pseudoscalar and vector meson octets
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Baryon magnetic dipole moments

With the static quark model in hand, we are now in a position to say more about the “odd” values
for the proton and neutron magnetic dipole moments. These, as well as those of many nuclei,
have been determined in a nuclear-physics context. With the definitions

~µn,p ≡ gn,pµN~S, µN ≡
e

2mN
,

i.e., defining the nuclear magneton in analogy with the Bohr magneton, we find that gp ≈ 5.6
and gn ≈−3.8.

We will start by assuming that the quarks behave as electrons, i.e., that they have a Landé
factor g = 2, and that therefore the quark level magnetic moments are given by

~µq = Qq
e

mq
~Sq = gQq

mN

mq
µN~Sq ≡ gµq~Sq.

The nucleon’s magnetic moment can then be computed from

~µN,z = g∑
i
〈N,Sz =

1
2
|µi,z|N,Sz =

1
2
〉.

Now it can be shown that the proton’s spin⊗flavour state can be described as

|p,Sz =
1
2
〉= 1

3
√

2
(2|u(↑)u(↑)d(↓)〉− |u(↑)u(↓)d(↑)〉− |u(↓)u(↑)d(↑)〉)

(plus permutations with the down quark ending up having particle label 1 or 2; this leads effec-
tively to a factor three in the computation). The result for the first term in the proton wavefunction
therefore becomes

3 ·∑
i

µi
8

18
〈u(↑)u(↑)d(↓)|Si,z||u(↑)u(↑)d(↓)〉

= 3 · 4
9
(2 · 1

2
µu−

1
2

µd) = 3 · 2
9
(2µu−µd),

while for the second and third terms it becomes 3 · 1
18 µd. The final result is therefore 4

3 µu− 1
3 µd.

For the neutron, the computation proceeds in the same way, merely with the up and down
quarks interchanged, i.e., 4

3 µd− 1
3 µu. Now, our assumption above predicts µd =−1

2 µu (when we
assume md = mu, as earlier). Inserting this in the expression for the proton and neutron magnetic
moments, we obtain a prediction for their ratio: gn/gp =−2/3, in excellent agreement with the
observed ratio of -0.68.

3.1.8 Heavy-Quark Hadrons
It would take far too much time to say here all there is to say about hadrons. Suffice it to say that
the static quark model, as arrived at above, is the starting point for more thorough investigations
of (in particular) the proton and the neutron, which we will get to in the next section.
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Before leaving the topic of quark-(anti)quark bound states, however, it is useful to point out
that yet other quarks exist besides u, d, and s. The J/ψ meson, with a mass of ∼ 3.1 GeV, was
discovered in 1973 through its decay to e+e− or µ+µ− final states (or alternatively, the total
cross section for e+e− scattering exhibiting a strongly resonant behaviour at

√
s ≈ 3.1 GeV).

Despite its high mass it has a lifetime much too long to decay via the strong interaction (its total
decay width is about 93 keV, to be compared with the tens to hundreds of MeV for lighter but
strongly decaying hadrons), and it was rapidly interpreted as a cc̄ bound state, the c or charm
quark being a new quark of substantially higher mass, mc ≈ 1.5 GeV. Like for the lighter quarks,
various combinations of c quarks with lighter quarks are possible (they are called D mesons), as
well as baryons containing c quarks. The topic of heavy quark spectroscopy has taught us a lot
about the strong interaction, and how it binds quarks in hadrons.

The same thing happened again in 1979, when the ϒ particle was discovered, with a mass of
∼ 9.5 GeV and interpreted as a bb̄ bound state, the b or bottom quark being about 4.75 GeVheavy.
The same phenomena (B mesons containing a b quark and a lighter antiquark, baryons containing
a b quark) have been observed. The B mesons in particular play an important role in present
studies of the so-called CP violation in weak interactions, which we will touch upon in the next
chapter.

The t or top quark was discovered in 1995. Its mass is sufficiently high (about 172 GeV) that
it does not lead to bound states.

3.2 Dynamics of the Proton
All of the preceding material may be persuasive, but it can hardly be considered as actual proof
for the existence of quarks. The task, therefore, is to devise an experiment that can demonstrate
more directly their existence.

If quarks are indeed to be found as constituents of hadrons (and in the remainder of the sec-
tion, we will mostly be limiting ourselves to a discussion of the proton), this would imply a
situation reminiscent of that of nuclei (and upon further study, protons and neutrons) as con-
stituents of atoms, as demonstrated by Rutherford’s scattering experiments. This analogy is also
of direct use in that it makes a definite suggestion for the search for proton substructure, namely,
the use of electron beams scattering off protons.

3.2.1 Elastic Electron-Proton Scattering
The first such studies were made in the 1950’s (by McAllister and Hofstadter, using a 188 MeV
electron beam [4]), and concentrated on elastic electron-proton scattering. Its Feynman diagram
is shown in Fig. 3.7.

The formalism for the description of this scattering process (where the incoming electron,
of energy E, is scattered through an angle θ off the proton which is at rest) is a reasonably
straightforward extension of the Rutherford scattering formula,

(
dσ

dΩ

)

Rutherford
=

α2

16E2 sin4(θ/2)
|F(q2)|2,
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Figure 3.7: Feynman diagram for electron-proton elastic scattering

where the form factor F(q2) is the quantity that provides the actual information about the charge
distribution of the object under study (more precisely, it is the Fourier transform of the charge
distribution), and qµ is the four-momentum of the photon exchanged in the process. Two im-
provements must be made on the Rutherford scattering formula:

1. the proton is not infinitely heavy (the mere fact that E/mp is not very small tells us that it
would be wrong to ignore this fact), but instead will receive a nonzero momentum. As a
result, also the final-state electron energy is not equal to E anymore, but is rather given by

E ′ =
E

1+(2E/mp)sin2(θ/2)
. (3.7)

This leads to an extra factor E ′/E in the cross section formula. Also, the expression for q2

now necessarily also involves also the energy transfer between the electron and the proton,
and (upon neglecting terms proportional to me/E) takes the form

q2 =−4EE ′ sin2(θ/2); (3.8)

2. the proton is a spin-1/2 particle. As a result, the photon interacts both with the proton’s
charge and with its magnetic moment, and two form factors are now required to describe
the interaction.

The result of this is the Rosenbluth formula:
(

dσ

dΩ

)

Rosenbluth
=

α2

16m2
pE2 sin4(θ/2)

E ′

E

(
2K1(q2)sin2(θ/2)+K2(q2)cos2(θ/2)

)
.

Here, the factors K1 and K2 are related to the form factors GE and GM for the specific couplings
to the proton charge and magnetic moment, respectively. For completeness:

K1(q2) = −q2G2
M,

K2(q2) = 4m2
p

G2
E −

(
q2/4m2

p
)

G2
M

1−
(
q2/4m2

p
) .

For a pointlike proton, GE = GM = 1. A measurement of this process indicated clearly the finite
size of the proton, rp ≈ 0.7 fm.
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3.2.2 Deep-Inelastic Scattering
Electrons of 188 MeV energy do not really allow to investigate the proton in other ways than by
elastic scattering. But given that the proton is not a fundamental particle, one would hope that a
more energetic probe would indeed allow to see the proton’s constituents.

Progress in accelerator technology made such studies possible towards the end of the 1960’s,
when experiments with 20 GeV electrons could be carried out. The beauty of these experiments
is that even without measuring what happens to the proton (and merely measuring the outgoing
electron), it is possible to make quantitative statements about the proton. The relevant diagram
is given in Fig. 3.8. It looks much like that in Fig. 3.7, aside from the fact that the proton is not
necessarily left intact.

p1 p3

p

Figure 3.8: Feynman diagram for inelastic electron-proton scattering

That something qualitatively new happens, is easily seen in Fig. 3.9. The observed differ-
ential cross section is normalized to that for Mott scattering (as appropriate for the description
of the proton as a fundamental but infinitely heavy spin-1/2 particle). Here, the form factors as
determined through the elastic cross section measurements of the preceding section have been
used to predict the behaviour if only elastic scattering processes were taking place. This is clearly
not the case!

Let us now try to understand this scattering process from a theoretical point of view, starting
with two important observations:

1. if the proton is not left intact in this scattering process, Eqn. 3.7 does not hold anymore.
Instead, E ′ and θ are to be regarded as independent kinematic variables;

2. from Fig. 3.8 it is obvious that part of this process, namely the coupling of the electron the
photon, is well understood: this is simply QED.

This second observation is most conveniently exploited in the case of unpolarized electron
beams. In this case, (spin-1/2) QED calculations tell us that the squared matrix element for
any hadronic final state will contain (for fixed pµ

3 ; the four-momenta indicated in Fig. 3.8 are
used here) a factor

Lµν ≡ 2
(

p1µ p3ν + p1ν p3µ +gµν(m2
e− p1 · p3)

)
.

53



Figure 3.9: Differential cross section observed in inelastic electron-proton scattering, normalized
to the cross section for Mott scattering. (BeV is an old name for GeV.)

This factor is called the lepton tensor.
To make up for the lepton tensor’s Lorentz indices, the hadronic part must be of the structure

Kµν and may depend on various kinematic variables. But here we can exploit the fact that
we don’t need the specifics of the hadronic final state: this is tantamount to integrating over
all hadronic degrees of freedom, and summing over all hadronic final states. The result then
must still carry the same Lorentz indices, but it can only depend on the degrees of freedom not
integrated out, i.e., pµ and qµ ! (Note that the proton “only” sees the photon, so the individual
electron four-momenta are not relevant for the description of the hadronic part of the interaction.)
In summary, the spin-averaged squared matrix element must look like

〈|M |2〉= α2

q4 LµνW µν , (3.9)

where the factor α2 accounts for the photon coupling (even if the photon’s interaction with the
proton constituents is not known, we surmise that it has an interaction strength ∼ e), and the
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factor 1/q4 ≡ 1/(q2)2 accounts for the photon propagator.
Considering the tensor W µν in more detail, a few more features are easily realized:

• given pµ and qµ as only remaining kinematic degrees of freedom, only they can be used
to build independent terms (in addition to the metric tensor gµν );

• the lepton tensor Lµν is symmetric under the interchange of the indices µ and ν . That
means that terms in W µν antisymmetric under this interchange will not give any contribu-
tion.

In addition, charge conjugation symmetry in QED requires that qµW µν = qνW µν = 0 (the proof
of this statement is nontrivial, and we will not venture into it). As a consequence, W µν can be
expressed as

W µν =W1 ·
(
−gµν +

qµqν

q2

)
+

W2

m2
p
·
(

pµ −
(

p ·q
q2

)
qµ

)(
pν −

(
p ·q
q2

)
qν

)
,

where the only kinematic dependence of W1,2 can be on Lorentz scalars. But the only possible
Lorentz scalars are the ones constructed from pµ and qµ , i.e., p2, q2, and p ·q. Of these, p2 = m2

p,
so it isn’t a variable. Hence only q2 and p ·q are left. In practice, the variables used are

Q2 ≡−q2 and x≡ Q2

2p ·q . (3.10)

It is evident that the mere requirement of Lorentz covariance imposes important constraints on
W µν ! (Note that in the case of elastic scattering, the proton is left intact by definition. The
on-shell proton in the final state implies that (p+ q)2 = p2 + q2 + 2p · q = p2 = m2

p, and hence
q2 +2p ·q = 0, implying x = 1.)

From here on, it is merely a matter of contracting these tensors and computing the results
in the lab frame (in which the proton is at rest initially). It is a straightforward but tedious
calculation to show that the (doubly differential) cross section becomes

dσ

dE ′dΩ
=

α2

4E2 sin4(θ/2)

(
2W1(x,Q2)sin2(θ/2)+W2(x,Q2)cos2(θ/2)

)
. (3.11)

This expression implies that W1 and W2 can be measured separately by studying this differential
cross section for different beam energies E. (This was not done in the first experiment; instead, it
was assumed that W1 was not vastly larger than W2. Within that approximation, a measurement at
small angles directly translates to a measurement of W2, given the angular terms they multiply.)

The preceding does not do much more than set a theoretical framework, the “physics” of the
photon-proton interaction being buried inside the W1,2. However, it can be shown on theoretical
grounds [5] that if the proton consists of point particles, then for asymptotically high values of
Q2 (this is the origin of the qualification “deep” in deep-inelastic scattering), W1,2 should exhibit
a simple “scaling” behaviour:

lim
Q2→∞

mpW1(x,Q2) = F1(x), (3.12)

lim
Q2→∞

Q2

2mpx
W2(x,Q2) = F2(x),
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where F1,2(x) are called the proton’s structure functions. This “Björken scaling” behaviour was
indeed borne out by the first such experiment, as shown in Fig. 3.10!

Figure 3.10: Behaviour of Q2

2mpxW2(x,Q2) as a function of Q2, at a value of x = 1/ω = 0.25.

But if the photon indeed interacts with point particles inside the proton, and according to the
static quark model all hadrons consist of qq̄ or qqq combinations, it becomes very reasonable to
assume that the point particles observed in DIS are indeed these quarks! In that case, it becomes
very reasonable to assume that their interaction with the photon is in fact completely specified,
namely, just like that of the electron, but with different coupling strenghts due to their different
(non-integer) electrical charge.

This, then, leads to an alternative description of the DIS process: a quark (or more generally,
parton, after Feynman; we will get to the difference between them shortly. For now, it suffices to
say that quarks are partons) carrying a four-momentum fraction x of that of the proton is scattered
elastically by the electron. This “parton model” picture is shown Feynman diagrammatically in
Fig. 3.11. Here, we have used the same variable x as earlier on in this section, i.e., as one of the

p1 p3

p xp

Figure 3.11: Deep-inelastic electron-proton scattering in the parton model.
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two independent kinematic variables describing DIS. This is no coincidence, for the assumption
of an elastic electron-parton scattering process presupposes that the parton is on-shell in both the
initial and the final state. Therefore,

(xp+q)2 = x2 p2 +2xp ·q+q2 = (xp)2 = x2 p2⇒ 2xp ·q+q2 = 0⇒ x =
−q2

2p ·q .

This means that we have found a physical interpretation for x (or alternatively, this tells us why it
is convenient to work with x and Q2 rather than some combination thereof). (We will not worry
about the fact that this actually gives rise to a variable quark mass.)

The remaining ingredient required to describe the DIS process completely in the framework
of the parton model is the parton density function or PDF fi(x): this tells us how many partons
of type i are “available” at momentum fraction x. The squared matrix element of Eqn. 3.9 must
therefore be replaced with

α2

q4 ∑
i

Q2
i fi(x)LµνKµν ,

where Kµν is a copy of the lepton tensor, but with the quark initial- and final-state four-momenta
rather than the electron ones.

Unsurprisingly, this complete specification implies a relation between F1(x) and F2(x). This
relation turns out to be

F2(x) = 2xF1(x)

and is called the Callan-Gross relation. It is in good agreement with the experimental measure-
ments.

The double differential cross section of Eqn. 3.11 becomes

dσ

dE ′dΩ
=

α2

E2 sin2(θ/2)
F1(x)
2mp

(
1+

2EE ′

(E−E ′)2 cos2(θ/2)
)

with F1(x) =
1
2 ∑

i
Q2

i fi(x).

(3.13)
So we see that a measurement of this cross section provides us with information on F1(x) (or
equivalently, F2(x), which is more usually quoted), and hence of a combination of quark PDFs
weighted by their (squared) charges.

Now if the static quark model is indeed “all there is” about the proton, it is to be expected
that the proton’s three quarks carry a fixed momentum fraction (maybe even 1/3, due to the fact
that up and down quarks have very nearly the same mass?), perhaps smeared somewhat by the
quarks’ movement inside the proton. This is certainly not what is found! Instead, the whole
continuum 0 < x < 1 is covered.

Another testable consequence of this “naive” picture would be the expectation that

∫ 1

0
xu(x)dx = 2

∫ 1

0
xd(x)dx

(here, u(x) is a shorthand for fu(x), etc.), again because the up and down quarks have very
nearly the same mass, and there are two up quarks in the proton, versus one down quark. As a
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consequence, it would follow that

∫ 1

0
F2(x)dx =

∫ 1

0
x(

4
9

u(x)+
1
9

d(x))dx =
∫ 1

0
xd(x)dx =

1
3
, (3.14)

given the presupposed equal distribution of the momenta over the three quarks. Also this is
not borne out by the results: experimentally, the integral is measured to be ∼ 0.18, well below
expectations. Clearly the static quark model is not sufficient to describe the dynamics of the
proton.

3.3 Colour Revisited: Quantum Chromodynamics
At this point, it is time to take seriously the consequences of the colour hypothesis made in
Sect. 3.1.6. In hindsight, this leads to a surprisingly “simple” interaction, but one with profound
consequences.

3.3.1 QCD: the Theory of Quarks and Gluons
The breakthrough is to consider the strong interaction between quarks as an interaction between
their colour charges. As said, the internal symmetry group associated with this interaction is
SU(3). All that needs to be done is to promote it to a gauge symmetry, just as QED was ac-
complished by applying the principle of minimal substitution to the electromagnetic interaction.
The result is Quantum Chromodynamics or QCD. The QCD gauge bosons are called gluons, and
the SU(3) symmetry dictates that there are eight of them. One important difference compared to
QED is that the gluons themselves also carry a colour charge. In terms of the three-dimensional
complex colour space, they can be represented (up to a common normalization factor 1/

√
2)

by the so-called Gell-Mann matrices, which form the SU(3) equivalent of the Pauli matrices
encountered for SU(2):

λ 1 =




0 1 0
1 0 0
0 0 0


 λ 2 =




0 −i 0
i 0 0
0 0 0


 λ 3 =




1 0 0
0 −1 0
0 0 0




λ 4 =




0 0 1
0 0 0
1 0 0


 λ 5 =




0 0 −i
0 0 0
i 0 0


 λ 6 =




0 0 0
0 0 1
0 1 0




λ 7 =




0 0 0
0 0 −i
0 i 0


 λ 8 = 1√

3




1 0 0
0 1 0
0 0 −2




(3.15)

The QCD interaction strength is expressed in terms of a new coupling constant, called gs, or more
usually in terms of αs ≡ g2

s/4π (analogously to the QED case). The Feynman rules for QCD
involve the propagators for the (now coloured) quarks and for the gluons, as is to be expected.
The physics of QCD is in the couplings between these quarks and gluons, and the QCD vertices
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Figure 3.12: Vertices in QCD. In the case of the qqg vertex, all Lorentz and colour indices are
given explicitly. Doing so for the other vertices would require delving deeper into group theory
than is desirable here.

are shown in Fig. 3.12. One thing that is immediately obvious from these vertices is that there
are other vertices besides just the coupling of a gluon to quarks. This difference is due to the
fact that the gluons themselves carry colour charges, as already stated above, and it has profound
consequences, as we will see next.

QCD’s SU(3) symmetry

When promoting QCD to be a gauge symmetry, this implies that the “physics” of the
colour interaction must be invariant under transformations

ψ(x)→ ψ
′(x) =U(x)ψ(x), (3.16)

where ψ(x) represents a wavefunction or field with three components in colour space, and
U(x) is an arbitrary spacetime dependent SU(3) transformation in this colour space.

Because this “physics” involves equations of motion, and hence derivatives of the fields,
it becomes necessary again to introduce a covariant derivative, akin to the one introduced for
QED in Eqn. 2.25. This time, however, it must look somewhat different to account for the
fact the QCD implements an SU(3) rather than a U(1) symmetry: we have

Dµ(x) = ∂µ + i
gs

2
λaGµa(x), (3.17)

involving an implicit summation over the Gell-Mann matrices of Eqn. 3.15, which generate
the SU(3) symmetry group; the corresponding gluon fields are denoted Gµa(x). (The factor
1/2 is an artifact related to the precise definition of the coupling constant gs.)

Analogously to the case of QED (see Eqn. 2.20), also the gluon fields transform under
the gauge transformation of Eqn. 3.16. However, the details differ. It turns out (we won’t
justify this) that under the gauge transformation we must have

Dµ(x)ψ(x)→ D′µ(x)ψ
′(x) =U(x)Dµ(x)ψ(x) =

(
U(x)Dµ(x)U−1(x)

)
ψ
′(x),
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implying that

U(x)Dµ(x)U−1(x) = U(x)
(

∂µ + i
gs

2
λaGµa(x)

)
U−1(x)

= ∂µ + i
gs

2
U(x)λaGµa(x)U−1(x)+U(x)

(
∂µU−1(x)

)

= ∂µ + i
gs

2
λaG′µa(x). (3.18)

This is satisfied if

i
gs

2
λaG′µa(x) = i

gs

2
U(x)λaGµa(x)U−1(x)+U(x)

(
∂µU−1(x)

)
.

By itself this expression may not look very instructive, so let us write it down specifically
for infinitesimal transformations U(x)≈ 1− iαa(x)λa(x). Writing the result to first order in
the infinitesimal parameters αa(x), we find that

gs

2
λaG′µa(x) ≈

gs

2
λaGµa(x)− iαa(x)[λa,λb]Gµb(x)+∂µαa(x)λa

=
gs

2
λaGµa(x)+ fabcλcαaGµb(x)+∂µαa(x)λa.

In this result, we can recognise ingredients similar to those in Eqn. 2.20. But the non-abelian
nature of SU(3) leads to an additional term.

The non-abelian nature of SU(3) is directly responsible for the three-gluon and four-
gluon couplings shown in Fig. 3.12. To see this, we first need to construct the field tensor (in
analogy to Eqn. 2.19 for the QED case). Again, we lack the machinery for a full justification,
but this can be constructed as

Gµνaλa =
(

i
gs

2

)−1
[Dµ ,Dν ]

=
−2i
gs

[∂µ + i
gs

2
λbGµb(x),∂ν + i

gs

2
λcGνc(x)]

= λa(∂µGνa(x)−∂νGµa(x))+ i
gs

2
[λb,λc]Gµb(x)Gνc(x)

= λa(∂µGνa(x)−∂νGµa(x)−
gs

2
fabcGµb(x)Gνc(x)). (3.19)

Note that while Dµ is an operator, Gµνa(x) is not. The same recipe can be used also to
construct the field tensor for QED, leading to the expression 2.19 that in that case was derived
from the Maxwell equations. Note also that Gµνa(x) is not in fact gauge invariant, unlike
QED’s Aµν(x)! For using Eqn. 3.18 it is easy to see that under a gauge transformation,

[Dµ ,Dν ]→ [D′µ ,D
′
ν ] = [U(x)DµU−1(x),U(x)DνU−1(x)] =U(x)[Dµ ,Dν ]U−1(x).

But this is to be expected, since the gluons themselves are coloured!
Finally, we quote the equation of motion for the gluon fields, which again looks more

complicated than the QED case:

∂
µGµνa(x)−

gs

2
fabcGµ

b (x)Gµνc(x) =
gs

2 ∑
f

ψ̄ f (x)γνλaψ f (x).

It doesn’t take much effort to realise that this equation involves terms quadratic and cubic
in the gluon fields. These terms correspond directly to the three- and four-gluon vertices of
Fig. 3.12. The r.h.s. provides the QCD “current”, also in analogy with Eqn. 2.19; the sum
is over the quark flavours.
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3.3.2 Running Coupling Constants
In Chapter 2, we discussed the concept of radiative corrections, which is simply related to the
fact that to obtain the full transition amplitude for a given process, all Feynman diagrams fea-
turing the same initial and final states must be accounted for. Returning to QED for a moment,
and accounting for the first correction to the interaction between two electrons, the Feynman dia-
grams of Fig. 3.13 are obtained1. This process leads to a simple modification of the lowest-order

!

Figure 3.13: Lowest-order and vacuum polarization diagrams contributing to the process
e+e−→ e+e−.

amplitude which can be absorbed into an effective or running coupling constant. For Q2� m2
e ,

its behaviour is given by

α → α(Q2) = α(0)
(

1+
α(0)
3π

ln(|Q2|/m2
e)

)
.

(Note that the procedure of “merely” adding these two diagrams is not sufficient: the result
diverges, and only by a re-interpretation of parameters, a procedure called renormalization, do
we end up at the stated result. We will not discuss this topic except very qualitatively.)

But if we need to include this diagram with one “vacuum bubble”, so should we include that
with two bubbles, etc. The result is an infinite series behaving as

1+ x+ x2 + x3 + . . .→ 1
1− x

,

and hence we find a more correct expression for the running QED coupling:

α → α(Q2) =
α(0)

1− α(0)
3π

ln(|Q2|/m2
e)
. (3.20)

Quantitatively, we find that the value of the effective α(Q2) rises slightly from its value at Q2 = 0,
α(0)≈ 1/137, to α(Q2 ≈ 8 ·103 GeV2)≈ 1/128.

So why is all of this useful? The reason is that exactly the same procedure applies to the
strong interaction. But the QCD equivalent of Fig. 3.13 features an additional diagram, as shown
in Fig. 3.14 – made possible by the three-gluon vertex. Now it turns out that the contribution

1Actually, with our usual convention of time running from left to right, this diagram describes electron-positron
elastic scattering. But the diagrams can be “crossed” (or alternatively, time assumed to be running from bottom to
top) to obtain the said interaction.
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Figure 3.14: Lowest-order and vacuum polarization diagrams contributing to the process qq̄→
qq̄.

from the extra diagram (the one featuring the gluon loop) has the opposite sign to that of the
quark loop, and in fact is larger. The result, again interpreted in terms of an effective coupling
constant, is

αs→ αs(Q2) = α0
(
1− (11Nc−2N f ) ln(|Q2|/m2)

)

(where m becomes some average of the quarks that can circulate in the quark loop). Here, Nc
is a formal notation for the number of colours, i.e., Nc = 3, and N f represents the number of
“active” quark flavours and is usually taken to be 4 or 5. So αs(Q2) decreases with increasing
Q2, contrary to the QED case! Now if we again attempt to resum the infinite series resulting
from higher-order corrections, we encounter a problem: the resummed result diverges already
for Q2 > 0, namely at

1+
αs(0)
12π

(11Nc−2N f ) ln(Q2/m2) = 0.

So resumming in this fashion is not meaningful. Fortunately, it turns out that it is indeed possible
to express αs(Q2) relative to the (known?) value at a different scale, say, µ2:

αs(Q2) =
αs(µ

2)

1+ αs(µ
2)

12π
(11Nc−2N f ) ln(Q2/µ2)

. (3.21)

Comparing Eqns. 3.21 and 3.20, the significantly larger value of αs (coupled with the larger
coefficient in the denominator) implies that the Q2 dependence of αs is expected to be signifi-
cantly more pronounced (if the divergence didn’t already hint at that). This Q2 dependence has
been measured, and the QCD prediction of Eqn. 3.21 is found to be in good agreement with
experiment. This is shown in Fig. 3.15.

This behaviour has two important consequences:

asymptotic freedom: this means that at asymptotically high Q2, quarks (and gluons) can be
considered as free particles (in the same sense that, e.g., electrons are free);

confinement: on the other hand, for small Q2 . 1 GeV2
αs(Q2) becomes so large that even per-

turbation theory breaks down. This is why we cannot hope to find a perturbative approach
suitable for the description of hadrons as bound states.
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Figure 3.15: Measurements of αs as a function of Q2 compared with the best-fit QCD prediction.

3.3.3 Consequences for Deep-Inelastic Scattering

We are now in a position to understand why the structure functions F1,2(x) are not simply de-
scribed by the static quark model. When accounting for higher-order corrections to the DIS
process, we have to do more than just account for those Feynman diagrams featuring the same
initial and final states, simply because our final state is not very well defined (remember that we
sum and integrate over all the hadronic final states). As a consequence, the struck quark need not
be one of the valence quarks (i.e., one of the quarks that define the proton as a proton), but can
also be a sea quark: these can be thought of as resulting from radiative corrections. The relevant
parts of the associated Feynman diagrams of such corrections are given in Fig. 3.16.

!" !" !"

Figure 3.16: QCD radiative corrections in the DIS process. The asterisks emphasize the fact that
the photon is virtual.
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Of course, formally these are higher-order processes, and one may wonder whether it they
are important to deal with here. However, in practice it turns out that they give a very sizeable
contribution, in particular for collinear radiation (in which a single parton is split into two partons
that both follow very nearly the direction of the original parton). Now it can be shown (for an
explicit calculation see Chapter 10 of [6]) that these additional contributions are proportional to
lnQ2. But this implies that the radiative corrections will also depend on Q2, leading to scaling
violations (i.e., a violation of the “Björken scaling hypothesis” of Sect. 3.2.2)! That is, F1,2 do
depend on Q2 (even if only logarithmically).

All of this is now well understood, and DIS measurements (combined with the measure-
ments of other processes at hadron colliders sensitive to PDFs) are customarily used to extract
information about the individual partons’ PDFs. A summary of electron-proton DIS F2(x,Q2)
measurements is given in Fig. 3.17. In this plot, the scaling violation is fairly clearly visible. So
why was “Björken scaling” thought to hold at first (see Fig. 3.10)? The answer is that (a) only
a retricted Q2 range was considered in these first experiments, and (b) the measurements were
done at fairly large x. In particular, at the value x = 0.25 shown in Fig. 3.10 the Q2 dependence
is almost absent.

Another important consequence of QCD is that we are now in a position to explain why
the expectation of Eqn. 3.14 is not borne out by the data: as a consequence of the higher-order
corrections to the DIS process, the photon may well interact with another parton than one of the
“initial” quarks. Therefore, the assumption underlying Eqn. 3.14 does not hold anymore.

As a closing word on PDFs, it should be stressed that their knowledge is essential for a
precise prediction of the cross section for any process at hadron colliders (be it the Tevatron pp̄
collider or the LHC proton-proton collider), as will be discussed in Sect. 3.5. So a very detailed
knowledge of the proton is of great practical importance!

3.4 Jets
From the previous section, we have concluded that at high Q2, the partons (quarks, antiquarks,
and gluons) in the proton can effectively be regarded as free particles. The next question is
how the corresponding final state in DIS (featuring a quark or antiquark at high momentum and
large scattering angle) is compatible with the existence only of colourless hadrons as observable
entities at any reasonable time after the interaction?

The answer is given by the effective qq or qq̄ potential, which takes the form

V (r)∼−αs(r)
r
∼−αs

r
+br,

where αs has been re-parametrized as a function of r for the sake of the argument. This formula
makes it very clear that the running of αs is a very important effect! As a consequence, when a
quark moves far from its production region, this potential makes it energetically favourable for an
intermediate qq̄ pair to be created, of which the q̄ combines with the quark to form a colourless
meson; there remains then a new quark, of lower momentum, which undergoes the same process.
This is only stopped when there remain (anti)quarks of sufficiently low relative Q2 to bind to a
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Figure 3.17: Measurements of the proton’s F2(x,Q2) in deep-inelastic scattering.
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hadron. The result is a cascade of hadrons, in which the momentum of the original quark is
distributed over a significant number of hadrons traveling more or less in the same direction of
the original quark. This group of hadrons is called a jet.

At this point, several remarks are in order:

• What is described above is called fragmentation. Its description is necessarily qualitative,
as it is important for relatively low Q2, a region where perturbation theory does not suffice.

• The above describes well what happens at high-energy interactions. Consequently, jets
were seen unambiguously in e+e− interactions at

√
s = 35 GeV at the PETRA collider, in

hadronic final states. Examples of such events (or at least the charged particles in such
events) are given in Fig. 3.18 (In fact, this figure displays events with three rather than
two jets. This has a straightforward interpretation in terms of gluon radiation, which may
happen at large energy and angle compared to the quarks. Hence these events consti-
tuted the first direct evidence for the gluon). However, the first signs of jet-like features

Figure 3.18: Cross-sectional view (perpendicular to the beam direction) of three-jet events ob-
served at the PETRA e+e− collider.

were visible already earlier: in 1975, the Mark-II collaboration at SLAC found that at√
s . 7.4 GeV, the hadronic final states already exhibited jet-like features (disfavouring

the hypothesis of isotropic emission of hadrons). Nevertheless, high energies certainly
help, due to the fact that the momenta perpendicular to the quark directions are typically
limited to O(300 MeV), while the quark momenta in e+e− experiments are typically of
order

√
s/2.
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Let us now look in a bit more detail at the process e+e−→ hadrons. For sufficiently high
√

s,
the cross section can actually be understood from first principles: the Feynman diagram respon-
sible to lowest order for this process is given in Fig. 3.19 (left). This is simply a crossed version
of the parton-level interaction in DIS! The only (posited) difference compared to electrons is the
quarks’ fractional electric charge.

e!

e!

q̄

q

e!

e!

q̄

q

g

Figure 3.19: Feynman diagram describing hadron production in e+e− collisions in lowest order
(left), and higher-order correction (right). For sufficiently high energy and angle compared to the
quark and antiquark in the event, this final state may manifest itself as a three-jet event.

This implies that we can compare the resulting cross section with that for the process e+e−→
µ+µ−: provided that the quark masses can be neglected compared to

√
s/2 (because otherwise a

phase space suppression factor
√

1−4m2
q/s is incurred, but also because of resonant production

of bound states), the measurement of the ratio

Rhad ≡
σ(e+e−→ hadrons)
σ(e+e−→ µ+µ−)

“simply” counts quarks weighted with their charges. Measurements of Rhad have been performed
over a large

√
s range, and the result is displayed in Fig. 3.20.

But there is more to be said about Rhad:

• for normalization purposes, we use the µ+µ− production cross section (muons, which we
encountered in Sect 3.1.2, are “just like” electrons, apart from their larger mass, mµ =
105.6 MeV, and hence also couple to photons in the same way as electrons) and not the
e+e− one (i.e., the Bhabha scattering cross section). This is because of interference of the
relevant s-channel diagram with a t-channel diagram in the Bhabha scattering case;

• if we go through the exercise of colour counting explicitly, e.g. for
√

s well above 10 GeV,
on the basis of the above we would expect that Rhad ≈ 11

9 . Clearly, this is far from the
observed value of nearly 4. The reason for this is the fact that quarks carry colour charges,
and this leads to different colour states in the final states that need to be summed over
(rr̄, gḡ, bb̄), resulting in an additional factor of three. So this measurement constitutes an
additional validation of QCD!

• the above factor of three does not quite bring us into complete agreement with the mea-
surement. The reason for this is that radiative corrections like in Fig. 3.19 (right) need to
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Figure 3.20: Measurements of Rhad as a function of centre-of-mass energy
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be applied (remember, we are making an inclusive measurement of hadron production),
leading to a correction factor of the form

1+
αs(s)

π
+ . . .

Rather than being merely a nuisance, this can be used to infer a value for αs(s) instead!
Indeed this is one of the methods used to measure αs(Q2). However, one can do more: one
can isolate the events that contain three jets (as in Fig. 3.18). The production cross section
for such events is evidently smaller, but to first order it is proportional to αs(s), leading to
more accurate measurements.

3.5 Interactions at Hadron Colliders
If protons are composite rather than elementary particles, what happens if they collide with each
other rather than with electrons? The most prominent examples of such collisions at present are at
the Tevatron at Fermilab (near Chicago) and at the Large Hadron Collider (LHC) at CERN: these
provide pp̄ collisions at

√
s = 1.96 TeV, and proton-proton collisions at centre-of-mass energies

up to 14 TeV, respectively. Clearly the above question is one of great practical relevance.
But the answer is a simple one: just as in DIS, for high Q2 it is the partons that can be

considered to interact! This leads to quark-quark interactions, as shown in Fig. 3.21. However,

p!

p"

x"p"

x!p!

!

Figure 3.21: Feynman diagram describing a high-Q2 qq→ qq interaction at a hadron collider
(left), and reduced diagram showing only the hard interaction itself.

this is not all. In DIS, only photon couplings with quarks and antiquarks need to be dealt with;
however, this limitation arises merely from the fact that the photon only couples to electrically
charged particles. Once the high-Q2 or hard interaction involves the strong interaction, this
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Figure 3.22: Other lowest-order QCD Feynman diagrams

limitation does not apply anymore. Instead, also other interactions are possible; some (lowest
order) examples are shown in Fig. 3.22.

Note also that so far, we haven’t specified whether we are considering proton-proton or pp̄
collisions here. But in fact that does not matter! The only thing we need to account for is
the appropriate PDFs. This procedure is called the factorization hypothesis, and it allows us to
express the cross section for a given hard interaction as

dσ = ∑
i, j

∫
dx1dx2 fi(x1,µ

2) f j(x2,µ
2)dσ̂i j(xp1,xp2,αs(µ

2)), (3.22)

where σ̂i j expresses the hard scattering process at the parton level, which can (typically) be
computed using perturbation theory, and the PDFs fi, j(x,µ2) account for the non-perturbative
aspects (and as explained earlier in this chapter, they can be extracted from data). So a change of
collider can be accounted for by “simply” changing PDFs and/or values of x.
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Chapter 4

Weak Interactions

4.1 Leptons

4.1.1 Neutrino Properties
As discussed in the previous chapter, the discovery of the charged pion went hand in hand with
that of the muon; see Fig. 3.1. However, looking at these photographs a bit closer, it appears that
momentum is not conserved: the pion is stopped, and subsequently the muon is emitted upon
the pion’s decay. The neutrino was posited originally to explain the apparent lack of momentum
conservation in the decay process. Based on what we know from the pion and muon (their mass
and spin), it follows that the neutrino must be very light, and must have spin 1/2. (The same
conclusion holds from measurements of neutron decay: if that were a two-body process, the
final-state electron would be mono-energetic. Instead, a continuous electron energy spectrum is
observed. An additional – neutral – particles is required to explain this. And the spin-1/2 nature
again follows from the spins of proton, neutron, and electron.)

A truly weak interaction

The experimental observation of the neutrino did not take place until 1959. The reason for
this is the weakness of the interactions involving neutrinos. In the “four-fermion” theory, first
constructed by Fermi in the 1930’s to describe weak interactions involving neutrinos, “cross-
ing symmetry” could already be used to relate the matrix element for neutron decay to that
for (anti)neutrino-proton scattering, as shown in Fig. 4.1. The long neutron lifetime (τn ≈ 886
s), together with known phase space factors, could be used to infer an interaction strength of
GF = 1.166 · 10−5 GeV−2. This very small value of the so-called Fermi constant implied that
the cross section for the scattering process must be very low. As a result, a strong source of
(anti)neutrinos was required. This was found by Cowan and Reines in the form of a nuclear
reactor. They observed the reaction ν̄p→ ne+, in a “delayed coincidence” setup, where the
positron annihilates directly with atomic electrons to yield two photons of energy 511 keV, and
the neutron is captured by Cd, giving rise to an excited state which decays through the emission
of a third photon.
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Figure 4.1: Crossing symmetry in the four-fermion theory

Antineutrinos versus neutrinos

In the above, when discussing the reactions in detail we referred to the antineutrino rather than
the neutrino. Given that the neutrino is an electrically neutral particle, could these not simply
be identical? The answer is clearly “no”, as established by Davis in 1959 in a so-called “radio-
chemical” experiment. He looked for the reaction

ν̄ +37 Cl→ e−+37 Ar,

where the antineutrino could be defined as the particle produced in nuclear reactors. The under-
lying reaction here would be ν̄ +n→ p+ e −. The absence of this reaction implies that ν and ν̄

are distinct particles. (This statement may be qualified to some extent later.)

Different neutrino types

As seen from the studies of cosmic rays, and also later from other studies of pions produced in
scattering experiments, the charged pion decays almost exclusively as π−→ µ−ν̄ . On the other
hand, the neutron decay process above also involves an antineutrino. This begs the question
whether these two neutrinos are identical or different particles.

This was studied in the 1960’s at Brookhaven, USA, by producing neutrino beams, by first
producing pion beams of high energy (in interactions of a 15 GeV proton beam with a Be target)
and subsequently letting these pions decay. The resulting (anti)neutrinos, of energy . 3 GeV,
travel very nearly in the direction of the original pions.

If the resulting (anti)neutrinos are indeed the same as those involved in neutron decay, it is
to be expected that in the interactions of high-energy neutrinos, equal amounts of electrons (or
positrons) and muons will be produced. However, it is observed that only muons are produced
in these interactions. Hence, they must be different neutrinos, and are denoted as νe and νµ .

Lepton doublets

The conclusion from the above is that the weak interactions as studied with leptons involve either
e− and νe, or µ− and νµ . But we have already encountered this situation, where distinct particles
somehow seem to “belong together” as far as their interactions are concerned: this was our reason
for grouping the proton and the neutron into isospin doublets in Sect. 3.1.1. So we will do the
same here, and create weak isospin doublets (the adjective serves to distinguish these doublets
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from those encountered in the context of the strong interaction, and which we will from now on
denote as strong isospin doublets). If we also account for a third charged lepton (the τ lepton,
with m(τ) = 1.777 GeV and τ(τ) = 291 fs) and its accompanying neutrino ντ , we finally arrive
at the three lepton doublets of the Standard Model:

Le =

(
νe
e−

)
, Lµ =

(
νµ

µ−

)
, Lτ =

(
ντ

τ−

)
. (4.1)

Also the various decay processes described above can now be specified a little more precisely.
For instance, muon and (leptonic) tau decays are given by

µ
− → e−νµ ν̄e,

τ
− → µ

−
ντ ν̄µ or

e−ντ ν̄e

(The τ lepton was discovered in 1975, in e+e− scattering experiments, and was produced in the
interaction e+e−→ τ+τ−. The τ± decay rapidly, even if they travel a measurable distance before
decaying. Especially those decays where one decayed to a muon and the other to an electron,
plus apparent missing energy caused by the neutrinos, were used to infer the existence of the τ .)

4.1.2 W and Z Bosons
Unitarity

The four-fermion theory does quite well in the description of nuclear processes involving the
weak interaction. However, when considered in a high-energy context a theoretical problem
appears. Let us consider again the ν̄-p scattering process shown in Fig. 4.1 (right panel), and
assume for a moment that the proton and the neutron can be described as elementary spin-1/2
particles also at high energy (this is not what happens in reality, as is to be expected from the
previous chapter; but it helps to make the point, and the argument works equally well when con-
sidering collisions with quarks). It turns out that in the four-fermion theory, the (spin-averaged,
squared) matrix element for this process becomes

〈|M |2〉 ∼ G2
F(p1 · p3)(p2 · p4),

where p1,3 are the four-momenta of the initial-state p and ν̄ , and p2,4 are the four-momenta of the
final-state particles. Clearly, when considering this process in the CM frame, all four-momenta
are of order

√
s, and we find that 〈|M |2〉 ∼ s2. Furthermore, for this two-body scattering process

we know how to convert this to a (differential) cross section: see Eqn. 3.2. Integrating the result,
we find that that total ν̄p scattering cross section behaves as σtot ∼ s.

On the other hand, a formal and general consideration of scattering processes leads to the
so-called unitarity or Froissart bound, indicating that the cross section for the above process
cannot exceed π/s. The above linear dependence on s must therefore violate the Froissart bound
at some value (in practice, this happens at

√
s ≈ 600 GeV). Even if initial investigations of

the weak interaction were far from attaining such energies, it was evident that Fermi’s theory
required modification.
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Massive gauge bosons

Following the successful description of electromagnetic and strong interactions as being medi-
ated by particles, it makes a lot of sense to suppose that the same paradigm is useful for the
description of these ν̄p interactions as well. Given the lepton doublet structure of Eqn. 4.1, and
now supposing that at high energy, it is rather a quark inside the proton that is struck, we arrive at
the replacement of Fig. 4.2 (we will be discussing weak interactions of quark couplings in more
detail in Sect. 4.3). The hypothesized intermediate particle is called the W boson.
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Figure 4.2: Modification of the neutrino-nucleon scattering amplitude by the insertion of a W
boson.

But the W boson must have somewhat different properties than the photon and the gluons
encountered before. First, it changes a neutral lepton (ν or ν̄) into a charged lepton or vice versa:
this implies that it must be charged. Second, if it were a massless boson like the photon, the
differential cross section for the process shown in Fig. 4.2 would receive a factor 1/t2 from the
(squared) propagator. Integrating again over the scattering angle in the CM frame, this would
lead to an additional 1/s2 dependence, and hence σtot ∼ 1/s. But unlike Fermi’s theory, this
result disagrees with experiment, as shown in Fig. 4.3! Addressing this requires a massive W
boson, with a mass MW sufficiently high that it does not lead to a discernible behaviour different
from the one in Fermi’s theory for the CM energies probed by these interactions. The propagator
for this massive W boson is given by

gµν −qµqν/M2
W

q2−M2
W + iMWΓW

.

Focusing on the denominator (the numerator is not in fact very important for the high-energy
behaviour of scattering processes), we see that for |q2| �M2

W, this simply approaches a constant
∼ 1/M2

W, while for |q2| �M2
W, a behaviour consistent with the Froissart bound is obtained.

Also the decay of the muon can be recast in a process involving a W boson, as shown in
Fig. 4.4. Neglecting the very small q2 of the exchanged W boson, this relates the Fermi constant
to the “actual” coupling constant g:

GF =
1

4
√

2
g2

M2
W
. (4.2)

Unfortunately, while GF is easily measured from this process, this relation does not a priori
provide any further information regarding MW.
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Figure 4.3: Measured νµN and ν̄µN total charged current scattering cross sections versus neu-
trino beam energy (“charged current” means that a muon is observed in the final state).
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Figure 4.4: Decay of the muon.

At this point, we have not yet drawn any conclusion from the grouping of leptons into dou-
blets. But again by analogy with the strong isospin doublets, which corresponded to an SU(2)
symmetry, we should expect to see signs of an SU(2) symmetry at work in the weak interaction
as well. But this also suggests that besides the charged W± bosons, we should expect a third,
neutral, partner – this is called the Z boson.

But how to observe such a neutral partner? The electromagnetic interaction is so much
stronger than the weak interaction (at least effectively) that it will normally swamp any sign
of Z bosons. The solution is to study again (anti)neutrino interactions, since electromagnetic
interactions are absent in this case (the neutrino being neutral). Such interactions were indeed
observed, first in 1973 by the Gargamelle experiment. An example is shown in Fig. 4.5. The
cross section for “neutral current” neutrino-nucleon interactions (involving the Z boson) is of the
same order as that for “charged current” neutrino-nucleon interactions (involving the W boson).
Therefore, their masses must be of the same magnitude.
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Figure 4.5: Bubble chamber photograph taken by the Gargamelle experiment. A neutrino beam
arrives from the left; one neutrino collides with an atomic electron. The electron radiates two
photons, both of which convert into e+e− pairs, and is then stopped.

4.2 Electroweak Unification and the Higgs Mechanism
As alluded to before, the photon as well as the gluons of QCD are strictly massless. On the
other hand, the W and Z bosons are massive (and must in fact be heavy). It can be shown that
it isn’t possible to introduce direct mass terms in the Lagrangian to accommodate the W and Z
boson masses: this would break the gauge invariance that is at the heart of the description of all
fundamental interactions. So an alternative description is needed. It turns out that this indeed
exists, in the form of spontaneous symmetry breaking coupled with the Higgs mechanism.

To set the scene, it turns out that the Higgs mechanism involves not only the SU(2) symmetry
but also electromagnetism – this is the origin of the “electroweak unification” in the title. This
implies that we have four gauge bosons to account for (W±, Z, γ), i.e., one more than provided for
by SU(2). At first sight it would seem that the additional U(1) symmetry needed would be “just”
that of QED; but this turns out not to work. Instead, we need a different U(1) symmetry, often
labeled U(1)Y with the Y denoting “hypercharge”. In this case, for a representation transforming
under hypercharge and the “weak isospin” SU(2) as

ψ → ψ
′ = eig′ Y2 b(x)

ψ

ψ → ψ
′ = eigTiwi(x)ψ

we find that the covariant derivative becomes

∂µ → Dµ = ∂µ − igW i
µTi− ig′

Y
2

Bµ . (4.3)

Notes:
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• The factor 1/2 in the hypercharge transformation is a convention only.

• The generators Ti depend on whether ψ represents a singlet, a doublet, or something else
under the SU(2) transformations. In practice, only Ti = 0 (for singlets, which do not
transform at all) or Ti = σi/2 (for doublets) are relevant for our discussion.

• Similarly, the hypercharge Y quantum number can in principle be chosen independently
for each doublet; we will see later that the same value of Y will be required for all lepton
doublets, however. (It will turn out that for quark doublets, yet another value is required to
make things “work”; and there are other details that will be covered later.)

With these ingredients we can now go back e.g. to the lepton doublet Le. Since this is a
doublet, its kinetic energy term in the Lagrangian must look like Le(i /D)Le. Using the above
expression for the covariant derivative as applied to doublets, and with hypercharge YL, we find

(ν̄e, ē)

(
i /∂ − g

2 /W3−YL
g′
2 /B −g

2( /W1− i /W2)

−g
2( /W1 + i /W2) i /∂ + g

2 /W3−YL
g′
2 /B

)(
νe
e .

)
(4.4)

In this formula, the relevant particle fields are simply represented by the particle names; so
we could read e ≡ ψe etc. Looking at the off-diagonal terms, one observes terms coupling the
electron to the neutrino:

−g
2
(ν̄e( /W1− i /W2)e+ ē( /W1 + i /W2)νe) .

Since this coupling changes the charge of the lepton involved, we expect to find the (charged) W
bosons here; so in detail, we must have

W±µ = (W µ

1 ∓ iW µ

2 )/
√

2.

We will return to the diagonal terms later.
The Higgs mechanism consists in positing another complex scalar doublet field Φ(x), which

transforms under weak isospin just like the lepton doublet, but which a priori (and also in prac-
tice!) has a hypercharge quantum number Yh that differs from YL. This requires a kinetic energy
term

(DµΦ)†(Dµ
Φ), with Dµ = ∂µ − i

g
2

σiWiµ −
g′

2
YhBµ .

In addition, however, we make a specific choice for the potential terms in the Lagrangian per-
taining to Φ:

V (Φ) = µ
2
Φ

†
Φ+λ (Φ†

Φ)2. (4.5)

In this expression, the quadratic term would be “just” another mass term if we had µ2 > 0.
However, we instead choose µ2 < 0! This choice has rather dramatic consequences, due to
the fact that the minimum of V will not anymore be at Φ = 0 but rather at |Φ| = v/

√
2, with

v =
√
−µ2/λ . For then we are in a situation where although |Φ| is well defined, Φ itself is not!

The same value of V is obtained for all values of Φ on a three-dimensional hypersphere in a four-
dimensional space. But since the ground state or vacuum of the system must be a well-defined
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state, one specific orientation on this hypersphere must be chosen. (Note that in a finite system
the conclusion would be different: the ground state would still have 〈Φ〉 = 0.) This situation
(where the potential features the full -original- symmetry but where the choice of ground state
breaks this symmetry) is called spontaneous symmetry breaking.

For the vacuum we choose the convention (for the interested: a different orientation in the
above-mentioned four-dimensional space would result in different expressions for e.g. the lepton
doublets)

〈Φ〉=
(

0
v/
√

2

)
.

Having done so, this allows us to choose a different parametrisation for Φ, by “expanding”
around the ground state

Φ = eig σi
2 ρi(x)

(
0

(v+h(x))/
√

2

)
,

where h(x), ρi(x) describe the independent fields in this alternative formulation. By itself this
formulation does not offer us anything new in terms of physics, but this changes upon realising
that we can use up almost all of the gauge degrees of freedom (that is, the freedom to apply
an arbitrary SU(2) and U(1)Y transformation at each point in spacetime) to “rotate away” the
exponent in the above expression! So we are left with

Φ =

(
0

(v+h(x))/
√

2

)
. (4.6)

(Note that three real parameters are involved in this rotation; so we still retain one degree of
freedom.) Once we do this, the DµΦ term can fairly easily be seen to reduce to

DµΦ =

( −ig
2(W1µ − iW2µ)

∂µ + ig
2W3µ − ig′

2 YhBµ

)
(v+h)/

√
2,

so that the Higgs field’s kinetic energy term becomes

1
2

∂µh∂
µh+

(g
2

)2
W−µ W µ+(v+h)2 +(gW3µ −g′YhBµ)(gW µ

3 −g′YhBµ)
(v+h)2

8
. (4.7)

Ignoring for a moment the terms involving the field h(x), we see that we are left with one term
proportional to W−µ W µ+, which represents a mass term for the W bosons; and one other term
which is proportional to the square of a linear superposition of the W µ

3 and Bµ fields. This last
term implies that the latter two fields mix to yield the Z boson (which we know to be massive);
the orthogonal combination then yields the photon, for which no mass term exists, i.e., it remains
massless. In detail, the superposition can be written as

Aµ = sinθwW 3µ + cosθwBµ ,

Zµ = cosθwW 3µ − sinθwBµ ,
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with the weak mixing angle θw defined as

tanθw ≡
g′Yh

g
.

The masses of the W and Z bosons then become

MW =
1
2

vg, (4.8)

MZ =
1
2

v
√

g2 +g′2Y 2
h , (4.9)

so that we also have the relation MW = MZ cosθw.
Now let us return to Eqn. 4.4, and in particular the diagonal term involving the neutrinos,

ν̄e(i /∂− g
2 /W3−YL

g′
2 /B)νe. A priori this term involves couplings of both the Z boson and the photon

to the neutrino; the only way to ensure that there is no coupling to the photon is by requiring that
the particular combination of W3 and B yields again the Z boson. Comparing again with Eqn. 4.7,
this implies that we must have YL = −Yh. For the sake of definiteness, in the following we will
assume that Yh = 1 (a different value could be accommodated by a different value of the coupling
constant g′, so this is not an actual constraint).

Turning now to the diagonal term involving the electrons, we then find that in this case we
do have a coupling to both the Z boson and the photon. Focusing on the coupling to the photon,
after a bit of rewriting this can be seen to be equal to

gsinθw ē /Ae. (4.10)

But we know that even if QED in this context only arises from mixing the SU(2) and U(1) sym-
metry transformations, we must still reproduce the couplings of the photon to charged particles
in general and to electrons in particular. This implies that we must have

gsinθw = e. (4.11)

So we see that coupling of the weak interaction (g) is in fact larger than that of electromagnetism!
The sole reason for the qualification “weak” lies in the high masses of the W and Z boson.

Lepton masses

It turns out that the Higgs mechanism is responsible not only for the masses of the W and Z
bosons, but also for the leptons and quarks. To see this, let us first restrict ourselves to the
leptons.

We need to make use of a property of the weak interactions that will be motivated by ex-
perimental results only a bit later: the SU(2) and U(1) combined electroweak interactions are
sensitive to the spins of the leptons involved, and more particularly to their chirality. For mass-
less particles, it can be shown that the action of the matrix γ5 ≡ iγ0γ1γ2γ3 is identical to that of
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the helicity operator λ encountered in one of the exercises. This allows us to view the left- and
right-handed chirality projections

PR,L =
1
2
(1+ γ

5)

as different states! For while it is always possible to carry out a Lorentz boost such that a left-
handed massive particle in one Lorentz frame becomes a right-handed one in another frame (and
vice versa, this is not possible for massless particles.

As will be shown later, the charged weak interaction deals with left-handed fermions and
right-handed anti-fermions only. This implies that the lepton doublets Le,µ,τ encountered in
Eqn. 4.1 refer to the left-handed components only; formally starting from the full four degrees
of freedom for an “ordinary” lepton this can be written

Le =

(
νe,L
eL

)
=

(
PLνe
PLe

)
.

The absence of a charged weak interaction involving right-handed fermions then implies that
these must be singlets under SU(2): eR =PRe. It can be shown that the mass term meēe ordinarily
occurring in the Lagrangian can be written as

meēe = me(eLeR + eReL),

but such a term clearly would not be invariant under SU(2) weak isospin transformations; this is
a more mathematical argument why the left- and right-handed particles being separate entities is
only possible if the particle involved is massless.

But this situation still does makes it possible to construct “Yukawa” interaction terms in the
Lagrangian involving also the Higgs field. In particular, for the electron we have:

LYu,e =−ye

(
LeΦeR + eRΦ

†Le

)
.

In this formula, we haven’t yet specified how eR transforms under U(1) hypercharge transforma-
tions (i.e., what hypercharge YR quantum number the right-handed electron carries). But in fact
this follows simply from the fact that the Lagrangian must be invariant under hypercharge trans-
formations; hence we must have −YL +Yh +YR = 0. And since we already had Yh = −YL = 1,
this implies YR =−2.

Upon breaking again the electroweak symmetry and making the replacement of Eqn. 4.6, the
above formula becomes

− ye (eLeR + eReL)
v+h√

2
=− ye√

2
ēe(v+h). (4.12)

Neglecting the term proportional to h, this is easily seen to yield a mass term, with mass me =
yev/
√

2. This same mechanism works also for the other leptons, where the higher masses of
the muon and the tau lepton are generated by assuming higher values for the respective Yukawa
coupling constants yµ and yτ .
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W and Z boson masses

The above implies that if θw can somehow be measured, Eqn. 4.11 fixes g. From the known
value of the Fermi constant and Eqn. 4.2, MW can then be determined. Finally, Eqn. 4.9 can then
be used to estimate MZ.

A method to estimate θw in fact does exist, in the form of a measurement of (the ratio of) the
total cross sections for neutral current (NC) and charged current (CC) neutrino-nucleon interac-
tions. Again we lack the theoretical machinery to derive the result, and therefore quote it without
justification:

Rν ≡
(

σtot(NC)

σtot(CC)

)
ν

=
1
2
− sin2

θw +
20
27

sin4
θw,

Rν̄ ≡
(

σtot(NC)

σtot(CC)

)
ν̄

=
1
2
− sin2

θw +
20
9

sin4
θw.

These cross sections have indeed been measured (see also Fig. 4.3), resulting in an estimate
sin2

θw ≈ 0.23, from which it follows that MW ≈ 80 GeV and MZ ≈ 92 GeV.

Experimental proof of the W and Z bosons was obtained in 1983 and 1984 at the Spp̄S
collider, which collided protons and antiprotons at

√
s = 630 GeV. At these high energies, it is

again the partons in the (anti)protons that can be considered to collide. The Feynman diagrams
of Fig. 4.6 show how this allows the W and Z bosons to manifest themselves. The W and Z
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Figure 4.6: Production and (leptonic) decay of W and Z bosons in hadron colliders.

bosons have been studied in much more detail at the Large Electron-Positron or LEP collider.
In its first phase, from 1990 to 1994, it operated at

√
s ≈MZ, probing the Z resonance. Among

many other measurements, a scan of the
√

s dependence of fermion pair production cross sections
(see Fig. 4.7, left diagram) resulted in a very precise measurement of the Z boson’s mass: MZ =
92.188(2) GeV. The same measurements also established that there are no more than the three
(light, mν < MZ/2) neutrino species already known.

In its second phase, LEP operated at higher energies,
√

s . 208 GeV. An important part of
the physics programme was the study of W-boson pair production: as shown in the right diagram
of Fig. 4.7, this probes the WWZ and WWγ couplings.
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Figure 4.7: Processes studied at the LEP collider: fermion-pair production in the vicinity of the
Z resonance (left), and W-boson pair production (right).

4.3 Quarks

4.3.1 The CKM Matrix
Remembering the quark content of the lightest mesons (see Table 3.2) and the lightest baryons, it
is in fact easy to guess at the weak interaction processes responsible for the decay of the pion and
of the neutron. They are shown in Fig. 4.8. (It should be stressed that this picture, referred to as
the “spectator model”, is incomplete, as it ignores the – non-perturbative – interactions between
the (anti)quarks in the decaying hadron. But it reproduces the observed features of such decays
quite well on a qualitative level.)
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Figure 4.8: Feynman diagrams describing the decay of the pion (left) and of the neutron (right),
in the spectator model.

Consequently, it is very reasonable to suppose that also quarks form weak isospin doublets,
just like the leptons. However, there are other decays that then are less easily understood. For
instance, the K− may decay just like the charged pion, i.e., to µ−ν̄µ . But looking at the quark
content of the K−, we see that this must be sū. How can the u quark be in two doublets at once?

The solution to this puzzle is to assume that the down-type quark occurring in the doublet is
not simply d or s, but a linear combination of them:

(
u
d′

)
=

(
u

dcosθc + ssinθc

)
, (4.13)

with θc the so-called Cabibbo angle. When accounting (in addition to u, d, and s) only for the
charm quark, a similar linear combination s′ =−dsinθc+ scosθc can be defined. The result is a
rotation in the “plane” of the down-type quarks:

(
d′

s′

)
=

(
cosθc sinθc
−sinθc cosθc

)(
d
s

)
. (4.14)
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The above can be used to obtain an estimate of θc from a comparison of the decay widths of the
charged kaon and the charged pion. Assuming that the non-perturbative aspects are the same for
both decays, we find that the ratio Γ(K→ µν)/Γ(π → µν) yields an estimate of tan2 θc (apart
from phase space factors, which can be computed). The result is that θc ≈ 13◦.

This rotation, compared to the introduction of only the single quark doublet of Eqn. 4.13,
also solves another problem, namely that of the (a priori) unexpectedly small decay width for
the decay K0→ µ+µ−. If only the first quark doublet is taken into account, this is described by
the diagram in Fig. 4.9. This is a higher-order, so-called “box” diagram, and its computation is

K!

"!

"#

u ""

Figure 4.9: Feynman diagram describing the decay K0→ µ+µ−, in the spectator model.

involved. However, it is straightforward to see that the amplitude for this diagram must involve a
factor sinθc cosθc. When adding also the second doublet, we find that a second diagram becomes
possible, with the up quark replaced with a charm quark; this yields a factor −sinθc cosθc. So if
the up and charm quark masses were identical, these decay amplitudes would cancel completely!
Turning the argument around, from the observed decay width a prediction for mc ≈ 1.5 GeV was
made before the discovery of the J/ψ , in good agreement with the experimental value.

But as we now know, there are three rather than two generations of quarks. So the rotation of
Eqn. 4.14 needs to be replaced with one appropriate for three generations of quarks:




d′

s′

b′


=VCKM




d
s
b


 , with VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 (4.15)

The matrix VCKM is called the Cabibbo-Kobayashi-Maskawa matrix, after Cabibbo, and Kobayashi
and Maskawa who extended the formalism. This extension is slightly less trivial than it seems
at first sight: the quark fields are intrinsically complex, and VCKM is therefore inherently unitary,
leading to nine independent parameters. But five quark phases can be “rotated away”, leaving
four parameters. This leaves room for three angles and one irreducible complex phase. This com-
plex phase is believed to be responsible for the CP violation phenomena discussed in Sect. 4.4.

A few more remarks about the CKM matrix are in order:

• Its effect is to cause a different between weak interaction eigenstates (defined as those
states occurring in doublets) and mass eigenstates (those states that can be assigned a
definite mass). The convention is to speak only about mass eigenstates; therefore the weak
interaction vertex describing the coupling of quarks q and q′ must involve a factor Vqq′ (or
V ∗q′q, whichever is the up- or down-type quark).
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• Given this situation, one may wonder whether this difference also affects the coupling of
quarks to the Z boson in such a way that vertices result involving different down-type quark
flavours (these would be called flavour-changing neutral current or FCNC interactions).
For instance, we would find a coupling of down quarks to the Z boson which now becomes
one of the corresponding weak interaction states (d′). At the quantum field level, this would
correspond to a coupling

d′d̄′Z = (Vudd+Vuss+Vubb)(V ∗udd̄+V ∗uss̄+V ∗ubb̄)Z

implying that FCNC interactions might indeed occur. However, we should in fact be deal-
ing with a term (d′d̄′+ s′s̄′+b′b̄′)Z; if this is written in terms of the couplings to mass
eigenstates, it becomes

∑
i

d′id̄
′
iZ = ∑

i jk
Vi jV ∗ikd jd̄kZ = ∑

i jk
(V †)kiVi jd jd̄kZ

= ∑
jk

δ jkd jd̄kZ = ∑
j

d jd̄ jZ,

where we have used the unitarity of the CKM matrix. So no FCNC interactions result!

• A large number of measurements have been performed to estimate the values of individual
CKM matrix elements (akin to the estimation of θc above). As a result, they are now
fairly well known. In particular, the absolute values of the matrix elements show a clear
hierarchical pattern:



|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


≈




0.97 0.23 0.004
0.23 0.97 0.04

0.008 0.04 1


 . (4.16)

It should be noticed that the off-diagonal elements of the CKM matrix have a significant practical
impact. Without them, it would still be possible to produce e.g. top quark pairs, and the top quark
would still decay via the process t→Wb; but there would be no way for the b quark to decay
(and a similar situation would hold for the s quark)! So these off-diagonal elements are ultimately
responsible for the fact that all “stable” matter involves quarks and (charged) leptons from the
first generation only.

Finally, let us return to the topic of top quark decays. In Sect. 3.1.8, we commented on the fact
that it is too massive to lead to bound states. In more detail, the important ingredient is the fact
that its mass (mt ≈ 172 GeV) is substantially larger than that of the W boson (mW ≈ 80.4 GeV).
As a consequence, the top quark can decay to an on-shell W boson, and the propagator suppres-
sion ∼ 1/M2

W does not hold anymore. In fact, its total decay width can be computed to be of
order 1.4 GeV, corresponding to a lifetime of O(10−24s). It is this lifetime which is too short to
lead to the formation of bound states. The top quark was discovered in 1995 at the Tevatron pp̄
collider, in interactions leading to tt̄ final states. The subsequent decays of both top quarks, es-
pecially if at least one of them leads to a leptonic decay, provide a sufficiently distinctive feature
that such final states can be recognized among the huge backgrounds. The Feynman diagrams
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responsible for the top quark production and decay at hadron colliders are shown in Fig. 4.10.
(The Vts and Vtd matrix elements are sufficiently small that usually, only the decay to b quarks is
accounted for.)

t
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t

t̄

t
b
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Figure 4.10: Feynman diagrams describing tt̄ pair production at hadron colliders (left, middle),
and top quark decay (right).

4.4 Discrete Symmetries

4.4.1 Parity violation
In Sect. 3.1.2, the discrete symmetry operations parity conjugation and charge conjugation were
first introduced, along with the notion that particles may be eigenstates of the quantum mechan-
ical operators corresponding to these operations (in the case of charge conjugation, this is only
the case for states that remain unchanged under this operation). The implicit assumption is that
all physics is invariant under these operations; and this holds for the strong and electromagnetic
interactions.

Evidence for parity violation

However, if we consider the decays of the charged kaon, focusing on some of the most important
ones, we find the following:

K+→ µ+νµ (B = 0.635),
π+π0 (B = 0.207),

π+π+π− (B = 0.055),
π+π0π0 (B = 0.018).

We encountered the first decay mode in Sect. 4.3.1, where its decay width was used to estimate
θc. The three-pion decay modes have been studied extensively using partial-wave analysis, and
found to involve no orbital angular momentum. However, focusing on the two-pion decay mode,
we find that it violates parity! For given the spin-0 nature of the pions, the spin of the kaon is
entirely determined by the orbital angular momentum in the decay. Since we know that the kaon
has J = 0, we know that the parity in the final state is (−1)L+2 = 1. However, the kaon has
P =−1, so parity must be violated in this weak decay!
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(For the historically inclined: due to this parity violation, it was not immediately recognized
that the particles decaying to two and three pions were the same. This is known as the “θ − τ

puzzle”: two particles were known with the same lifetime, mass, and spin, but with apparently
different parity.)

The first indisputable evidence for parity violation in weak interactions is due to a nuclear
physics experiment, namely the study of the decay of a polarized cobalt isotope, 60Co, which
decays as 60Co→ e−+ ν̄e +

60 Ni. The crucial observation was that the electrons are emitted
preferentially in the direction of the 60Co spin (its nucleus has JP = 5+).

Why does this imply parity violation? Remember that parity conjugation means spatial in-
version. This means that positions and momenta are reversed: ~r→ −~r, ~p→ −~p, but angular
momenta are not (in the case of orbital angular momentum, this is easy to see: ~r×~p→~r×~p.
More generally, spatial inversions and rotations commute, so it is possible to find states that are
simultaneous spin and parity eigenstates). So we can consider the projection of spin onto the
electron momentum vector, which again does change sign under parity conjugation. The (differ-
ential) decay rate evidently depends on such a term, which is a manifestation of parity violation.

It turns out that in fact, parity violation is inherent to the weak interaction! Once it was
discovered, many of its manifestations were studied. In particular, one experiment studied the
decay through electron capture 152Eu+ e−→152 Sm∗+νe. The excited 152Sm, with J = 1, sub-
sequently decays through the emission of a photon, resulting in a 152Sm nucleus in the ground
state, with nuclear spin J = 0. Now the electron capture takes place from the innermost shell (the
K shell), implying L = 0 in the initial state. Also the initial 152Sm has J = 0. So the only relevant
spins in this process are those of the electron, the neutrino, and the photon. In particular, we
can consider the spin projection along the momentum of the neutrino (this choice of quantization
axis is called helicity). Choosing this as our z axis, we find that

Sz(e−) = Sz(γ)+Sz(νe),

and to conserve spin, we find that the photon spin must be opposite to that of the neutrino. Now
the captured electron is unpolarized, so that if parity is conserved, we expect to find unpolarized
photons. However, it is found that always Sz(γ) = +1, and hence Sz(ν) = −1

2 . In other words,
the neutrino is always left-handed! And this conclusion is not specific to this particular process,
but is general (as is perhaps to be expected, given the “universal” way in which the neutrino
couples to the W boson).

Separating left- and right-hand states

This left-handed nature can be generalised further: all couplings of fermions (antifermions) to
the W boson are left-handed (right-handed) – in the limit that the fermions can be considered
to be massless. (The actual coupling involves a factor γµ(1− γ5), with γ5 ≡ iγ0γ1γ2γ3, to be
compared with the factor γµ in the Feynman rules of Sect. 2.3.4: this projection is onto chiralilty
rather than helicity states. As a result, for massive fermions the situation is more complicated,
but for massless fermions they are the same.)

It is for this reason that we find such counter-intuitive results as that for the decay of the
charged pion π−, which is almost exclusively to µ−ν̄µ , and not to e−ν̄e: merely on the basis
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of the available phase space, the branching fraction for the latter decay would be expected to be
higher. What happens is that weak decay forces the ν̄ to be right-handed. Spin conservation (the
pion has J = 0) then requires that the charged lepton is also right-handed. But if the charged
lepton were massless, the weak decay would require the charged lepton to be left-handed, and
the decay would not occur at all! This effect is larger than the phase space effect, resulting in the
observed branching fractions.

A more fundamental consequence of this left-handed nature is that left- and right-handed par-
ticles are (in principle) to be regarded as independent degrees of freedom. For massive particles
this does not seem to make much sense, since it is always possible to convert a left-handed parti-
cle into a right-handed one simply by applying a Lorentz boost and thus reversing its momentum
direction (while leaving its spin untouched). However, it is to be kept in mind that the Standard
Model does not allow for ab initio fermion masses; rather, they are generated by the Higgs mech-
anism, as already mentioned in Sect. 4.2. So this is not an issue. Summarizing, it turns out that
our classification of leptons and quarks needs to be modified. This is how we finally end up with
Table 1.1.

Parity violation in weak interactions has meanwhile been measured in great detail. For in-
stance, the parity violation in the weak decays of charged leptons is now customarily used as a
tool to analyze the polarization of those leptons. This was done e.g. at LEP when it operated
at the Z resonance to study the polarization of τ leptons produced through e+e− → τ+τ−; an
example is shown in Fig. 4.11.
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Figure 4.11: Pion energy distribution in τ− → π−ντ decay candidates, as measured in the lab
frame by the L3 experiment at LEP. There is a one-to-one correspondence between this energy
and the pion emission angle in the τ− rest frame. The expected background is denoted by the
hatched area; the contributions from the two τ− polarization states are given by the two open
histograms.
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Finally, a comment concerning the Z boson is in order. While the SU(2) weak interaction
deals exclusively with left-handed fermions (and right-handed antifermions), the Z boson and the
photon result from a mixing of the SU(2) and U(1)Y gauge bosons. Requiring that the couplings
of fermions to the resulting photon remain those of QED then fixes their couplings to the Z
boson; it is found that these couplings become considerably more complex, and we will not go
into more detail concerning this issue.

4.4.2 Mixing and CP Violation
In the preceding section, we focused primarily on parity conjugation, and did not pay much
attention to charge conjugation. But this was in fact implicit in what we did discuss. Recalling
that we said that only left-handed neutrinos and right-handed antineutrinos exist, it is not hard to
relate those states to the separate or combined C and P conjugations, as shown in Fig. 4.12. So

ν
_

ν
_

CC

P

P

CP

νR

R

Lν

L

Figure 4.12: Cartoon describing the effect of applying charge and parity conjugations.

while the physics is not invariant under the separate C and P conjugations, it may be expected
that it is invariant under the combined CP conjugation. We will see later in this section that this
assertion is not confirmed by the experimental data.

Mixing

To see how this comes about, we return to the neutral kaons. These have appeared in the previous
chapter in two contexts: once as particles of definite (strong) isospin and strangeness (K0 and
K0) in the pseudoscalar meson octet in Fig. 3.4, and once as particles with definite lifetimes (KS
and KL) in Table 3.1. The K0 and K0 are related by CP conjugation:

CP|K0〉= |K0〉 and CP|K0〉= |K0〉.

The inclusion of parity conjugation in these equations is necessary to deal with the kaon decays.
(Given that the K0 and K0 are not their own antiparticles, an additional phase factor may be
involved; however, that is merely a convention.)

How do these differences arise? The crucial point is that the (charged) weak interaction does
not conserve flavour (and this affects both isospin and strangeness). This implies that as long as
spin and four-momentum is conserved, and unbroken internal symmetries (colour and electrical
charge) are respected, the weak interaction can mediate transitions between these two states.
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Figure 4.13: Feynman diagrams responsible for K0↔ K0 oscillations. q and q′ both represent
up-type (u, c, or t) quarks.

That this is indeed possible is shown by the Feynman diagrams of Fig. 4.13. This results in
mixing of these states, as can be seen by considering the K0 and K0 as the two components of a
two-state system. In the kaon rest frame, the time evolution of a wave function

ψ(t) =
(

K0(t)
K0(t)

)

corresponding to a non-interacting kaon is then given schematically by

i
∂

∂ t
ψ(t) =

(
m̄ δm∗

δm m̄

)
ψ(t).

In this equation, m̄ is the mass that results from the strong interaction (quark masses plus binding
energy), while δm represents the oscillation induced by the weak interaction. As can be seen
from Fig. 4.13, the inverse oscillation leads to the complex conjugate expression; this explains
the δm∗ term.

Diagonalization of this hermitian matrix leads to eigenstates

|K1,2〉=
1√
2

(
|K0〉± δm

|δm| |K
0〉
)
,

with corresponding masses
m1,2 = m̄∓|δm|.

If no intrinsically complex phase is present in the CKM matrix, then δm is real. In that case, we
will further assume that δm > 0. It is then easy to see that CP|K1〉= |K1〉 and CP|K2〉=−|K2〉;
thus they are called CP-even and CP-odd states, respectively.

Let us now consider the decays of these neutral kaons to two-pion (π+π−, π0π0) and three-
pion (π+π−π0, π0π0π0) final states.

• Clearly, the two-pion decays must have L = 0 (since both the kaon and the pion are pseu-
doscalar mesons). Therefore, this final state must be CP-even (it is C-even, as detailed in
Sect. 3.1.2, as well as P-even).

• The situation for the three-pion decays is somewhat more complicated. But it can never-
theless be addressed to a fair extent:

89



– the orbital angular momentum can be written as~L =~L12 +~L3, where~L12 represents
the angular momentum of the system of the first two pions, and ~L3 is the angular
momentum of the third pion with respect to this system. But since the kaon has J = 0,
we must have L3 = L12. Therefore the overall parity is P = (−1)L12+L3+3 =−1;

– the π0π0π0 final state has C = C3(π0) = 1 (see again Sect. 3.1.2). For the π+π−π0

system we find C =C(π0) · (−1)L12 . It is found experimentally that L12 = 0.

As a result, it follows that the three-pion final state is CP-odd.

So if CP is respected, we expect two-pion and three-pion decays for the K1 and the K2,
respectively. This has important consequences! For besides possible differences between the dy-
namics of the two decay processes, there is simply much less phase space available for the three-
body decay (mK− 3m(π) ≈ 83 MeV) than for the two-body decay (mK− 2m(π) ≈ 218 MeV).
There are other decays (not to CP eigenstates), but it turns out that the two-pion decay of the
K1 overwhelms all other decay modes, while a similar situation does not hold for the three-pion
decay of the K2. This leads to a large difference in lifetimes: as already indicated in Table 3.1,
τ(KS) ≈ 90 ps, while τ(KL) ≈ 50 ns – a difference of almost three orders of magnitude! And
also the branching fractions differ substantially:

KS : B(π0
π

0)≈ 0.31, B(π+
π
−)≈ 0.69

KL : B(π0
π

0
π

0)≈ 0.21, B(π+
π
−

π
0)≈ 0.13, B(π±`∓ν̄`(ν`))≈ 0.66

Therefore it becomes straightforward to associate the K1 with the KS, and the K2 with the KL.

Strangeness oscillations

Let us focus for a moment on the decays to non-CP eigenstates, like the decay KL→ π±`∓ν̄`(ν`).
It is easily realized that we must have K0→ π−`+ν`, so this final state tags the decaying meson
as a K0. This can be used to demonstrate the existence of strangeness oscillations.

To understand these, it is useful to keep in mind that the particle that is produced (typically in
a strong or electromagnetic process) is a flavour eigenstate (K0 or K0), and not a mass eigenstate
(KS or KL). Letting t = 0 at the time of production, and supposing that the meson that is produced
is a K0, we find a superposition of the two mass eigenstates:

|K0(t = 0)〉= 1√
2
(|K1(t = 0)〉+ |K2(t = 0)〉) .

However, the time evolution of the mass eigenstates is different. Taking into account also the
decays, we have:

|K1,2(t)〉= e−im1,2t e−Γ1,2t/2|K1,2(t = 0)〉,
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and therefore the time evolution of our original K0 becomes

|K0(t)〉 =
1√
2

(
e−im1t e−Γ1t/2|K1(t = 0)〉+ e−im2t e−Γ2t/2|K2(t = 0)〉

)

=
1
2

(
e−im1t e−Γ1t/2+ e−im2t e−Γ2t/2

)
|K0〉

+
1
2

(
e−im1t e−Γ1t/2− e−im2t e−Γ2t/2

)
|K0〉.

It is now straightforward to compute rate of particles that are produced as a K0 to decay either
as a K0 or a K0:

|〈K0|K0(t)〉|2 =
1
4


e−Γ1t + e−Γ2t +2e

−1
2
(Γ1 +Γ2)t

cos(∆mt)


 ,

|〈K0|K0(t)〉|2 =
1
4


e−Γ1t + e−Γ2t −2e

−1
2
(Γ1 +Γ2)t

cos(∆mt)


 ,

with ∆m≡ m1−m2(= 2δm). This oscillatory behaviour is clearly observed (see also Fig. 4.15).
The mass difference is tiny, 5 ·109s−1 ≈ 3 ·10−12 MeV.

CP violation

Returning to the decays to CP eigenstates, we can now study these in more detail. We concluded
that the K1 meson always decays to two pions, while the K2 meson always decays to three pions.

It is not straightforward to tell from an individual decay whether the decaying meson was
indeed a K1 or a K2. But we can still look at the distribution of decay times for a given decay
mode (this can be done by producing neutral kaon beams: longer decay times correspond to
longer distances traveled) and verify that this distribution is the one expected for either the short-
lived or long-lived kaon; or, given the large difference in average decay times, we can simply wait
until all the short-lived kaons have decayed: it is then simply the decay modes of the long-lived
kaon that are studied.

The latter approach was taken in an experiment carried out in 1964. Its conclusion was that
some of the long-lived kaon decays are to two-pion final states (B(KL→ π+π−)≈ 2 ·10−3 and
B(KL→ π0π0)≈ 9 ·10−4). This implies that CP invariance is violated! The original discovery,
in the π+π− channel only, is shown in Fig. 4.14.

The observed amount of CP violation is small, and can be explained by a small admixture of
K2 in the KS, and conversely, a small admixture of K1 in the KL:

|KS〉 =
1√

1+ |ε|2
(|K1〉+ ε|K2〉) ,

|KL〉 =
1√

1+ |ε|2
(|K2〉+ ε|K1〉) ,
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Figure 4.14: Demonstration of the decay KL→ π+π−.

with |ε| ≈ 2.2 ·10−3.
This mixing-induced CP violation also affects the decays to the non-CP eigenstates, because

it implies that the magnitudes of the K0 and K0 components in the KL are no longer equal. This
results in the decay asymmetry

Γ(KL→ π−`+ν`)−Γ(KL→ π+`−ν̄`)

Γ(KL→ π−`+ν`)+Γ(KL→ π+`−ν̄`)
≈ 2ℜ(ε).

Experimentally, the asymmetry is evaluated to be 2ℜ(ε)≈ 3.3 ·10−3. So a combination with the
measurement of CP violation in the decays to CP eigenstates also provides information about
the phase of ε . Fig. 4.15 shows the observed asymmetry – with its complete time dependence,
which also shows the effect of the KS.

One may wonder whether CP violation is only induced through mixing, or whether other
effects are also present. This has been studied by a precise comparison of the CP-violating effect
in π+π− and π0π0 final states (if CP violation is only induced through mixing, the measured
CP violation should be identical in the two decay modes). It turns out that there is also a certain
amount of direct CP violation, but this effect is again three orders of magnitude smaller than
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Their charge asymmetry is evaluated as a function of  T' and p '  in bins of  width At '  = 0.5 ! 10-10s and p '  = 
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116 Figure 4.15: Time dependence of the charge asymmetry observed in the decay
KL→ π±e∓ν̄e(νe).

that induced by mixing. But we have not developed the theoretical machinery to interpret this
phenomenon properly, and will not venture into it further.

KS regeneration

From the above, it is evident that if we make a neutral kaon beam and let the kaons propagate
for a sufficiently long time, we will obtain an essentially pure KL beam. Yet it is possible to
regenerate KS from such a beam, by sending it through matter.

Kaons being hadrons, their usual interaction with matter will be a strong one. Therefore, the
interaction should be considered in terms of the K0 and K0 rather than the KL. Part of these
interactions are absorptive, i.e., reduce the amount of neutral kaons:

K0 +p → K++n,
K0 +n → K−+p,
K0 +p → π

++Λ.

It is obvious that since the detector material is CP-asymmetric (it contains only nucleons and no
anti-nucleons), the K0 and K0 will be affected differently (see e.g. the third reaction above, which
has no analogue for the K0). Representing the reduction in amplitude by factors f and f̄ (with
f̄ 6= f , from the above), we find that (neglecting the small CP violating effect in the mixing) the
original

|KL〉=
1√
2

(
|K0〉− |K0〉

)

is transformed to
1√
2

(
f |K0〉− f̄ |K0〉

)
=

1
2
( f + f̄ )|KL〉+

1
2
( f̄ − f )|KS〉.

Indeed, unless f̄ = f a KS component is regenerated! This effect has been used in the NA48
experiment at CERN for a precise study of CP violation in the neutral kaon system.
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Note that absorption of the K0 and K0 is not even a necessary prerequisite for regeneration:
also forward elastic scattering processes lead to different phase factors for the K0 and K0 com-
ponents that remain in the beam. (This is analogous to the description of refractive indices as
resulting from the scattering of light in matter.)

Other systems

As is to be expected, mixing phenomena occur not only in the neutral kaon system, but also in
other systems in which particle-antiparticle transitions can be mediated by the weak interaction:
the Bd (a b̄d bound state), the Bs (b̄s), and the D0 (cū) mesons, along with their antiparticles, all
fall in this category. The diagrams responsible for the Bd – Bd transition are shown in Fig. 4.16.
In the Bd – Bd system, the mixing phenomenon is again clearly present. It turns out that the
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Figure 4.16: Feynman diagrams responsible for Bd↔ Bd oscillations. q and q′ both represent
up-type (u, c, or t) quarks.

Feynman diagrams for this process, just as in the case of kaon oscillations, are dominated by the
contributions from the (heavy) top quarks, leading to a dependence∼m1.5

t . A similar conclusion
holds for the Bs – Bs system, where the oscillation frequency is again substantially higher due to
the fact that |Vts| � |Vtd| (see Eqn. 4.16). In contrast, in the D0 – D0 system mixing has indeed
been discovered, but only a few years ago: it is a very small effect, since the amplitude for the
transition is very small.

A difference with the kaon system that is of great practical importance is the fact that the B
meson is much heavier, and that consequently the phase space for many decay modes is large.
Therefore, while it possible to construct CP eigenstates from the original B and B mesons, the
decay modes to CP eigenstates only represent a small fraction of the total decay width. So the
lifetime difference is a small, rather than a huge effect; and it is not very useful to work always in
terms of the long- and short-lived B meson.

Also CP violation in the Bd meson system has been studied extensively, in particular at the
asymmetric B-factory experiments BaBar (at SLAC, Stanford) and Belle (at KEK, Japan). These
results are in good agreement with those from the kaon system. To a lesser extent, the same
conclusion holds for the Bs meson system, which has been studied in fair detail at the Tevatron
collider.
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4.5 Neutrino Oscillations

4.5.1 Neutrino Puzzles

The topic of neutrino oscillations has a long history. It has been known since Bethe’s studies in
1938 that the origin of the energy radiated by the Sun is nuclear fusion, involving the net reaction

4p→4 He+2e++2νe+photons.

This does not happen all at once, but instead proceeds via a number of intermediate reactions.
This makes the computation of the relation between the solar neutrino spectrum and the energy
radiated by the Sun in the form of electromagnetic radiation highly non-trivial. Nevertheless, the
(now) Standard Solar Model does provide a definite prediction for the neutrino energy spectrum;
it is shown in Fig. 4.17. This model has its origins in the early 1960’s, when it was being

Figure 4.17: Solar neutrino energy spectrum as predicted by the Standard Solar Model. The
sharp lines are due to monochromatic neutrinos originating from two-body processes.

developed by Bahcall and co-workers. Indications even then were that despite the very low νe
interaction cross section at energies . 10 MeV, the high flux should allow for detection of solar
neutrinos.

Davis set out to verify this experimentally using the same radio-chemical technique he used
earlier to demonstrate the difference between ν and ν̄ , with the reaction.

νe +
37 Cl→ e−+37 Ar,
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The experimental result, however, was that only about a third of the predicted number of solar
neutrinos were observed. (Since the rate was so low – a few interactions per day, even in a
volume as large as 400 m3 – it was long thought that there was an error in the measurement; or in
the flux prediction, given the complexity of the Standard Solar Model.) This is the solar neutrino
puzzle.

A second long-standing issue surrounding neutrinos is the atmospheric neutrino puzzle. This
is related to the decays of charged pions produced in collisions of so-called “cosmic ray” particles
with molecules in the atmosphere. As discussed above, such decays are almost exclusively to
muons, π+→ µ+νµ . However, the muons also decay, µ+→ ν̄µe+νe, so twice as many νµ as νe
are expected (roughly similar amounts of π+ and π− are produced in cosmic-ray interactions).
The fact that not all muons decay before having reached ground level changes this conclusion
only marginally. Here it is found that experimentally, the number of νµ and ν̄µ is substantially
smaller than expected.

4.5.2 Neutrino Oscillation Formalism

So far, we have treated neutrinos as massless particles. However, it can be shown that if neutrinos
do have a (small) mass, it is possible for neutrinos to be transformed from one flavour into
another.

The first question that should be asked here is whether there is any direct experimental ev-
idence for a nonzero neutrino mass. This is studied most easily using nuclear β processes,
involving the underlying process n→ p+ e−+ ν̄e or p→ n+ e++νe (depending on the nuclear
binding energy for the nucleus in question). In either case, the decay is a three-body decay, lead-
ing to an electron (or positron) energy spectrum. This spectrum, and in particular its shape at the
highest energies allowed kinematically, is sensitive to the mass of the (electron) neutrino. The
most precise measurements to date have been done on tritium decay

3H→3 He+ e−+ ν̄e,

leading to an upper limit for a possible neutrino mass: m(νe) < 2 eV. Also cosmological mea-
surements constrain neutrinos to be lighter than a few eV. So if neutrinos do have mass, their
masses must at least be very small, and they are ultra-relativistic for all practical purposes.

The neutrino oscillation formalism is most easily demonstrated in a two-state system of, say,
νe and νµ . We assume that, like in the case of the quarks, a mixing takes place between mass
eigenstates and flavour eigenstates (the states that couple with charged leptons and W bosons).
Denoting the former by ν1 and ν2 (with masses m1 and m2), and the latter by νe and νµ , we have:

(
νe
νµ

)
=

(
cosθ sinθ

−sinθ cosθ

)(
ν1
ν2

)

Suppose now that at space-time point x1, a neutrino is produced as a νe, and that its flavour is
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measured at point x2. We have

|νe〉 = cosθ |ν1〉+ sinθ |ν2〉,
|νe(t)〉 = e−ip1 · (x2− x1) cosθ |ν1〉+ e−ip2 · (x2− x1) sinθ |ν2〉

=
(

e−ip1 · (x2− x1) cos2
θ + e−ip2 · (x2− x1) sin2

θ

)
|νe〉

+
(

e−ip2 · (x2− x1)− e−ip1 · (x2− x1)
)

sin2
θ |νµ〉.

The oscillation probability therefore becomes

P(νe→ νµ) = |〈νµ |νe(t)〉|2 = cos2
θ sin2

θ (2−2cos((p2− p1) · (x2− x1)))

= sin2(2θ)sin2((p2− p1) · (x2− x1)/2).

Clearly, since the two mass eigenstates propagate over macroscopic distances, the four-momenta
p1 and p2 must be different. For the sake of simplicity, let us assume that they have the same ~p
and differ only in their energy. The expression for the oscillation frequency then simplifies to

P(νe→ νµ) = sin2(2θ)sin2((E2−E1)(t2− t1)/2).

Finally, we exploit the fact that the neutrinos are ultra-relativistic, so that

Ei =≈ |~p|+m2
i /2|~p|,

so
P(νe→ νµ) = sin2(2θ)sin2(∆m2L/4E), (4.17)

where ∆m2 = m2
2−m2

1. In addition we have used E ≈ |~p| in the denominator, and L = ∆t (in
typical experiments, distances rather than time differences are measured).

From the above, it should be evident that if the oscillation probability can be measured as
a function of L/E, both the value of sin2(2θ) and that of |∆m2| can be determined (and more-
over, proves that the apparent lack of neutrinos in the above-mentioned puzzles is really due to
oscillations).

4.5.3 Oscillation Signals
It is beyond the scope of this lecture course to give an exhaustive overview of all the experiments
that have been conducted since the solar neutrino puzzle first arose. Suffice it to say that it has
been established beyond doubt (by the SNO experiment, using a setup that is simultaneously
sensitive to the charged weak interaction – which measures the νe flux – and to the neutral weak
interaction – which measures the neutrino flux combined for all flavours) that part of the νe from
the Sun are transformed to νµ or ντ .

Also the oscillation signals themselves have now been established unambiguously. The solar
neutrino oscillation signal has been measured by the KamLAND experiment, situated in Japan
and sensitive to the ν̄e emitted by fission reactors at distances up to 180 km. This oscillation sig-
nal corresponds to |∆m2|= (8.0±0.3) ·10−5 eV2 and sin2(2θ) = 0.86±0.03. The atmospheric
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neutrino oscillation signal has been measured using the Super-Kamiokande experiment. This
measurement makes use of the fact that the weak interaction cross section is small enough that
neutrinos produced in cosmic ray showers at the Earth’s other side traverse the Earth essentially
unimpeded; therefore, a measurement of the neutrino direction (which, for sufficiently high en-
ergies, is well reproduced by the direction of the charged lepton created in the interaction in
the experiment) permits the coverage of a wide range of distances L; this situation is sketched in
Fig. 4.18. This signal corresponds to |∆m2| ≈ 2.5 ·10−3 eV2 and sin2(2θ)> 0.92. The oscillation

θ

Figure 4.18: Correspondence between zenith angle and path length traversed by muon neutrinos
detected in the Super-Kamiokande detector.

signals are shown in Fig. 4.19.
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Figure 4.19: Neutrino oscillation signals as measured by the KamLAND experiment (left) and
the Super-Kamiokande experiment (right). Notice the difference in scales between the two sig-
nals.
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4.5.4 The MNS Matrix
Of course, we know that there are three, rather than two, neutrino species. So the two-state result
of Eqn. 4.17 is incomplete. Like the CKM matrix, the Maki-Nakagawa-Sakata or MNS matrix
(actually conceived before the CKM matrix) features four parameters: three rotation angles and
one complex phase. It can be parametrized as

U =




1 0 0
0 c23 s23
0 −s23 c23


 ·




c13 0 s13eiδ

0 1 0
−s13eiδ 0 c13


 ·




c12 s12 0
−s12 c12 0

0 0 1


 , (4.18)

where we use shorthands c23≡ cosθ23, s23≡ sinθ23 for the terms in the first matrix, and similarly
for the sine and cosine terms related to the other two rotation angles.

This implies that in principle, a proper three-family analysis of the available data should be
carried out. Fortunately, it turns out that the two systems largely decouple, and the solar and
atmospheric signals can be associated with the third and the first matrix, respectively. Efforts are
now focusing mainly on the determination of the parameters describing the second matrix; this
is especially relevant as the parameter δ is related to CP violation in the lepton sector.

4.5.5 Neutrinos and the Standard Model
The neutrino oscillation measurements provide information about the difference between squared
neutrino masses. However, they do not indicate what these absolute masses should be – at most
that at least two of them must be nonzero.

This is the last bit of information relevant to Table 1.1. Now that it has been established that
neutrinos do have mass, it makes sense to introduce right-handed neutrino states in addition to
right-handed charged lepton states. So why the question marks in Table 1.1? The thing is that
such right-handed neutrinos carry no conserved quantum numbers. This makes it possible, by
a construction due to Majorana, that they are in fact their own anti-particles! This possibility is
being investigated in so-called neutrinoless double beta decay experiments, in which double beta
decays are searched for that do not involve the emission of additional neutrinos. Such processes
can only occur if neutrinos are indeed Majorana particles, and would be sensitive to the neutrino
masses themselves rather than (squared) mass differences.
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36. Clebsch-Gordan coefficients 1

36. CLEBSCH-GORDANCOEFFICIENTS, SPHERICALHARMONICS,

AND d FUNCTIONS
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Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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Appendix B

Basics of Group Theory

The mathematical description of symmetries, of eminent importance in particle physics, is pro-
vided by the branch of mathematics called group theory. The aim of this appendix is to collect
some basics of group theory that are made use of in the lectures.

B.1 Axioms and definitions
In an abstract fashion, groups are sets of elements, together with an object called the group
operator ·, which (starting from two elements) can produce another element. Calling the set G
and its elements a, b, c, . . . , one speaks of a group if the following requirements (called the group
axioms) are satisfied:

closure: for any elements a and b of G, also a ·b is an element of G;

associativity: for any elements a, b, and c, a · (b · c) = (a ·b) · c;

identity: there exists an element (let’s call it i) satisfying a · i = i ·a = a for all a. This element
is called the identity element;

inverse: for every a there exists an element b, satisfying a ·b = b ·a = i. This element is called
the inverse of a and is usually denoted as a−1.

An easy example of a group is the set of operations that can be applied to a regular polygon
(take for example a square) in such a way that all sides of the “transformed” polygon coincide
with sides of the original polygon. For the case of the square, one can think of its center being at
a position (0,0). Then it is not very hard to see that the relevant group (called the dihedral group
D4) is given by the following set of operations:

• a rotation over 0, 90, 180, or 270 degrees around the centre (the first is the identity ele-
ment);

• and reflecting the square in a line either joining two opposing points or bisecting two
opposing sides.
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In addition to the above, two group elements a and b are said to commute if a ·b = b ·a. If all
elements of a group commute, then the group is called abelian. This would e.g. be the case for
our square if we weren’t allowed to apply the reflections mentioned above and could only use
the rotations.

A group homomorphism is a function that preserves the group structure. That is, if we call this
function f , then it implies that for any a and b, f (a) · f (b) = f (a ·b). This naturally implies that
f maps G onto another group (let’s call this H); if a reverse map g also exists (i.e., g( f (a)) = a
for all a), the function f is called a group isomorphism.

All of the above can be formulated in a very abstract way. More concrete implementations
are often given in terms of group representations, describing linear transformations of vector
spaces. This naturally leads to group elements being represented by matrix multiplications. It
will not come as a surprise that such representations are of eminent importance in a description
of symmetries in a quantum mechanical context.

B.2 Continuous symmetries

The above examples of regular polygons all refer to finite groups, i.e., groups containing a finite
number of elements. But these are not the only existing groups. Instead of the square above, take
e.g. the circle. It is then evident that a rotation (about its centre) over any angle transforms this
circle onto itself; in other words, this group contains infinitely many elements.

B.2.1 SO(2)

This group is called SO(2), for special orthogonal transformations in two dimensions:

• orthogonal means that the norm of vectors is left invariant; and

• special restricts the possible operations to rotations only (reflections across any given axis
would otherwise be possible).

A straightforward representation of this group is given by the 2×2 rotation matrices describ-
ing counter-clockwise rotations about angles α:

Mα =

(
cosα sinα

−sinα cosα

)
. (B.1)

Now this group is abelian, and hence this single rotation can be thought of e.g. as the product of
n rotations over angles α/n: Mα = (Mα/n)

n. This property can be exploited by letting n→ ∞,
expanding the sine and cosine terms in Taylor series, and retaining only their first terms:

Mα = lim
n→∞

(
1 α/n

−α/n 1

)n

= lim
n→∞

(1− i
α

n
J)n, with1 J ≡

(
0 i
−i 0

)
(B.2)
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and 1 representing the 2× 2 identity matrix. Finally one can make use of the identity eA =
limn→∞(1+A/n)n to obtain

Mα = e−iαJ . (B.3)

This means that all of these rotations can be generated starting from the matrix J: J is called the
generator of this group.

The above can in fact be concluded in a much easier way: these SO(2) transformations can
be considered as equivalent to rotations in the complex plane, which are given as multiplications
by the number eiα for some (real) value of α . This is formally another group, U(1), meaning the
group of unitary transformations in one (complex) dimension, i.e., transformations leaving the
norm of complex numbers invariant. From the above, it is straightforward to see that U(1) and
SO(2) are isomorphic to each other.

B.2.2 SO(3)
The situation gets more interesting when considering e.g. SO(3), describing rotations in three
(real) dimensions. Clearly one now has rotations about three possible axes. Taking these to be
the three axes x̂, ŷ, and ẑ of a usual cartesian system, one finds that the corresponding rotation
matrices are given by

Rα;x̂ =




1 0 0
0 cosα sinα

0 −sinα cosα


 , Rβ ;ŷ =




cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ


 , Rγ;ẑ =




cosγ sinγ 0
−sinγ cosγ 0

0 0 1


 .

It is straightforward to derive again the generators for these matrices:

J1 =




0 0 0
0 0 i
0 −i 0


 , J2 =




0 0 −i
0 0 0
i 0 0


 , J3 =




0 i 0
−i 0 0

0 0 0


 . (B.4)

and that an arbitrary rotation can be described as

R = e−i~α · ~J . (B.5)

It is well known that arbitrary SO(3) rotations do not commute (contrary to SO(2)): this is a
non-abelian group. This can be expressed by nontrivial commutation relations between the three
generators (as can be verified explicitly using Eqn. B.4:

[Jk,Jl] = 2i∑
m

εklmJm, (B.6)

where the symbol εklm is the completely antisymmetric unit tensor of rank 3 (ε123 = −ε213 =
. . . = 1; and a null value results if any of the three indices are identical). These commutation
relations constitute the so-called Lie algebra of SO(3), which determine to a large extent the
group properties (as can be deduced from Eqn. B.5). Equations B.6 constitute the Lie algebra of
the SO(3) symmetry group.
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B.2.3 SU(2)

The group SU(2) deals with all unitary matrices in two dimensions, with the “special” require-
ment (the “S”in the group name) that the matrices have determinant equal to unity. An Ansatz
can be made for such matrices: suppose that they have the form

A =

(
r0− ir3 −r2− ir1
r2− ir1 r0 + ir3

)
.

A priori, these four degrees of freedom (the ri are real) are one too many. This can be resolved by
realising that the unitarity condition needs to be verified explicitly. It can be seen to be satisfied
if

r2
0 + r2

1 + r2
2 + r2

3 = 1,

and under these conditions also the unit determinant is obtained immediately. With the above
condition, we can now write

r0 =
√

1− (r2
1 + r2

2 + r2
3). (B.7)

Expanding for small dr1, dr2, dr3, Eqn. B.7 implies that to first order, r0≈ 1, and A can be written
as

A = 1− id~r ·~σ ,

where the σi are the (hermitian) Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

But we know the commutation relations for the Pauli matrices: [σk,σl] = 2i∑m εklmσm. So the
Lie algebra of SO(3) is identical to that involving the Pauli matrices! This means that there
is a close connection between SO(3) on the one hand and SU(2) on the other: they are locally
equivalent. Globally they are different, as can be realised from the fact that in Eqn. B.7, we could
also have chosen a minus sign for r0. We won’t delve into the details here, but suffice it to say
that the description of half-integer spins requires the use of SU(2).

B.2.4 SU(3)

The group SU(3) is the exact equivalent of SU(2), but in three complex dimensions rather than
two. The addition of this last dimension makes the discussion a bit more complicated: a general
SU(n) matrix has n2− 1 free parameters (obtained as 2n2 for a general n× n complex matrix,
minus n2 from the unitarity constraint, and minus one from the requirement that the matrix’s
determinant be equal to unity). So, for n = 3 we find 8 independent degrees of freedom; so there
are also 8 generators of the group, in analogy with the 3 Pauli matrices of SU(2). These are often
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taken to be the Gell-Mann matrices:

λ1 =




0 1 0
1 0 0
0 0 0


 λ2 =




0 −i 0
i 0 0
0 0 0


 λ3 =




1 0 0
0 −1 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0


 λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2




With this convention, the Lie algebra of SU(3) becomes

[
λk

2
,
λl

2
] = i∑

m
fklm

λm

2
,

with structure constants fklm, which can be explicitly evaluated to be:

f123 = 1, f458 = f678 =
√

3/2, f147 = f165 = f246 = f257 = f345 = f376 =
1
2

while the remaining constants can be obtained by using the fact that the fklm must be antisym-
metric under the exchange of any two indices. Note that the normalisation of the λi is chosen
such that

Tr(λiλ j) = 2δi j

(the same normalisation holds for the Pauli matrices of SU(2)).
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