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Exercises for Chapter 1

1.1: Natural units
Most computations in this course are carried out in natural units. However, often it will be
desirable to convert the results of such calculations to more standard units. We consider two
(important) examples here.

a) Decay widths (total or partial) are given in terms of [E], and are often given in GeV. Use
e.g. the relation between a particle’s average lifetime and its total decay width to compute
the average lifetime that a decay width of 1 GeV corresponds to.

b) The total cross sections of scattering processes are given in [E]−2, and in practice are often
expressed in GeV−2. Compute the conversion factor used to convert from GeV−2 to barns
(remember that 1b≡ 10−28m2).

Hint: these computation require the values of h̄ and c in SI units, as well as the magnitude of the
electron’s charge:

h̄ = 1.055 ·10−34 J s
c = 2.9979 ·108 m s−1

e = 1.601 ·10−19 C.

1.2: High-energy collisions

a) There are two basic operating modes for collision processes. In fixed target mode, still
often used, a beam of particles collides with a target at rest. Here, show that the centre-of-
mass energy is given (for Ebeam� m) by

ECM ≈
√

2Ebeammtarget

The most common use of collider mode is to accelerate particles and their antiparticles to
the same energy in the same beam pipe, but in the opposite direction (why would this be
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a natural thing to do, bending particles into a circular orbit with the help of a magnetic
field?). Show that in this case ECM = 2Ebeam. Also give the more general formula for
unequal masses and energies of the two particles involved, while still assuming that the
collisions are head on, i.e., the particles move in exactly opposite directions. Work this
out for the case of the HERA electron-proton accelerator (Ep = 920 GeV, Ee = 27.5 GeV)
which was in operation until 2007. (Note that in the HERA case, the electron and proton
beams were accelerated in different beam pipes, and a small crossing angle was therefore
inevitable. But this was a small effect, and we neglect it here.)

b) A standard (but still rather general) scattering process to consider is the process

A+B→C+D,

where all particles involved may a priori have different masses. In the context of this sort
of process, often the so-called Mandelstam variables are defined:

s ≡ (pA + pB)
2

t ≡ (pA− pC)
2

u ≡ (pA− pD)
2

Prove the identity
s+ t +u = (m2

A +m2
B +m2

C +m2
D).

Show also that s is generally related to the centre-of-mass energy of collision processes by
s = E2

CM. (It is for this reason that the symbol
√

s is often used as an alternative for ECM.)

(Note that t and u are not very precisely defined, for an interchange of particles C and D
is possible without loss of generality. But in many important processes, at least one of the
particles retains its identity, and in such cases the definition can indeed be made unambigu-
ous by representing this particle by A and C in the initial and final states, respectively.)

Finally, show that in a 2→ 2 body scattering process of identical particles considered in
the CM frame, the Mandelstam variables take the form

s = 4(|~p|2 +m2)

t = −2|~p|2(1− cosθ)

u = −2|~p|2(1+ cosθ).

Here, ~p and θ are the momentum and scattering angle of either of the incoming particles.

1.3: Discovery of the charged kaon
The charged kaon was discovered in 1943, simply by the fact that its mass (mK = 494 MeV)

differed significantly from that of all particles known up to that time. This discovery made use of
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fairly simple kinematics: one cosmic ray event showed a charged particle imparting a high energy
to an atomic electron. The momentum of the incoming particle (which was hardly deflected) and
the electron could be measured, as well as the angle θ between the directions of the outgoing
electron and the incident particle.

Show that simple two-body collision kinematics can be used to estimate the mass M of the
incident particle as

M = p
(

E +m
E−m

cos2
θ −1

)1/2

,

where p and E are the momentum of the incident particle and the energy of the outgoing electron,
respectively, and me is simply the electron mass. (Hint: we are considering a heavy particle, so
me can be neglected compared to M.)

1.4: Particle decays

a) Consider the decay process A→ B+C. Show that the energy of particle B in the rest frame
of the decaying particle is given by

EB =
m2

A +m2
B−m2

C
2mA

.

What is the velocity of particle B?

b) One of the processes that were studied in a fair amount of detail at the LEP collider was
the production of τ leptons, e+e−→ τ+τ−. The precise nature of the τ lepton will be
covered in more detail later in this course; for now, it suffices to know that it has a mass
mτ = 1.777 GeV, and an average lifetime ττ ≈ 0.3 ps (with apologies for the re-use of
symbols!).

This lifetime was barely long enough to measure with good precision (this was done by
extrapolating the trajectories of longer-lived decay products back to the decay point of the
τ lepton). Estimate the average distance traveled by these τ leptons before decaying, given
that (in the phase relevant for this process) LEP operated at ECM = 92 GeV.

1.5: Compton scattering
Consider the Compton scattering process γ + e−→ γ + e−. Show that this elastic scattering pro-
cess, in the case when the initial-state electron is at rest, leads to the following relation between
the wave lengths of the incident and scattered light λ and λ ′ and the angle θ over which the light
is scattered:

λ
′ = λ +λc(1− cosθ).

Here, the Compton wavelength λc is given by

λc =
2π

me
.
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1.6: The cosmic ray muon flux
The Earth’s atmosphere is constantly being bombarded by protons (and likely, heavier nuclei as
well) of high energies. The ensuing cosmic ray showers typically give rise to the production of a
significant number of muons. Despite the short lifetime of the muon (τµ ≈ 2.2µs), a fair fraction
of them can be observed at ground level. Assuming that the muons are produced at a hight of 10
km, and that they travel to Earth vertically, compute the probability that they reach ground level
as a function of their energy. (The muon’s mass is given by mµ = 105.6 MeV.)

1.7: Discovery of the antiproton
The antiproton (denoted as p̄) was discovered (in 1955) by the reaction

p+p→ p+p+p+ p̄,

by shooting a beam of protons at protons that are at rest.

a) Give the minimum centre-of-mass energy required for this process to take place.

b) Show that the corresponding minimum proton beam energy in the lab frame must be
Emin = 7mp.

1.8: Rutherford scattering as a classical process
In addition to the scattering of point particles off hard spheres, there is another situation that
is addressed in a fairly straightforward manner: the classical (and non-relativistic) scattering of
two point charges off each other.

We consider this problem in the Rutherford scattering approximation, in which one of the
particles is sufficiently heavy that it can be considered as remaining at rest throughout the scat-
tering process. From the 1/r form of the potential due to this particle, it can be shown that the
angle θ over which the incident particle is scattered is related to the impact parameter b by

b =
q1q2

E
cot(θ/2),

where E is the kinetic energy of the incident particle.

a) Compute the differential cross section dσ/dΩ.

b) Show that the total cross section is infinite. Can you think of a reason why this would be
so?
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Exercises for Chapter 2

2.1: Minimal substitution
While it is not a complete proof, the validity of the principle of minimal substitution can at least
be made somewhat plausible in the context of (non-relativistic) classical electrodynamics.

a) Starting from a Lagrangian

L =
m~v2

2
−q(Φ−~v ·~A),

derive the Hamiltonian
H =

1
2m

(~p−q~A)2 +qΦ,

where ~p represents the canonical momentum. Also show that the explicit relation between
~p and the physical momentum m~v is given by

~p = m~v+q~A.

b) Use Hamilton’s equations to derive the Lorentz force.
Hint: use the expression for the full time dependence of ~A:

d~A
dt

=
∂~A
∂ t

+(~v ·~∇)~A.

2.2: The QED Lagrangian

a) Consider the Lagrangian
L = ψ̄(i /∂ −m)ψ

and show that application of the Euler-Lagrange equations again leads to the Dirac equa-
tion for ψ (as well as its conjugate equation for ψ̄).
Hint: for the eight independent degrees of freedom (before application of the equations of
motion), rather than taking e.g. the real and imaginary parts of ψ it is again easier to take
the components of ψ and ψ̄ .
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b) Consider the Lagrangian

L =−1
4

Fρσ Fρσ

and, applying the Euler-Lagrange equations, show that it leads to the Maxwell equations
describing the free photon field.
Hint: here, take each component Aν as an independent degree of freedom.

c) Finally, take the phase symmetry relevant to QED. Use the covariant derivative to construct
the Lagrangian describing the interaction between the electron and the photon. Add the
kinetic term describing the photon and discussed in the previous item. Use the Noether
theorem (applied to ψ and ψ̄ only) to construct the conserved current. Apply the Euler-
Lagrange equations to the various fields involved. For the equation of motion of the photon
field in particular, show that this procedure yields again the Maxwell equations but this
time with a non-zero source term.

2.3: Møller scattering
Consider the scalar Møller scattering process e−+e−→ e−+e−, as covered during the lectures.

a) Compute also the matrix element corresponding to the “second” Feynman diagram.

b) Show that in the CM frame their sum M satisfies

M = 2e2
(

2m2/|~p|2 +3+ cos2 θ

−sin2
θ

)
,

where θ is the scattering angle. To do this, argue that these two diagrams involve the
Mandelstam variables t and u that we encountered in exercise 1.2. Given that we are indeed
working in the CM frame, the corresponding expressions for t and u can be directly. (In
the following, such diagrams will be referred to occasionally as t-channel or u-channel
diagrams – even if in this case, with all identical particles, it is not really possible to label
the particles unambiguously.)

c) Use the above to compute the differential cross section in the CM frame, using the follow-
ing general rule for 2→ 2 body scattering processes:

dσ

dΩ
=

1
64π2s

|~p f |
|~pi|

S |M |2. (2.1)

Here, S is a “spin factor” (which is simply unity for our spin-0 scattering process), M
is the total matrix element, s is the Mandelstam variable encountered in exercise 1, and ~pi
and ~p f are the momenta of the initial- and final-state particles (again in the CM frame).

Note also that it is useful to write the result in terms of the fine structure constant α , which in
our system of natural units is defined as

α ≡ e 2

4π
.
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When computing a perturbative series, this is conveniently done in terms of powers of α ≈ 1/137.

2.4: Bhabha scattering
Consider the Bhabha scattering process e++ e−→ e++ e− in the CM frame.

a) Draw the two lowest-order Feynman diagrams relevant to this process.

b) Sticking to the language of exercise 1.2, demonstrate that of the two diagrams involved, one
is an s-channel diagram and one a t-channel one. Merely from considering the propagator,
can you argue which of the two will be dominant for high energies?

c) Use Eqn. 2.1 to show that the total Bhabha scattering cross section is infinite. This may
appear strange, but it is in fact due to the fact that the electromagnetic interaction is of
infinite range.
Hint: to show this, it is not necessary to do the complete calculation – that is optional.
Instead, it suffices to consider the behaviour for small scattering angles θ .

d) Draw also a higher-order Feynman diagram corresponding to this process. What power of
α is involved, relative to that of the lowest-order process?

2.5: Other QED processes

a) Draw the two Feynman diagrams that describe the Compton scattering (e−+ γ → e−+ γ)
process in lowest order. Also indicate whether the Mandelstam variable occurring in each
diagram’s propagator is s, t, or u.

b) Draw the lowest order Feynman diagrams describing the process e+e−→ γγ . This process
is relevant both for decay of positronium (an e+e− bound state) and for high-energy e+e−

scattering.

2.6: Scattering of spin-1/2 electrons and muons
We consider the scattering process e−+ µ− → e−+ µ−. For the purpose of this exercise, the
muon can be regarded essentially like an electron, except that it is a different particle. This re-
duces the complexity of the subsequent calculations while still exhibiting most of the interesting
features. e−+ e−→ e−+ e−, which an earlier exercise covered already. However, we make one
important change by considering “proper” spin-1/2 electrons rather than the spin-0 substitutes
encountered earlier.

a) Draw the (single) Feynman diagram that at lowest order is relevant for this process. Label
the four-momenta of the incoming (outgoing) electron and muon as p1 and p2 (p3 and p4),
respectively, and also label the spin states accordingly.
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b) Show that the matrix element for this process is given by

−iM = ū(s3)(p3)(ieγ
µ)u(s1)(p1)

−igµν

t
ū(s4)(p4)(ieγ

ν)u(s2)(p2),

where t is one of the Mandelstam variables.
Note: in the Feynman rules as discussed in the lectures, we’ve been a bit cavalier about the
placement of the spinor functions u(si)(pi) and ū(si)(pi). To make this more precise, every
connected fermion line is “started” by one u (or v) and ended by a ū (or v̄). It is easily
verified that this construction always results in a “simple” complex number for each such
line.

c) Prove the relation

(ū(si)(pi)γ
µu(s j)(p j))

† = ū(s j)(p j)γ
µu(si)(pi)

and use this to write the squared matrix element as

|M |2 = e4

t2 ū3γ
µu1ū1γ

νu3ū4γµu2ū2γνu4

(where in the last equation we’ve written ui ≡ u(si)(pi) etc.).

d) The above is the expression for one individual combination of electron and muon spins
s1 . . .s4. But often we start from unpolarized particles in the initial state and we don’t
measure particle spins in the final states. In this case, we need to sum over all spin states
in the final state and average over all spin states in the initial state. Argue why we should
be treating initial and final states differently in this respect, and that for our specific case
(scattering spin-1/2 particles off each other) this results in

1
4 ∑

s1,s2,s3,s4

|M (s1,s2,s3,s4)|2,

where the dependence of M on the particle spins is now made explicit.

To compute the spin sums, we now make use of the specific properties of the ui functions. It turns
out that their normalisation factor N, which was left unspecified in the lecturs, is N =

√
E +m.

With this normalisation, it can be shown that

(u(r))†(p)u(s)(p) = 2Eδrs, ∑
s

u(s)(p)ū(s)(p) = /p+m, ∑
s

v(s)(p)v̄(s)(p) = /p−m.

e) Use the above to eliminate two of the four spin sums and write

1
4 ∑

s1,s2,s3,s4

|M (s1,s2,s3,s4)|2 =
e4

4t2 ∑
s3,s4

ū3γ
µ( /p1 +m)γνu3ū4γ

µ( /p2 +M)γνu4,

where m and M denote the electron and muon mass, respectively.
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To make further progress, it is instructive to consider e.g. the term ū3γµ( /p1 +m)γνu3 in more
detail, and in particular to write it in component form:

ū3γ
µ( /p1 +m)γνu3 = ∑

a,b
(ū3)a(γ

µ( /p1 +m)γν)ab(u3)b

= ∑
a,b
(u3)bū3)a(γ

µ( /p1 +m)γν)ab

= ∑
a,b
(u3ū3)ba(γ

µ( /p1 +m)γν)ab

= Tr(u3ū3γ
µ( /p1 +m)γν).

In addition we will use (without proof) a number of trace theorems:

Tr(γµ
γ

ν) =4gµν Tr(γµ
γ

ν
γ

ρ
γ

σ ) = 4(gµνgρσ −gµρgνσ +gµσ gνρ)

Tr( /a /b) =4a ·b Tr( /aγ
µ /bγ

ν) = 4(aµbν +aνbµ −a ·bgµν)

as well as the fact that the trace of any odd number of gamma matrices vanishes.

f) Show that the result of part (e) now becomes

e4

4t2 L(e)
µνLµν ,(µ),

and give the expression for L(e)
µν (the expression for Lµν ,(µ) follows simply from this). This

is often called the lepton tensor for scattering of unpolarized leptons.

g) Show that the result reduces to

8e4

t2

(
(p3 · p1)(p1 · p4)+(p1 · p2)(p3 · p4)− (p2 · p4)m2− (p1 · p3)M2 +2m2M2) .

The above is as far as we can get in all generality. However, there is an interesting limit case that
can be studied. We have M � m, so that in the scattering of a non-relativistic electron (let us
denote its momentum by ~p) off a muon at rest, the recoil of the muon can be neglected.

h) Show that in this case, t = −4|~p|2 sin2(θ/2), where θ is the electron’s scattering angle,
and that finally the differential cross section, given again by

dσ

dΩ
=

1
64π2s

|~p f |
|~pi|
· 1

4 ∑
s1,s2,s3,s4

|M (s1,s2,s3,s4)|2

becomes
dσ

dΩ
=

(
α

4|~p|2 sin2(θ/2)

)2

(m2 + |~p|2 cos2(θ/2)).

Note that this uses again the relation e2 = 4πα .

This last expression is that for Mott scattering: it is essentially that for Rutherford scattering,
apart from the last term, which arises from the fact that the particles involved have spin 1/2
rather than 0.
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Exercises for Chapter 3

3.1: Isospin symmetry and transition amplitudes
The purpose of this exercise is to investigate in a bit of detail what is meant by the statement that
“the physics is invariant under rotations in isospin space”. Our starting point is the statement that
rotations in isospin space represent unitary transformations, and that this implies that the isospin
operator commutes with the Hamiltonian describing the strong interaction,

[~I,H] = 0,

and hence with the terms in the Hamiltonian describing the strong interaction.

a) Show that the fact that the (operator representing the) strong interaction commutes with~I2

means that no transitions occur between states of different total isospin I.
(Hint: this proof makes use of the commutator [~I2,H].)

b) Similarly, show that no transitions occur between states of different I3.

c) Show that strong interaction transition amplitudes depend only on the total isospin I, and
not on I3.
(Hint: use the raising and lowering operators I± = I1± iI2, and their normalization

I±|I, I3〉=
√

I(I +1)− I3(I3±1)|I, I3±1〉,

again in analogy to the case of ordinary angular momentum operators.)

In conclusion, the consequences of isospin symmetry for transition amplitudes are exactly anal-
ogous to those of ordinary rotational invariance. (This last case is covered extensively e.g. in
Chapter 4 of the book “Modern Quantum Mechanics” by J.J. Sakurai, or in the book “Introduc-
tion to Quantum Mechanics” by D. Griffiths.)

3.2: Isospin symmetry and deuteron production cross sections
Another example of the use of isospin symmetry is to consider the reactions

p+p → d+π
+

p+n → d+π
0

n+n → d+π
−.
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Calculate the expected cross section ratios for these processes, accounting for the fact that the
deuteron has no nn or pp bound state equivalents.
Hint: Clebsch-Gordan coefficients can be found, e.g., on page 168 of the book “Introduction to
Quantum Mechanics” by Griffiths, or on the Web as
http://pdg.lbl.gov/2010/reviews/rpp2010-rev-clebsch-gordan-coefs.pdf.
The latter version is also reproduced in one of the Appendices of the lecture notes.

3.3: Partial wave analysis
Note: this exercise relies heavily on the formalism as developed in the course “Kwantumme-
chanica 2”, see Chapters 1 and 6 of the lecture notes of this course, at
http://www.hef.ru.nl/∼beenakker/dictaat QM2.pdf. An alternative source of
information is given by Chapters 4 and 11 of Griffiths’ book “Introduction to Quantum Mechan-
ics”.

Here, we use the partial-wave formalism developed for spinless particles and extend it slightly
to deal with particles with spin. In particular, we consider the case of elastic pion-nucleon scat-
tering (e.g., π+p→ π+p), and use this formalism to demonstrate that the spin of the ∆(1232)
baryon (the number in brackets is its mass in MeV) is 3/2.

a) Show that the momentum in the CM frame is sufficiently low that only L= 0 and L= 1 par-
tial waves have to be considered. (Hint: approximate the effective range of the interaction
region by the Compton wavelength of the pion, 1/mπ .)

We need only consider one proton spin Sz state, where we take the z axis to be the direction
of the incoming particles. For the sake of definiteness, assume that Sz = 1/2 (due to parity
conservation, the result for Sz = −1/2 can be obtained by merely changing θ → π − θ ). The
relevant |L,J,Jz〉 states therefore become |0, 1

2 ,
1
2〉, |1,

1
2 ,

1
2〉, and |1, 3

2 ,
1
2〉. The spinless formula

for f (k,θ) is therefore modified to

f (k,θ)∼ f0(k)|0,
1
2
,
1
2
〉+ f (−)1 (k)|1, 1

2
,
1
2
〉+ f (+)

1 (k)|1, 3
2
,
1
2
〉.

b) Use the relevant Clebsch-Gordan coefficients to write this in terms of |L,m〉|S,Sz〉 states.

We will now assume that we are dealing either with a J = 1/2 or a J = 3/2 resonance. To find
the angular distributions, we operate on the resulting f (k,θ) with the ket 〈~x|, and consider the
result in terms of spherical coordinates. In addition, it is to be kept in mind that while states with
different L can overlap (after all, the pion and nucleon don’t remain as a bound state), states with
different Sz are orthonormal (since Sz is – in principle – still measurable).

c) Use the expressions for the relevant Y m
L to show that the angular distribution for a J = 3/2

resonance becomes
dσ

dΩ
∼ 1+3cos2

θ .

(this assumes that we don’t actually measure the spin of the outgoing proton). What would
the angular distribution for a J = 1/2 resonance look like?
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This angular distribution was fairly easily measured in data, and confirmed the J = 3/2 nature of
the ∆(1232) resonance.

3.4: The baryon octet revisited
From the case of the baryon decuplet, we learnt that only the total wavefunction ψ =ψ(flavour)·

ψ(spin) ·ψ(colour) ·ψ(space) for baryons is completely antisymmetric under the exchange of
two particles. The introduction of colour, and the l = 0 nature of the octet (as well as the decu-
plet) imply that ψ(flavour) ·ψ(spin) must be completely symmetric. The purpose of this exercise
is to show how this can be constructed for the octet, and at the same time learn why, unlike the
case of the mesons, the J = 1/2 and J = 3/2 multiplets are markedly different.

For completeness, the octet is reproduced here. The key
to constructing the appropriate wavefunctions is to start
from partially antisymmetric building blocks. We first
consider cases where an antisymmetrization procedure
has been applied to quarks (1) and (2). For the flavour
part of the wavefunction, this means that the proton can
be represented as

|p〉(12) =
1√
2
(|udu〉− |duu〉)

!!!

n p

" "

#,

_

_ +

0

0

Such simple forms are appropriate for all baryons at the edges of the hexagon. The only ones for
which a more complicated form has to be found are the Λ and the Σ0 baryons. In the case of the
Σ0, the appropriate form can be obtained by applying the (isospin) lowering operator to the Σ+;
the Λ wavefunction is orthogonal to that:

|Σ0〉(12) =
1
2
(|sud〉− |usd〉+ |sdu〉− |dsu〉)

|Λ〉(12) =
1√
12

(2|uds〉−2|dus〉+ |usd〉− |sud〉− |sdu〉+ |dsu〉)

a) Write down similarly the spin wavefunction corresponding to sz = +1/2 upon antisym-
metrization under the exchange of quarks (1) and (2), i.e., ψ(spin)(12).

A completely symmetric wavefunction can be built as

ψ =

√
2

3
(
ψ(12)(flavour) ·ψ(12)(spin)+ψ(23)(flavour) ·ψ(23)(spin)+ψ(31)(flavour) ·ψ(31)(spin)

)
.

b) Use this to construct the complete (spin and flavour) wavefunction for a spin-up proton.
Verify that the normalization factor above is appropriate.

c) Show that this construction implies that no equivalent of the ∆++, ∆−, or Ω− exists in the
J = 1/2 multiplet.
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3.5: The Callan-Gross relation
As seen in the lectures, in the context of the parton model the differential cross section for

deep-inelastic scattering is given by

α2

q4 ∑
i

Q2
i fi(x)LµνKµν ,

at least up to an overall normalization constant. Here, the lepton tensor Lµν is given by

Lµν ≡ 2
(

p1µ p3ν + p1ν p3µ +gµν(m2
e− p1 · p3)

)
,

and a similar expression (with the initial- and final-state four-momenta of the struck quark used
instead of those of the electron) for Kµν .

a) Show that the expression for Kµν becomes

Kµν = 2x(pµqν + pνqµ −gµν(p ·q)+2xpµ pν) .

b) Contract this with the lepton tensor, and consider the result in the rest frame of the proton.
Use the result to argue the validity of the Callan-Gross relation

F2(x) = 2xF1(x).

(Hints: terms of order m2
e can be neglected. Use covariant notation as long as possible.

Show that p1 ·q =−p3 ·q = 1
2q2, again up to terms of order m2

e .)

(I’m not calling this a complete proof in view of the lack of a complete and explicit cross-section
calculation – but it’s close.)

3.6: The Gottfried sum rule
Deep-inelastic scattering experiments have been carried out also using as a target the neutron

rather than the proton: while the fact that the neutron is uncharged overall implies an absence
of electromagnetic couplings at low energies, the fact that it does contain charged constituents
means that the formalism developed for electron-proton scattering carries over directly to this
case. The study of this process can be combined with that of the proton to help determine
individual parton density functions (PDFs). In particular, the Gottfried sum rule provides some
information about the PDFs of anti-quarks in the proton.

Neglecting the (weak) Q2 dependence, as well as the presence of other (heavier) quarks, we
can write the proton F2 structure function as

F ep
2 (x) = x

(
1
9
(dp(x)+ d̄p(x))+

4
9
(up(x)+ ūp(x))+

1
9
(sp(x)+ s̄p(x))

)
,

where the superscript denotes that it is the PDFs for the proton that are relevant here. An identical
formula holds for the neutron, but with the PDFs for the neutron instead. Now we can exploit
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the fact that the proton and the neutron are isospin partners, and assume

dn(x) = up(x)
un(x) = dp(x)
sn(x) = sp(x)

and likewise for the antiquark PDFs.
Use the above to derive the Gottfried sum rule,∫ 1

0

(
F ep

2 (x)−F en
2 (x)

) dx
x

=
1
3
+

2
3

∫ 1

0

(
ūp− d̄p)dx.

Hint: write the quark PDFs as the sum of a “valence” contribution (which determines the flavour
of the hadron) and a “sea” contribution (resulting from the higher-order corrections shown in
Fig. 3.16 of the lecture notes), and assume that the sea contribution is the same for a quark as for
its anti-quark.

3.7: Colour counting
Why does the measurement of structure functions in deep-inelastic scattering not yield direct

information on the number of quark colours (unlike the measurement of the cross section for the
process e+e−→ hadrons)?
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Exercises for Chapter 4

4.1: Bhabha scattering at the Z resonance

a) Draw all four diagrams that are responsible for the Bhabha scattering process e+e− →
e+e−, when also the electron’s weak interactions are accounted for.

b) Show that at
√

s≈MZ, the s-channel contributions are dominated by the Z boson.
Hint: the Z-boson propagator looks exactly like that for the W boson, but with MW and
ΓW replaced with MZ and ΓZ, respectively.

c) Show that nevertheless, at sufficiently small scattering angles, the differential cross section
is dominated by photon exchange.

This last fact was instrumental in the use of small-angle Bhabha scattering as a means to monitor
the luminosity of the collider: its near-independence of the Z boson details makes it a suitable
reference for the study of the Z boson.

4.2: Neutrino-electron scattering

a) Draw the Feynman diagram(s) for the scattering process νµ + e−→ νµ + e−.

b) Do the same for the process νe + e−→ νe + e−.

4.3: Fermion spin and helicity
The quantum mechanical spin operator~S needs to be adapted to our new four-component spinors
(bi-spinors); the appropriate definition is

~S =
1
2
~Σ with ~Σ =

(
~σ 0
0 ~σ

)
,

where the σ i are again the Pauli matrices.
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a) Consider the Hamiltonian describing a free spin-1/2 particle,

H = γ
0~γ ·~p+ γ

0m.

Use the basic commutation relation [ri, p j] = iδi j to show that the orbital angular momen-
tum operator~L =~r×~p does not commute with H, and more specifically that

[H,~L] =−iγ0~γ×~p.

Also show that the total angular momentum ~J =~L+~S does commute with H.
Hint: it may be helpful to carry out the computations in component form rather than re-
taining vector notation.

This result shows once more (the explicit solution of the Dirac equation is another instance)
that in a relativistic setting, one cannot simply “decouple” spin from other degrees of
freedom!

b) There is one exception to the above situation, obtained by choosing as the quantisation
axis the direction of movement p̂ ≡ ~p/|~p| of the particle and by considering the helicity
operator

λ =~S · p̂.

Show that indeed [H,λ ] = 0. (Hint: you may make use of the result obtained in item (a).)

This result implies that fermion helicity can be used as a proper quantum number.

4.4: Helicity and chirality

a) Show that in the Björken and Drell convention discussed in Sect. 2.3.1 of the lecture notes,
the quantity γ5 = iγ0γ1γ2γ3 takes the form

γ
5 =

(
0 1

1 0

)
.

b) Consider the bispinor solutions to the Dirac equation and show that for massless particles,

γ
5
ψ(p) = 2λψ(p),

with the helicity operator λ defined in exercise 4.3.

c) Using the above, show that the chirality operators PL,R = (1∓ γ5)/2 for massless particles
indeed project onto left- and right-handed states, respectively. (It is furthermore easy to
show that P2

L,R = PL,R, PLPR = PRPL = 0, which completes the proof of PL,R being orthog-
onal projection operators.)
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The physical significance of the difference between helicity and chirality in the case of massive
particles can be clarified by considering the Hamiltonian that can be constructed for a free spin-
1/2 particle:

H = γ
0(~γ ·~p+m).

d) Show that γ5 does not commute with this Hamiltonian if m 6= 0. As was shown in exer-
cise 4.3, the helicity operator does; however, helicity in this case is not a Lorentz-invariant
quantity, as a Lorentz transformation can be applied to a frame in which the direction of
the momentum is reversed, while the spin is not.

e) Prove the identity discussed in the lectures

ψLψR +ψRψL = ψψ.

4.5: Interactions of the Higgs boson

a) Show that the coupling of the Higgs boson to fermions is proportional to the mass of those
fermions.
Hint: from the material covered in the lectures, it is possible to show this for the charged
leptons only. But the same procedure works for the down-type quarks as well.

b) However, for the up-type quarks this procedure does not work. Instead, an auxiliary field
Φc ≡ iσ2Φ∗ is introduced (which transforms under SU(2) in the same way as Φ itself;
what is the hypercharge of this auxiliary doublet?). Construct the term in the Lagrangian
that after symmetry breaking gives rise to the masses of up-type quarks.

c) From the terms present in the Lagrangian after symmetry breaking, argue which Higgs
boson interactions with the W and Z bosons will exist. Also indicate which Higgs boson
self-couplings (terms hn, with n > 2) exist.

d) From the parabolic behaviour of the Higgs potential V (Φ) after symmetry breaking, show
that without access to the self-coupling constants (which haven’t been determined as yet –
the Higgs boson is yet to be discovered!) it isn’t possible to derive an estimate of the Higgs
boson mass mH using existing information.

e) For the cases mH = 125 GeV and mH = 160 GeV, argue what will be the decay mode with
the highest branching fraction.

f) The Higgs boson was searched for extensively at the LEP collider, in which electron-
positron collisions occurred with centre-of-mass energies up to 210 GeV. Draw a Feynman
diagram in which the Higgs boson is produced together with a Z boson, in these collisions.
From the non-observation of the Higgs boson in this production mode, what constraint on
mH would you expect?
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g) Two of the decay modes in which the Higgs boson was discovered in 2012 are to a pair of
Z or a pair of W bosons. How can this happen, given that mH ≈ 125 GeV, i.e., less than
twice the W- or Z-boson mass?

4.6: Selection rules
For semileptonic decays of strange hadrons which change the strangeness quantum number, we
have the so-called selection rule

∆S = ∆Q = ±1,

where ∆Q represents the change in charge of the hadronic system. Using the underlying quark
picture, show the validity of this selection rule.

4.7: Hadron decays in the spectator model
Draw the diagrams responsible (in the context of the spectator model) for the decays

a) K−→ π0e−ν̄e.

b) Λ→ pπ− (hint: there are two relevant diagrams for this decay.)

4.8: Decay modes of the W boson
Consider the possible decay modes of the W boson (it doesn’t matter here whether we con-

sider the W+ or W− boson: the only relevant assumption is that it is produced on-shell, i.e.,
its four-momentum qµ satisfies q2 = M2

W. This is the case e.g. at LEP2: e+e− scattering at
ECM > 2MW), leptonic and hadronic. What fractions of the W boson decays will be to final
states involving e±, µ±, τ±, and hadrons (and why)?

4.9: Top quark production at hadron colliders
We consider here in a bit of detail the physics of top quarks as relevant in hadron collider

experiments. This is appropriate e.g. for the case of the Tevatron pp̄ collider (where the top
quark was discovered in 1995, on the basis of its decay characteristics), but also for the LHC pp
collider.

a) How many charged leptons and/or jets may be observed in the decays of tt̄ pairs? Classify
the resulting final states accordingly.

b) Draw also a (tree level, i.e., without loops) Feynman diagram leading to the production of
a single top quark. (Hint: this can occur only through a weak process.)

4.10: Explicit solution of the two-state neutral kaon system
We extend slightly the Schrödinger equation describing the two-state neutral kaon system to
include also kaon decays:

i
d
dt

ψ = (M− iΓ/2)ψ,
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where M and Γ are hermitian 2× 2 matrices; on general grounds (CPT invariance, for the initi-
ated), they satisfy M11 = M22 and Γ11 = Γ22. The purpose of this exercise is to derive the explicit
solution to this Schrödinger equation seen as an eigenvalue problem.

a) Show that the eigenvalues λ of the “Hamiltonian” λ = M11− iΓ11/2+m− iγ/2 (i.e., we
separate explicitly the real and imaginary parts and look in detail only at the effect of the
off-diagonal terms) satisfy

m2− 1
4

γ
2 = |M12|2−

1
4
|Γ12|2,

mγ = ℜ(M12Γ
∗
12).

b) Using the above equations, show that the two eigenstates can be written as

p|K0〉±q|K0〉,

and derive the ratio q/p of the corresponding coefficients.

c) Show that the eigenstates are not in general orthogonal. Why is that?

4.11: B-meson mixing
The phenomenon of B0-B̄0 mixing has been studied extensively both at e+e− colliders and at
hadron colliders (as it yields information about the CKM matrix elements Vtd and Vts in the case
of B0

d-B̄0
d mixing and B0

s -B̄0
s mixing, respectively). Using state-of-the-art detectors, it is now

possible to observe the oscillation signal proper. However, it is also possible to determine the
oscillation frequency ∆m indirectly (∆m is the difference between the two mass eigenstates), and
that method has proven useful in the case of the B0

d. This indirect determination is the subject of
this exercise.

a) Show that the time-integrated fraction of neutral B mesons produced as a B0 meson and
decaying as a B0 meson χ is given by

χ =
1
2

x2

1+ x2 with x≡ ∆m/Γ,

and where Γ is the (unique) lifetime of the B mesons (i.e., we ignore any lifetime differ-
ence). Argue that this method was not useful in the case of the B0

s meson, for which x≈ 22
(in this case, the oscillation signal was demonstrated only a few years ago), while it was
useful for the B0

d meson, for which x≈ 0.8.

(Hint: start from the corresponding formula for the kaon system. Realizing that the number
of decays occurring at each time t is proportional to the remaining (undecayed) number of
B mesons, integrate the decay distribution.)
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b) Assume that the production mechanism of B-mesons is such that always a pair of B0 and
B0 mesons is produced, and that we are considering their production far above threshold
(so that the two mesons are produced incoherently, i.e., one particular meson out of the
two was produced as a B0; this is in contrast to the situation at so-called B-factories,
operating at

√
s = m(ϒ(4S)), leading to a coherent production of B0 and B0). Consider

the case where both mesons decay semileptonically (at the quark level, this corresponds
to the transition b→ c`ν̄` or its charge conjugate; or instead of the charm quark the final
state could contain an up quark). Show how a consideration of the number of same-sign
and opposite-sign lepton events (the numbers of events in which the two leptons have the
same or opposite charge) can be used to estimate χ .

4.12: Quantum mechanics of neutrino oscillations
There are a few aspects concerning neutrino oscillations that require a proper quantum me-

chanical treatment, and that have not been addressed in the lecture notes.
The first of these is related to the somewhat counter-intuitive fact that the different mass

eigenstates propagate coherently over macroscopic (and even very large) distances. One might
wonder whether it is not possible (in principle) to determine the mass of the neutrino simply from
the measured kinematics of the decay producing the neutrino (or otherwise, from the charged
current interaction leading to a charged lepton in the final state). If this were possible, it should
not be possible to observe an oscillation pattern.

a) Using the normal dispersion relation

m2
ν = E2

ν −p2
ν ,

and the Heisenberg uncertainty relation ∆p∆x> 1, show that if the neutrino four-momentum
(and hence its squared mass) can be determined sufficiently well to distinguish between
different squared-mass states (say ∆m2

12 ≡ m2
1−m2

2), the corresponding uncertainty in the
neutrino position measurement (of either its creation or its destruction) becomes larger
than the oscillation length describing the oscillation pattern for these masses. (Once this
becomes the case, it will become impossible to observe any oscillation pattern anymore.)

The other issue is related to decoherence, which results from the different velocities at which
the different mass eigenstates propagate. The coherence between the two eigenstates can be said
to be lost when the distance between the different eigenstates becomes larger than the length of
the propagating wave packet (which can be taken to be the uncertainty in the position at which
the neutrino was created).

b) Assuming a position uncertainty of the order of a nm (i.e. somewhat larger than the inter-
atomic spacing in a solid), show that for the typical neutrino momenta (ranging from about
1 MeV to 100 GeV), show that coherence is lost only after very many oscillation lengths.
(Under any practical circumstances, the oscillation pattern will have long disappeared due
to the finite momentum spread.)
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It is useful to contrast this with the equivalent case in the quark sector: there, it would be
appropriate to consider the d and s quarks. Because quarks cannot propagate freely, it is the
charged pion (mπ = 140 MeV) and the charged kaon (mK = 494 MeV) that are to be taken
as the propagating mass eigenstates instead. Show that decoherence is reached practically
instantaneously.
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