

Drift chambers

Drift chambers

(First studies: T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969 First operation drift chamber: A.H. Walenta, J. Heintze, B. Schürlein, NIM 92 (1971) 373)

What happens during the drift towards the anode wire?

- Diffusion?
- Drift velocity?

Drift and diffusion in gases

No external fields:

Electrons and ions will lose their energy due to collisions with the gas atoms → thermalization

$$\varepsilon = \frac{3}{2}kT \approx 40 \text{ meV}$$

Undergoing multiple collisions, an originally localized ensemble of charges will diffuse

$$\frac{dN}{N} = \frac{1}{\sqrt{4\pi Dt}} e^{-(x^2/4Dt)} dx$$

$$\sigma_x(t) = \sqrt{2Dt}$$
 or $D = \frac{\sigma_x^2(t)}{2t}$

External electric field:

"stop and go" traffic due to scattering from gas atoms

→ drift

$$\vec{v}_D = \mu \vec{E}$$
 $\mu = \frac{e\tau}{m}$ (mobility)

Drift and diffusion in gases

in the equilibrium ...

$$\frac{x}{v_D \tau} \lambda_{\varepsilon} \varepsilon = eEx$$

 σ (cm²)

 λ_{ε} : fractional energy loss / collision

$$\tau = \frac{1}{N\sigma v}$$

v: instantaneous velocity

10 -14

 $\lambda = \lambda(\epsilon)$!

0.1

ε[eV]

(B. Schmidt, thesis, unpublished, 1986)

Typical electron drift velocity: 5 cm/µs

1

10

Ion drift velocities: ca. 1000 times smaller

0.01

0.001

Drift and diffusion in gases

In the presence of electric and magnetic fields, drift and diffusion are driven by $\vec{E} \times \vec{B}$ effects

Look at 2 special cases:

 α_L : Lorentz angle

$$\omega = \frac{e\vec{B}}{m}$$
 cyclotron frequency

Special case: $\vec{E} \parallel \vec{B}$

The longitudinal diffusion (along B-field) is unchanged. In the transverse projection the electrons are forced on circle segments with the radius v_T/ω . The transverse diffusion coefficient appears reduced

$$D_T(B) = \frac{D_0}{1 + \omega^2 \tau^2}$$

Very useful... see later!

Transverse diffusion $\ \sigma \ (\mu m)$ for a drift of 15 cm in different

Some planar drift chamber designs

Optimize geometry \rightarrow constant E-field Choose drift gases with little dependence $v_D(E)$

→ linear space - time relation r(t)

(U. Becker, in: Instrumentation in High Energy Physics, World Scientific)

The spatial resolution is not limited by the cell size

→ less wires, less electronics, less support structure than in MWPC.

Drift chambers

Resolution determined by

- diffusion,
- path fluctuations,
- electronics
- primary ionization statistics

Various geometries of cylindrical drift chambers

Drift chambers

Straw tubes: Thin cyclindrical cathode, 1 anode wire

Example: DELPHI Inner detector 5 layers with 192 tubes each tube \varnothing 0.9 cm, 2 m long, wall thickness 30 μ m (Al coated polyester) wire \varnothing 40 μ m Intrinsic resolution ca. 50 μ m

Jet chambers: Optimized for maximum number of measurements in radial direction

Drift Chambers

Time Projection Chamber → full 3-D track reconstruction

- x-y from wires and segmented cathode of MWPC
- z from drift time
- in addition dE/dx information

Diffusion significantly reduced by B-field.

Requires precise knowledge of $v_D \rightarrow$ LASER calibration + p,T corrections

Drift over long distances → very good gas quality required

Space charge problem from positive ions, drifting back to

 $midwall \rightarrow gating$

Micro gaseous detectors

Faster and more precision ? → smaller structures

Microstrip gas chambers

(A. Oed, NIM A 263 (1988) 352)

Field geometry

Fast ion evacuation \rightarrow high rate capability $\approx 10^6 / (mm^2 \cdot s)$

Gas: Ar-DME, Ne-DME (1:2), Lorentz angle 14° at 4T,

Gain ≤10⁴ CMS

Passivation: non-conductive protection of cathode edges

Resolution: ≈ 30..40 µm

Aging: Seems to be under control.

10 years LHC operation ≈ 100 mC/cm

Micro gaseous detectors (backup)

Micro gap chambers

F. Angelini, NIM A 335 (1993) 69

drift electrode

cathode pad

2-dimensional readout with MGC (Bellazini)

glass substrate

Micro gaseous detectors

♦ GEM: The Gas Electron Multiplier

(R. Bouclier et al., NIM A 396 (1997) 50)

Micro photo of a GEM foil

Micro gaseous detectors

Micro gaseous detectors (backup)

Micro Gap Wire Chamber

(E. Christophel et al., NIM A 398 (1997) 195)

5 μm wire on 40 μm wide polyimide strips

Gain > 10^5 (prototype 2.6 x 2.6 cm²)

♦ MICROMEGAS

(G. Charpak et al., CERN-LHC/97-08)

Gas: Ar-DME (≈80:20)

High rate capability (109 /(mm²·s), prototype in test beam

Silicon detectors

Solid state detectors have a long tradition for energy measurements (Si, Ge, Ge(Li)).

Here we are interested in their use as precision trackers!

ATLAS SCT

Si sensor

Some characteristic numbers for silicon

- \bullet Band gap: $E_g = 1.12 \text{ V}$.
- d E(e⁻-hole pair) = 3.6 eV, (≈ 30 eV for gas detectors).
- High specific density (2.33 g/cm³) → ΔE/track length for
 M.I.P.'s.: 390 eV/μm ≈ 108 e-h/ μm (average)
- \bullet High mobility: $\mu_e = 1450 \text{ cm}^2/\text{Vs}$, $\mu_h = 450 \text{ cm}^2/\text{Vs}$
- Detector production by microelectronic techniques → small dimensions → fast charge collection (<10 ns).
- e Rigidity of silicon allows thin self supporting structures. Typical thickness 300 μ m $\rightarrow \approx 3.2 \cdot 10^4$ e-h (average)
- But: No charge multiplication mechanism!

How to obtain a signal?

In a pure intrinsic (undoped) material the electron density \mathbf{n} and hole density \mathbf{p} are equal. $\mathbf{n} = \mathbf{p} = \mathbf{n}_i$

→ Reduce number of free charge carriers, i.e. deplete the detector

Most detectors make use of reverse biased p-n junctions

Doping

n-type: Add elements from Vth group, donors, e.g. As. Electrons are the majority

p-type: Add elements from IIIrd group, acceptors, e.g. B. Holes are the majority carriers.

carriers.

		detector grade	electronics grade
	doping concentration	10 ¹² cm ⁻³ (n) - 10 ¹⁵ cm ⁻³ (p+)	10 ¹⁷⁽¹⁸⁾ cm ⁻³
	resistivity	≈ 5 kΩ·cm	≈1 Ω·cm

pn junction

There must be a single Fermi level!
Deformation of band structure → potential difference.

- Application of a reverse bias voltage (about 100V) → the thin depletion zone gets extended over the full junction → fully depleted detector.
- Energy deposition in the depleted zone, due to traversing charged particles or photons (X-rays), creates free e⁻-hole pairs.
- Under the influence of the E-field, the electrons drift towards the n-side, the holes towards the p-side → detectable current.

Spatial information by segmenting the p doped layer \rightarrow

single sided microstrip detector.

Schematically!

+ good ohmic contact

ALICE: Single sided micro strip prototype

Silicon Detectors (backup)

Segmenting also the n doped layer \rightarrow <u>Double sided</u> <u>microstrip detector</u>.

But:

Positive charges in SiO₂ attract e⁻ in n⁻ layer. Short circuits between n⁺ strips.

Two solutions:

Add p⁺ doped blocking strips

Add Aluminum layer on top of SiO₂
Negative biased MOSn+ silicon (metal oxide semiconductor) structure repelling e⁻

Silicon pixel detectors

- Segment silicon to diode matrix
- also readout electronic with same geometry
- connection by bump bonding techniques

detector electronics bump bonds

RD 19, E. Heijne et al., NIM A 384 (1994) 399

Flip-chip technique

- Requires sophisticated readout architecture
- First experiment WA94 (1991), WA97
- OMEGA 3 / LHC1 chip (2048 pixels, 50x500 μm²) (CERN ECP/96-03)
- Pixel detectors will be used also in LHC experiments (ATLAS, ALICE, CMS)

◆ The DELPHI micro vertex detector (since 1996)

Silicon Detectors (backup)

Silicon drift chamber

(First proposed by E. Gatti and P. Rehak, NIM 255 (1984) 608)

principle:

Define graded potentials on p⁺ implants.

Measure arrival time at n⁺ strip

Segmentation of n⁺ strip into pads → 2-D readout

CERES (NA45):

doublet of 3" radial Si drift chambers

Intrinsic resolution: $\sigma_R \approx 20 \ \mu m$, $\sigma_{\phi} \approx 2 \ mrad$

The whole charge is collected at oné small collecting electrode. Small capacity (100 fF) → low noise.

Silicon Detectors (backup)

Monolithic integration of detector and electronics

Motivation:

- reduce strip or pixel dimensions
- avoid connection problems (bonding)
- improve performance (capacity, noise)
- reduce number of components

But silicon quality is very different for detectors and electronics

- 2 possibilities:
- 1) build special electronics components on detector wafers

2) grow detector grade silicon on electronics wafers

MIMOSA concept

J.D. Berst et al. LEPSI -99-15

Y. Gormuskin et al., VCI 2001 submitted to NIM A

Radiation damage in silicon sensors

ATLAS - Inner Detector

A major issue for LHC detectors!

Some definitions

• fluence: $\Phi = N/A \text{ [cm}^{-2}\text{]}$

• dose: D = E/m [Gy = J/kg]

However: Specification of absorbed dose / fluence is not sufficient. Damage depends both on particle type $(e,\pi,n,\gamma..)$ and energy !

Many effects and parameters involved (not all well understood)!

Damage caused by Non Ionising Energy Loss

Bulk effects: Lattice damage, vacancies and interstitials.

Surface effects: Oxide trap charges, interface traps.

NIEL hypothesis (not fully valid!):

damage ∞ energy deposition in displacing collisions

Main radiation induced macroscopic changes:

1. Increase of sensor leakage current

2. Change of depletion voltage. Very problematic.

3. Decrease of the charge collection efficiency

How to cope with the radiation damage?

Possible strategies:

- Geometrical: build sensors such that they stand high depletion voltage (500V)
- Environmental: keep sensors at low temperature (≈ -10°C).
- → Slower reverse annealing. Lower leakage current.

More advanced methods

· Defect engineering.

RD39

Introduce specific impurities in silicon, to influence defect formation. Example Oxygen.

Diffusion Float Zone Oxyenated (DOFZ) silicon used in ATLAS pixel detector. Gain a factor 3.

 Cool detectors to cryogenic temperatures http://cern.ch/rd39 (optimum around 130 k)

"zero" leakage current, good charge collection (70%) for heavily irradiated detectors (1·10¹⁵ n/cm²). "Lazarus effect"

New materials

RD42 http://cern.ch/rd42

Diamond. Grown by Chemical Vapor Deposition. Very large bandgap (≈ 6 eV). No doping required and depletion required! Material is still rather expensive. Still more R&D required.

New detector concepts
 "3D detectors" → "horizontal" biasing faster charge collection
 but difficult fabrication process

