
Foundations of gravitational waves and black hole perturbation theory 2020/2021
(NWI-NM125)

Problem sheet #2: Asymptotic flatness

Tutorial on Thursday 10 February 2022, 13:30 - 15:15

This tutorial is graded. You will only need to hand in Exercise 2.1 and 2.2 (the other two exer-
cises are additional practice). Please hand in your tutorial before the start of the next tutorial on
Thursday 17 February at 13:30. Tutorials received after the deadline will be marked as a 1. If you
are not able to hand in your solutions in person, you can email a scan or photo of your answers to
Patricia (patricia.ribesmetidieri@ru.nl).

Exercise 2.1: Asymptotic structure with a cosmological constant

How the inclusion of a cosmological constant changes the boundary of spacetime.

a) If gab satisfies Einstein’s equation with cosmological constant Λ

Rab −
1

2
gabR+ Λgab = 8πG Tab , (1.1)

what equation does the conformally rescaled metric g̃ab satisfy? Use the results from tutorial 1
for R̃ab and R̃. It is convenient to rewrite ∇a ln Ω as Ω−1∇aΩ. Note that this is a long
calculation. Explain why the conformally rescaled metric is sometimes called the “unphysical
metric”.

b) Define na := ∇̃aΩ, multiply the equation you obtained in part (a) by Ω2 and take the limit
Ω → 0 (assume that limΩ→0 Ω2Tab = 0). What is the norm of the co-vector field na in
this limit? Indicate whether the norm of na is time-like, null-like or space-like for the three
different scenarios: (1) a negative cosmological constant Λ < 0, (2) a vanishing cosmological
constant Λ = 0 and (3) a positive cosmological constant Λ > 0.

Exercise 2.2: Conformal diagram of Minkowski spacetime

Understand the conformal diagram of Minkowski spacetime and the location of
its different infinities.

The Minkowski metric in standard (t, r, θ, φ) coordinates is

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
(2.1)

where −∞ < t <∞, 0 ≤ r <∞ and (θ, φ) with their standard range on the two-sphere. To make
a conformal diagram we need to ensure that (1) null rays are at ±45◦ with respect to the horizontal
axis and (2) the coordinate range is finite. (We will suppress the angular part of the metric in
the diagram and think of each point as a two-sphere.) In order to achieve the first condition, we
switch to null coordinates

u = t− r and v = t+ r , (2.2)

so that now lines of constant u and v are null geodesics. To implement the second, we perform an
additional coordinate transformation to

U = arctanu and V = arctan v , (2.3)
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where now the range of U and V is finite:

−π
2
< U <

π

2
, −π

2
< V <

π

2
and U ≤ V <

π

2
. (2.4)

a) Show that in these coordinates the metric takes the form

ds2 =
1

4 cos2 U cos2 V

[
−4dUdV + sin2(V − U)

(
dθ2 + sin2 θdφ2

)]
. (2.5)

b) Perform a conformal transformation to ds̃2 = Ω2ds2 with Ω = 2 cosU cosV . To interpret
the result, write the metric after performing one last coordinate transformation to T,R
coordinates:

T = U + V and R = V − U . (2.6)

Show that the range of these coordinates is finite, specifically, 0 ≤ R < π and |T |+R < π.

c) Complete the table below indicating the location of the different infinities in various coordi-
nate systems.

U, V T,R

I+

I− U = −π
2 , −

π
2 < V < π

2 T = −π +R, 0 < R < π

i+ T = π, R = 0

i−

i0 T = 0, R = π

d) Extra: Null rays are always at 45◦ in a conformal diagram. How do lines with r = r0 (with
r0 some finite, non-zero constant) look? Answer this question by expressing r = r(T,R) and
draw this in a conformal diagram. Feel free to use Mathematica (or any other software) to
help you answer this question.

Additional practice

Exercise 2.3: FLRW spacetimes are not asymptotically flat

Understand that not all physically interesting spacetimes are asymptoticaly flat
and become more familiar with conformal freedom.

a) Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes are cosmological spacetimes that
are homogeneous and isotropic. The stress-energy tensor of these spacetimes is modeled by
a perfect fluid. Using a symmetry argument, explain why these spacetimes are not asymp-
totically flat (i.e., which of the conditions is broken?).

b) While FLRW spacetimes are not asymptotically flat, a subclass of these solutions (the ones
whose expansion is decelerating) can be studied using similar techniques. A key difference is
the definition of the normal to I:

na := Ω−s∇̃aΩ , (3.1)

where 0 ≤ s < 1 encodes information about the equation of state that relates the energy-
density and pressure of the fluid. The conformally completed metric is still defined through
g̃ab = Ω2gab with gab the physical metric. How do g̃ab, g̃

ab, na and na change under a
conformal rescaling Ω −→ Ω′ = ωΩ? Check that your answer reduces to Eq. (2.14) in the
Lecture notes when s = 0.

c) Show that under a conformal rescaling the divergence in the new frame is related to that in
the original frame through

∇′an′a =̂ ω−1−s∇̃ana + (4− 2s)ω−2−sLnω . (3.2)

If one is not in a conformal divergence free frame, what should ω solve in order for ∇′an′a =̂ 0?
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Exercise 2.4: Fall-off stress energy tensor

Show that a point charge on Minkowski spacetime satisfies the demand on the
stress-energy tensor in the definition of asymptotic flatness.

In this exercise, we will work with electromagnetic fields on a Minkowski background. Recall that
the electromagnetic field Fab := 2∇[aAb] can be decomposed into an electric Ea and magnetic
field Ba. This decomposition is observer dependent. For an observer with ξa tangent to his/her
wordline (and ξa normalized, i.e. ξaξa = −1), this decomposition is

Fab = 2ξ[aEb] − εabcdξcBd . (4.1)

a) Using the above result, show that this is consistent with the standard definition of the electric
and magnetic field

Ea := Fabξ
b (4.2)

Ba :=
1

2
ε cd
ab Fcdξ

b . (4.3)

You likely will need to use that

εa1...ajaj+1...anεa1...ajbj+1...bn = (−1)s (n− j)! j! δ[aj+1

bj+1
. . . δ

an]
bn

(4.4)

where s = 0 if the volume form has Riemannian signature and s = 1 if it has Lorentzian
signature.

b) The electromagnetic potential for a point charge in Minkowski spacetime in Lorenz gauge is

Aa = −q
r
∇at . (4.5)

Calculate the electromagnetic field tensor Fab, as well as the electric and magnetic field for
a static observer. Is this result what you expected?

c) The stress-energy tensor for electromagnetism is

Tab = FacF
c

b −
1

4
ηabFcdF

cd . (4.6)

Calculate the stress-energy tensor for the point charge in (t, r, θ, φ) coordinates. Make sure
to check that the stress-energy tensor you obtain is traceless.

d) Take the limit to I by introducing u = t− r and Ω = 1
r . Check that this stress-energy tensor

satisfies the fall-off required in the definition of asymptotically flat spacetimes, i.e. Ω−2Tab
has a limit to I.

e) Based on the analysis for a static point charge, what would the limit of Tab to I be for higher
multipole moments? Your answer does not require any calculations.
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