
Radboud University Nijmegen

Faculty of Science (FNWI)

The Second Order Close Limit Approximation
Towards exploring nonlinear behaviour at the horizon

Thesis MSc Physics and Astronomy

Author:
Tom van der Steen

Supervisors:
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Abstract:
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phase have highlighted the need to incorporate second-order, nonlinear modes. In
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“initial data” for the subsequent ringdown phase. Our primary aim is to connect
horizon physics with gravitational wave signals. This thesis provides a detailed guide
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black hole binary in a head-on collision, we derive a second-order Zerilli equation where
first-order perturbations act quadratically as a source term. We discuss deviations from
existing literature and suggest potential extensions to the framework.
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1 INTRODUCTION

1 Introduction

The direct detection of gravitational waves (GWs) by the LIGO-VIRGO-Kagra collaboration has opened
up a new frontier for exploring gravity [1]. While these detections of coalescing black holes have provided
invaluable insights, they have also posed new questions. One of them being the unexpectedly well-behaved
GW signal during the violent merger phase. By nature, general relativity (GR) is a nonlinear theory with all
kinds of self-interactions and unpredictable behaviour. This non-linearity complicates the prediction of events
due to the difficulty in finding exact solutions. During the merger phase, characterized by highly deformed
spacetimes, these nonlinearities are expected to be crucial. However, so far linear approximations have been
in surprising agreement with observations and simulations. This begs the question where the nonlinearities
are hiding.

Recent inquiries into numerical simulations of black hole (BH) collisions have indicated the presence of
nonlinear modes in the final stages of the coalescence of a binary black hole (BBH), known as the ringdown
phase [2, 3]. This signifies that the nonlinear dynamics of the system cannot simply be ignored. Since we
do not have exact physical solutions for two BHs, we have to rely on approximations to make analytical
predictions. In the ringdown phase, the system’s spacetime is treated as a perturbation of the final BH’s
spacetime. Currently, BH perturbation theory in this stage is only carried out up to first order [4], thereby
neglecting all nonlinear interactions. The recent developments regarding the ringdown phase establish that
these nonlinear interactions are essential and that the perturbation theory should be extended to include
second order contributions.

Our goal is to better understand the role of nonlinearities during the preceding merger phase and determine
whether they reveal new physics. Specifically, we aim to investigate if processes near the horizon can be
related to the GW waveform observed at infinity. This would allow us to use GW signals as a direct probe
for the nonlinear nature of GR and provide a better grasp of the physics involved in BBH merger. Motivated
by the recent developments for the successive ringdown phase, we also adopt a second order perturbative
framework for the merger phase, utilising the close limit approximation (CLA) [5] to incorporate the first set
of nonlinear self-interactions and analyse their behaviour.

1.1 Nonlinearities in GWs

A typical time-domain waveform from the coalescence of two BHs can be divided into three stages: the
inspiral, the merger and the ringdown. Roughly speaking, the inspiral features a regular sinusoid with an
increasing frequency that is generated as the BHs orbit each other at large separations, gradually edging
closer towards each other as they slowly emit some of their energy in the form of GWs. When the binary
system closes in on itself, the amplitude of the GW signal rises steeply as the two BHs fuse into a single BH.
This marks the merger phase. In the final phase, called the ringdown, the resultant single BH settles down
into a Kerr BH by radiating its final deformations in the form of GWs.

The inspiral and ringdown phase are both quite well understood as approximate solutions in terms of per-
turbation theory. During the insprial when the BBH has a large separation, the system can be treated as flat
spacetime with correction terms, modeled using post-Newtonian/post-Minkowskian (PN/PM) expansions,
which have been developed to high orders [6, 7]. After the merger, the system can be described as a per-
turbation of a single BH spacetime such as Schwarzschild or Kerr. The GW signal in the ringdown phase is
modelled as a superposition of damped oscillations, known as Quasinormal modes (QNMs) [4, 8]. However,
the intermediate merger phase is notoriously challenging to describe analytically due to the strong fields,
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1 INTRODUCTION 1.2 Close Limit Approximation

requiring extensive numerical relativity (NR) simulations that solve the fully nonlinear Einstein equations [9,
10]. This leaves us without a solid analytical foundation for this phase.

Furthermore, distinguishing the boundaries between these phases is difficult [11, 12]. Both the PN/PM
expansion and QNMs have successfully predicted a GW signal that aligns with NR predictions, even when
extended well into what could be considered to be the merger regime [13, 14]. This motivates the choice
of using these approximations as a tool to analytically describe the merger phase. Since we are ultimately
interested in horizon physics, we focus on using BH perturbation methods for the merger, which are more
suitable for our purposes.

The description of the ringdown phase using BH perturbation theory is typically conducted only at first,
linear order [4]. It has been suggested that this first order approximation is sufficient for describing the ring-
down phase if enough overtones are included. However, recent studies have challenged this claim, suggesting
this may be an artifact of overfitting, with the fit’s accuracy varying depending on the starting times used.
Studies like [2, 3] indicate that incorporating quadratic modes results in more robust fits that remain stable
across different starting times, making a second-order framework necessary. Consequently, there has been a
push to include second order effects.

In the ringdown phase, the wavefunction is treated as a superposition different QNMs. At first order,
each QNM is characterised by a mode (ℓ,m, n), where ℓ and m denote the corresponding spherical harmonic
and n the overtone number. The QNMs’ frequencies ωℓmn depend on the final BH’s mass and spin. The
amplitudes Aℓmn, on the other hand, depend on the parameters of the progenitor binary. Quadratic modes
now arise from first order linear modes (ℓi,mi, ni) interacting with each other at second order, represented
as (ℓ1,m1, n1)× (ℓ2,m2, n2). Their corresponding frequency is the sum or difference of the two linear QNM
frequencies, and their amplitude is the product of the linear amplitudes and some complicated coupling coef-
ficient. These quadratic QNMs could potentially be measured by future space-based GW detectors like LISA
[15], providing a direct measurement of GR’s nonlinear behaviour.

Taking inspiration from the developments regarding the ringdown phase, we adopt second order BH per-
turbation theory to model the merger phase. This framework allows us to explore horizon dynamics and
incorporate some of GR’s inherent nonlinearities. We consider systems described by a metric

gµν = g(0)
µν + ϵ g(1)

µν + ϵ2 g(2)
µν +O(ϵ3), (1.1)

where g
(0)

µν is a background spacetime which is a solution to the vacuum Einstein equations and ϵ is
some expansion parameter. We will always use the superscript (i) on the left of a quantity to indicate its
perturbative order.

1.2 Close Limit Approximation

We specifically use the Close Limit Approximation (CLA), first proposed in [5], to model the merger phase.
In this approach, the merging BBH is modelled by applying perturbation theory in the limit of small initial
separation. In this limit, an apparent horizon encompasses both BHs, allowing us to treat the system as a
deformation of a single BH spacetime, such as Schwarzschild or Kerr (see Fig. 1). This approximation has
shown surprising agreement with numerical simulations, even when the expansion parameter is marginally
small [16, 17].

The CLA was introduced in the 1990s as an alternative to the computationally expensive NR simulations,
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1 INTRODUCTION 1.2 Close Limit Approximation

≈

Figure 1: In the CLA, we treat a system of two BHs with a small initial separation as a perturbation of a
single BH spacetime.

not readily available at the time. Most work has focused on collisions of non-rotating or slowly rotating BHs
that settle into a single non-rotating BH, using Schwarzschild perturbation theory. Early calculations were
conducted only up to first order [5, 18–21]. Later, the CLA was extended to second order [14, 22–26]. For a
review of second-order treatment, see [16]. The extension to second order was primarily motivated as a tool
to verify the accuracy of first-order predictions and determine the parameters for which the approximation
was valid, essential at the time due to the limited availability of NR simulations for comparison.

With the advancement in computing and consequently NR, the need for accurate analytic models decreased,
resulting in limited publications on the second order CLA since the early 2000s, apart from sporadic works
[27–30]. The renewed interest in second order BH perturbation theory highlights a gap in research, with
some original complex calculations no longer readily available. Therefore, this thesis aims to bridge this gap
by providing a comprehensive overview of the analytical steps involved in setting up the second order CLA.

This thesis is organised as follows. We start by elaborating on the steps involved in the CLA and cover
some theory necessary for carrying out the approximation in Sec. 2. In Sec. 3, we continue with an easy ex-
ample of two initially static BHs up to first order to get a feeling for how the CLA is set up. Then, we present
the main calculations done in this project in Sec. 4, where we discuss two BHs in a the head-on collision.
We conclude in Sec. 5 with a consise summary and an outlook of further steps that have to be undertaken
to get to an analytical description of the merger phase and we make recommendations for further research.
This work is supplemented by extensive appendices App. A–C that elaborate on gauge transformations, the
Einstein equations and the Regge-Wheeler-Zerilli formalism, all in the context of second order perturbation
theory.
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2 CLOSE LIMIT APPROXIMATION

2 Close Limit Approximation

The CLA applies similar methods to NR to describe the evolution of a BBH and consequently its generated
GW signal. Both use the ADM formalism (see [31]), also known as a 3+1 split, where a spacetime is sliced
in a family of 3D surfaces, each representing a specific time instance. The CLA starts by specifying initial
data on a 3D slice to represent the system at t = 0 and then evolving this initial data over time to obtain
the full spacetime. However, while NR evolves the initial data using the fully nonlinear vacuum Einstein
equations, the CLA evolves perturbations using master equations derived from the expanded Einstein equa-
tions. Setting up the CLA involves four primary steps (see Fig. 3): first, specifying initial data to represent
the system. Second, extracting perturbations relative to a single black hole background by expanding in a
small parameter related to the initial separation. Third, fixing these perturbations in a convenient gauge
and finally, numerically integrating the master equation to determine the time evolution of the perturbations.

Throughout this work, we adopt a (−+++) signature for the metric and use natural units, setting c = G = 1.
Greek letters µ, ν, . . . indicate spacetime indices ranging over 0, 1, 2, 3, while Latin letters a, b, . . . denote spa-
tial indices ranging over 1, 2, 3.

2.1 Initial Data

The first step in setting up the CLA is constructing suitable initial data to represent the BBH. This requires
specifying a spatial 3-metric γab and extrinsic curvature Kab on some initial spatial hypersurface Σ0 (see
Fig. 2a). Not just any embedding of Σ0 with (γab,Kab) will specify initial data. GR describes spacetimes,
so the time and spatial components cannot simply be decoupled. The pair (γab,Kab) has to satisfy the
constraint equations, that follow from the Einstein equations, to be initial data [31, 32]. Finding solutions to
the constraint equations and formulating initial data is a whole study by itself [33–37].

Σ0

Σt

(a) We specify the initial data on the initial
slice Σ0. By evolving this in time we obtain a
spacetime as an infinite stack of slices Σt.

Σt+dt

Σt

Nnµ

Na

tµ

xa

xa

(b) The coordinates xa on different slices are
identified by specifying a lapse N and shift Na.
Here, nµ is the unit normal to the slice Σt.

Figure 2: In the ADM formalism, the spacetime is foliated by a family of time slices Σt.

For the BH binaries covered in this thesis, we shall use the conformal approach [21, 38]. This means we
assume that the 3-metric γab is related to some conformal background γ̂ab by a conformal transformation ϕ,
such that

γab = ϕ4γ̂ab. (2.1)
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2 CLOSE LIMIT APPROXIMATION 2.2 Regge-Wheeler perturbations

Similarly, the extrinsic curvature Kab will be split into its trace K and a conformally rescaled trace-free part
Âab

Kab = ϕ−2Âab +
1

3
γabK. (2.2)

In such a setting, the constraint equations take the following form in vacuum

8∇̂2ϕ− ϕR̂− 2

3
ϕ5K2 + ϕ−7ÂabÂ

ab = 0, (2.3)

∇̂bÂ
ab − 2

3
ϕ6γ̂ab∇̂bK = 0. (2.4)

Here, ∇̂a denotes the covariant derivative, R̂ the Ricci scalar and ∇̂2 = γ̂ab∇̂a∇̂b the Laplacian, which are
all associated to the conformal background metric γ̂ab. Eq. (2.3) is known as the Hamiltonian constraint,
and Eq. (2.4) is known as the momentum constraint. Note that γ̂ab and K are freely specifiable. We

assume our physical metric γab to be conformally flat, i.e. γ̂ab = f̂ab where f̂ab is some flat, Euclidean 3-
metric. Furthermore, we take a maximal slicing such that K = 0. These choices for γ̂ab and K simplify the
constraint Eqs. (2.3) and (2.4) to

∇̂2ϕ = −1

8
ϕ−7ÂabÂ

ab, (2.5)

∇̂bÂ
ab = 0. (2.6)

An important consequence of this particular choice is that the momentum constraint (2.6) has become linear
and decouples from the Hamiltonian constraint (2.5). Hence, we can find initial data by first solving equation
(2.6) for Âab and then the Poisson equation in (2.5) to determine the conformal factor ϕ, where the source
term depends on Âab. Finally, all that is left is to determine the physical quantities (γab,Kab), using Eq. (2.1)
and Eq. (2.2), respectively. In the context of the CLA, these equations commonly cannot be solved exactly
and we have to rely on perturbative expansions to solve them order by order.

Some standard solutions to these equations are well known and often used as a template. When a sys-
tem of BHs is initially at rest, Eq. (2.6) is trivially satisfied as Âab = 0 and Eq. (2.5) greatly simplifies. Two
well-known solutions in this case are the Misner initial data [33] and Brill-Lindquist (BL) initial data [34].
The former can be used two describe BHs of the same mass, initially at rest. The latter is slightly more
general and represents two BHs of different mass that have no initial momentum. The standard solution
for two BHs with initial momentum is prescribed by Bowen-York (BY) initial data [35], which provides a
solution for Eq. (2.6).

2.2 Regge-Wheeler perturbations

When we have constructed suitable initial data, we proceed with the next step: extracting the perturbations.
In this step it is apparent why we call the approach the CLA as we expand everything in terms of some
parameter ϵ related to the small separation of the BBH and sort all quantities in orders of ϵ, like Eq. (1.1).

In this thesis we restrict ourselves to a static, spherically symmetric Schwarzschild background. We can
use these symmetries to our advantage and separate out the spherical components, which we will decompose
in tensorial spherical harmonics, characterised by modes (ℓ,m) (see App. C). Since all the systems we will
cover are axisymmetric, all non-vanishing perturbations satisfy m = 0. Consequently, for our purposes, we
can use a basis of Legendre polynomials Pℓ(cos θ) instead of spherical harmonics Y ℓm(θ, ϕ).1

1Using the basis Y ℓ0(θ, ϕ) instead of Pℓ(cos θ) results in an additional factor
√

(2ℓ− 1)/4π.
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2 CLOSE LIMIT APPROXIMATION 2.3 Gauge transformations

For the metric perturbations, it is customary to follow the conventions introduced by Regge and Wheeler in
[39]. This results in two sets of perturbations: even and odd. Even parity modes change with sign (−1)ℓ under
parity transformations, while odd parity modes change with sign (−1)ℓ+1. We focus only on even perturba-
tions, since the systems we study are symmetric under parity transformations. The metric perturbations in
terms of even Regge-Wheeler quantities are given by:

(i)gtt =

(
1− 2M

r

)∑
ℓ

(i)H
(ℓ)
0 (r, t)Pℓ(cos θ), (2.7)

(i)gtr =
∑
ℓ

(i)H
(ℓ)
1 (r, t)Pℓ(cos θ), (2.8)

(i)gtθ =
∑
ℓ

(i)h
(ℓ)
0 (r, t)

∂

∂θ
Pℓ(cos θ), (2.9)

(i)grθ =
∑
ℓ

(i)h
(ℓ)
1 (r, t)

∂

∂θ
Pℓ(cos θ), (2.10)

(i)grr =

(
1− 2M

r

)−1∑
ℓ

(i)H
(ℓ)
2 (r, t)Pℓ(cos θ), (2.11)

(i)gθθ = r2
∑
ℓ

[
(i)K(ℓ)(r, t) + (i)G(ℓ)(r, t)

∂2

∂θ2

]
Pℓ(cos θ), (2.12)

(i)gϕϕ = r2 sin2 θ
∑
ℓ

[
(i)K(ℓ)(r, t) + (i)G(ℓ)(r, t) cot θ

∂

∂θ

]
Pℓ(cos θ). (2.13)

The other components vanish. In a similar fashion, the decomposition of the spatial metric γab on Σ0 is given
by Eqs. (2.10)–(2.13). For convenience, we apply the same decomposition to the components of the extrinsic
curvature Kab. We denote its perturbations by

(i)Krθ =
∑
ℓ

(i)Kh
(ℓ)
1 (r, t)

∂

∂θ
Pℓ(cos θ) (2.14)

(i)Krr =

(
1− 2M

r

)−1∑
ℓ

(i)KH
(ℓ)
2 (r, t)Pℓ(cos θ) (2.15)

(i)Kθθ = r2
∑
ℓ

[
(i)KK(ℓ)(r, t) + (i)KG(ℓ)(r, t)

∂2

∂θ2

]
Pℓ(cos θ) (2.16)

(i)Kϕϕ = r2 sin2 θ
∑
ℓ

[
(i)KK(ℓ)(r, t) + (i)KG(ℓ)(r, t) cot θ

∂

∂θ

]
Pℓ(cos θ). (2.17)

Now we have all the quantities we need to describe the system in a perturbative framework.

2.3 Gauge transformations

GR is a gauge theory in the sense that physical results do not depend on the chosen coordinates. In the
context of perturbation theory, this means that the theory is invariant under infinitesimal coordinate trans-
formations, that leave the background unchanged (see App. (A)). The expressions in Eqs. (2.7)–(2.13) and
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2 CLOSE LIMIT APPROXIMATION 2.3 Gauge transformations

Eqs. (2.14)–(2.17) are given in an arbitrary gauge. We still have the freedom to make a specific gauge choice
that makes our calculations as convenient as possible, which will be especially important for the cumbersome
expressions at second order.

Before we can apply gauge transformations to the perturbations, we have to reconstruct a 4-dimensional
spacetime again from the 3-geometry. This is due to the fact that the choice for the embedding of Σ0, with
a corresponding choice of lapse N and shift Na (see Fig. 2b), is a choice of coordinates in and of itself.
To reconstruct the 4-dimensional metric gµν in a neighbourhood of Σ0 from the initial data (γab,Kab), we
perform a time expansion. This yields a local solution to the Einstein equations near Σ0, which is all that
we need as we are ultimately only interested in the initial data. This local solution gµν is described by the
expansion

gµν = gµν |t=0+t ∂tgµν |t=0+O(t2).

Here, gµν |t=0 can be determined from the spatial metric γab on Σ0 by specifying a lapse N and shift vector
Na, which determines the embedding (see Fig. 2b). In the ADM formalism, a metric gµν is expressed in
terms of a 3-metric γab [31] as follows

gµν dx
µdxν = −N2dt2 + γab(dx

a +Nadt)(dxb +N bdt). (2.18)

At this point, we are free to specify the lapse and shift. We will choose them such that they vanish at all
perturbative orders, i.e. N(i) = 0 and N(i) a = 0 for all i > 0. In this case, the metric can be expanded as

gµν dx
µdxν = − N(0) 2dt2 + γ

(0)
ab(dx

a + N(0) adt)(dxb + N(0) bdt) + ϵ γ
(1)

abdx
adxb + ϵ2 γ

(2)
abdx

adxb +O(ϵ3).

From the form of the Schwarzschild metric in standard (t, r, θ, φ) coordinates, we can deduce that the shift

vector N(0) a also vanishes and the lapse function is given by N(0) =
√

1− 2M
r . Hence, we find that the

future-directed unit normal to constant t-slices is given to all orders by

nµ =

 1√
1− 2M

r

, 0, 0, 0

 , nµ =

(
−
√

1− 2M

r
, 0, 0, 0

)
. (2.19)

The extrinsic curvature Kab is related to the 3-metric γab via a Lie derivative with respect to the normal
vector nµ. Therefore, under assumption that the perturbative lapse and shift vanish, we have

Kab =
1

2
Lnγab

=
1

2
ϵLn γ

(1)
ab +

1

2
ϵ2Ln γ

(2)
ab +O(ϵ3)

=
1

2
ϵ
[
nλ∂λ γ

(1)
ab + 2 γ

(1)

λ(a∂b)n
λ
]

+
1

2
ϵ2
[
nλ∂λ γ

(2)
ab + 2 γ

(2)

λ(a∂b)n
λ
]
+O(ϵ3)

=
1

2

1√
1− 2M

r

∂

∂t

[
ϵ γ

(1)
ab + ϵ2 γ

(2)
ab

]
+O(ϵ3),

where we used that K
(0)

ab = 0, since the Schwarzschild solution is stationary. In the last step, we observed

that the symmetrisations γ
(i)

λ(a∂b)n
λ vanish because γ

(i)
µν only possesses spatial components, while nµ only
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2 CLOSE LIMIT APPROXIMATION 2.3 Gauge transformations

has a temporal one. Therefore, given our choice that the perturbative lapse and shift vanish, the following
straightforward identification can be made

K
(i)

ab = 1
2

1√
1− 2M/r

∂

∂t
γ

(i)
ab . (2.20)

Hence, the time expansion can be expressed as

gµν = gµν |t=0+2t

√
1− 2M

r
Kµν +O(t2), (2.21)

Now that we have reconstructed a proper spacetime metric gµν , we can transform it under gauge transform-
ations to switch from one gauge choice to another. Since we work in a second order framework, we have a
first order transformation generated by ξ(1) µ and a second order transformation generated by ξ(2) µ. Under
a gauge transformation, the metric perturbations transform order by order as

g′
(0)

µν = g(0)
µν

g′
(1)

µν = g(1)
µν + L ξ(1) g(0)

µν

g′
(2)

µν = g(2)
µν + L ξ(2) g(0)

µν + L ξ(1) g(1)
µν +

1

2
L2

ξ(1) g(0)
µν .

(2.22)

The structure of these equations mandates a two step approach. First we fix the first order gauge by ap-
plying the transformations as a consequence of the generator ξ(1) µ. We shall refer to this as the first order
gauge transformation. Note that in our second order framework the first order gauge transformation must be

carried out up to second order and, as a consequence, the second order perturbations in g
(2)

µν also change.
Now we proceed with the second order gauge transformation, which is the transformation generated by ξ(2) µ,
to fix the gauge at second order.

We have to be cautious with gauge choices in higher order perturbation theory. A second order gauge
is not unique, since it depends explicitly on the particular gauge chosen at first order. Hence, we always
have to be mindful of the choices made at first order. Similar problems apply to invariance. With the term
“second order gauge invariance” we will refer to quantities that are invariant under the pure second order

gauge transformation L ξ(2) g
(0)

µν , while “first and second order invariance” pertains to invariance under the
full transformation in Eq. (2.22) (also see App. C.1).

There are two gauge choices that are particularly important for our purposes. The first one, we have already
encountered. This is choosing a gauge such that H0 = H1 = h0 = 0, which amounts to choosing the per-
turbative lapse and shift to vanish. This allows for an easy identification between time derivatives of metric
perturbations and perturbations of the extrinsic curvature, that is Eq. (2.20).

The other relevant choice is the RW gauge h0 = h1 = G = 0 (see App. C.1). This gauge choice is an
integral part in the derivation for the master equation that governs the perturbations. The RW gauge also
has the benefits that it fully fixes the gauge at the order where it is implemented and that the gauge invariant
combinations in Eqs. (C.24)–(C.27) are simply equal to the corresponding perturbation in the RW gauge.
Hence, we can easily recover the expressions in the RW gauge from any arbitrary gauge by taking its gauge
invariant combination. We will also often use quantities in the RW gauge as a shorthand notation to represent
the gauge invariant combination of perturbations (see Sec. 4.4), such as

K(1) RW ≡ K(1) − 2

r

(
1− 2M

r

)[
h1

(1) − r2

2
∂r G(1)

]
,

9



2 CLOSE LIMIT APPROXIMATION 2.4 Evolving the System

for instance. Here K(1) RW is a perturbation in the RW gauge and the perturbations on the RHS are in an
arbitrary gauge.

2.4 Evolving the System

Once we have obtained a set of gauge fixed initial perturbations, the final step is to evolve them in time
to obtain the time development of the system. This can be accomplished by numerically integrating the
master equation, describing the perturbations. For even RW perturbations the master equation is the Zerilli
equation, which is an elegant way of recasting the Einstein equations in a Schrödinger-like equation [40].2

We will derive this equation in detail in Sec. 4.4, using Zerilli’s original derivation [40].3

As derived in App. B, the vacuum Einstein Equations take the following form when they are sorted or-
der by order:

R(1)
µν = δRµν [ g(1) ] = 0, (2.23)

R(2)
µν = δRµν [ g(2) ] = −δ2Rµν [ g(1) , g(1) ], (2.24)

where δRµν is linear in the perturbations and δ2Rµν is quadratic in the perturbations. Hence, solving the
set of perturbative equations comes down to a step by step approach: first, we evolve the first order per-
turbations using Eq. (2.23), which can be reformulated as a Zerilli equation. Then, these perturbations are
plugged in Eq. (2.24), where they will serve as a known source term that is quadratic in the first order
perturbations. The evolution of the second order perturbations follows from the same Zerilli equation again,
but now involving some known source term.

Therefore, the final analytical step before we have to resort to numerical methods is to recast our initial
data in terms of a Zerilli equation and a corresponding master function ψ(ℓ) that is a function of the even
Regge-Wheeler perturbations for a particular ℓ-mode. At first order, the Einstein Eq. (2.23) can ultimately
be rewritten as

∂2 ψ(1) (ℓ)

∂r∗2
− ∂2 ψ(1) (ℓ)

∂t2
− Vℓ(r

∗) ψ(1) (ℓ) = 0.

At first order, we will use the Moncrief function that has the great advantage of being (first order) gauge
invariant and being a function of only the 3-geometry [41]. This wavefunction takes the form

ψ(1) (ℓ) =
2(r − 2M)

ℓ(ℓ+ 1)(λr + 3M)

[
r H2
(1) (ℓ) + 3r2

∂ G(1) (ℓ)

∂r
− r − 3M

r − 2M
K(1) (ℓ) − r2

∂ K(1) (ℓ)

∂r
− 6 h1

(1) (ℓ)

]
+

r2

λr + 3M
K(1) (ℓ),

where the perturbations are in an arbitrary gauge. We could also have opted for the Zerilli wavefunction
χ(1) (ℓ) given by

χ(1) (ℓ) =
r − 2M

λr + 3M

[
r2

r − 2M

∂ K(1) RW

∂t
− H1

(1) RW

]
,

where the perturbations are in the RW gauge and where we dropped some of the (ℓ) superscripts. This
function satisfies the same equation and is related to the Moncrief function by ∂t ψ(1) (ℓ) = χ(1) (ℓ). This easy
identification between the two is only possible in the absence of a source term.

2In the case of odd perturbations, the linearised Einstein equations can also be recast in a Schrödinger-like equation called the
Regge-Wheeler equation [39]. This derivation is far simpler than the one for even perturbations and inspired Zerilli’s derivation.

3One could alternatively use Moncrief’s alternative derivation [41] that yields the same differential equation, but with a
slightly different wavefunction.

10



2 CLOSE LIMIT APPROXIMATION 2.4 Evolving the System

At second order, the Einstein equations in Eq. (2.24) yield a similar equation

∂2 χ(2) (ℓ)

∂r∗2
− ∂2 χ(2) (ℓ)

∂t2
− Vℓ(r

∗) χ(2) (ℓ) = S( ψ(1) , ψ(1) ).

This is the same Zerilli equation, but now we also have an additional source term S. To derive the source
term S, one needs to repeat the derivation for the Zerilli equation and carefully account for the quadratic
terms as a result of δ2Rµν . The source term introduces mixing between the different ℓ-modes. Again, we
have to be careful at higher order: the source term S is not unique and depends on the choices we have made
at first order, such as gauge choices. We will also use the Zerilli function χ(2) (ℓ), instead of ψ(2) (ℓ), because
this follows directly from our derivation and we cannot easily relate it to the Moncrief function anymore due
to the source term.

The only remaining step is to numerically integrate these equations to obtain a time evolution of the per-
turbations. This is were the interesting physics arises.

11
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f̂ab, ϵ Solve Eq. (2.6)

Solve Eq. (2.5)

Calculate physical
quantities

Expand in ϵ
Extract RW
perturbations

Reconstruct gµν

(1)ξµ transform

(2)ξµ transform

N , Na

(1)ξµ

(2)ξµ

Extract RW
perturbations

Extract RW
perturbations

Determine
wave functions

Evolve
with Zerilli

Evolve
with Zerilli

Calculate source

(i)H
′(ℓ)
0 , . . .

(i)H
′′(ℓ)
0 , . . .

(1)ψ, (2)χ

(i)H
(ℓ)
2 , . . .

(i)KH
(ℓ)
2 , . . .

Âab

ϕ

γab(ϵ),Kab(ϵ)

(i)γab,
(i)Kab

(i)gµν

(i)g′µν

(1)H ′′
0
(ℓ)
, . . . , (2)H

RW,(ℓ)
0 ,. . .

(i)g′′µν

(2)χ|0, ∂t(2)χ|0
(1)ψ|0, ∂t(1)ψ|0(1)ψ

S

Initial Data

Extract RW Perturbations

Gauge Transformations

Time Evolution

Figure 3: Flowchart of the steps involved in the CLA. Input is represented on the left in red, the involved
steps are represented in blue and should be read from top to bottom following the arrows, and finally the
outcomes are presented on the right side in green. The overall steps are grouped in yellow.
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3 STATIC BLACK HOLES

3 Static Black Holes

To illustrate how the CLA works in practice, we shall cover its easiest instance in the case of two BHs of the
same mass, which are initially at rest. This system was covered in [5], where Price and Pullin first proposed
the CLA. Since this section only serves as an example, we shall for the sake of simplicity only carry out
the calculation up to first order. The intricacies of second order perturbation theory are left for the more
extensive calculation in the next section.

We consider a system consisting of two black holes with equal bare mass m, initial coordinate separation
L, and no instantaneous initial momentum. Before we continue we have to remark that L, as a coordinate
distance, does not have a physical interpretation. It is customary to use the proper distance between the two
apparent horizons of the BHs as a physical measure for the initial separation [29].

3.1 Formulating the Initial Data

The first step in applying the CLA to this system is to find suitable initial data to describe our system at
t = 0. An important property of the initially static black holes is the time symmetry as a consequence of the
absence of initial momentum. This symmetry allows us to easily use the Misner or BL initial data [34, 37].
The first CLA calculations have been carried out using Misner initial data [5, 16], but the calculation with BL
initial data is more convenient to later generalise to initially moving BHs [19, 30]. Hence, we opt for the latter.

The family of BL initial data for two BHs of bare mass m1 and m2 is described by [34]

γBL
ab dxadxb = ϕ4BLf̂ab dx

adxb = ϕ4BL

[
dR2 +R2(dθ2 + sin2 θdφ2)

]
, (3.1)

where f̂ab is the flat 3-metric, which we have expressed in spherical coordinates (R, θ, φ) and where we have
the conformal factor

ϕBL ≡ 1 +
m1

2∥R−C1∥
+

m2

2∥R−C2∥
. (3.2)

Here, ∥. . .∥ indicates the coordinate distance with respect to f̂ab, R denotes an arbitrary position in the
conformal space and Ci is the position of the centre of the i-th BH. To fix the coordinates, we align the
z-axis with the line connecting C1 to C2 (see Fig. 4). Now the BH centres are at z = ±L/2. Since we are
considering two BHs of the same mass, we set m1 = m2 ≡ m in the remainder of this section. The total
ADM mass Mof the system is now given by M = m1 +m2 = 2m. Also note that ϕBL is singular at the two
points R = R1,2.

z

x

y

(R, θ, φ)

−L/2 +L/2

m m

Figure 4: The coordinates (R, θ, φ), used in the conformal background f̂ab.

In its current coordinates (R, θ, φ), the comparison between the BL initial data and the Schwarzschild space-
time is not very evident. To aid this comparison we switch to a new radial coordinate given by

R = 1
4 (
√
r +

√
r − 2M)2,
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3 STATIC BLACK HOLES 3.2 Determining Regge-Wheeler Perturbations

and recognise that the conformal factor takes the form of a generating function for the Legendre polynomials.
We find

γBL
ab dxadxb = F4

BL(r, θ;L)

[(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)

]
, (3.3)

where the conformal factor ϕBL has been rewritten to

FBL = 1 +

(
1 +

M

2R

)−1 ∑
ℓ=2,4,...

κℓ(L)

(
M

R

)ℓ+1

Pℓ(cos θ). (3.4)

The coefficients for the different Legendre polynomials are

κℓ(L) =
1

2

(
L

2M

)ℓ

. (3.5)

Observe the 3-metric in Eq. (3.3) takes the same form as a constant t-slice of the Schwarzschild spacetime
modulo the conformal factor. This way, we have recast our initial data in a convenient form for the rest of
the analysis.

3.2 Determining Regge-Wheeler Perturbations

The next step is actually implementing the CLA, i.e. putting the BHs close together and performing an
expansion in the small initial separation L. Observe that in the limit L → 0, which corresponds to κℓ → 0,
the conformal factor F approaches 1. Hence, our system reduces to a Schwarzschild time slice in this limit,
making Schwarzschild perturbation theory the correct framework.

To apply perturbation theory, we note that the conformal factor FBL enters raised to the fourth power
in the 3-metric. From Eq. (3.5), we deduce that in the small-L limit 1−FBL consists solely of perturbations
of order L2, L4, . . .. Therefore, the metric perturbations scale with L2, L4, L6, . . . , since we have

γBL
ab dxadxb =

1 + 4

(
1 +

M

2R

)−1 ∑
ℓ=2,4,...

κℓ(L)

(
M

R

)ℓ+1

Pℓ(cos θ)

[(1− 2M

r

)−1

dr2 + r2dΩ2

]
,

where dΩ2 = dθ2 + sin2 θ dφ2. The lowest appearing order, therefore, is L2 and the next order L4. Hence,
we define our expansion parameter to be the dimensionless quantity ϵ ≡ L2/M2.

Now that we have performed the expansion in small L, the next step is to extract the metric perturba-
tions describing the system. In the perturbation theory pertaining to the Schwarzschild spacetime, it is
customary to decompose the metric, using the notation of [39]. This was introduced in Eqs. (2.7)–(2.13).
From Eq. (3.3), it is now easy to read off that the only non-vanishing perturbations are given by

H2
(1) (ℓ=2) = K2

(1) (ℓ=2) = 4κ2

(
1− 2M

R

)−1(
M

R

)3

, (3.6)

where we have included the expansion parameter ϵ in the expression for H2
(1) (ℓ=2). We will also do this for

the remainder of this thesis to conform to the conventions used in the literature on the CLA.
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3 STATIC BLACK HOLES 3.3 Gauge transformations

3.3 Gauge transformations

At this point, we still have to deal with the gauge freedom of GR. The next step will be to fix the gauge to
eliminate the extra degrees of freedom.

One aspect we have not covered so far is the time dependence of our system; we have only discussed the
3-geometry. Since our system is time symmetric, we have ∂tgµν = 0. This allows us to make an appropriate
choice of lapse and shift such that

gµν dx
µdxν = −

(
1− 2M

r

)
dt2 + γBL

ab dxadxb +O(t2). (3.7)

To attain this particular form of the spacetime metric gµν , we have essentially made the gauge choice

H1
(1) = h0

(1) = h1
(1) = 0. This amounts to choosing a lapse (0)N =

√
1− 2M/r and shift (0)Na = 0

for the background and choosing the perturbative lapse and shift to vanish at all orders.

To attain this gauge we do not have to perform any complicated gauge transformations. In fact, noth-
ing really changes for the 3-geometry specified above and H2

(1) (ℓ=2) and K(1) (ℓ=2) as given in Eq. (3.6) are
still the only non-vanishing perturbations after fixing the gauge.

Another important gauge choice is the Regge-Wheeler gauge: G(1) = h0
(1) = h1

(1) = 0 for even per-
turbations. Perturbations in the RW-gauge can be viewed as gauge invariant combination of perturbations
in any arbitrary gauge (see Appendix C.1). Since our system already satisfies this condition we simply have

H2
(1) RW,(ℓ=2) = K2

(1) RW,(ℓ=2) = 2κ2

(
1− 2M

R

)−1(
2M

R

)3

. (3.8)

By specifying our system in the RW-gauge we have fully gauge fixed our system at first order [42], so that
all degrees of freedom pertaining to the gauge freedom have been eliminated.

3.4 Zerilli Equation

The final step is to evolve the initial data in time. The even Regge-Wheeler perturbations are governed by
the Zerilli equation [40]. A longer exposition and full derivation of this equation can be found in Sec. 4.4. In
short, the initial data can be evolved using

∂2 ψ(1) (ℓ=2)

∂r∗2
− ∂2 ψ(1) (ℓ=2)

∂t2
− V2(r

∗) ψ(1) (ℓ=2) = 0,

where the potential Vℓ(r
∗) for ℓ = 2 is given by

V2(r
∗) = 2

(
1− 2M

r

)
4r2(3r + 3M) + 9M2(2r +M)

r3(2r + 3M)2
,

and where the Moncrief-Zerilli function is the following gauge invariant combination of perturbations

ψ(1) (ℓ=2) =
r − 2M

3(2r + 3M)

[
r H2
(1) (ℓ=2) + 3r2

∂ G(1) (ℓ=2)

∂r
− r2

∂ K(1) (ℓ=2)

∂r
− 6 h1

(1) (ℓ=2)

]
− r

3
K(1) (ℓ=2).

Now we supply the initial function ψ(1) (ℓ=2)|t=0 in terms of the initial perturbations into some solver to
numerically integrate the Zerilli equation. We also have to supply the time derivative ∂t ψ(1) (ℓ=2)|t=0 as
initial data, but this simply vanishes as a consequence of the time symmetry of the initial data.
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4 HEAD-ON COLLISION

4 Head-on collision

As we have seen in the previous section, a system of two initially static BHs of the same mass, represented by
BL initial data, can quite easily be described with the CLA due to its convenient analytical form. However,
from an astrophysical perspective, two static BHs are not a very realistic representation of reality, so we
generalise this system by giving initial momentum to both BHs. To keep expressions somewhat manageable,
which will be especially important for the second order calculations, we will opt for a system with high degree
of symmetry.

In this section, we will apply the CLA to two BHs with the same bare mass m, that are in a head-on
collision with the same, opposing initial momentum P (see Fig. 5). The BHs have an initial coordinate
separation L. Furthermore, we also make the simplification that P is of the same order as L. This implies
that terms with a factor L2, P 2 and PL are all of the same order, which will simply be denoted as O(L2).
Since all lowest order perturbations are of order O(L2), we will refer to these terms as being first order. The
second order terms turn out to be terms like L4, L2P 2, . . ., which are of order O(L4).

P P

L

m m

Figure 5: Schematic overview of the considered system of two BHs in a head-on collision.

We have followed the approach taken in [25] to analyse this system. As we will see, our calculations agree
at first order, but at second order we run into some discrepancies. Throughout this section we will comment
on the differences and try to relate our expressions to [25].

4.1 Formulating the Initial Data

The first step in setting up the CLA for this system is constructing the initial data. This requires specifying
a spatial 3-metric γab and extrinsic curvature Kab on some initial spatial hypersurface Σ0, such that the
constraint equations of GR are satisfied. Like we discussed in Sec. 2, we will use the conformal approach and
start from some conformal 3-metric γab = ϕ4f̂ab, where f̂ab is a flat metric that we will express in spherical
coordinates (R, θ, φ) as

f̂ab =

1 0 0
0 R2 0
0 0 R2 sin2 θ

 . (4.1)

Now we want to determine the conformal, trace-free extrinsic curvature Âab and conformal factor ϕ that
satisfy the constraint equations. First, we need to solve the momentum constraint Eq. (2.6). The solution
for a single boosted BH with its centre at position C and momentum P is given by the BY solution [35],
which is described by

ÂCP
ab =

3

2R2
C

[
2P(a nb) − (f̂ab − nanb)P

cnc

]
, (4.2)
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4 HEAD-ON COLLISION 4.1 Formulating the Initial Data

where RC = ∥R −C∥ is the coordinate distance between the centre of the BH and an arbitrary point with

respect to the flat metric f̂ab. Furthermore, Pa is the momentum vector and na is a radial unit normal vector
that is perpendicular to a sphere of constant radius. This solution describes a single boosted BH. However,
we are interested in two BHs in a head-on collision. Since the momentum constraint Eq. (2.6) is linear, this
can easily be adjusted by taking a superposition of two solutions for Âab. Therefore, in the case of two BHs
at position C1 and C2 with momentum P1 and P2, respectively, the solution for the traceless, conformal
extrinsic curvature Âab is given by

Âab = ÂC1P1

ab + ÂC2P2

ab . (4.3)

The next step would be to find the conformal factor ϕ. The Poisson equation resulting from the Hamiltonian
constraint Eq. (2.5) does not admit an analytical solution in closed form, in most cases. Hence, we will solve
it perturbatively in the regime where the initial separation and momentum are small.

The first step for solving the Poisson equation in Eq. (2.5) perturbatively is expanding the extrinsic curvature
in terms of the order parameter L. To accomplish this, we switch to a more convenient basis by cent-
ring the origin at one of the BHs. In the original coordinate system the first BH was located at position
(x, y, z) = (0, 0, L/2) and in the new centred coordinates it is located at (x′, y′, z′) = (0, 0, 0) (see Fig. 6).
The second BH is translated from (x, y, z) = (0, 0,−L/2) to (x′, y′, z′) = (0, 0,−L).

z

y

x
P2 P1

(R, θ, φ)

−L/2 +L/2

(a) Original coordinate system

z′

y′

x′
P2 P1

(R1, θ1, φ1)

−L

(b) Translated coordinate system

Figure 6: We transform the original coordinates (R, θ, ϕ) to (R1, θ1, ϕ1) by repositioning the origin of the
new coordinates in the centre of the right BH.

After translating the Cartesian coordinates, the spherical coordinates (R, θ, φ) also have to be reformulated
as (R1, θ1, φ1) centred at one BH. In terms of the old spherical coordinates, the new spherical coordinate
system becomes

R1 =

√
x′2 + y′2 + z′2 =

√
R2 + L2/4−RL cos θ, (4.4)

cos θ1 =
z′

R1
=

R cos θ − L/2√
R2 + L2/4−RL cos θ

, (4.5)

φ1 = sgn(y′)
x′√

x′2 + y′2
= φ. (4.6)

The vectors n1 and P1 can now be expressed in a covariant basis as

n1 = dR1 =
2R− L cos θ

2R1
dR+

RL sin θ

2R1
dθ, (4.7)

P1 = −P dz′ = −P [cos θ dR−R sin θ dθ] . (4.8)
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4 HEAD-ON COLLISION 4.1 Formulating the Initial Data

Now we have all quantities required in order to calculate ÂC1P1

ab in terms of the coordinates (R, θ, φ). For the

full expression for ÂC1P1

ab we refer to the HeadOnCollision.nb notebook [43]. To calculate ÂC2P2

ab we apply
a similar approach, but now the coordinates will be centred at the other BH. This will result in some sign
changes, e.g. R2 =

√
R2 + L2/4 +RL cos θ. In this case, the vectors become

n2 = dR2 =
2R+ L cos θ

2R2
dR− RL sin θ

2R2
dθ, (4.9)

P1 = P dz′ = P [cos θ dR−R sin θ dθ] , (4.10)

and we find an expression for ÂC2P2

ab very similar to ÂC1P1

ab , except for some different signs. The full expression

for the total Âab = ÂC1P1

ab +ÂC2P2

ab is rather cumbersome. At this point, we will resort to perturbation theory

and expand Âab in terms of the L and P . Recall that L and P were assumed to be of similar order. For the
conformal extrinsic curvature, first order terms scale with PL and second order terms scale with PL3. This
expansion yields

Âab =
3LP

2R3

−4 cos2 θ 0 0
0 R2[1 + cos2 θ] 0
0 0 R2[−1 + 4 cos2 θ − 3 cos4 θ]


− 3L3P

16R5

 2
[
1− 18 cos2 θ + 25 cos4 θ

]
4R
[
−1 + 5 cos θ2

]
cos θ sin θ 0

4R
[
−1 + 5 cos θ2

]
cos θ sin θ R2

[
1 + 6 cos2 θ − 15 cos4 θ

]
0

0 0 R2
[
−3 + 33 cos2 θ − 65 cos4 θ + 35 cos6 θ

]
 .

This agrees with Eq. (4) in [25].

The following step is to determine conformal factor ϕ from the Hamiltonian constraint Eq. (2.5), where
the contraction ÂabÂ

ab enters as a source term. In the case of vanishing extrinsic curvature, i.e. for two
momentarily static BHs, we have already encountered the solution. This is the BL initial data with its
conformal factor given in Eq. (3.2). Again we take m1 = m2 = m.

In order to account for the BHs’ boosts, we will add a regularising term ϕreg to the Brill-Linquist solu-
tion ϕBL, such that

ϕ = ϕreg + ϕBL. (4.11)

This regularising term has to solve the equation

∇̂2ϕreg = −1

8

K̂abK̂
ab

(ϕBL + ϕreg)7
, (4.12)

with the boundary conditions that ϕreg is regular at both R = Ci and approaches zero at infinity. We will
solve Eq. (4.12) perturbatively for ϕreg up to second order. The conformal extrinsic curvature is of order
PL, so the source term will be of second order P 2L2. Hence, we make the ansatz

ϕreg = P 2L2 ϕ(2) +O(L6). (4.13)

In order to find a solution for ϕ(2) , we expand the source term in Eq. (4.12) up to second order. This
expansion results in

K̂abK̂
ab =

117L2P 2 cos4(θ)

2R6
− 9L2P 2 cos2(θ)

R6
+

9L2P 2

2R6
+O

(
L6
)

=
9L2P 2

2R6
(1− 2 cos2 θ + 13 cos4 θ) +O

(
L6
)
.

(4.14)
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4 HEAD-ON COLLISION 4.1 Formulating the Initial Data

Furthermore, we only take the leading order into account in the denominator of Eq. (4.12). In other words,
we approximate

ϕBL + ϕreg = 1 +
M

2R
+O(L2).

Here, the mass M is the ADM mass related to the bare mass m by the correction

2m =M + P 2L2 (2)M +O(L6),

where (2)M is some correction coefficient. Since this correction only results in changes of the irrelevant ℓ = 0
modes at second order, which are non-radiative, we simply ignore them and replace 2m by M and vice versa
[25]. We find that ϕ(2) should satisfy the following equation

P 2L2∇̂2 ϕ(2) = S(2) ≡ −72P 2L2R(1− 2 cos2 θ + 13 cos4 θ)

(2R+M)7
. (4.15)

We impose the boundary conditions that ϕ(2) → 0 as R → ∞. This problem can be further simplified by
decomposing the source term S(2) into its respective multipoles. In this multipole expansion, it takes the
form

S(2) =
∑
ℓ

S(2) (ℓ)Pℓ(cos θ), (4.16)

where Pℓ(cos θ) are the Legendre polynomials again. The multipoles can be calculated from the orthogonality
relation satisfied by the Legendre polynomials. This yields the decomposition

S(2) (ℓ=0) = −1056

5

P 2L2R

(2R+M)7
,

S(2) (ℓ=2) = −3072

7

P 2L2R

(2R+M)7
,

S(2) (ℓ=4) = −7488

35

P 2L2R

(2R+M)7
,

(4.17)

and all other S(2) (ℓ) vanish. We also decompose ϕ(2) in multipoles as

ϕ(2) = ϕ(2) (ℓ=0)P0(cos θ) + ϕ(2) (ℓ=2)P2(cos θ) + ϕ(2) (ℓ=4)P4(cos θ). (4.18)

The Poisson equation in Eq. (4.15) can be solved by solving the resulting equations for each multipole
separately, since the Legendre polynomials are eigenfunctions of the Laplacian. For each ℓ the following
equation must be satisfied

P 2L2∇̂2
(

ϕ(2) (ℓ)Pℓ(cos θ)
)
= S(2) (ℓ)Pℓ(cos θ). (4.19)

Writing out the Laplacian for the flat background metric f̂ab in spherical coordinates (R, θ, φ), we obtain

Pℓ(cos θ)

R

∂

∂R

(
R2 ∂ ϕ(2) (ℓ)

∂R

)
+

ϕ(2) (ℓ)

R2 sin θ

∂

∂θ

(
sin θ

∂Pℓ(cos θ)

∂θ

)
+

ϕ(2) (ℓ)

R2 sin2 θ

∂2Pℓ(cos θ)

∂φ2
=

S(2) (ℓ)Pℓ(cos θ)

P 2L2
.

Multiplying this equation by ϕ(2) (ℓ)Pℓ(cos θ) and dividing it by R2, yields

1

ϕ(2) (ℓ)

∂

∂R

(
R2 ∂ ϕ(2) (ℓ)

∂R

)
+

1

Pℓ sin θ

∂

∂θ

(
sin θ

∂Pℓ

∂θ

)
+

1

Pℓ sin
2 θ

∂2Pℓ

∂φ2︸ ︷︷ ︸
−ℓ(ℓ+1)

= R2 S(2) (ℓ)

P 2L2 ϕ(2) (ℓ)
.
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4 HEAD-ON COLLISION 4.1 Formulating the Initial Data

(a) Plot of ϕ(2) (ℓ=0) with q0 = 0.219 · 23/M3. (b) Plot of ϕ(2) (ℓ=2) with q2 = 0.224 · 2/M .

Figure 7: Plots of the components of (2)ϕ as a function of R. For convenience, we have plotted the functions
for M = 1.

Here, we recognise that the angular part of the Laplace equation equals −ℓ(ℓ+1). Therefore, the radial part
results in a Riedel Equation for each multipole:

∂

∂R

(
R2 ∂ ϕ(2) (ℓ=0)

∂R

)
= −1056

5

R3

(2R+M)7
,

∂

∂R

(
R2 ∂ ϕ(2) (ℓ=2)

∂R

)
− 6 ϕ(2) (ℓ=2) = −3072

7

R3

(2R+M)7
,

∂

∂R

(
R2 ∂ ϕ(2) (ℓ=4)

∂R

)
− 20 ϕ(2) (ℓ=4) = −7488

35

R3

(2R+M)7
.

The solutions to this ordinary differential equations are

ϕ(2) (ℓ=0) =
q0
R

−
11
(
M2 + 8MR+ 20R2

)
50R(M + 2R)5

, (4.20)

ϕ(2) (ℓ=2) =
q2
R3

−
8
(
M4 + 10M3R+ 40M2R2 + 80MR3 + 80R4

)
35R3(M + 2R)5

. (4.21)

We have not presented ϕ(2) (ℓ=4) here in print, because of its lengthy expression, but it can be found in
HeadOnCollision.nb [43]. The coefficients q0 and q2 are integration constants that are determined by
the boundary condition that ϕreg should be regular at both R = Ci. According to [25], the values are
q0 = 0.219/m3 and q2 = 0.224/m, which also agree with [44]. The solutions for ϕ(2) (ℓ=0) and ϕ(2) (ℓ=2) as a
function of R have been plotted in Fig. 7.

At this point, we have perturbatively constructed the conformal factor ϕ and have thus found a solution to
the initial value Eqs. (2.4) and (2.3). The conformal factor ϕ and conformal extrinsic curvature Âab can now
be substituted in Eqs. (2.1) and (2.2) to determine the physical 3-metric γab and physical extrinsic curvature
Kab. So far, our calculations are in agreement with [25].
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4 HEAD-ON COLLISION 4.2 Determining Regge-Wheeler perturbations

4.2 Determining Regge-Wheeler perturbations

Now that we have constructed initial data for our system, the CLA can be applied and we will treat our system
as a deformation of a Schwarzschild BH. To facilitate comparison to the background, we make the following
change of coordinates to switch from the flat radial coordinate R to the Schwarzschild radial coordinate r.
This transformation is given by

R = 1
4 (
√
r +

√
r − 2M). (4.22)

Note that this transformation satisfies
∂R

∂r
=
R

r

1√
1− 2M

r

.

Upon switching from the coordinates xa = (R, θ, φ) to ya = (r, θ, φ), the physical metric γab is given by

γab(y) =
∂xi

∂ya
∂xj

∂yb
ϕ4f̂ij(x). (4.23)

To extract the metric perturbations, we use the same conventions as introduced in Eqs. (2.11)–(2.13). The
Regge-Wheeler quantities can be deduced from Eq. (4.23). To this end, we proceed by also decomposing ϕBL

in Legendre polynomials to find the following multipoles

ϕ
(ℓ=0)
BL = 1 +

M

2R
= 1 +

2M(√
r − 2M +

√
r
)2 , (4.24)

ϕ
(ℓ=2)
BL =

L2M

8R3
=

8L2M(√
r − 2M +

√
r
)6 , (4.25)

ϕ
(ℓ=4)
BL =

L4M

32R5
=

32L4M(√
r − 2M +

√
r
)10 . (4.26)

Since the initial geometry is conformally flat, the only non-vanishing metric perturbations are H2 and K.
The corresponding components of the 3-metric in Eq. (4.23) are given by

γrr =

(
∂R

∂r

)2

ϕ4f̂rr =

(
R

r

)2
1

1− 2M/r
ϕ4, (4.27)

γθθ = ϕ4f̂θθ = ϕ4R2. (4.28)

Combining this with Eq. (2.11) and (2.12), this implies that H2 and K are equal, since they satisfy

H
(ℓ)
2 =

(
1− 2M

r

)
γrr =

(
R

r

)2

ϕ4 =
1

r2
γθθ = K(ℓ).

Thus far, we have encountered quantities that featured ℓ = 0, ℓ = 2 and ℓ = 4 modes. Since the ℓ = 2
multipole is dominant and the ℓ = 0 and ℓ = 2 modes contribute to the corresponding source term at
second order, we will only consider the ℓ = 0 and ℓ = 2 modes from this point onwards. The monopole and
quadrupole moments follow from Eq. (4.27) or Eq. (4.28) by applying the orthogonality relations. The ℓ = 0
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4 HEAD-ON COLLISION 4.2 Determining Regge-Wheeler perturbations

contributions only start appearing at second order, where we find

H
(2) (ℓ=0)

2 = K(2) (ℓ=0) =
128L4

(
15M2r2 + 30

(
r4 −

√
r7(r − 2M)

)
+ 30M

(√
r5(r − 2M)− 2r3

))
25M2r3

(√
r − 2M +

√
r
)6

+ L2P 2

(
800q0

(
M4

(√
r5(r − 2M) + 5r3

)
− 6M3

√
r7(r − 2M)− 10M3r4 + 4M2

√
r9(r − 2M) + 4M2r5

)
25M2r3

(√
r − 2M +

√
r
)6

+
8
(
−11M4 + 88M3r + 33M3

√
r(r − 2M)− 55M2

√
r3(r − 2M)− 55M2r2

)
25M2r3

(√
r − 2M +

√
r
)6

)
.

The ℓ = 2 multipole possesses both first and second order contributions. At first order, we have

H
(1) (ℓ=2)

2 = K(1) (ℓ=2) =
16L2M

√
r
(√
r − 2M +

√
r
)5 ,

and at second order we have

H
(2) (ℓ=2)

2 = K(2) (ℓ=2) =
192L4M2

7r
(√
r − 2M +

√
r
)10

+ L2P 2

[
640q2

(
28M2

√
r5(r − 2M) + 140M2r3 + 112

√
r9(r − 2M)− 168M

√
r7(r − 2M)− 280Mr4 + 1120r5

)
35r3

(√
r − 2M +

√
r
)10

+
64
(
−16M4 + 80M3

(√
r(r − 2M) + 5r

)
− 640M2

√
r3(r − 2M)− 1600M2r2 − 640

√
r7(r − 2M)

)
35r3

(√
r − 2M +

√
r
)10

+
64
(
1280M

√
r5(r − 2M) + 1920Mr3 − 640r4

)
35r3

(√
r − 2M +

√
r
)10

]
.

These expressions differ significantly from those found in the literature in [25]. In their work, Nicasio et al.
found

H
(ℓ=2)
2 = K(ℓ=2) =

16ML2

√
r(
√
r +

√
r − 2M)5

+
192M2L4

7r(
√
r +

√
r − 2M)10

+
128L2P 2q2√

r(
√
r +

√
r − 2M)5

(4.29)

−256L2P 2[12r2 − 9rM +M2 + (8r − 3M)
√
r
√
r − 2M ]

35r3(
√
r +

√
r − 2M)6

.

At first order, the calculations agree and we find the same H
(1) (ℓ=2)

2 . At second order, however, the L2P 2

term in our calculations is more complicated than the term in [25]. Both expressions for L2P 2 exhibit the
same scaling behaviour at infinity. In both works, the q2-term scales with O(r−3) and the remaining term
scales with O(r−4). At the horizon r = 2M , the expressions also show similar behaviour. Their leading order
term of order O([r − 2M ]0) is even the same. When we plot both expressions (see Fig. 8), it becomes clear
that the expression in our calculations includes some additional contributions near the horizon.

The initial configuration of colliding BHs is not static and as such there are also non-vanishing contributions
for the extrinsic curvature. We apply the same decomposition to them as for the metric perturbations, i.e.
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(a) Plot for large values of r/M . (b) Plot for small values of r/M near the horizon.

Figure 8: Comparison of H
(ℓ=2)
2 = K(ℓ=2) in our calculations to the expressions from [25]. Graphs have been

plotted for M = 1, L = 0.01, P = 0.01 and q2 = 0.224 · 2/M .

Eqs. (2.15)–(2.17). The physical extrinsic curvature, expressed in the new Schwarzschild coordinates, follows
from

Kab(y) =
∂xi

∂ya
∂xj

∂yb
ϕ−2K̂ij(x). (4.30)

Again, we apply the orthogonality of Legendre polynomials in order to determine the monopole and quadru-
pole contributions. We have two non-vanishing ℓ = 0 modes at first order given by

KH2
(1) (ℓ=0) = −2LP

r3
, (4.31)

KK(1) (ℓ=0) =
LP

r3
, (4.32)

and we also have three ℓ = 2 modes

KH2
(1) (ℓ=2) = −4LP

r3
, (4.33)

KK(1) (ℓ=2) =
5LP

r3
, (4.34)

KG(1) (ℓ=2) =
LP

r3
. (4.35)

Note that our findings at first order agree with [25], except for a relative minus sign for all the extrinsic
curvature perturbations. At second order, however, our calculations yield different results again. For the
ℓ = 0 modes we find

Kh1
(2) (ℓ=0) = − 13L3P

8r
√
r(r − 2M)

(√
r − 2M +

√
r
)4 , (4.36)

KK(2) (ℓ=0) =
L3P

(
M2 − 4Mr + 2M

√
r(r − 2M)− 2

√
r3(r − 2M) + 2r2

)
M4r3

, (4.37)
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and for the ℓ = 2 modes we obtain

KH2
(2) (ℓ=2) = − 96L3P

7r3
(√
r − 2M +

√
r
)4 , (4.38)

Kh1
(2) (ℓ=2) =

32L3P

7r
√
r(r − 2M)

(√
r − 2M +

√
r
)4 , (4.39)

KK(2) (ℓ=2) = −
4L3P

(
M2 − 4Mr + 2M

√
r(r − 2M)− 2

√
r3(r − 2M) + 2r2

)
7M4r3

, (4.40)

KG(2) (ℓ=2) =
3L3P

(
M2 − 4Mr + 2M

√
r(r − 2M)− 2

√
r3(r − 2M) + 2r2

)
7M4r3

. (4.41)

4.3 Gauge Transformations

Now we will take advantage of the remaining freedom to fix our system in a gauge that makes the rest of our
calculations as convenient as possible. Note that the form of the gauge transformation in Eq. (2.22) given by
[45], which we will use here, differs from the conventions used in [25]. There, they used Eq. (22) from [16].
This follows from a different convention for the infinitesimal transformation (see App. A). Both conventions
are equivalent, since it essentially comes down to a different choice of ξ(2) µ (see Sec. III from [46]). We opt for
the conventions from [45] as it has a clear geometrical interpretation in terms of generators for Lie dragging
(see App. A). At second order, the different conventions will yield different results, so from this point on it
will not be fruitful to compare second order expressions.

4.3.1 First order gauge transformation

As discussed, we take a step by step approach and first fix the first order perturbations as desired. This
transformation is generated by ξ(1) µ and will change the perturbations as

g′
(1)

µν = g(1)
µν + L ξ(1) g(0)

µν ,

g′
(2)

µν = g(2)
µν + L ξ(1) g(1)

µν +
1

2
L2

ξ(1) g(0)
µν .

We want to gauge fix the perturbations in a way that make our calculations as convenient as possible. As
has already been discussed briefly in the introduction, one obtains a source term at second order that is
quadratic in the first order perturbations. Therefore, we would like to remove all ℓ = 0 modes so that the
source term for the second order ℓ = 2 wavefunction only has quadratic ℓ = 2 contributions and no cross
terms of monopoles and quadrupoles. Recall that there are no ℓ = 0 contributions in the metric at first or-
der, but there are first order ℓ = 0 contributions for the extrinsic curvature. Hence, at first order, the gauge
transformation amounts to removing the monopoles of the extrinsic curvature, given in Eqs. (4.31) and (4.32).

This first order gauge transformation will alter the second order perturbations as well. We lose the im-
portant feature that H0 = H1 = h1 = 0 up to second order. These quantities being zero essentially means
that the perturbative lapse and shit are zero, which allows for an easy identification between initial time
derivatives of metric perturbations and the extrinsic curvature. This greatly simplifies the formulation of ini-
tial conditions for the Zerilli equation, which we want to solve numerically. The second order transformation
therefore restores H0 = H1 = h0 = 0 up to second order.
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First, we implement the first order gauge transformation by choosing a ξ(1) µ, such that the ℓ = 0 modes of
the extrinsic curvature at first order vanish. To determine the generator ξ(1) µ, we decompose it in multipoles
as

ξ(1)
a =

∑
ℓ

A(1) (ℓ)

a (r, t) Pℓ(cos (θ)), ξ
(1)

θ =
∑
ℓ

B(1) (ℓ)(r, t) ∂θPℓ(cos (θ)), ξ(1)
φ = 0. (4.42)

The decomposition of gauge transfomations into spherical harmonics is covered extensively in Appendix C.1.
From Eq. (C.16) and Eq. (C.22), it follows that we should have

2D(a A(1) (ℓ=0)
b) = −2t

√
1− 2M

r
Kf(1) (ℓ=0)

ab ,

2

r

(
1− 2M

r

)
A(1) (ℓ=0)

r = −2t

√
1− 2M

r
KK(1) (ℓ=0),

where Kfab is defined similarly to fab in Eq. (C.14), but with metric perturbations replaced by extrinsic

curvature perturbations. After working out the equations for each component of Kf(1) (ℓ=0)
ab , we find the

following set of four equations that determines the components of our first order generator

2∂t A(1) (ℓ=0)
t − 2M

r2

(
1− 2M

r

)
A(1) (ℓ=0)

r = 0, (4.43)

∂t A(1) (ℓ=0)
r + ∂r A(1) (ℓ=0)

t − 2M

r2
1

1− 2M/r
A(1) (ℓ=0)

t = 0, (4.44)

2∂r A(1) (ℓ=0)
r +

2M

r2
1

1− 2M/r
A(1) (ℓ=0)

r = − 4LPt

r5/2
√
r − 2M

, (4.45)

2

r

(
1− 2M

r

)
A(1) (ℓ=0)

r =
2LPt

√
r − 2M

r7/2
. (4.46)

It follows trivially from Eq. (4.46) that

A(1) (ℓ=0)
r =

LPt

r3/2
√
r − 2M

. (4.47)

Note this is also a solution to Eq. (4.45). To solve for A(1) (ℓ=0)
t , we substitute the solution Eq. (4.47) into

Eq.(4.44) to find the equation

∂r A(1) (ℓ=0)
t − 2M

r2
1

1− 2M
r

A(1) (ℓ=0)
t = − LP

r3/2
√
r − 2M

,

which is solved by

A(1) (ℓ=0)
t =

LP
√
r − 2M

M
√
r

. (4.48)

Unfortunately, this is not a solution to Eq. (4.43), so it is not possible to set all ℓ = 0 components to zero with
this simple ansatz. As a consequence, we are left with one remaining first order ℓ = 0 perturbation in the

g
(1)

tt component. As a result of this non-vanishing component, there will be a non-vanishing first order (and
consequently second order) lapse function. In this case, Eq. (2.20) is not valid anymore for the ℓ = 0 modes.
This is of no big influence as all other ℓ = 0 perturbations vanish at first order, so the initial data (γab,Kab)
is still free of first order ℓ = 0 perturbations. At second order, where the non-vanishing perturbative lapse
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could still pose a problem, we can still use the gauge freedom to remove the non-vanishing lapse for the
ℓ = 0 modes. The major problem is that this component will give rise to some ℓ = 0 cross terms with ℓ = 2
quadrupoles in the source term.4

Raising the indices of the generator ξ
(1)

µ with the background metric g(0) µν , the vector ξ(1) µ for the first
order transformation is given by

ξ(1) t = − LP
√
r

M
√
r − 2M

, ξ(1) r =
LPt

√
r − 2M

r5/2
, ξ(1) A = 0. (4.49)

Note this is the same generator as was used in [25]. Since we still need the spacetime metric gµν , instead
of the spatial metric γab, we will refrain projecting onto the initial slice just yet and give the perturbations
of gµν which will include t-dependencies. After the first order transformation, we have one ℓ = 0 piece, as
explained before, given by

H ′
0

(1) (ℓ=0)
= − 2LMPt

r7/2
√
r − 2M

. (4.50)

For the ℓ = 2 modes at first order, we have the following non-vanishing perturbations

H ′
2

(1) (ℓ=2)
=

16L2M
√
r
(√
r − 2M +

√
r
)5 + 8LPt

√
r − 2M

r7
,

K ′(1) (ℓ=2)
=

16L2M
√
r
(√
r − 2M +

√
r
)5 − 10LPt

√
r − 2M

r7
,

G′(1) (ℓ=2)
= −2LPt

√
r − 2M

r7
.

Note that these components follow directly from Eq. (2.21) and were not altered by the gauge transformation,
since it only affects ℓ = 0 monopoles. We are not able to compare these quantities to [25] at this point, since
the first order quantities after the first order transformation are not stated explicitly.

As a consequence of the first order transformation, the second order perturbations are also altered. Since
some of the expressions get rather lengthy, we will abbreviate the r-dependence of some of the perturbations.
For the full expressions, we refer to the HeadOnCollision.nb Mathematica notebook [43]:

H ′
0

(2) (ℓ=0)
=
L2MP 2t2(9M − 4r)

r7(2M − r)
− L2P 2

r3(2M − r)
,

H ′
1

(2) (ℓ=0)
=
L2P 2t(3M − 2r)

r5(r − 2M)
,

H ′
2

(2) (ℓ=0)
=L4A′

1(r) + L2P 2
[
A′

2(r) + q0A
′
3(r) +A′

4(r)t
2
]
,

K ′(2) (ℓ=0)
=L4B′

1(r) + L2P 2
[
B′

2(r) + q0B
′
3(r) +B′

4(r)t
2
]
+ L3PB′

5(r)t,

where the factors A′
1(r), A

′
2(r) . . . and B

′
1(r), B

′
2(r) . . . are abbreviations for long factors which depend on r

and M . It turns out that A′
1(r) = B′

1(r) and A
′
3(r) = B′

3(r). For the ℓ = 2 modes at second order, we have

4As we will see in Sec. 4.4, these cross terms turn out to not contribute, since the first order ℓ = 0 perturbations of the initial
data, and as a consequence (1)ψ(ℓ=0), vanish.
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found that

H ′
1

(2) (ℓ=2)
=

16L3MP

r2
√
r − 2M

(√
r − 2M +

√
r
)5 ,

H ′
2

(2) (ℓ=2)
=L4C ′

1(r) + L2P 2 (C ′
2(r) + q2C

′
3(r)) + L3PC ′

4(r)t,

h′1
(2) (ℓ=2)

=− 64L3Pt

7r2
(√
r − 2M +

√
r
)4 ,

K ′(2) (ℓ=2)
=L4D′

1(r) + L2P 2 (D′
2(r) + q2D

′
3(r)) + L3PD′

4(r)t,

G′(2) (ℓ=2)
=−

6L3Pt
√
r − 2M

(
M2 − 2

√
r3(r − 2M)− 4Mr + 2M

√
r(r − 2M) + 2r2

)
7M4r7/2

.

Again C ′
1(r), C

′
2(r), . . . and D′

1(r), D
′
2(r), . . . are abbreviations for long terms. In this case, we have that

C ′
1(r) = D′

1(r), C
′
2(r) = D′

2(r) and C
′
3(r) = D′

3(r).

4.3.2 Second order gauge transformation

At second order, we still have the freedom to make a choice of coordinates and fix the gauge. This second
order transformation, generated by ξ(2) µ, changes the metric as follows

g′′
(1)

µν = g′
(1)

µν ,

g′′
(2)

µν = g′
(2)

µν + L ξ(2) g(0)
µν .

Before the first order transformation, we had the nice property that the perturbative lapse and shift all
vanished. This allowed us to easily relate the extrinsic curvature to time derivatives of the metric per-
turbations, via Eq. (2.20). At second order, we would like to restore the condition H0 = H1 = h1 = 0 to
make the identification between the extrinsic curvature and time derivatives of the metric as easy as possible.5

To find a suitable generator ξ(2) µ, we again decompose this vector in terms of its multipoles and solve
the corresponding equations for each ℓ separately. The equations take the same form as Eqs. (C.16)–(C.22),
but now the first order coefficients are replaced by second order ones. For ℓ = 0, this yields the following set
of equations

2∂t A(2) (ℓ=0)
t − 2M

r2

(
1− 2M

r

)
A(2) (ℓ=0)

r = −L
2P 2

r4
+
L2MP 2(9M − 4r)

r8
t2,

∂t A(2) (ℓ=0)
r + ∂r A(2) (ℓ=0)

t − 2M

r2
1

1− 2M
r

A(2) (ℓ=0)
t =

L2P 2(3M − 2r)

r5(2M − r)
t,

A(2) (ℓ=0)
t + ∂t B(2) (ℓ=0) = 0.

To solve this system of differential equations, we make the ansatz that all coefficients are polynomials in time,
since we are looking for local solutions near the initial time slice Σ0. This is the same ansatz we applied in

5Since at first order H′
0

(1) (ℓ=0) does not vanish, it is not possible to use Eq. (2.20) for the ℓ = 0 pieces, whatever the second
order gauge might be.
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the first order case. Specifically, we make the ansatz

A(2) (ℓ=0)
t (t, r) =

∞∑
n=0

tnA
(n)
t (r),

A(2) (ℓ=0)
r (t, r) =

∞∑
n=0

tnA(n)
r (r),

B(2) (ℓ=0)(t, r) =

∞∑
n=0

tnB(n)(r),

where we dropped the (ℓ = 0) superscript in the t-expansion for notational convenience. This ansatz creates
an infinite ladder of equations in tn. The system permits it first solution when we carry out the expansion
up and till t2. Hence, we neglect all O(t3) terms and find the following simplified system of equations

2M

r2

(
1− 2M

r

)
A(2)

r =
L2MP 2(9M − 4r)

r8
, (4.51)

2A(2)
r + ∂rA

(1)
t − 2M

r2

(
1− 2M

r

)−1

A
(1)
t =

L2P 2(3M − 2r)

r5(2M − r)
, (4.52)

2A
(1)
t − 2M

r2

(
1− 2M

r

)
A(0)

r = −L
2P 2

r4
, (4.53)

2A
(1)
t +B(2) = 0, (4.54)

which can easily be solved equation by equation. First, we rearrange the factor in Eq. (4.51) to find

A(2)
r (r) =

L2P 2(9M − 4r)

2r5(2M − r)
.

Then, we substitute this expression into Eq. (4.52) and solve the resulting linear ordinary differential equation

for A
(1)
t (r) to find

A
(1)
t (r) =

L2P 2
(
2M

(
4M3 + 2M2r + 3Mr2 − 3r3

)
+ 3r3(r − 2M) ln

(
r

r−2M

))
8M4r4

.

The solution for B(2)(r) follows trivially from Eq. (4.54), at this point. Finally, we can plug this solution
back into Eq. (4.53) which yields

A(0)
r (r) = −

L2P 2

(
2M(6M3+2M2r+3Mr2−3r3)

2M−r − 3r3 ln
(

r
r−2M

))
8M5r

.

Hence, we have found that for the ℓ = 0 modes the generator ξ(2) (ℓ=0)
µ has components

A(2) (ℓ=0)
t (t, r) = A

(1)
t (r)t, A(2) (ℓ=0)

r (t, r) = A(0)
r (r) +A(2)

r (r)t2, B(2) (ℓ=0)(t, r) = B(2)(r)t2.
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The ℓ = 2 components can be determined in a similar fashion. In this case, we have the system of equations

2∂t A(2) (ℓ=2)
t − 2M

r2

(
1− 2M

r

)
A(2) (ℓ=0)

r = 0,

∂t A(2) (ℓ=2)
r + ∂r A(2) (ℓ=2)

t − 2M

r2
1

1− 2M
r

A(2) (ℓ=2)
t = − 16L3MP

r2
√
r − 2M

(√
r − 2M +

√
r
)5 ,

A(2) (ℓ=0)
t + ∂t B(2) (ℓ=0) = 0.

By applying the same ansatz as before, we ultimately find that ξ(2) (ℓ=2)
µ has to have the components

A(2) (ℓ=2)
t (t, r) =−

2L3P
(
4
√
r3(r − 2M) + 8Mr − 4r2 − 9M

√
r(r − 2M)

)
M4r

+
5L3P (r − 2M) ln

(
r

r−2M

)
M3r

+

4(r − 2M) ln

(
1√
r

r−2M

+ 1

)
M3r

,

A(2) (ℓ=2)
r (t, r) =0,

B(2) (ℓ=2)(t, r) =− A(2) (ℓ=2)
t (t, r).

Now the overall generator ξ
(2)

µ is simply given by

ξ
(2)

t = A(2) (ℓ=0)
t (t, r) + A(2) (ℓ=2)

t (t, r)P2(cos θ),

ξ(2)
r = A(2) (ℓ=0)

r (t, r),

ξ
(2)

A = B(2) (ℓ=2)(t, r)DAP2(cos θ).

Thereby achieving that (2)H ′′
0 = (2)H ′′

1 = (2)h′′1 = 0 up to O(t2).

4.3.3 Projecting onto the initial time slice

Now that we have gauge fixed our original 4d-metric gµν from Eq. (2.21) up to second order to g′′µν , we would
like to recover the spatial metric γ′′µν and extrinsic curvature K ′′

µν on the t = 0 slice. The initial data can
be recovered from g′′µν by first calculating the normal vector n′′µ to determine (γ′′µν ,K

′′
µν) and then taking the

limit t→ 0. First observe that the spatial metric γ′′µν is related to the g′′µν via

γ′′µν = g′′µν + n′′µn
′′
ν . (4.55)

Recall that after the gauge transformations the perturbative lapse does no longer vanish, so we have to
determine the perturbative expansion of n′′µ. To this end, we expand the lapse function and shift vector as

N ′′ = N ′′(0)
+ ϵ N ′′(1)

+ ϵ2 N ′′(2)
+O(ϵ3), N ′′a = N ′′(0) a

+ ϵ N ′′(1) a
+ ϵ2 N ′′(2) a

+O(ϵ3),

29



4 HEAD-ON COLLISION 4.3 Gauge Transformations

and substitute this into Eq. (2.18), so that the metric g′′µν can be expanded in ϵ as

g′′µνdx
µdxν =− N ′′(0) 2dt2 + γ′′

(0)
ab(dx

a + N ′′(0) a
dt)(dxb + N ′′(0) b

dt)

+ ϵ
[
− 2 N ′′(0)

N ′′(1)
dt2 + γ′′

(1)
ab(dx

a + N ′′(0) a
dt)(dxb + N ′′(0) b

dt)

+ 2 γ′′
(0)

ab N ′′(1) a
dtdxa

]
+ ϵ2

[
−
(

N ′′(1) 2 + 2 N ′′(0)
N ′′(2)
)
dt2 + γ′′

(2)
ab(dx

a + N ′′(0) a
dt)(dxb + N ′′(0) b

dt)

+ 2 γ′′
(1)

ab N ′′(1) a
dtdxa + γ′′

(0)
ab N ′′(1) a

N ′′(1) b
dt2

+ 2 γ′′
(0)

ab N ′′(2) a
dtdxa

]
+O(ϵ3).

Since N ′′(0) a
= N(0) a = 0 and N ′′(0)

= N(0) =
√
1− 2M/r, as we have seen before, it follows that at first

order the ADM quantities are given by

N ′′(1)
= − 1

2 N ′′(0)
g′′

(1)
00 =

LMPt

r4
, (4.56)

N ′′(1) a
= γ′′

(0) ab
g′′

(1)
0b = 0, (4.57)

γ′′
(1)

ab = g′′
(1)

ab, (4.58)

where γ′′
(0) ab

= γ(0) ab is simply the spatial part of the Schwarzschild metric g(0) µν and where we used that

in our case g′′
(0)

0b = 0. At second order, the relevant quantities are given by

N ′′(2)
= − 1

2 N ′′(0)
( g′′
(2)

00 + N ′′(1) 2) = −
L2P 2

(
−8M2t2 + 4Mrt2 + r4

)
2
√
r15(r − 2M)

,

N ′′(2) a
= γ′′

(0) ab
g′′

(2)
0b = 0,

γ′′
(2)

ab = g′′
(2)

ab,

since g′′
(2)

0b = 0 for our choice of gauge. Now, the normal covector n′′µ can be expanded as

n′′
(i)

µ =
(
− N ′′(i)

, 0, 0, 0
)
.

Using the perturbative covector, Eq. (4.55) can be arranged order by order as

γ′′
(0)

µν = g′′
(0)

µν + n′′
(0)

µ n′′
(0)

ν ,

γ′′
(1)

µν = g′′
(1)

µν + n′′
(1)

µ n′′
(0)

ν + n′′
(0)

µ n′′
(1)

ν ,

γ′′
(2)

µν = g′′
(2)

µν + n′′
(1)

µ n′′
(1)

ν + n′′
(2)

µ n′′
(0)

ν + n′′
(0)

µ n′′
(2)

ν .

Secondly, we want to recover the extrinsic curvature. Note that K ′′
µν = 1

2Ln′′γ′′µν . This will involve the
normal vector n′′

µ
. Therefore, we need to raise the index of the covector n′′µ. Since we are working in second

order perturbation theory, we have to take particular care in working out n′′
µ
= g′′

µν
n′′ν , where we have to

contract over the full metric and not just the background metric. In general, the inverse metric gµν of some

30



4 HEAD-ON COLLISION 4.3 Gauge Transformations

arbitrary metric can be expanded order by order as

gµν = g(0) µν

− ϵ g(0) µα g(0) νβ g
(1)

αβ

− ϵ2
[

g(0) µα g(0) νβ g
(2)

αβ − g(0) µα g(0) νβ g(0) λκ g
(1)

λα g
(1)

κβ

]
+O(ϵ3),

(4.59)

as deduced from Eq. (B.4). The index of some covector ωµ can thus be raised in second order perturbation
theory as

ωµ =gµνων

= g(0) µν ω(0)
ν

+ ϵ
[

g(0) µν ω(1)
ν − g(0) µα g(0) νβ g

(1)
αβ ω(0)

ν

]
+ ϵ2

[
g(0) µν ω(2)

ν − g(0) µα g(0) νβ g
(1)

αβ ω(1)
ν

−
(

g(0) µα g(0) νβ g
(2)

αβ − g(0) µα g(0) νβ g(0) λκ g
(1)

λα g
(1)

κβ

)
ω(0)
ν

]
+O(ϵ3).

When we apply this to n′′µ we find the following first and second order normal vectors

n′′
(1) µ

=

(
− LPMt

r3(r − 2M)
, 0, 0, 0

)
, n′′(2) µ

=

(
3L2P 2M2t2

2r13/2(r − 2M)3/2
, 0, 0, 0

)
. (4.60)

The extrinsic curvature K ′′(i)
ab can now be calculated order by order from n′′

(i) µ
and γ′′

(i)
ab

K′′
ab =

1

2
Ln′′γ′′

ab

=
1

2

(
n′′λ∂λγ

′′
ab + γ′′

λb∂an
′′λ + γ′′

aλ∂bn
′′λ
)

=
1

2

(
n′′(0) λ

∂λ γ′′(0)
ab + γ′′(0)

λb∂a n′′(0) λ
+ γ′′(0)

aλ∂b n′′(0) λ
)

+
1

2
ϵ
(

n′′(0) λ
∂λ γ′′(1)

ab + γ′′(1)
λb∂a n′′(0) λ

+ γ′′(1)
aλ∂b n′′(0) λ

+ n′′(1) λ
∂λ γ′′(0)

ab + γ′′(0)
λb∂a n′′(1) λ

+ γ′′(0)
aλ∂b n′′(1) λ

)
+

1

2
ϵ2
(

n′′(0) λ
∂λ γ′′(2)

ab + γ′′(2)
λb∂a n′′(0) λ

+ γ′′(2)
aλ∂b n′′(0) λ

+ n′′(1) λ
∂λ γ′′(1)

ab + γ′′(1)
λb∂a n′′(1) λ

+ γ′′(1)
aλ∂b n′′(1) λ

+ n′′(2) λ
∂λ γ′′(0)

ab + γ′′(0)
λb∂a n′′(2) λ

+ γ′′(0)
aλ∂b n′′(2) λ

)
+O(ϵ3).

(4.61)

The only remaining step is to project the quantities (γ′′ab,K
′′
ab) on the initial surface Σ0 by taking the limit

t→ 0. At first order, the spatial metric’s perturbations consist only of the ℓ = 2 modes

H ′′
2

(1) (ℓ=2)
= K ′′(1) (ℓ=2)

=
16L2M

√
r
(√
r − 2M +

√
r
)5 , (4.62)
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which agrees with [25]. Furthermore, at first order, the extrinsic curvature only has the following ℓ = 2 modes

KH ′′
2

(1) (ℓ=2)
= −4LP

r3
, (4.63)

KK ′′(1) (ℓ=2)
=

5LP

r3
, (4.64)

KG′′(1) (ℓ=2)
=
LP

r3
. (4.65)

Up to an overall minus sign for all three perturbations, these components agree with [25]. Thus, as desired,
the first order perturbations of the initial data have no ℓ = 0 contributions as instated by the first order
gauge transformation. This is also evident from Eq. (4.61). Most terms feature the contraction of n′′µ, which
only has a temporal components with γ′′ab which only has spatial components. The only contributing term is

n′′
(0) t

∂t γ′′
(2)

ab, which recovers the familiar relation in Eq. (2.20).

At second order, we start seeing notable differences from [25] again. In our calculations we find the fol-

lowing set of ℓ = 0 modes of γ′′
(2)

ab

H ′′
2

(2) (ℓ=0)
= L4A′′

1(r) + L2P 2 [A′′
2(r) + q0A

′′
3(r)] , (4.66)

K ′′(2) (ℓ=0)
= L4B′′

1 (r) + L2P 2 [A′′
2(r) + q0B

′′
3 (r)] , (4.67)

where we have abbreviated the long terms again. Recall A′′
1(r) = B′′

1 (r) and A′′
3(r) = B′′

3 (r). The ℓ = 2
modes are

H ′′
2

(2) (ℓ=2)
= K ′′(2) (ℓ=2)

= L4C ′′
1 (r) + L2P 2 [C ′′

2 (r) + q2C
′′
3 (r)] . (4.68)

The second order perturbations of the extrinsic curvature are given by the monopoles

KK ′′(2) (ℓ=0)
=
L3P

(
M2 − 2

√
r3(r − 2M)− 4Mr + 2M

√
r(r − 2M) + 2r2

)
M4r3

, (4.69)

and the quadrupoles

KH ′′
2

(2) (ℓ=2)
= −

4L3P
(
126M2 + 24

(√
r3(r − 2M) + r2

)
+M

(
−83

√
r(r − 2M)− 111r

))
7r7/2(r − 2M)

(√
r − 2M +

√
r
)5 , (4.70)

Kh′′1
(2) (ℓ=2)

= L3PD′′
1 (r), (4.71)

KK ′′(2) (ℓ=2)
=

8L3P
(
21M2 − 4

(√
r3(r − 2M) + r2

)
+M

(
11
√
r(r − 2M) + 15r

))
7r7/2

√
r − 2M

(√
r − 2M +

√
r
)6 , (4.72)

KG′′(2) (ℓ=2)
= L3PE′′

1 (r). (4.73)

For the full form of the abbreviated terms, we again refer to HeadOnCollission_final.nb [43]. Apart from
the L4-term, which is the same everywhere, our perturbations take on a quite different form from [25]. A

notable difference, for instance, is that in our case the perturbations of γ′′
(2)

ab we do not have a G′′
2

(2) (ℓ=2)

contribution, like in the calculations of Nicasio et al.
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4.4 Zerilli Equation

So far, we have analytically determined the initial data perturbations belonging to the BHs in a head-on
collision. In order to make predictions about the physical behaviour of the system, such as gravitational
wave signals, QNMs and horizon shapes, we need to evolve our initial data. Hence, we need to determine the
master equation with which to evolve our perturbations.

For the even perturbations on a Schwarzschild background this is the Zerilli equation. We will first present
the derivation of the Zerilli equation at first order in detail, since it serves as a template for the second
order calculation. After the first order calculation, we proceed by repeating the same derivation at second
order and taking the quadratic first order cross terms into account to obtain the second order Zerilli equation
including its source term.

4.4.1 First Order

There are two approaches to deriving the Zerilli equation: Zerilli’s original derivation that relies on the
convenience of the Regge-Wheeler gauge [16, 22, 40] and Moncrief’s alternative one which uses a variational
approach and is gauge independent [41]. The advantage of Zerilli’s approach is its simplicity, even at second
order. On the other hand, Moncrief’s master function is more convenient, because it is a gauge invariant
combination of only the initial data. The derivation, however, is more involved, especially at second order.
In this thesis, we opted for simplicity and we will follow Zerilli’s approach. The calculations are worked out
in the M2xS2-Split_coordinates_Final.nb Mathematica notebook [43].

In order to derive the Zerilli equation, we assume that the first-order perturbations satisfy the Regge-Wheeler
gauge G(1) = h0

(1) = h1
(1) = 0. The expressions for the Ricci tensor in this gauge can be found in Eq. (C.28)–

(C.30). The Einstein equation δRRW
AB = 0, contains two independent pieces of information, each accompanied

by a different harmonic. The first equality − 1
2fc

c = 0, belonging to DADBY
ℓm, implies that

H2
(1) RW = H0

(1) RW, (4.74)

and from the second equality, belonging to ΩABY
ℓm, we obtain a differential equation of second order in r

∂2 K(1) RW

∂r2
=

2

r(r − 2M)
H0

(1) RW +
2

r

∂ H0
(1) RW

∂r
− 2

r − 2M

∂ H1
(1) RW

∂t

+
(ℓ+ 2)(ℓ− 1)

r(r − 2M)
K(1) RW − 4r − 6M

r(r − 2M)

∂ K(1) RW

∂r
+

r2

(r − 2M)2
∂2 K(1) RW

∂t2
.

(4.75)

The equations δRRW
tB = 0 and δRRW

rB = 0, respectively, yield the following two differential equations which
are first order in r

∂ H1
(1) RW

∂r
=

r

r − 2M

∂ H0
(1) RW

∂t
+

r

r − 2M

∂ K(1) RW

∂t
− 2M

r (r − 2M)
H1

(1) RW, (4.76)

∂ H0
(1) RW

∂r
=
∂ K(1) RW

∂r
− 2M

r (r − 2M)
H0

(1) RW +
r

r − 2M

∂ H1
(1) RW

∂t
, (4.77)

and δRRW
rt = 0 yields the third differential equation of first order in r

∂2 K(1) RW

∂t∂r
=

1

r

∂ H0
(1) RW

∂t
+
ℓ(ℓ+ 1)

2r2
H1

(1) RW − r − 3M

r (r − 2M)

∂ K(1) RW

∂t
. (4.78)
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By differentiating Eq. (4.77) with respect to t and, then, substituting Eq. (4.78) into it, the t and r derivative
of K(1) RW can be eliminated from Eq. (4.77) and we obtain

∂2 H0
(1) RW

∂t∂r
=

r

r − 2M

∂2 H1
(1) RW

∂t2
+

r − 4M

r (r − 2M)

∂ H0
(1) RW

∂t
− r − 3M

r (r − 2M)

∂ K(1) RW

∂t
+
ℓ(ℓ+ 1)

2r2
H1

(1) RW. (4.79)

The remaining Einstein equations δRRW
tt = 0 and δRRW

rr = 0 yield two differential equations, which are second
order in r. These are, respectively, given by

1

2

∂2 H0
(1) RW

∂r2
=− 1

r − 2M

∂ H0
(1) RW

∂r
− r2

2(r − 2M)2
∂2 H0

(1) RW

∂t2
(4.80)

+
ℓ(ℓ+ 1)

2r2
r

r − 2M
H0

(1) RW +
2r − 3M

(r − 2M)2
∂ H1
(1) RW

∂t

+
r

r − 2M

∂2 H1
(1) RW

∂t∂r
+

M

r(r − 2M)

∂ K(1) RW

∂r

− r2

(r − 2M)2
∂2 K(1) RW

∂t2
,

∂2 K(1) RW

∂r2
− 1

2

∂2 H0
(1) RW

∂r2
=

1

r − 2M

∂ H0
(1) RW

∂r
+

r2

2(r − 2M)2
∂2 H0

(1) RW

∂t2
(4.81)

+
ℓ(ℓ+ 1)

2r2
r

r − 2M
H0

(1) RW − M

(r − 2M)2
∂ H1
(1) RW

∂t

− r

r − 2M

∂2 H1
(1) RW

∂t∂r
+

3M − 2r

r(r − 2M)

∂ K(1) RW

∂r
.

To isolate ∂2r K(1) RW, Eq. (4.80) and Eq. (4.81) can be added to each other. This yields

∂2 K(1) RW

∂r2
=
ℓ(ℓ+ 1)

r2
r

r − 2M
H0

(1) RW +
2

r − 2M

∂ H1
(1) RW

∂t
− 2

r

∂ K(1) RW

∂r
− r2

(r − 2M)2
∂2 K(1) RW

∂t2
. (4.82)

By equating Eq. (4.82) to Eq. (4.75), we can eliminate the second order derivatives in r, to obtain the
expression

(ℓ+ 2)(ℓ− 1)

r(r − 2M)
H0

(1) RW − 2

r

∂ H0
(1) RW

∂r
+

4

r − 2M

∂ H1
(1) RW

∂t
+

(ℓ+ 2)(ℓ− 1)

r(r − 2M)
K(1) RW

+
2r − 2M

r(r − 2M)

∂ K(1) RW

∂r
− 2r2

(r − 2M)2
∂2 K(1) RW

∂t2
= 0.

Now we take the t derivative of this, which allows us to eliminate the remaining r derivatives by substituting
Eqs. (4.78) and (4.79) in our expression. This way, we obtain a single non-trivial piece of information from
the set of second order equations called the “algebraic identity”6 [39, 40]

− ℓ(ℓ+ 1)M

r2
H1

(1) RW − 2r
∂2 H1

(1) RW

∂t2
−
[
(ℓ− 1)(ℓ+ 1) +

6M

r2

]
∂ H0
(1) RW

∂t

+

[
(ℓ+ 2)(ℓ− 1) +

2M(r − 3M)

r(r − 2M)

]
∂ K(1) RW

∂t
+

2r3

r − 2M

∂3 K(1) RW

∂t3
= 0.

(4.83)

6In Zerilli’s and Regge-Wheeler’s original works, a Fourier ansatz was used for the metric perturbations, so time derivatives
appeared as factors −iωt instead of actual derivatives. Hence, this equation is referred to as being “algebraic”, since it does not
feature derivatives in this context.
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At this point, we have a system of equations consisting of three equations of first order in r (Eqs. (4.76),

(4.78) and (4.79)) and, in addition, the algebraic identity Eq. (4.83). Now we can isolate ∂t H0
(1) RW in the

algebraic identity and substitute this in Eq. (4.76) and Eq. (4.78) to obtain two coupled partial differential
equations

∂

∂r

∂ K(1) RW

∂t
= α0(r)

∂ K(1) RW

∂t
+ α2(r)

∂3 K(1) RW

∂t3
+ β0(r) H1

(1) RW + β2(r)
∂2 H1

(1) RW

∂t2
,

∂

∂r
H1

(1) RW = γ0(r)
∂ K(1) RW

∂t
+ γ2(r)

∂3 K(1) RW

∂t3
+ δ0(r) H1

(1) RW + δ2(r)
∂2 H1

(1) RW

∂t2
,

(4.84)

where the coefficients preceding the different time derivatives of ∂t K(1) RW and H1
(1) RW can be found in

M2xS2-Split_coordinates_Final.nb [43]. We want to decouple these equations and recast them in the
form of a Schrödinger-like equation. To this end, we perform the transformation

∂ K(1) RW

∂t
= f(r) χ(1) (t, r) + g(r) R̂(1) (t, r),

H1
(1) RW = h(r) χ(1) (t, r) + k(r) R̂(1) (t, r),

(4.85)

such that the following properties are satisfied

∂ χ(1)

∂r∗
= R̂(1) ,

∂ R̂(1)

∂r∗
=

[
V (r∗) +

∂2

∂t2

]
χ(1) ,

∂r

∂r∗
=

(
1− 2M

r

)
. (4.86)

The particular form of Eq. (4.86) ensures the derivatives of the wave function χ(1) can be combined in a
single Schrödinger-like equation.7 The solution to this system, as provided in [40], is given by

f(r) =
λ(λ+ 1)r2 + 3λr + 6M2

r2(λr + 3M)
, g(r) = 1,

h(r) =
λr2 − 3λMr − 3M2

(r − 2M)(λr + 3M)
, k(r) =

r2

r − 2M
, (4.87)

V (r∗) = 2

(
1− 2M

r

)
λ2r2[(λ+ 1)r + 3M ] + 9M2(λr +M)

r3(λr + 3M)2
,

where λ ≡ 1
2 (ℓ− 1)(ℓ+2). After this transformation, we have recast the linearised Einstein equations in one

single equation, called the Zerilli equation:

∂2 χ(1)

∂r∗2
− ∂2 χ(1)

∂t2
− V (r∗) χ(1) = 0, (4.88)

which is formulated in terms of the Zerilli function χ(1) given by

χ(1) =
r − 2M

λr + 3M

[
r2

r − 2M

∂ K(1) RW

∂t
− H1

(1) RW

]
. (4.89)

The expression for χ(1) can be obtained by inverting the transformation in Eq. (4.85), using the solution
Eq. (4.87). Alternatively, we can use the master function ψ(1) that is related to χ(1) by

∂

∂t
ψ(1) = χ(1) , (4.90)

7The aim of finding a Schrödinger-like equation is inspired by previous work of Regge and Wheeler who found a Schrödinger-
like equation for the odd perturbations [39].
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which equally solves the Zerilli equation. To express ψ(1) in terms of the metric perturbations, we rewrite

Eq. (4.78) to be able to substitute H1
(1) RW in Eq. (4.89)

χ(1) =
2r(r − 2M)

ℓ(ℓ+ 1)(λr + 3M)

[
∂ H0
(1) RW

∂t
− r − 3M

r − 2M

∂ K(1) RW

∂t
− r

∂

∂r

∂ K(1) RW

∂t

]
+

r2

λr + 3M

∂ K(1) RW

∂t
,

such that

ψ(1) =
2r(r − 2M)

ℓ(ℓ+ 1)(λr + 3M)

[
H0

(1) RW − r − 3M

r − 2M
K(1) RW − r

∂ K(1) RW

∂r

]
+

r2

λr + 3M
K(1) RW. (4.91)

We introduced ψ(1) , because it is closely related to the master function that can be found using Moncrief’s

derivation [41]. This Moncrief wave function ψ
(1)

Mon is gauge invariant and defined solely in terms of the
components of the spatial metric γab. It reads

ψ
(1)

Mon =
2(r − 2M)

ℓ(ℓ+ 1)(λr + 3M)

[
r H2
(1) + 3r2

∂ G(1)

∂r
− r − 3M

r − 2M
K(1) − r2

∂ K(1)

∂r
− 6 h1

(1)

]
+

r2

λr + 3M
K(1) , (4.92)

where any arbitrary gauge can be used for the Regge-Wheeler perturbations. When we compare this to our
expression for ψ(1) in Eq. (4.91), it is apparent that our expression is simply the Moncrief function specifically
evaluated in the Regge-Wheeler gauge.

At first order, we will use the Moncrief function Eq. (4.92) as our master function, since it is already tailored
for using initial data. Furthermore, due to its gauge invariance, we can simply insert the components of

γ′′
(1)

ab in the gauge we have specified before.

As a side note, we also observe that we can express all the metric perturbations K(1) RW, H1
(1) RW and H0

(1) RW

in the RW gauge in terms of the Moncrief function. The transformation in Eq. (4.85) and Eq. (4.86), can
thus be rewritten as

K(1) RW = f(r) ψ(1) +

(
1− 2M

r

)
∂ ψ(1)

∂r
, (4.93)

H1
(1) RW = h(r)

∂ ψ(1)

∂t
+ r

∂2 ψ(1)

∂r∂t
, (4.94)

H0
(1) RW =

∂

∂r

[(
1− 2M

r

)
h(r) ψ(1) + r

∂ ψ(1)

∂r

]
− K(1) RW, (4.95)

where we used Eq. (4.76) to derive the expression for H0
(1) RW.

Because the ℓ = 0 mode of γab is non-radiative (and even set to zero in our case), we are only interested in
the ℓ = 2 modes. Hence, the initial master function that wel will plug into the Zerilli equation will be

ψ(1) (ℓ=2) =
r − 2M

3(2r + 3M)

[
r H2
(1) (ℓ=2) + 3r2

∂ G(1) (ℓ=2)

∂r
− r2

∂ K(1) (ℓ=2)

∂r
− 6 h1

(1) (ℓ=2)

]
− r

3
K(1) (ℓ=2). (4.96)

We also need to supply the initial time derivative of ψ(1) (ℓ=2), to make our initial value problem well-defined.

Note that we are working in a gauge such that H0
(1) = H1

(1) = h0
(1) = 0 for the quadrupolar modes, which
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implies that time derivatives of the metric can easily be related to the extrinsic curvature via Eq. (2.20).
Therefore, the time derivative ∂t ψ(1) (ℓ=2) can be expressed in terms of curvature perturbations as

∂t ψ(1) (ℓ=2) =
2(r − 2M)3/2

3
√
r(2r + 3M)

[
KH2

(1) (ℓ=2) + 3r
∂ KG(1) (ℓ=2)

∂r
− r

∂ KK(1) (ℓ=2)

∂r
− 6

r Kh1
(1) (ℓ=2)

]
− 2

√
r − 2M

3
√
r

KK(1) (ℓ=2).

(4.97)

In [25], they have found the particularly easy form

∂t ψ(1) (ℓ=2) =
2
√
r − 2M√

r(2r + 3M)

[
−r(2M − r) KG(1) (ℓ=2) − r2 KK(1) (ℓ=2) + (r − 2M) Kh1

(1) (ℓ=2)
]
,

by using the first order Einstein equations to simplify higher order time derivatives. It is not clear whether
they take the time derivative ψ(1) (ℓ=2) or ψ(1) (ℓ=2) itself as the starting point. We have not been able to
reproduce this expression, so we will stick to Eq. (4.97).

Filling in the explicit initial data for the BHs in a head-on collission in Eq. (4.62), we find the function

ψ(1) (ℓ=2)
∣∣
t=0

=
8L2Mr

(
7
√
r(r − 2M)− 10M + 5r

)
3
√
r − 2M(3M + 2r)

(√
r − 2M +

√
r
)5 , (4.98)

and from the initial extrinsic curvature perturbations in Eqs. (4.63)–(4.65), we obtain the time derivative

∂t ψ(1) (ℓ=2)
∣∣
t=0

= −2LP
√
r − 2M(19M + 8r)

3r7/2(3M + 2r)
. (4.99)

Note that since (1)H
(ℓ=0)
0 is the only non-vanishing ℓ = 0 perturbation, both ψ(1) (ℓ=0)|t=0 and ∂t ψ(1) (ℓ=0)|t=0

vanish. The results for ψ(1) (ℓ=2)|t=0 and ∂t ψ(1) (ℓ=2)|t=0, we have obtained here, both agree with [25]. This
was to be expected as we found the same first order metric perturbations.

4.4.2 Second Order

We proceed with the second order calculation. The derivation is essentially the same. We start from the
Einstein equations again, but now from Eq. (2.24). We simply replace all (1) superscripts by (2) for the
equations generated by δRµν [ g(2) ]. The terms δ2Rµν [ g(1) ,(1) g] give rise to additional quadratic terms which
we will refer to as source terms denoted by some S. Repeating the same calculations will ultimately result
in a Zerilli equation for the second order perturbations that has a source term quadratic in the first order
perturbations.

Before we can begin with the second order derivation, we have to pay attention to a problem: the non-
uniqueness of second order gauge choices. Recall that at second order the gauge choice depends on the choice
made at first order. For the following calculations, we only need to choose the 2nd order Regge-Wheeler
gauge G(2) = h0

(2) = h1
(2) = 0. We are free to choose any first order gauge, which would result in different

source terms. We will also select the RW gauge at first order, in order to have more manageable, condensed
source terms. We will explicitly indicate this first order gauge condition by adding a RW subscript to the
quadratic terms.
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We start by decomposing the second order Einstein equation Eq. (2.24), into Legendre polynomials. Given
that we are dealing with the product of different modes of tensorial harmonics, it neither easy nor practical
to give general expressions. Since the ℓ = 2 is the only radiative mode we have taken into consideration, we
will only consider the quadratic terms that contribute to the source term for the ℓ = 2 wave function. The
quadratic first order modes (ℓ = 0) × (ℓ = 2), (ℓ = 0) × (ℓ = 2) and (ℓ = 2) × (ℓ = 2) will all contribute to
the source term. To keep the expressions somewhat manageable we will only present the contributions of the
(ℓ = 2) × (ℓ = 2) mode in print, but the full calculations in M2xS2-Split_Coordinates_Final.nb take all
terms into account [43].

Our starting point is the RW gauge G(2) = h0
(2) = h1

(2) = 0. As already mentioned, we make the ad-
ditional assumption that at first order the RW gauge is also satisfied. The decomposition of δRµν [ g(2) ] in
this gauge is given by Eqs. (C.28)–(C.30) and the one for δ2Rµν [ g(1) , g(1) ] can be found in Eqs. (C.31)–(C.33).

Similar to the first order derivation, we obtain an algebraic relation between H2
(2) RW and H0

(2) RW given by

H2
(2) RW = H0

(2) RW + SRW
H2

, (4.100)

which now has an additional source term SRW
H2

, named after the LHS of the equation. We also suppressed
the (ℓ = 2) label for the second order perturbations. We will continue to do this for the remainder of this

section. When we replace H2
(2) RW by H0

(2) RW, using Eq. (4.100), this will introduce additional quadratic
terms. Like the first order calculations, we also obtain a system of three first order equations in r:

∂ H1
(2) RW

∂r
=

r

r − 2M

∂ H0
(2) RW

∂t
+

r

r − 2M

∂ K(2) RW

∂t
− 2M

r (r − 2M)
H1

(2) RW + SRW
H1,r

, (4.101)

∂2 K(2) RW

∂t∂r
=
1

r

∂ H0
(2) RW

∂t
+
ℓ(ℓ+ 1)

2r2
H1

(2) RW − r − 3M

r (r − 2M)

∂ K(2) RW

∂t
+ SRW

K,t,r
, (4.102)

∂2 H0
(2) RW

∂t∂r
=

r

r − 2M

∂2 H1
(2) RW

∂t2
+

r − 4M

r (r − 2M)

∂ H0
(2) RW

∂t
− r − 3M

r (r − 2M)

∂ K(2) RW

∂t
(4.103)

+
ℓ(ℓ+ 1)

2r2
H1

(2) RW + SRW
H0,t,r

,

which have also been amended by some source terms, named after the derivative on the LHS of the equation.
Furthermore, the set consisting of three second order differential equations in r can once more be rewritten
as the “algebraic identity”

− ℓ(ℓ+ 1)M

r2
H1

(2) RW − 2r
∂2 H1

(2) RW

∂t2
−
[
(ℓ− 1)(ℓ+ 1) +

6M

r2

]
∂ H0
(2) RW

∂t

+

[
(ℓ+ 2)(ℓ− 1) +

2M(r − 3M)

r(r − 2M)

]
∂ K(2) RW

∂t
+

2r3

r − 2M

∂3 K(2) RW

∂t3
+ SRW

alg = 0.

(4.104)

Most of the source terms are long and tedious expression that would not be very illuminating to present in
print. The full calculations including the source terms can be found in the M2xS2-Split_Coordinates_Final.nb
notebook [43]. There are two source terms that are practical to discuss, since they are quite short and can
be compared to the literature [14]. The first of them is the source term that enters in the algebraic relation

between H2
(2) RW and H0

(2) RW. The contributions as a consequence of (ℓ = 2)× (ℓ = 2) are given by

S
RW,(2)×(2)
H2

=
83

35

[
( H1
(1) RW)2 − ( H0

(1) RW)2
]
,

38



4 HEAD-ON COLLISION 4.4 Zerilli Equation

where we have dropped the (ℓ = 2) labels for the first order quantities on the RHS. This exhibits the same
form as in [14], the only difference being the factor 83/35 instead of 1/7. The second one is the source term
that follows from the tB-component of the Einstein equations, provided in Eq. (4.101). Here, we find the
source term

S
RW,(2)×(2)
H1

= − r

70(r − 2M)

∂

∂t

[
10( K(1) RW)2 + 171( H0

(1) RW)2 − 171( H1
(1) RW)2

]
,

where we dropped the (ℓ = 2) label for the first order perturbations. Again we find the same form as in [14],
but instead of the factor 2/14, 3/14 and −3/14, respectively, we find 1/7, 171/70 and −171/70. It has to be
remarked that these factors also depend on the factors present in SRW

H2
, as a consequence of the substitution

of H2
(2) RW.

Now we continue like we did at first order and eliminate ∂t H0
(2) RW from Eqs. (4.101) and (4.102) using the

algebraic identity, Eq. (4.104). This yields a set of two coupled differential equations, similar to Eq. (4.84).
Namely,

∂

∂r

∂ K(2) RW

∂t
= α0(r)

∂ K(2) RW

∂t
+ α2(r)

∂3 K(2) RW

∂t3
+ β0(r) H1

(2) RW + β2(r)
∂2 H1

(2) RW

∂t2
+ SRW

1 ,

∂

∂r
H1

(2) RW = γ0(r)
∂ K(2) RW

∂t
+ γ2(r)

∂3 K(2) RW

∂t3
+ δ0(r) H1

(2) RW + δ2(r)
∂2 H1

(2) RW

∂t2
+ SRW

2 ,

(4.105)

where the coefficients α0(r), α2(r), . . . are the same as in the first order calculations. This system can be
transformed into a Schrödinger-like equation by imposing the transformation

∂ K(2) RW

∂t
= f(r) χ(2) (t, r) + g(r) R̂(2) (t, r),

H1
(2) RW = h(r) χ(2) (t, r) + k(r) R̂(2) (t, r),

(4.106)

such that the following relations are satisfied by χ(2) and R̂(2) :

∂ χ(2)

∂r∗
= R̂(2) + SRW

χ ,
∂ R̂(2)

∂r∗
=

[
V (r∗) +

∂2

∂t2

]
χ(2) + SRW

R̂
,

∂r

∂r∗
=

(
1− 2M

r

)
. (4.107)

This yields the same set of equations for f(r), g(r), h(r), k(r) and V (r∗) that is solved by the expressions in
(4.87) once more. Hence, we find the same expressions for χ(2) and R̂(2) , but with all first order quantities
simply replaced by second order ones. By applying an r∗ derivative to χ(2) and simplifying higher order
derivatives with Eq. (4.105), a comparison to the expression for R̂(2) yields the source term

SRW,(2)×(2)
χ =

r − 2M

7(2r + 3M)

(
2 H1
(1) RW∂r H0

(1) RW − r∂r H0
(1) RW∂t K(1) RW + r∂r K(1) RW∂t H0

(1) RW

+ r∂r K(1) RW∂t K(1) RW + 2r K(1) RW∂t∂r K(1) RW + (r − 2M) H1
(1) RW∂2r H0

(1) RW

− H0
(1) RW∂t H1

(1) RW +
4r − 10M

r − 2M
K(1) RW∂t K(1) RW +

8M2 + 8Mr − 6r2

r2(r − 2M)
H1

(1) RW K(1) RW

− 2M

r
H1

(1) RW∂r K(1) RW − r

r − 2M
H1

(1) RW∂t H1
(1) RW

− 2

r
H1

(1) RW∂t∂r H1
(1) RW +

r2

r − 2M
H1

(1) RW∂2t H0
(1) RW

)
,
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where (ℓ = 2) superscripts have again been suppressed for notational clarity. This source term does not agree
with the source term in Eq. (10) of [14], which has fewer terms than our expression. The general form tends
to be the same, but due to some different coefficients we seem to have obtained slightly different coefficients
here and there. Using a similar approach as for SRW

χ , we are able to determine SRW
R̂

. We can now combine

the source terms in Eq. (4.107) as a single source term SRW
8, and write the second order Zerilli equation as

∂2 χ(2) (ℓ=2)

∂r∗2
− ∂2 χ(2) (ℓ=2)

∂t2
− V (r∗) χ(2) = SRW, (4.108)

where the source term satisfies

SRW =

(
1− 2M

r

)
∂SRW

χ

∂r
+ SRW

R̂
.

The source term SRW is a lengthy expression in terms of H0
(1) RW, H1

(1) RW and K(1) RW. To make it some-
what more compact, we can relate the perturbations in the RW gauge to (1)ψ(ℓ) via Eq. (4.93)–(4.95).
This allows us to express the source term SRW in terms of derivatives of ψ(1) (ℓ). The source term contains
higher order time derivatives of ψ(1) (ℓ), but the order of these time derivatives can be reduced. Since ψ(1) (ℓ)

satisfies the first order Zerilli equation, double time derivatives can be substituted for r derivatives. Con-
sequently, the source term can be written fully in terms of ψ(1) (ℓ) and ∂t ψ(1) (ℓ), and their r derivatives.
After these simplifications, SRW is still too lengthy to represent in print. For the full expression we refer to
M2xS2-Split_Coordinates_Final.nb [43].

By substituting the expression for ψ(1) (ℓ)|t=0 and ∂t ψ(1) (ℓ)|t=0 into SRW, we can determine the initial source
term. It consists of a L4, L3P and L2P 2 contributions. Note that, in this case, the ℓ = 0 modes do not
contribute to the source term, since ψ(1) ℓ=0|t=0= 0 and ∂t ψ(1) ℓ=0|t=0= 0 as discussed before. Thus, we
only have (ℓ = 2) contributions. The analytical results are once more to cumbersome to fully display here.
The algebraic expression can be found in M2xS2-Split_Coordinates_Final.nb [43]. A plot of the different
contributions is presented in Fig. 9. Each contribution is maximal near the horizon.

The second order wave function χ(2) can be determined by inverting Eq. (4.106). This yields the familiar
result

χ(2) =
r − 2M

λr + 3M

[
r2

r − 2M

∂ K(2) RW

∂t
− H1

(2) RW

]
. (4.109)

Note that now that a source term is present, there is no straightforward relation between the Zerilli function
χ(2) and Moncrief function ψ(2) anymore. We will elaborate on using ψ(2) at the end of this section. For

now, we will use χ(2) as the master function at second order.

To determine its initial value, we will treat the metric perturbations in the RW gauge as a shorthand for the
gauge invariant combinations again. In this context, gauge invariant means invariant under a pure second
order transformation. This means we can just use Eqs. (C.24)–(C.27), where we simply replace everything

by its second order counterpart. If at second order the perturbations satisfy H0
(2) = H1

(2) = h0
(2) = 0, this

can be specified in terms of the initial perturbations by replacing the time derivatives by extrinsic curvature

8This source term is not to be confused with SRW in [46], which is obtained from a different derivation based on Moncrief’s
gauge invariant approach.

40



4 HEAD-ON COLLISION 4.4 Zerilli Equation

Figure 9: Plot of the initial source term SRW. The L4, L3P and L2P 2 contributions are plotted separately
in red, blue and green, respectively. For this plot the values M = 1, P = 0.01 and L = 0.01 were used.

perturbations, using Eq. (2.20). This yields

∂ K(2) RW

∂t
=2

√
1− 2M

r

[
(2)KK − 2

r

(
1− 2M

r

)[
(2)Kh1 −

r2

2

∂(2)G

∂r

]]
,

H1
(2) RW =− 2

√
1− 2M

r
Kh1

(1) +

√
r(r − 3M)√
r − 2M

KG(1) + 4r2
√
1− 2M

r

∂ KG(1)

∂r
.

Note that in our calculations, the condition H0
(2) = H1

(2) = h0
(2) = 0 is indeed satisfied. Hence, we can

determine ∂t K(2) RW|t=0 and H1
(2) RW|t=0 from our set of initial metric and extrinsic curvature perturbations.

The resulting expressions are too long to present in print but both scale with L3P . As a consequence, the
resulting initial wave function χ(2) |t=0 also scales with P 3L. For the full analytical expressions, we refer
to M2xS2-Split_Coordinates_Final.nb [43]. Note that we do not only get a far more complicated term
for χ(2) |t=0 compared to [25], we also have different scaling behaviour since we lack a term that scales with
L4. The comparison of the initial wave functions can be found in Fig. 10. It is clear that both functions
show different behaviour. For [25], the negative L4 term is dominant near the horizon, while in our case the
logarithms in the L3P term are dominant. The two expressions do, however, both converge to 0 for large r,
albeit our expression does so at a much slower pace.

We also need to specify the initial time derivative of the Zerilli function ∂t χ(2) |t=0. Starting from Eq. (4.109),
one finds

∂t χ(2) =
r − 2M

λr + 3M

[
r2

r − 2M

∂2 K(2) RW

∂t2
− ∂ H1

(2) RW

∂t

]
.

We need to eliminate the time derivatives to make sure everything can be determined in terms of the initial
metric and extrinsic curvature perturbations, which only cover the zeroth and first order time derivatives,
respectively. This can be accomplished by using the Einstein equations to determine the time derivatives
in terms of lower order time derivatives. We can determine ∂t H1

(2) RW using the rB-component of the
Einstein equations and we can determine ∂t K(2) RW by using the differential equation that follows from the
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4 HEAD-ON COLLISION 4.4 Zerilli Equation

(a) Plot of χ(2) (ℓ=2) for r ∈ (2M, 5M). (b) Plot of χ(2) (ℓ=2) for r ∈ (2M, 100M).

Figure 10: Comparison of the different expressions for χ(2) (ℓ=2) from our calculations (red) and from [25]
(blue). The functions are plotted for M = 1, P = 0.01 and L = 0.01. Note both functions diverge at the
horizon and both converge to 0 at infinity.

AB-component. This provides the relations

∂ H1
(2) RW

∂t
=
r − 2M

r

[
∂ H0
(2) RW

∂r
− ∂ K(2) RW

∂r

]
2M

r2
H0

(2) RW + SRW
H1,t

, (4.110)

∂2 K(2) RW

∂t2
=

2

r(r − 2M)
H0

(2) RW +
2

r

∂ H0
(2) RW

∂r
− 2

r − 2M

∂ H1
(2) RW

∂t
(4.111)

+
(ℓ+ 2)(ℓ− 1)

r(r − 2M)
K(2) RW − 4r − 6M

r(r − 2M)

∂ K(2) RW

∂r
+

r2

(r − 2M)2
∂2 K(2) RW

∂r2
+ SRW

K,t,t
, (4.112)

where the source terms are once again named after the derivatives on the LHS. Note we can substitute the
expression in Eq. (4.110) for ∂ H1

(2) RW in Eq. (4.112) to eliminate all time derivatives. Furthermore, we
can apply the same treatment to the source terms SRW

H1,t
and SRW

K,t,t
as we applied to SRW: we replace the

perturbations in the RW-gauge by derivatives of (1)ψ(ℓ), eliminate higher order derivatives using the Zerilli
equation and substitute the expressions for (1)ψ(ℓ=2)|t=0 and (1)ψ(ℓ=2)|t=0. This enables us to determine
everything in terms of the initial data we calculated in Sec. 4. The final expressions can be found in
M2xS2-Split_Coordinates_Final.nb [43], where we find an L4, L3P and L2P 2 term. The comparison to
the expressions in [25] are plotted in Fig. 11. Again, the results differ near the horizon, but both expressions
converge to the value 0 at spatial infinity.

The calculation of the initial wave function and its derivative would have been more straightforward, without
have to resort to Einstein equations, if we were to have a second order equivalent of the Moncrief function.
This wave function would be first and second order gauge invariant under the full gauge transformation and
would be defined in terms of solely the initial data, meaning we do not have to reduce time derivatives.
However, we have to take two things into account to set up the second order evolution for such a master
function. First, the Moncrief function ψ(2) will satisfy a different equation than the Zerilli function χ(2) due
to the source term [46]. The evolution for ψ(2) will be described by the Zerilli equation

∂2 ψ(2)

∂r∗2
− ∂2 ψ(2)

∂t2
− V (r∗) ψ(2) = SMon, (4.113)
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4 HEAD-ON COLLISION 4.4 Zerilli Equation

Figure 11: Comparison of the expressions for ∂t χ(2) from our calculations (red) and [25] (blue). The plots
were generated for values M = 1, P = 0.01, L = 0.01 and q2 = 0.224 · 2/M .

where SMon is the source term that one would obtain by repeating Moncrief’s derivation in [41] at second
order by carefully bookkeeping the quadratic terms. Second, the wave function ψ(2) which is the second
order equivalent of Eq. (4.92) is only gauge invariant under second order transformations. A first order
transformation, nevertheless, will result in all sorts of quadratic terms that violate gauge invariance (see
App. C.1). Hence, we will have to amend the Moncrief function with an additional term (1)Q to (2)Ψ ≡
ψ(2) +(1)Q that negates all the quadratic terms that appear as a consequence of the first order transformation

of ψ(2) [46]. The additional term (1)Q will also change the source term, since the Zerilli equation works on
it. This will ultimately result in the Zerilli equation for Ψ(2) with source term SΨ. We have not carried out
these calculations in this work.
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5 Outlook

To summarise, we established the CLA for a binary of two momentarily static BHs and a BBH in a head-on
collission with small initial momentum. Due to the convenient analytical form of the BL initial data, treating
these systems as perturbations of a Schwarzschild background was straightforward. The static system was
covered up to first order as an example. Our primary focus was the head-on collision and the analysis for
this BBH was conducted up to second order. We began by setting up the initial data, using BY initial data.
Then, we extracted the perturbations, consisting of even-parity first and second order specifically examining
the ℓ = 0 and ℓ = 2 pieces. Next, we applied gauge transformations to eliminate ℓ = 0 contributions at first
order and set H0 = H1 = h0 = 0 at second order. Finally, we concluded by deriving the Zerilli Equations and
corresponding wave functions for the ℓ = 2 modes at both orders, including the source term at second order.
Our first first order calculations were consistent with the literature [25], but at second order we encountered

some differences, such as more complicated expressions for perturbations, (1)H
(ℓ=0)
0 not vanishing after the

first order gauge transformation and a considerably lengthier source term.

Up to this point, we have focused exclusively on the analytical aspect of the calculations involved in the
CLA. However, numerical integration is an essential component of the overall process. The initial wave func-
tions derived thus far offer limited insight. Only through numerical integration do we obtain a full spacetime,
for which we can begin to make meaningful predictions and analyse the physical characteristics of the system.
So, after the subsequent numerical integration substantive results will emerge.

The numerical solver has to solve a set of two coupled partial differential equations: the solution ψ(1) to
the first order Zerilli equation will serve as a source term in the Zerilli equation for the second order wave
function χ(2) . This warrants a two-step approach where, in each integration step, we first extrapolate ψ(1) |t
by integrating the first order Zerilli equation. Subsequently, we update the second order Zerilli equation
by modifying the source term with the newly obtained ψ(1) |t+dt. Finally χ(2) |t+dt can be determined by
integrating the updated Zerilli equation.

The source term presents additional challenges during numerical integration. In its current form, the source
term is divergent, which impedes proper convergence of the numerical solver. The divergence of the source
term does not indicate a physical singularity, but is instead an artefact of the particular gauge choice [14,
16]. There are two ways to circumvent this problem that are both related to the fact that the second order
Zerilli equation is not unique. First, note that the second order RW gauge depends on the first order gauge
choice. One approach is to switch to a different first order gauge and repeat the derivation to obtain a Zerilli
equation with an alternative source term. This gauge can be chosen such that the source term does not
suffer from divergences. In the asymptotically flat gauge, for instance, perturbations remain finite at spatial
infinity. The second approach turns out to be far easier. We can also modify the source term by redefining

a “renormalised” wavefunction χ
(2)

ren = χ(2) + Q(1) , where Q(1) is some term quadratic in the first order
perturbations. In the work of Gleiser and collaborators they take

χ(2)
ren = χ(2) − 2

7

[
r2

2r + 3M
K(1) RW ∂ K(1) RW

∂t
+ ( K(1) RW)2

]
.

This leads to the renormalised source term Sren in the RW gauge as presented in Eq. (18) of [22]. This aspect
requires further investigation for our own calculations.

With a well-behaved numerical solver, we can finally examine the physics of the BBH. A first important
consistency check would involve comparing the gravitational wave signal predicted by our model to the wave-
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5 OUTLOOK

form from Nicasio et al. [25] and to a NR simulation for a head-on collision from the RIT catalogue [47],
for example. It is also valuable to determine the range of initial separations L for which agreement with NR
simulations is maintained, thus assessing the extent to which we can apply the CLA. Previous publications
suggest a surprising degree of accuracy for only moderately small L [5, 16, 17].

After we have determined the radiated GWs, it is possible to verify whether quadratic QNMs are indeed
present in the ringdown phase as predicted by NR simulations [2, 48]. Given that the (ℓ = 2,m = 0, n = 0)
mode with frequency ω200 is dominant a first order, the (2, 0, 0) × (2, 0, 0) mode with frequency 2ω200 is
expected to be the dominant quadratic mode. This mode appears most evidently in the source term for
χ(i) (ℓ=4). Consequently, it is necessary to revisit the calculations in Sec. 4, now incorporating the ℓ = 4

terms. The analysis can be readily adapted to include ℓ = 4 modes. For instance, we have already calculated
the ℓ = 4 contribution for K̂ab and ϕreg. In Sec. 4.2, it is straightforward to calculate the ℓ = 4 modes for
γab from Eq. (4.23) and for Kab from Eq. (4.30). The approach to the first order gauge transformation will
remain unchanged since it only involves ℓ = 0 modes. For the second order transformation, one would also
need to calculate ξ(2) (ℓ=4). Extending the remaining analysis to include ℓ = 4 modes is straightforward.

The objective is to compare the GW signal to physics at the horizon, which requires not only evaluat-
ing the perturbations at spatial infinity but also near the horizon. This introduces the first challenge: the
precise location of the horizon. We started with two BHs, so the location or even the existence of a single
horizon is non-trivial. Earlier CLA calculations suggest the formation of an apparent horizon that envelops
both BHs [5]. We need to identify the parameters for which this apparent horizon forms and its location.
Once determined, we can use the apparent horizon as “the” horizon and study its evolution over time. This
may reveal nonlinear interactions at the horizon that imprint distinct features on the GW signal.

Once it is firmly established that the CLA is a viable approach for describing the merger phase, we can
explore generalizations. The head-on collision with small initial momentum is not representative of most
real-life astronomical events. Most BH collisions occur at ultra relativistic speeds, suggesting that the as-
sumption of P being of the same order as L should be relaxed. This adjustment will result in higher
ℓ-multipoles starting to contribute. Additionally, it would also be beneficial to look at generalising the sys-
tem to a quasicircular inspiral rather than a head-on collision. This scenario is more astronomically accurate
and emits significantly more energy as GWs [49, 50]. Such a system could still be treated with Bowen York
initial data, but would involve another configuration for the extrinsic curvature.

Finally, the CLA could be adapted to a Kerr background instead of a Schwarzschild background for greater
astrophysical accuracy. Within the CLA, this is relatively uncharted territory. While some work on second-
order perturbation theory for Kerr has been conducted, it is primarily in the context of the self-force approach
for extreme mass ratio inspirals (EMRIs), where one BH is significantly smaller than the other, and the mass
ratio serves as the expansion parameter [51, 52]. This differs from the CLA, which considers BHs of the same
mass. Several adaptations are required to modify the CLA to a Kerr background. First of all, an alternative
type of initial data is needed, since the Bowen-York initial data does not represent a constant time slice of the
Kerr spacetime [23, 35]. Furthermore, we have to evolve the perturbations using the Teukolsky equation [53],
making it more appropriate to use a tetrad formulation [54, 55] instead of the coordinate-driven approach
used here. A basis of spin-weighted harmonics, rather than tensorial harmonics, should also be employed (see
e.g., [56]). Additionally, there is no equivalent of Eqs. (4.93)–(4.95) for Kerr, making it non-trivial to recover
the metric perturbations from the master function described by the Teukolksy equation. This issue, known
as metric reconstruction, will also have to be addressed in a second order framework [52, 57]. In summary,
utilising a Kerr background introduces a unique set of challenges that require extensive research.
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A Appendix: Gauge Transformations

GR is by nature a covariant theory, meaning that the physics it predicts does not depend on the chosen set
of coordinates. This comprises the gauge freedom of GR. In terms of differential geometry, this freedom is
the invariance of physics under the redefinition of the underlying manifold and its fields, such as the metric,
by diffeomorphisms.

In this appendix we discuss the matter of gauge freedom in the context of perturbation theory. This discus-
sion is based on [58], which offers a concise overview, and [45, 59], which provides a more complete, rigorous
mathematical framework. First, we deliberate about gauge choices as identifications between the perturbed
manifolds and background manifold. Then, we proceed to derive how quantities such as a vector and the
metric change under second order gauge transformations.

A.1 Gauge Transformations in Perturbation Theory

In the context of perturbation theory, instead of working with a single manifold, we work with an infinite
family of manifolds Mϵ. The background, in particular, is denoted by M0. This family of spacetimes is
parametrised by the expansion parameter ϵ. Each manifold Mϵ is equipped with a metric gµν(x; ϵ). A choice

of gauge in this setting corresponds to a choice of identification map ϕϵ
X : M0 → Mϵ, which allows us to

relate quantities on the perturbed manifold Mϵ to quantities on the background M0 via the pullback ϕϵ
X∗

.9

The flow of this identification map is generated by the vector field X ≡ dϕϵ
X

dϵ .

Making a gauge choice is equivalent to choosing a specific generator. We could as well have chosen some
alternative generator Y with corresponding identification map ϕϵ

Y : M0 → Mϵ. Switching from the identi-
fication as generated by X to the one generated by Y now corresponds to performing a gauge transformation.
We have two equivalent ways of considering such a transformation: the active and passive viewpoint.

Suppose some point p ∈ M0 is mapped to some q ∈ Mϵ under the identification ϕϵ
X and to q′ ∈ Mϵ

under ϕϵ
Y (see Fig. 12). Now the map ψϵ ≡ ϕϵ

Y ◦ (ϕϵ
X)−1 constitutes a diffeomorphism on Mϵ such

that q′ = ψϵ(q). Let T be some arbitrary tensor on Mϵ describing a physical quantity and let T̃ = ψ∗
ϵT

be its pullback. Any physical predictions made by (Mϵ, T ) are equally true for (Mϵ, T̃ ), even though the
diffeomorphism ψϵ moved the points around [60]. This comprises the active interpretation, where a gauge
transformation moves points.

Now suppose we have some coordinates xµ on the base manifold M0, then the maps ϕϵ
X and ϕϵ

Y in-
duce coordinates on the perturbed manifold Mϵ via their pullback. We shall treat X as the original gauge
choice and let Y be an alternative gauge choice to which we would like to transform. In this fashion, we keep
the label xµ for the coordinates on Mϵ in gauge X, such that the point q = ϕϵ

X(p) has label xµ(q) ≡ xµ(p).
We can define an alternative coordinate system yµ ≡ xµ ◦ ψ−1

ϵ , which satisfies the property xµ(q) = yµ(q′)
(see Fig. 12). We may now treat the diffeomorphism ψϵ as leaving p and all tensors at p unaltered, but
inducing some coordinate change xµ → yµ. This is the passive interpretation where gauge transformations
leave points unchanged but change the chart.

We will now look further into expansions of these maps. To find the ϵ-expansion of this transformation, we
consider the differing coordinate values of the points q and q′ in Mϵ. A general tensor T can be described on

9Smooth maps ϕ : M → N have a natural way of pulling back functions and covariant tensor fields at Φ(p) ∈ N to respective
functions and fields at p ∈ M. This is known as the pullback Φ∗. For its definition see [60, 61].
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Perturbation Theory

M0

Mϵ

R4

xµ(p) ≡ xµ(q) = yµ(q′)

yµ(q)

p

q

q′

ϕϵ
X

ϕϵ
Y

ψϵ

xµ

yµ

xµ ≡ ϕϵ
X∗
xµ

Figure 12: A gauge transformation corresponds to switching from one identification ϕϵ
X to another ϕϵ

Y . The
active viewpoint, where points are moved around, is shown on the right and the passive viewpoint, which is
a change of chart, is represented on the left.

Mϵ by the Taylor approximation of its pullback via ϕϵ
Y . As proven in [45], this approximation is given by

(ϕϵ
Y ∗
T )(p) = (eLY T )(p) =

∞∑
n=0

ϵn

n!
(Ln

Y T )(p). (A.1)

Before we apply Eq. (A.1) to the coordinate functions xµ, we introduce the first and second order terms for
the gauge transformation’s generator ξ as follows10

ξ(1) ≡ Y −X, ξ(2) ≡ 1

2
[X,Y ]. (A.2)

Applying Eq. (A.1) to each of the four coordinate functions xµ for a given index µ, we obtain

xµ(q′) =(ϕϵ
Y ∗
xµ)(p)

=

∞∑
n=0

ϵn

n!
(Ln

Y x
µ)(p)

=xµ(p) + ϵ(LY x
µ)(p) +

1

2
ϵ2(L2

Y x
µ)(p) +O(ϵ3)

=xµ(p) + ϵ(LY x
µ − LXx

µ)(p)

+
1

2
ϵ2(LXLY x

µ − LY LXx
µ + L2

Y x
µ − LY LXx

µ − LXLY x
µ + L2

Xx
µ)(p) +O(ϵ3)

=xµ(q) + ϵ(L ξ(1) x
µ)(p) + ϵ2

[
(L ξ(2) x

µ)(p) +
1

2
(L2

ξ(1) x
µ)(p)

]
+O(ϵ3)

=xµ(q) + ϵ ξ(1) µ(x(q)) + ϵ2
[

ξ(2) µ(x(q)) +
1

2
ξ(1) ν(x(q))∂ν ξ(1) µ(x(q))

]
+O(ϵ3). (A.3)

10The reason why we make this particular choice of generator ξ can be found in Proposition 3 of [45].
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where we repeatedly used that LXx
µ = 0 throughout the calculation and used that xµ(p) = xµ(q). Now

think of a gauge transformation as a coordinate transformation xµ → yµ. For small ϵ, this is a near-identity
transformation. Per construction the new chart satisfies yµ(q′) = xµ(q). Rewriting Eq. (A.3) as an equation
for yµ(q′), we find the coordinate transformation

yµ(q′) = xµ(q′)− ϵ ξ(1) µ(x(q))− ϵ2
[

ξ(2) µ(x(q)) +
1

2
ξ(1) ν(x(q))∂ν ξ(1) µ(x(q))

]
= xµ(q′)− ϵ ξ(1) µ(x(q′))− ϵ2

[
ξ(2) µ(x(q′))− 1

2
ξ(1) ν(x(q′))∂ν ξ(1) µ(x(q′))

]
. (A.4)

The key point here is that in the final step we have re-evaluated the first and second generators in the point
x(q′) instead of x(q). This can be accomplished by performing a Taylor expansion around x(q′), where we use
Eq. (A.3) to express the distance between x(q′) and x(q) in powers of ϵ. This yields the following expansions
up to relevant order

ξ(1) µ(x(q)) = ξ(1) µ(x(q′)) + (xν(q)− xν(q′))∂ν ξ(1) µ(x(q′)) +O(ϵ2)

= ξ(1) µ(x(q′))− ϵ ξ(1) ν∂ν ξ(1) µ(x(q′)) +O(ϵ2),

ξ(2) µ(x(q)) = ξ(2) µ(x(q′)) +O(ϵ).

Note that Eq. (A.3) and Eq. (A.4) provide the expressions for the coordinate transformation in the active
and passive perspective, respectively. Both sides of Eq. (A.3) are formulated in the same chart xµ, yet at
different points q and q′ in Mϵ, entailing the active viewpoint. On the other hand, Eq. (A.4) is formulated
at the same point q ∈ Mϵ, but one side is defined in the chart yµ while the other is defined in xµ. This
comprises the passive perspective.

A.2 Transformation of a Vector

To study the behaviour of tensors under the infinitesimal transformation above, we start by looking at a simple
example: a vector. Let V be some vector field on the perturbed manifold Mϵ and denote its components
given in the coordinates xµ by V µ. Recall that the diffeomorphism ψϵ satisfies q′ = ψϵ(q). Denote the
pullback of V over ψϵ by Ṽ = ψ∗

ϵV . Now, in a passive interpretation to gauge transformations, we introduce
a new chart yµ ≡ xµ ◦ ψ−1

ϵ as we have done before. Denote the components of V in the new coordinates yµ

as V ′µ. The pullback Ṽ µ is related to V µ and V ′µ by the following relation [45]

Ṽ µ(x(q)) = V ′µ(y(q′)) ≡ ∂yµ

∂xν

∣∣∣∣
x(q′)

V ν(x(q′)). (A.5)

Now we want to find a transformation law. Recall that the coordinates satisfy yµ(q′) = xµ(q) ≡ x, which is
just some point in R4. Hence, Eq. (A.5) can simply be written as Ṽ µ(x) = V ′µ(x). If we manage to expand
the RHS of Eq. (A.5) in terms of x(q) = x instead of x(q′), we have managed to expand V ′µ(x) in terms of
V µ(x) evaluated at the same point x. This is the desired transformation law.

To perform this expansion, we start from the passive change of coordinates Eq. (A.4)

yµ(q′) = xµ(q′)− ϵ ξ(1) µ(x(q′))− ϵ2
[

ξ(2) µ(x(q′))− 1

2
ξ(1) ν(x(q′))∂ν ξ(1) µ(x(q′))

]
+O(ϵ3),
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and proceed by calculating the Jacobian which up to second order in ϵ is given by

∂yµ

∂xν

∣∣∣∣
x(q′)

=δµν (x(q
′))

− ϵ∂ν ξ(1) µ(x(q′))

− ϵ2
[
∂ν ξ(2) µ(x(q′))− 1

2
∂ν ξ(1) λ(x(q′))∂λ ξ(1) µ(x(q′))− 1

2
ξ(1) λ(x(q′))∂ν∂λ ξ(1) µ(x(q′))

]
+O(ϵ3).

(A.6)

Now we insert this back into Eq. (A.5) to find the following expression

Ṽ µ(x(q)) =

(
δµν (x(q

′))− ϵ∂ν ξ(1) µ(x(q′))− ϵ2
[
∂ν ξ(2) µ(x(q′))

− 1

2
∂ν ξ(1) λ(x(q′))∂λ ξ(1) µ(x(q′))− 1

2
ξ(1) λ(x(q′))∂ν∂λ ξ(1) µ(x(q′))

])
V ν(x(q′)) +O(ϵ3)

=V µ(x(q′))

− ϵ∂ν ξ(1) µ(x(q′))V ν(x(q′))

− ϵ2
[
∂ν ξ(2) µ(x(q′))− 1

2
∂ν ξ(1) λ(x(q′))∂λ ξ(1) µ(x(q′))− 1

2
ξ(1) λ(x(q′))∂ν∂λ ξ(1) µ(x(q′))

]
V ν(x(q′)) +O(ϵ3).

We want to evaluate both sides of this equality at the point x ∈ R4. To this end, we expand all the terms on
the RHS in terms of x(q) = x. For the term ∂ν ξ(1) µ(x(q′)), one obtains

∂ν ξ(1) µ(x(q′)) = ∂ν ξ(1) µ(x(q)) + ϵ ξ(1) α(x(q))∂α∂ν ξ(1) µ(x(q)) +O(ϵ2), (A.7)

and the expansion of the vector V µ itself in terms of ϵ is given by

V ν(x(q′)) =V ν(x(q)) +

(
ϵ ξ(1) α(x(q)) + ϵ2

[
ξ(2) α(x(q)) +

1

2
ξ(1) β(x(q))∂β ξ(1) α(x(q))

])
∂αV

ν(x(q))

+
1

2
ϵ2 ξ(1) α(x(q)) ξ(1) β(x(q))∂α∂βV

ν(x(q)) +O(ϵ3).

(A.8)
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By inserting Eqs. (A.7)–(A.8) back into our expression Ṽ µ(x(q)) and carefully accounting for each ϵ, we find

Ṽ µ(x(q)) =V µ(x(q))

+ ϵ ξ(1) αx(q)∂αV
µ(x(q))

+ ϵ2
[

ξ(2) αx(q)∂α +
1

2
ξ(1) β(x(q))∂β ξ(1) α(x(q))∂α +

1

2
ξ(1) α(x(q)) ξ(1) β(x(q))∂α∂β

]
V µ(x(q))

− ϵ∂ν ξ(1) µ(x(q))
(
V ν(x(q)) + ϵ ξ(1) α(x(q))∂αV

ν(x(q))
)

− ϵ2 ξ(1) α(x(q))∂α∂ν ξ(1) µ(x(q))V ν(x(q))

− ϵ2∂ν ξ(2) µ(x(q))V ν(x(q))

+
1

2
ϵ2∂ν ξ(1) λ(x(q))∂λ ξ(1) µ(x(q))V ν(x(q))

+
1

2
ϵ2 ξ(1) λ(x(q))∂ν∂λ ξ(1) µ(x(q))V ν(x(q)) +O(ϵ3)

=V µ(x(q))

+ ϵ
[

ξ(1) αx(q)∂αV
µ(x(q))− ∂α ξ(1) µ(x(q))V α(x(q))

]
+ ϵ2

[
ξ(2) αx(q)∂αV

µ(x(q))− ∂α ξ(2) µ(x(q))V α(x(q))
]

+
1

2
ϵ2
[

ξ(1) β(x(q))∂β ξ(1) α(x(q))∂αV
µ(x(q)) + ξ(1) α(x(q)) ξ(1) β(x(q))∂α∂βV

µ(x(q))

− 2∂ν ξ(1) µ(x(q)) ξ(1) α(x(q))∂αV
ν(x(q)) + ξ(1) α(x(q))∂α∂β ξ(1) µ(x(q))V β(x(q))

+ ∂α ξ(1) β(x(q))∂β ξ(1) µ(x(q))V α(x(q))
]
+O(ϵ3).

When everything is sorted order by order, we can recognise different Lie-derivatives. We also use the first
equality in Eq. (A.5) and identify x(q) = x again to write the pullback in terms of V ′µ(x). This leads to the
final expression for the gauge transformation

V ′µ(x) = V µ(x) + ϵL ξ(1) V µ(x) + ϵ2
[
L ξ(2) V µ(x) +

1

2
L2

ξ(1) V
µ(x)

]
+O(ϵ3). (A.9)

A.3 Transformation of a metric

A similar story applies to the derivation for the metric’s transformation. The derivation only involves an
extra step, since it is covariant instead of contravariant and the algebra is far more messy since we are dealing
with a rank-2 tensor field. The equivalent of Eq. (A.5) for the metric is

g̃µν(x(q)) = g′µν(y(q
′)) ≡ ∂xλ

∂yµ

∣∣∣∣
x(q′)

∂xσ

∂yν

∣∣∣∣
x(q′)

gλσ(x(q
′)). (A.10)

Here, we stumble on the first problem as a consequence of the metric’s covariance: the Jacobian ∂xµ/∂yν |x(q′)
is hard to calculate from Eq. (A.3), since it involves derivatives in other coordinates yµ. Its inverse
∂yµ/∂xν |x(q′), on the contrary, follows quite naturally as we have seen before. Using that the two matrices

are each others inverse, i.e. (∂yµ/∂xλ)(∂xλ/∂yν) = δµν , we have the equation(
δµλ − ϵ∂λ ξ(1) µ − ϵ2

[
∂λ ξ(2) µ − 1

2
∂λ ξ(1) κ∂κ ξ(1) µ − 1

2
ξ(1) κ∂λ∂κ ξ(1) µ

]
+O(ϵ3)

)
×(

Aλ
ν + ϵBλ

ν + ϵ2Cλ
ν +O(ϵ3)

)
= δµν ,
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where we dropped the coordinate labels x(q′) for notational convenience. This hierarchy of equation can be
solved equation by equation and yields the following solution

Aλ
ν = δλν ,

Bλ
ν = ∂ν ξ(1) λ,

Cλ
ν = ∂κ ξ(1) λ∂ν ξ(1) κ +

[
∂ν ξ(2) λ − 1

2
∂ν ξ(1) κ∂κ ξ(1) λ − 1

2
ξ(1) κ∂ν∂κ ξ(1) λ

]
.

Hence, the Jacobian becomes

∂xµ

∂yν

∣∣∣∣
x(q′)

=δµν (x(q
′)) + ϵ∂ν ξ(1) µ(x(q′))

+ ϵ2
[
∂ν ξ(2) µ(x(q′)) +

1

2
∂κ ξ(1) µ(x(q′))∂ν ξ(1) κ(x(q′))− 1

2
ξ(1) κ(x(q′))∂ν∂κ ξ(1) µ(x(q′))

]
+O(ϵ3).

First we substitute this expression into Eq. (A.10), to obtain

g̃µν(x(q)) =

(
δρµδ

σ
ν + ϵ

[
δρµ∂ν ξ(1) σ + ∂µ ξ(1) ρδσν

]
+ ϵ2

[
δρµ

(
∂ν ξ(2) σ +

1

2
∂ν ξ(1) κ∂κ ξ(1) σ − 1

2
ξ(1) κ∂ν∂κ ξ(1) σ

)

+

(
∂µ ξ(2) ρ +

1

2
∂µ ξ(1) λ∂λ ξ(1) ρ − 1

2
ξ(1) λ∂µ∂λ ξ(1) ρ

)
δσν + (∂µ ξ(1) ρ)(∂ν ξ(1) σ)

])
gρσ(x(q

′))) +O(ϵ3)

=gµν(x(q
′))

+ ϵ(∂ν ξ(1) σ)gµσ(x(q
′)) + ϵ(∂µ ξ(1) ρ)gρν(x(q

′))

+ ϵ2
[
∂ν ξ(2) σ +

1

2
∂ν ξ(1) κ∂κ ξ(1) σ − 1

2
ξ(1) κ∂ν∂κ ξ(1) σ

]
gµσ(x(q

′))

+ ϵ2
[
∂µ ξ(2) ρ +

1

2
∂µ ξ(1) λ∂λ ξ(1) ρ − 1

2
ξ(1) λ∂µ∂λ ξ(1) ρ

]
gρν(x(q

′))

+ ϵ2(∂µ ξ(1) ρ)(∂ν ξ(1) σ)gρσ(x(q
′)) +O(ϵ3),

where all terms on the RHS are evaluated in the point x(q′). We want to expand everything in terms of x(q)
again. Expanding the metric around x(q) gives

gµν(x(q
′)) =gµν(x(q)) +

(
ϵ ξ(1) α(x(q)) + ϵ2

[
ξ(2) α(x(q)) +

1

2
ξ(1) β(x(q))∂β ξ(1) α(x(q))

])
∂αgµν

+
1

2
ξ(1) α(x(q)) ξ(1) β(x(q))∂α∂βgµν +O(ϵ3).

(A.11)
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Substituting Eq. (A.7) and (A.11) into the expression for the pullback of the metric to evaluate everything
on the RHS in x(q) yields the expression

g̃µν =gµν

+ ϵ ξ(1) α∂αgµν

+ ϵ2
[

ξ(2) α∂α +
1

2
ξ(1) β(∂β ξ(1) α)∂α +

1

2
ξ(1) α ξ(1) β∂α∂β

]
gµν

+ ϵ(∂ν ξ(1) σ)
(
gµσ + ϵ ξ(1) α∂αgµσ

)
+ ϵ(∂µ ξ(1) ρ)

(
gρν + ϵ ξ(1) β∂βgρν

)
+ ϵ2 ξ(1) β(∂β∂ν ξ(1) σ)gµσ + ϵ2 ξ(1) α(∂α∂µ ξ(1) ρ)gρν

+ ϵ2
[
∂ν ξ(2) σ +

1

2
∂ν ξ(1) κ∂κ ξ(1) σ − 1

2
ξ(1) κ∂ν∂κ ξ(1) σ

]
gµσ

+ ϵ2
[
∂µ ξ(2) ρ +

1

2
∂µ ξ(1) λ∂λ ξ(1) ρ − 1

2
ξ(1) λ∂µ∂λ ξ(1) ρ

]
gρν

+ ϵ2(∂µ ξ(1) ρ)(∂ν ξ(1) σ)gρσ +O(ϵ3)

=gµν

+ ϵ
[

ξ(1) α∂αgµν + (∂ν ξ(1) σ)gµσ + (∂µ ξ(1) ρ)gρν
]

+ ϵ2
[

ξ(2) α∂αgµν + (∂ν ξ(2) σ)gµσ + (∂µ ξ(2) ρ)gρν
]

+
1

2
ϵ2
[

ξ(1) β(∂β ξ(1) α)∂αgµν + ξ(1) α ξ(1) β∂α∂βgµν + 2 ξ(1) α(∂ν ξ(1) σ)∂αgµσ + 2 ξ(1) β(∂µ ξ(1) ρ)∂βgρν

+ ξ(1) β(∂β∂ν ξ(1) σ)gµσ + ξ(1) α(∂α∂µ ξ(1) ρ)gρν + (∂ν ξ(1) κ)(∂κ ξ(1) σ)gµσ + (∂µ ξ(1) λ)(∂λ ξ(1) ρ)gρν

+ 2(∂µ ξ(1) ρ)(∂ν ξ(1) σ)gρσ

]
+O(ϵ3).

Here, we recognise the same combinations of Lie derivatives as we have seen before in Eq. (A.9) after sorting
everything order by order. This leads to the following transformation

g′µν(x) = gµν(x) + ϵL ξ(1) gµν(x) + ϵ2
[
L ξ(2) gµν(x) +

1

2
L2

ξ(1) gµν(x)

]
+O(ϵ3). (A.12)

To get a complete order by order picture of the metric’s gauge transformation, we also need to account for
the fact that the metric itself has to be expanded as

gµν = g(0)
µν + ϵ g(1)

µν + ϵ2 g(2)
µν +O(ϵ3). (A.13)

This leads to the final expression

g′
(0)

µν(x) = g(0)
µν (x),

g′
(1)

µν(x) = g(1)
µν (x) + L ξ(1) g(0)

µν (x),

g′
(2)

µν(x) = g(2)
µν (x) + L ξ(2) g(0)

µν (x) + L ξ(1) g(1)
µν (x) +

1

2
L2

ξ(1) g(0)
µν (x).
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B Appendix: Expansion of the Einstein Equations

In order to derive the first and second order vacuum Einstein equations, we start by splitting up a generic
metric gµν that can be expressed as some background metric ḡµν plus some perturbations hµν . This looks
like

gµν = ḡµν + ηhµν , (B.1)

where η is the order parameter. Since we are interested in the vacuum Einstein equations Rµν = 0, we would
like to determine the functional Taylor expansion

Rµν [ḡ + h] = R̄µν [ḡ] + η δRµν [h] + η2 δ2Rµν [h] +O(η3), (B.2)

where the functional derivatives δnRµν [h] are given by

δnRµν [η] ≡
1

n!

dn

dηn
Rµν [ḡ + ηϕ]

∣∣∣∣
η=0

, (B.3)

for any rank-2 tensor ϕµν . A similar definition applies to other tensors, which depend on the metric. The
corrections δRµν [h] and δ2Rµν [h] can be derived by subsequently expanding the Christoffel symbols Γλ

µν

and the Riemann tensor Rρ
σµν . Taking a contraction with the metric finally yields the Ricci tensor.

First of all, we note that the inverse metric gµν can be expanded in h as

gµν = ḡµν − ηhµν + η2hµσh
σν +O(η3). (B.4)

This can be derived from the property that gµαgαν = δµν . By expanding this identity as

δµν = gµαgαν =
(
Aµα + ηBµα + η2Cµα

)
(ḡαν + ηhαν) ,

we obtain a system of equations

δµν = Aµαḡαν ,

0 = (Aµαhαν +Bµαḡαν) ,

0 = (Bµαhαν + Cµαḡαν) ,

which can be solved step by step as Aµα = ḡµα, Bµα = −hµα and, finally, Cµα = hµσh
σα. Here we used the

background metric ḡ to raise indices; a convention that will be used for the rest of the calculations in this
section.

To find the expansion

Γλ
µν [ḡ + h] = Γ̄λ

µν [ḡ] + η δΓλ
µν [h] + η2 δ2Γλ

µν [h] +O(η3), (B.5)

for the Christoffel symbols, we start from their definition

Γλ
µν =

1

2
gλρ(∂µgρν + ∂νgµρ − ∂ρgµν). (B.6)
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When we take the functional derivative, we need the take the product rule into account. This yields

δΓλ
µν [h] =

d

dη
Γλ

µν [ḡ + ηh]

∣∣∣∣
η=0

=

[
1

2
gλρ

d

dη
(∂µgρν + ∂νgµρ − ∂ρgµν) +

1

2

dgλρ

dη
(∂µgρν + ∂νgµρ − ∂ρgµν)

]∣∣∣∣
η=0

=
1

2
ḡλρ (∂µδgρν + ∂νδgµρ − ∂ρδgµν) +

1

2
δgλρ (∂µḡρν + ∂ν ḡµρ − ∂ρḡµν)

=
1

2
ḡλρ (∂µhρν + ∂νhµρ − ∂ρhµν)−

1

2
hλρ (∂µḡρν + ∂ν ḡµρ − ∂ρḡµν)

=
1

2
ḡλρ
(
∇̄µhρν + Γ̄σ

ρµhσν + Γ̄σ
νµhρσ + ∇̄νhµρ + Γ̄σ

µνhσρ + Γ̄σ
ρνhµσ

− ∇̄ρhµν − Γ̄σ
µρhσν − Γ̄σ

νρhµσ

)
− 1

2
hαβ ḡ

λαḡρβ (∂µḡρν + ∂ν ḡµρ − ∂ρḡµν)

=
1

2
ḡλρ

(
∇̄µhρν + ∇̄νhµρ − ∇̄ρhµν

)
+ ḡλρΓ̄σ

µνhσρ − ḡλαΓ̄β
µνhαβ

=
1

2
ḡλρ

(
∇̄µhρν + ∇̄νhµρ − ∇̄ρhµν

)
,

where we used that δgλρ = −hλρ and eliminated the partial derivatives of h by rewriting the formula for
the covariant derivative ∇̄ of h. To summarise, the correction to the Christoffel symbols, linear in the
perturbations, is given by

δΓλ
µν [h] =

1

2

(
∇̄µh

λ
ν + ∇̄νh

λ
µ − ∇̄λhµν

)
. (B.7)

To find the quadratic corrections, we apply a functional derivative again. This amounts to

δ2Γλ
µν [h] =

1

2!

d

dη

[
1

2
gλρ

d

dη
(∂µgρν + ∂νgµρ − ∂ρgµν) +

1

2

dgλρ

dη
(∂µgρν + ∂νgµρ − ∂ρgµν)

]∣∣∣∣
η=0

=
1

2

[1
2
gλρ

d2

dη2
(∂µgρν + ∂νgµρ − ∂ρgµν) +

1

2

dgλρ

dη

d

dη
(∂µgρν + ∂νgµρ − ∂ρgµν)

+
1

2

dgλρ

dη

d

dη
(∂µgρν + ∂νgµρ − ∂ρgµν) +

1

2

d2gλρ

dη2
(∂µgρν + ∂νgµρ − ∂ρgµν)

]∣∣∣
η=0

=
1

2
δgλρ (∂µhρν + ∂νhµρ − ∂ρhµν) +

1

2
δ2gλρ (∂µḡρν + ∂ν ḡµρ − ∂ρḡµν)

=− 1

2
hλρ (∂µhρν + ∂νhµρ − ∂ρhµν) +

1

2
hλ

σh
σρ (∂µḡρν + ∂ν ḡµρ − ∂ρḡµν)

=− 1

2
hλ

σ

(
∇̄µh

σ
ν + ∇̄νh

σ
µ − ∇̄σhµν

)
.

In the last step, a similar cancellation occurred as in the derivation of δΓλ
µν [h], after introducing covariant

derivatives. We observe that the quadratic correction is related to the linear correction by

δ2Γλ
µν [h] = −hλσδΓσ

µν [h]. (B.8)

Now we turn to the Riemann tensor, which we will expand as

Rρ
σµν [ḡ + h] = Rρ

σµν [ḡ] + η δRρ
σµν [h] + η2 δ2Rρ

σµν [h] +O(η3). (B.9)

From its definition as
Rρ

σµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ, (B.10)
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it follows that its first functional derivative is given by

δRρ
σµν [h] =

d

dη
Rρ

σµν [ḡ + ηh]

∣∣∣∣
η=0

=
d

dη

[
∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

]∣∣∣
η=0

=

[
∂µ

d

dη
Γρ

νσ − ∂ν
d

dη
Γρ

µσ +
dΓρ

µλ

dη
Γλ

νσ + Γρ
µλ

dΓλ
νσ

dη
−
dΓρ

νλ

dη
Γλ

µσ − Γρ
νλ

dΓλ
µσ

dη

]∣∣∣∣∣
η=0

= ∂µδΓ
ρ
νσ − ∂νδΓ

ρ
µσ + δΓρ

µλΓ̄
λ
νσ + Γ̄ρ

µλδΓ
λ
νσ − δΓρ

νλΓ̄
λ
µσ − Γ̄ρ

νλδΓ
λ
µσ.

Here, we recognise the following two covariant derivatives

∇̄µδΓ
ρ
νσ = ∂µδΓ

ρ
νσ + Γ̄ρ

λµδΓ
λ
νσ − Γ̄λ

νµδΓ
ρ
λσ − Γ̄λ

σµδΓ
ρ
νλ,

∇̄νδΓ
ρ
µσ = ∂νδΓ

ρ
µσ + Γ̄ρ

λνδΓ
λ
µσ − Γ̄λ

µνδΓ
ρ
λσ − Γ̄λ

σνδΓ
ρ
µλ,

so that we obtain
δRρ

σµν [h] = ∇̄µδΓ
ρ
νσ − ∇̄νδΓ

ρ
µσ. (B.11)

We take another functional derivative to obtain the quadratic correction to the Riemann tensor:

δ2Rρ
σµν [h] =

1

2!

d

dη

[
∂µ

d

dη
Γρ

νσ − ∂ν
d

dη
Γρ

µσ +
dΓρ

µλ

dη
Γλ

νσ + Γρ
µλ

dΓλ
νσ

dη
−
dΓρ

νλ

dη
Γλ

µσ − Γρ
νλ

dΓλ
µσ

dη

]∣∣∣∣∣
η=0

=
1

2

[
∂µ

d2

dη2
Γρ

νσ − ∂ν
d2

dη2
Γρ

µσ +
d2Γρ

µλ

dη2
Γλ

νσ +
dΓρ

µλ

dη

dΓλ
νσ

dη
+
dΓρ

µλ

dη

dΓλ
νσ

dη
+ Γρ

µλ

d2Γλ
νσ

dη2

−
d2Γρ

νλ

dη2
Γλ

µσ −
dΓρ

νλ

dη

dΓλ
µσ

dη
−
dΓρ

νλ

dη

dΓλ
µσ

dη
− Γρ

νλ

d2Γλ
µσ

dη2

]∣∣∣∣∣
η=0

=∂µδ
2Γρ

νσ − ∂νδ
2Γρ

µσ + δ2Γρ
νλΓ̄

λ
µσ + δΓρ

µλδΓ
λ
νσ + Γ̄ρ

µλδ
2Γλ

νσ

− δ2Γρ
νλΓ̄

λ
µσ − δΓρ

νλδΓ
λ
µσ − Γ̄ρ

νλδ
2Γλ

µσ.

Note that particular care has to be taken to account for the factor 1/2 in the definition of the functional
derivatives. Again we recognise the covariant derivatives of the Christoffel symbol’s first functional derivative.
With this simplification, the second functional derivative becomes

δ2Rρ
σµν [h] = ∇̄µδ

2Γρ
νσ − ∇̄νδ

2Γρ
µσ + δΓρ

µλδΓ
λ
νσ − δΓρ

νλδΓ
λ
µσ. (B.12)

The Ricci tensor Rµν = Rσ
µσν can be calculated by performing a contraction. We find

δRµν [h] = ∇̄σδΓ
σ
νµ − ∇̄νδΓ

σ
σµ, (B.13)

δ2Rµν [h] = ∇̄σδ
2Γσ

νµ − ∇̄νδ
2Γσ

σµ + δΓσ
σλδΓ

λ
νµ − δΓσ

νλδΓ
λ
σµ. (B.14)
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In terms of the metric perturbations hµν this becomes

δRµν [h] =
1

2

(
∇̄σ∇̄νh

σ
µ + ∇̄σ∇̄µh

σ
ν − ∇̄σ∇̄σhνµ

)
− 1

2

(
∇̄ν∇̄σh

σ
µ + ∇̄ν∇̄µh

σ
σ − ∇̄ν∇̄σhσµ

)
=
1

2

(
−□̄hµν − ∇̄ν∇̄µh+ ∇̄σ∇̄νh

σ
µ + ∇̄σ∇̄µh

σ
ν

)
,

δ2Rµν [h] =−
(
∇̄σh

σ
λ

)
δΓλ

νµ − hσ
λ∇̄σδΓ

λ
νµ +

(
∇̄νh

σ
λ

)
δΓλ

σµ + hσ
λ∇̄νδΓ

λ
σµ

+
1

4

(
∇̄σh

σ
λ + ∇̄λh

σ
σ − ∇̄σhσλ

) (
∇̄νh

λ
µ + ∇̄µh

λ
ν − ∇̄λhνµ

)
− 1

4

(
∇̄νh

σ
λ + ∇̄λh

σ
ν − ∇̄σhνλ

) (
∇̄σh

λ
µ + ∇̄µh

λ
σ − ∇̄λhσµ

)
=
1

2
hσλ (∇̄ν∇̄µhσλ + ∇̄σ∇̄λhνµ − ∇̄σ∇̄νhλµ − ∇̄σ∇̄µhλν

)
− 1

2

(
∇̄σh

σ
λ − 1

2
∇̄λh

)(
∇̄νh

λ
µ + ∇̄µh

λ
ν − ∇̄λhνµ

)
+

1

4
∇̄νh

σλ∇̄µhσλ +
1

2
∇̄σh λ

ν

(
∇̄σhλµ − ∇̄λhσµ

)
,

where □̄ ≡ ḡµν∇̄µ∇̄ν and the trace is defined by h ≡ ḡµνhµν . These expressions agree with Eqs. (35.58) in
[37]. Now we expand the metric perturbations up to second order:

hµν = ϵ g(1)
µν + ϵ2 g(2)

µν +O(ϵ3).

In terms of these perturbations the functional derivatives become

δRµν [h] =
1

2
ϵ
(
−□̄ g(1)

µν − ∇̄ν∇̄µ g(1) + ∇̄σ∇̄ν g(1) σ
µ + ∇̄σ∇̄µ g(1) σ

ν

)
(B.15)

+
1

2
ϵ2
(
−□̄ g(2)

µν − ∇̄ν∇̄µ g(2) + ∇̄σ∇̄ν g(2) σ
µ + ∇̄σ∇̄µ g(2) σ

ν

)
+O(ϵ3),

δ2Rµν [h] =
1

2
ϵ2
[

g(1) σλ
(
∇̄ν∇̄µ g

(1)
σλ + ∇̄σ∇̄λ g(1)

νµ − ∇̄σ∇̄ν g
(1)

λµ − ∇̄σ∇̄µ g
(1)

λν

)
−
(
∇̄σ g

(1) σ
λ − 1

2
∇̄λ g(1)

)(
∇̄ν g(1) λ

µ + ∇̄µ g(1) λ
ν − ∇̄λ g(1)

νµ

)
(B.16)

+
1

2
∇̄ν g

(1)
σλ∇̄µ g(1) σλ + ∇̄σ g(1) λ

ν

(
∇̄σ g

(1)
λµ − ∇̄λ g(1)

σµ

) ]
+O(ϵ3).

Ordering the terms in order of epsilon, we find the first and second vacuum Einstein equations

R(1)
µν = δRµν [ g(1) ] = 0, (B.17)

R(2)
µν = δRµν [ g(2) ] + δ2Rµν [ g(1) , g(1) ] = 0. (B.18)

Hence, we obtain a hierarchy of equations. We can solve our system of equations by first solving the linearised
Einstein equations (B.17) for g(1) . Then, we substitute this solution in equation (B.18) to obtain a similar
equation for g(2) , but now with an addtional source term quadratic in g(1) .

C Appendix: Spherical Decomposition

The Schwarzschild solution possesses a high degree of symmetry: it is both static and spherically symmetric.
By virtue of these symmetries, all tensorial quantities on a Schwarzschild background can be split up into a
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separate spherical part and a (t, r)-part. In other words, the 4d spacetime M is factored as M = M2 × S2

where S2 is the 2d unit sphere and M2 represents the 2d (t, r)-subspace.

In this section, we will first introduce the necessary notation to be able to treat the quantities that are
covariant on M2 or S2, separately. The notation and conventions in this appendix is largely based on [62]
and [56]. Then, we continue by decomposing the quantities on the unit sphere in terms of spherical harmon-
ics, which allows us to more easily treat problems multipole by multipole. We will decompose the metric in
terms of ℓm modes, discuss how each multipole transforms under gauge transformations and decompose the
vacuum Einstein equations.

We denote the coordinates on M2 as xa and use the lowercase Latin alphabet a, b, c, . . . as the indices
on its tangent bundle. Similarly, the coordinates for S2 are given by θA and we will use uppercase Latin
indices A,B,C, . . . for its covariant quantities. For the full spacetime, we will use Greek indices α, β, γ, . . ..
The metric in Schwarzschild coordinates xµ = (t, r, θ, φ) given by

ds2 = gµν dx
µdxν = −

(
1− 2M

r

)
dt2 +−

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

can now be expressed as a product metric of the metric gab on M2 and the round metric ΩAB on S2, written
as

ds2 = gab dx
adxb + r2ΩAB dθAdθB . (C.1)

In coordinates xa = (t, r) and θA = (θ, φ), the submetrics take the form

gab = diag

(
−
(
1− 2M

r

)
,

(
1− 2M

r

)−1
)
, ΩAB = diag(1, sin2 θ). (C.2)

The covariant derivative on M2 compatible with the metric gab is denoted by D and the covariant derivative
on S2 compatible with ΩAB byD. The covariant derivative compatible with the full metric gµν is denoted as∇
with Christoffel symbols Γλ

µν . For the Christoffel symbols corresponding to D and D, we have Γc
ab[D] ≡ Γc

ab

and ΓC
AB [D] ≡ ΓC

AB , respectively. The only non-vanishing Christoffel symbols with mixed indices are

Γa
AB =

1

2
gaλ (∂AgλB + ∂BgAλ − ∂λgAB)

= −1

2
∂agAB

= −rraΩAB ,

ΓA
Bc =

1

2
gAλ (∂Bgλc + ∂cgBλ − ∂λgBc)

=
1

2
gAC∂cgBC

=
1

r
rcδ

A
B ,
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where we introduced the notation ∂ar ≡ ra. The covariant derivative ∇µV
ν of a vector V , as a consequence,

has the following possible projections of its indices on the submanifolds

∇aV
b = ∂aV

b + Γb
λaV

λ = ∂aV
b + Γb

caV
c = DaV

b, (C.3)

∇aV
B = ∂aV

B + ΓB
λaV

λ = ∂aV
B + ΓB

CaV
C = DaV

B + r−1raV
B , (C.4)

∇AV
b = ∂AV

b + Γb
λAV

λ = ∂AV
b + Γb

CAV
C = DAV

b − rrbΩCAV
C , (C.5)

∇AV
B = ∂AV

B + ΓB
λAV

λ = ∂AV
B + ΓB

CAV
C + ΓB

cAV
c = DAV

B + r−1rcδ
B

A V c. (C.6)

Note that in the last step in both Eq. (C.4) and (C.5), we replaced the partial derivatives by covariant
derivatives. This is due to the fact that V B lives in the vectorbundle of S2 and as consequence can be
regarded as a scalar function on M2, in the case of Eq. (C.4), and vice versa for Eq. (C.5). Hence, we can
replace the partial derivatives ∂aV

B and ∂AV
b by the covariant derivatives on M2 given by DaV

B and on
S2 given by DAV

b, respectively. A covector ων , similarly, satisfies

∇aωb = Daωb, (C.7)

∇aωB = DaωB − r−1raωB , (C.8)

∇Aωb = DAωb − r−1rbωA, (C.9)

∇AωB = DAωB + rrcΩABωc. (C.10)

These rules can easily be extended to tensors of higher rank by applying the corresponding rule index by
index to each projected index.

We are interested in perturbations on this spherically symmetric background, in particular the metric per-
turbations. An arbitrary metric perturbation hµν can be decomposed in ℓm multipoles as11

hab =
∑
ℓm

f ℓmab (r, t) Y ℓm, (C.11)

haB =
∑
ℓm

jeven,ℓma DBY
ℓm + jodd,ℓma ϵA

BDBY
ℓm, (C.12)

hAB =
∑
ℓm

r2
[
Kℓm(r, t) Y ℓmΩAB +Gℓm(r, t)DADBY

ℓm
]
+ hodd,ℓm2 (r, t) ϵ(A

CDB)DCY
ℓm, (C.13)

where ϵA
B is the Levi-Civita tensor and where we grouped together the perturbations that have the same

index structure in the following way

f ℓmab =

((
1− 2M

r

)
Hℓm

0 Hℓm
1

Hℓm
1

(
1− 2M

r

)−1
Hℓm

2

)
, jeven,ℓma =

(
heven,ℓm0

heven,ℓm1

)
, jodd,ℓma =

(
hodd,ℓm0

hodd,ℓm1

)
. (C.14)

Here, we have a set of seven even parity perturbations H0, H1, H2, h
even
0 , heven1 ,K,G whose harmonics do not

change under reflections on the sphere and a set of three odd perturbations hodd0 , hodd1 , hodd2 whose harmonics
flip sign under a reflection. In this work, we are mainly interested in the even perturbations, but we will
include the odd perturbations for completeness.

11To better correspond with the rest of this work, we opted to use DADBY
ℓm in correspondence with [39, 40] instead of the

more modern Y ℓm
AB ≡

[
DADB + 1

2
ℓ(ℓ+ 1)ΩAB

]
Y ℓm in [62]. Hence, the definition of K here is slightly different. The relation

to Kmartel in [62] is K = Kmartel + ℓ(ℓ+ 1)G.
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C.1 Regge-Wheeler Gauge

Due to the background’s spherical symmetry, we can also factor out the spherical dependence for the gauge

transformations. Recall that gauge transformations are generated by a vector ξ
(i)

µ . This vector can be
decomposed in tensorial harmonics as

ξ(i)
a =

∑
ℓm

A(i) ℓm
a (t, r) Y ℓm,

ξ
(i)

A =
∑
ℓm

B(i) ℓm(t, r)DAY
ℓm + C(i) ℓm(t, r) ϵA

BDBY
ℓm.

(C.15)

Hence, we do not have to worry about the angular (θ, φ)-coordinates anymore and only have to account
for the t and r dependence when specifying a suitable generator for our transformation. The even sector is

governed by the coefficients A(i) ℓm
a (t, r) and B(i) ℓm(t, r) and the odd sector is governed by C(i) ℓm(t, r).

Recall that at first order a first order gauge transformation transforms the perturbations by

g′
(1)

µν = g(1)
µν + L ξ(1) g(0)

µν .

Therefore, the first order perturbations are amended by a term

∆ g(1)
µν ≡ (1)g′µν − g(1)

µν = 2∇(µ ξ
(1)

ν) .

after the first order transformation. We apply the rules in Eqs. (C.7)–(C.8) to the covariant derivative and
insert Eq. (C.15), in order to determine how each Regge-Wheeler perturbation changes exactly. Note that at

first order all multipoles decouple and each lmmode is only influenced by ξ
(1) ℓm

µ . For the even perturbations,
where we suppress the ℓm-label in the notation, the transformation laws yield

f ′
(1)

ab = f
(1)

ab + 2D(a A(1)
b),

j′
(1) even

a = j(1) even
a + A(1)

a +Da B(1) − 2

r
ra B(1) ,

K ′(1)
= K(1) +

2

r
ra A(1)

a,

G′(1)
= G(1) +

2

r2
B(1) .
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When we express the D covariant derivatives on M2 in (t, r)-coordinates and split out each component by
Eq. (C.14), we find that the Regge-Wheeler quantities are changed by the terms

∆ H0
(1) =

2r

r − 2M
∂t A(1)

t −
2M

r2
A(1)

r, (C.16)

∆ H1
(1) = ∂t A(1)

r + ∂r A(1)
t −

2M

r2

(
1− 2M

r

)−1

A(1)
t, (C.17)

∆ H2
(1) =

(
1− 2M

r

)
∂r A(1)

r +
2M

r2
A(1)

r, (C.18)

∆ h0
(1) even = A(1)

t + ∂t B(1) , (C.19)

∆ h1
(1) even = A(1)

r + ∂r B(1) − 2

r
B(1) , (C.20)

∆ K(1) =
2

r

(
1− 2M

r

)
A(1)

r, (C.21)

∆ G(1) =
2

r2
B(1) . (C.22)

Observe that we can express the generator’s coefficients as

B(1) =
r2

2
∆ G(1) , A(1)

a = ∆ j(1) even
a − r2

2
∂a∆ G(1) . (C.23)

As a consequence, we can formulate gauge invariant quantities based on fab and K by adding terms that
will cancel ∆fab and ∆K, respectively. These cancellation terms can be found by simply replacing B(1) →
− r2

2 G(1) and A(1)
a → −

(
j

(1) even
a − r2

2 ∂a G(1)
)

in Eqs. (C.16)–(C.18) and Eq. (C.21). This yields the

following quantities, which are invariant under first order gauge transformations

H̃
(1)

0 ≡ H0
(1) +

2M

r2
h1

(1) even −M∂r G(1) − 2r

r − 2M
∂t h0

(1) even +
r3

r − 2M
∂2t G(1) , (C.24)

H̃
(1)

1 ≡ H1
(1) +

2M

r2 − 2Mr
h0

(1) even − ∂r h0
(1) even − ∂t h1

(1) even +
r(r − 3M)

r − 2M
∂t G(1) + r2∂t∂r G(1) , (C.25)

H̃
(1)

2 ≡ H2
(1) − 2M

r2
h1

(1) even − 2(r − 2M)

r
∂r h1

(1) even + (2r − 3M)∂r G(1) + r(r − 2M)∂2t G(1) , (C.26)

K̃(1) ≡ K(1) − 2

r

(
1− 2M

r

)[
h1

(1) even − r2

2
∂r G(1)

]
. (C.27)

These invariant quantities motivate a particularly easy gauge choice: the Regge-Wheeler gauge. For even
perturbations this choice amounts to setting G = heven0 = heven1 = 0. In this case, all cancellation terms in
the gauge invariant quantities vanish. Hence, the metric perturbations in the Regge-Wheeler gauge simply

correspond to the gauge invariant quantities. It is always possible to choose A(1)
a and B(1) in such a way,

albeit locally, that the Regge-Wheeler gauge is attained.

For the odd perturbations a similar story applies. Although it is not essential to our calculations, which
only concern even perturbations, we will include the odd transformations here for completeness. The projec-
tion of the covariant derivative of the generator for the odd perturbations yields

j′
(1) odd

a = j(1) odd
a +Da C(1) − 2

r ra C(1) ,

h′2
(1) odd

= h2
(1) odd + 2 C(1) ,
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where we again suppresed the ℓm-labels. For the odd perturbations, it is easy to see that C(1) = 1
2∆ h2

(1) odd.
The odd gauge invariant quantities therefore are

(1)h̃odd0 ≡ h0
(1) odd − 1

2∂t h2
(1) odd,

(1)h̃odd1 ≡ h1
(1) odd − 1

2∂r h2
(1) odd + 1

r h2
(1) odd.

The Regge-Wheeler gauge for the odd perturbations is now given by h2
(1) odd = 0 such that (1)h̃odd0 =

h0
(1) odd,RW and (1)h̃odd1 = h1

(1) odd,RW.

At second order, things get significantly more involved. The second order perturbations transform both

as a consequence of the pure second order perturbation generated by ξ
(2)

µ , as well the effects of the first

order transformation ξ
(1)

µ . The metric perturbations transform as

g′
(2)

µν = g(2)
µν + L ξ(2) g(0)

µν + L ξ(1) g(1)
µν +

1

2
L2

ξ(1) g(0)
µν ,

so after a gauge transformation we have to add the term

∆ g(2)
µν = 2∇(µ ξ

(2)
ν)

+ ξ(1) λ∇α g(1)
µν + 2 g

(1)
λ(µ∇ν) ξ(1) λ

+ ξ(1) λ∇λ∇(µ ξ
(1)

ν) +∇λ ξ
(1)

(µ∇ν) ξ(1) λ +∇µ ξ(1) λ∇ν ξ(1) α.

The quadratic terms in the first order perturbations and generators cause mixing between the different ℓm
multipoles. This makes it difficult to provide general expressions. In the remainder of this discussion we will
restrict ourselves to the (ℓ = 2,m = 0) even perturbations.

The terms, with which we have to amend second order Regge-Wheeler quantities after a gauge transforma-
tion, are calculated in M2xS2-Split_Coordinates_Final.nb [43]. Most are too lengthy and impractical to
present in print. The shortest term is given by

∆ G(2) =
2

r2
B(2) +

1

70r5(r − 2M)

(
96r2(r − 2M)2 (1)h1

(1)Ar − 96r4 (1)h0
(1)At − 236Mr3 (1)K (1)B

+ 118r4 (1)K (1)B − 192M2 (1)B2 + 1092Mr (1)B2 − 498r2 (1)B2

− 2(r − 2M)r3 (1)G
(
59(2M − r) (1)Ar + 402 (1)B(t, r)

)
+ 236M2r4 (1)Ar

∂ (1)G

∂r

− 236Mr5 (1)Ar
∂ (1)G(t, r)

∂r
+ 59r6 (1)Ar

∂ (1)G

∂r
+ 428M2r2 (1)Ar

∂ (1)B
∂r

− 428Mr3 (1)Ar
∂ (1)B
∂r

+ 107r4 (1)Ar
∂ (1)B
∂r

− 59r6 (1)At
∂ (1)G(t, r)

∂t
− 107r4 (1)At

∂ (1)B
∂t

)
.

In the literature, this term can also be found in Eq. (36) of [46]. Even when accounting for some convention
differences, such as factors 1/2 in the gauge transformation and a factor r2 in the definition of K(1) and G(1) ,
the expressions do not agree.

At this point, gauge invariance can mean two things: invariance under pure second order transformations and
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invariance under full second order gauge transformation, including first order effects. The former is very easy
to address. The quantities invariant under pure second order transformations are simply the first order ones
as found in Eqs. (C.24)–(C.27) with (1) replaced by (2) everywhere. If one wants to set up quantities that are
invariant under the full second order transformation, this requires more care due to the extra quadratic first
order terms (see [46]). To define fully invariant quantities, quadratic terms need to constructed that under
a first order transformation cancel the quadratic terms that arise as a consequence of the Lie derivatives at
second order.

C.2 Vacuum Einstein Equations

The evolution of the perturbations is governed by the Einstein Equations, which we also have to decompose
in their S2 and M2 parts. To this end, we decompose the corrections to the Ricci tensor δRµν and δ2Rµν

in Eqs. (2.23)–(2.24). The calculations can be found in the Mathematica notebooks M2xS2-Split_Final.nb
and M2xS2-Split_Coordinates_Final.nb [43]. In terms of some generic perturbation hµν , the Ricci tensor
δRµν exhibits the following projections

δRab =
1
2Dc (Dahb

c +Dbha
c −Dchab)− 1

2DbDah
c
c +

1

r
rc (Dahbc +Dbhac −Dchab)

+
1

2r2
DC (DahbC +DbhaC)−

1

2r2
DbDah

C
C − 1

2r2
DCDChab

+
1

2r3
(
raDbh

C
C + rbDah

C
C

)
+

1

r3
hCCDbra −

1

r4
rarbh

C
C ,

δRaB = 1
2D

cDahBc +
1
2D

cDBhac − 1
2DBDah

c
c − 1

2□haB

+
1

2r
raDBh

c
c +

1

r
rcDahBc −

1

r
hB

cDcra −
1

r
raDchBc

+
1

2r2
DCDBhaC − 1

2r2
DCDChaB +

1

2r2
DCDahBC − 1

2r2
DBDah

C
C − 1

r2
rar

chBc

+
1

r3
raDBh

C
C − 1

r3
raD

ChBC ,

δRAB =rraDb(hab −
1

2
gabh

c
c)ΩAB + (rarb + rDarb)habΩAB − 1

2DBDAh
c
c +

1
2D

c (DAhBc +DBhAc)

− 1
2□hAB +

1

r
rcDc(hAB − 1

2
ΩABh

C
C) +

1

r
ΩABr

cDCha
C +

1

2r2
DC

(
DAhB

C +DBhA
C −DChAB

)
− 2

r2
rcrc(hAB − 1

2
hCC)−

1

2r2
DBDAh

C
C .

where □ = DcDc denotes the d’Alembertian on M2. These expressions agree with the expressions provided
in the Appendix B of [62]. Now we specialise to the Regge-Wheeler perturbations, as provided in Eqs. (C.11)–
(C.14). In our case, we are solely interested in the even perturbations. Furthermore, we impose the Regge-
Wheeler gauge which will greatly simplify the matter, since we have hRWaB = 0 for the mixed projections. This
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yields the expressions

δRRW
ab =

[
ℓ(ℓ+ 1)

2r2
fab +

1

2
Dc (Dafb

c +Dbfa
c −Dcfab)−

1

2
DaDbfc

c (C.28)

+
1

r
rc
(
Dafbc +Dbfac −Dcfab −

2

r
r(aDb)K −DaDbK

)]
Y ℓm,

δRRW
aB =

1

2

[
Dcfac −Daf

c
c +

1

r
raf

c
c −DaK

]
DBY

ℓm, (C.29)

δRRW
AB =

[
rarbfab + rDarb fab + rraDbfab −

1

2
rraDafc

c (C.30)

− 1

2
□(r2K) +

1

2
ℓ(ℓ+ 1)K − rar

aK − 2rraDaK −KrDar
a

]
ΩABY

ℓm

− 1

2
fc

cDADBY
ℓm,

Note that in [62], they calculate the Einstein equation including mass-energy source terms. Hence, the
Eqs. (4.13)–(4.16) there contain additional terms as a consequence of the linearised Ricci scalar δR.

The expressions for the quadratic Ricce tensor δ2Rµν , are rather long and would not be illuminating
to provide in print. For the projections of δ2Rµν , in terms of a generic perturbation hµν , we refer to
M2xS2-Split_Final.nb [43]. The expressions given specifically in the RW gauge are

63



C APPENDIX: SPHERICAL DECOMPOSITION C.2 Vacuum Einstein Equations

δ2R
RW,(20)×(20)
ab =

[
1
4
Daf

cdDbfcd + 1
4
(Dafb

c +Dbfa
c −Dcfab)Dch

d
d (C.31)

− 1
2
(Dafb

c +Dbfa
c −Dcfab)Ddfc

d + 1
2
(Ddfbc −Dcfbd)Ddfa

c

− 1

2
fcd(DaDdfbc +DbDdfac −DdDcfab −DaDbfcd)

− 1

r
Krc(Dafbc +Dbfac −Dcfab)−

1

r
rcfc

d(Dafbd +Dbfad −Ddfab)

− 1

r
K(fa

cDcrb + fb
cDcra)−

1

2r2
ℓ(ℓ+ 1)Kfab

+
4

r2
K2rarb +

1

r2
KDaDb(r

2K) +
1

2r2
(Dafb

c +Dbfa
c −Dcfab)Dc(r

2K)

− 2

r3
K(raDb(r

2K) + rbDa(r
2K)) +

1

2r4
Da(r

2K)Db(r
2K)

]
Y 20Y 20

+
1

2r2
(facfb

c − 1
2
fc

cfab)DAY
20DAY 20,

δ2R
RW,(20)×(20)
aB =

[
1
2
fbcDafbc − 1

2
(Dbf

bc − 1
2
Dcfb

b)fac +
1
4
Daf

bc fbc − 1
2
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c

]
Y 20DBY
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c
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− rarbfa
cfbc − 1

4
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b
bDa(r

2K) + 1
2
Da(r2K)Dbfa

b + 1
2
fabDaDb(r

2K)

]
ΩABY

20Y 20

+ 1
2
fabfabY

20DADBY
20 +

[
1
4
fabfab +

1
2
Kfa

a
]
DAY

20 DBY
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+
[
1
2
K2 − 1

4
Kfa

a]ΩABDCY
20 DCY 20,

where we suppressed the ℓm = 20 superscripts for f ℓmab and Kℓm. In this case, where we only consider the
ℓ = 2 mode, the expression is still quite simple because we have the same mode contributing twice. When
we consider different modes ℓm and ℓ′m′, however, we also have to account for there being different f ℓmab and

f ℓ
′m′

ab etc. which will somewhat complicate the expressions.
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