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Abstract

The Bondi-Sachs formalism has enabled the study of gravitational radiation in asymptotically flat spacetimes at
the full non-linear level. Recently, this formalism was extended to include a large class of decelerating cosmo-
logical spacetimes, including decelerating Friedmann-Lemaître-Robertson-Walker spacetimes. In this thesis,
we will solve Einstein’s equations to obtain the metric coefficients near null infinity, and generalize the evolu-
tion equations for the mass- and angular momentum aspects. We also find Bondi-Sachs coordinates for exact
FLRW spacetimes, and check whether its linear perturbations are consistent with the exact solutions near null
infinity.
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1 Introduction

Gravity, as described by Einstein’s theory of general relativity, is a non-linear theory. This property makes solv-
ing the field equations extremely hard, and the few known exact solutions are often highly symmetric and do
not describe realistic situations. Many methods of studying gravitational effects therefore involve the use of
perturbation theory, which destroys gravity’s characteristic non-linearity. Moreover, the equivalence principle,
which lies at the heart of general relativity as a geometric theory, guarantees that there is no canonical way to
locally split spacetime into a ‘background’ and a ‘wave’ part.

Shortly after publishing his field equations, Einstein found that linear perturbations of Minkowski space solve
a wave equation. It was not clear whether these solutions correspond to the weak field limit of some full non-
linear solution of Einstein’s field equations, however, since these perturbations contain gauge freedom. The
possibility was considered that some sporadic solutions exist only in the linearized case, but not in the non-
linear case where it may be transformed away with a coordinate transformation. It took nearly fifty years for
the first theoretical evidence for the existence of gravitational waves to emerge through the works of Bondi and
collaborators [1, 2]. They found an elegant solution which uses our intuition about gravity that as one moves
further away from a source, the gravitational field becomes weaker. Concretely, they described a class of space-
times called asymptotically flat spacetimes in which the metric approaches the Minkowski metric as one moves
along light rays out to infinity. The flatness at null infinity can then be used as a canonical background on which
waves can be found in the next order structure away from infinity. Using these ideas, many non-trivial results
due to gravity’s non-linearity can be derived, one famous example being the loss of mass.

Of course, in realistic situations no source is ever truly isolated, since as one moves away we expect to keep
finding galaxies, each of which is curving spacetime. What’s more, due to the non-linear nature of curvature, it
is not possible to simply ‘add’ the curvature due to an isolated system to, for example, a Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime. As is often the case in general relativity, generalizing the results derived
from asymptotic flatness is difficult. When Joe Weber asked at a conference in Warsaw, 1962, why flatness was
chosen instead of FLRW as boundary conditions at infinity, Bergmann and Bondi responded with [3]:

P.G. Bergmann:
The only answer I can give is that the investigations date back less than two years, I believe, and that
people have simply started with the mathematically simplest situation, or what they hoped was the
simplest situation.

H. Bondi:
[...] I regret it as much as you do, that we haven’t yet got to the point of doing the Friedmann universe.

In the end, neither Bondi nor any other scientist from that generation was able to treat cosmological space-
times. Most recently there has been a surge of interest in different boundary conditions at infinity. The case
Λ > 0, which has a spacelike boundary like our own universe, has gotten a lot of attention. Only very recently
progress was finally made, when some of the methods used to study asymptotic flatness have been extended
to include a class of decelerating cosmological spacetimes that, like asymptotically flat spacetimes, posses a
null infinity [4]. This class includes decelerating FLRW spacetimes. A notable example is the matter dominated
universe, which, even though our own universe is accelerating, is a great approximation both in our galactic
neighborhood where matter dominates dark energy, and on very large scales where incoming waves will have
spent the majority of their time in the pre-accelerated era.

The Bondi-Sachs formalism allows us to study complicated compact gravitational wave sources. In the context
of cosmology, these have not been studied before, not even at the linear level, where perturbation theory has
obvious applications in the study of the small anisotropy of the cosmic microwave background. The Einstein
telescope is projected to be able to probe these complicated sources, so their study has never been more rele-
vant.
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This thesis aims to answer two questions. Firstly, does the metric of spacetimes with a cosmological null
asymptote, upon being linearized, coincide with the solution obtained through linear perturbation theory?
To this end we use decelerating FLRW spacetimes — the only known explicit example of a spacetime with
a cosmological null asymptote which is not asymptotically flat — as our background. Secondly, how are mass
and angular momentum radiated in this new class of spacetimes? In §3, we derive the Bondi-Sachs coordinates
for exact FLRW spacetimes, and in §4 the linearized field equations on an FLRW background are derived and
solved near infinity. Then, in §5, we solve the full non-linear field equations for metrics with a cosmological
null asymptote and find the generalized form of the Bondi mass-loss formula.

2 Preliminaries

In this section, we briefly review a coordinate based approach to asymptotic flatness in §2.1. In §2.2, we present
the metric describing spacetimes with a cosmological null asymptote, which will be used in the remainder of
this work.

2.1 Bondi-Sachs coordinates

Bondi-Sachs coordinates (u,r, x A) are constructed from a family of light cones u = const ant . The normal to the
light cones is null so that gµν(∇µu)(∇νu) = 0, which implies that g uu = 0. To each light ray with tangent vector
gµν∇νu, we assign two angular coordinates x A such that gµν(∇µu)(∇νx A) = 0, which implies that g u A = 0.
Typical choices for x A are the angular coordinates (θ,φ) and the stereographic coordinates (z, z̄). Lastly, we
choose the coordinate r to measure distance along the light rays by requiring that the spheres of constant u and
r have an area of 4πr 2. This restricts the determinant of the angular part of the metric to det g AB = r 4 det qAB ,
where qAB is the metric on the unit sphere. The Bondi-Sachs line element gµνd xµd xν can then be written as

d s2 =−V

r
e2βdu2 −2e2βdudr + r 2hAB (d x A −U Adu)(d xB −U B du), (2.1)

where dethAB = det qAB . Note that gr r = gr A = 0 since g uλgλµ = g ur grµ = δu
µ. Choosing the four coordinates

in this particular way has reduced the independent components of the metric to six. V , β, U A and hAB are still
arbitrary functions of (u,r, x A), and Eq. (2.1) therefore describes more than just asymptotically flat spacetimes.
For example, the de Sitter space metric — which describes a spacetime with constant scalar curvatureΛ every-
where — can be written in these coordinates as V = r − Λ

3 r 3, β=U A = 0, and hAB = qAB . To give meaning to the
words asymptotic flatness we therefore provide additional restrictions on the metric coefficients by requiring
that in the limit r →∞ with (u, x A) constant, they coincide with the metric coefficients of flat spacetime:

lim
r→∞d s2 =−du2 −2dudr + r 2qAB d x Ad xB . (2.2)

Expanding the functions β, V , U A and hAB in inverse powers of r near infinity and solving Einstein’s equations
term by term, we then find

V = r −2M +O

(
1

r

)
, (2.3a)

β=−C AB C AB

32r 2 +O

(
1

r 3

)
, (2.3b)

U A =−DB C AB

2r 2 + N A

r 3 +O

(
1

r 4

)
, (2.3c)

hAB = qAB + C AB

r
+O

(
1

r 2

)
, (2.3d)

where D A is the covariant derivative compatible with the metric qAB . M and N A are constants of integration
and are called the mass- and angular momentum aspect, respectively, partly motivated by many examples of
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exact solutions in which they are related to the mass and angular momentum of the spacetime. Expanding
the determinant condition in inverse powers of r provides the constraint det(qAB + C AB

r +O ( 1
r 2 )) = det qAB (1+

qC D CC D
r +O ( 1

r 2 )) = det qAB , i.e. C AB is trace-less. Finding V ,β, and U A in terms of hAB eliminates four additional
independent components of the metric, and we are thus left with two independent components which, to
lowest order, are contained in the trace-less C AB . Their time evolution is determined by Einstein’s equations.
The remaining components of Einstein’s equations are then either trivially satisfied, or trivially satisfied up to
a constant, due to Bianchi’s identities. Resolving these constants yields additional equations which are used to
find the time evolution of M and N A :

∂u M =−1

8
N AB NAB + 1

4
D ADB N AB , (2.4a)

∂u NA =−2

3
D A M + 1

8
D A(C BC NBC )+ 1

6
DB DC D[ACB ]C − 1

6
DB (N BC C AC )+ 1

3
NAB DC C BC − 1

3
N BC DB C AC ,

(2.4b)

where we defined NAB := ∂uC AB which is called the Bondi news tensor. This name comes from the fact that
an observer at infinity would be able to determine the geometry given the news tensor, and initial data (in the
form of M(u0, x A) and N A(u0, x A) on some surface u = u0). News therefore arives at infinity through the news
tensor. The Bondi mass m(u) of this spacetime is defined as the monopole moment of the mass aspect. Its
evolution is given by

∂um =− 1

32π

∮
N AB NAB d 2S ≤ 0. (2.5)

Here, integration is performed over the unit sphere. Mass is radiated if and only if there is news. Intuitively this
makes sense, since a static configuration could produce a non-zero C AB but should not radiate.

Note that this approach is fully non-linear and contains many results that could not have been found through
(linear) perturbation theory. An example would be the loss of mass. Treating C AB as a linear perturbation would
make the integrant of Eq. (2.5) vanish.

To conclude this section, I would like to remark that a geometric (coordinate free) definition of asymptotic flat-
ness exists. This definition is equivalent to the one we gave based on coordinates, but allows the use of some of
the more sophisticated tools of differential geometry to analyse its properties. Refer to [5] for the details. The
main idea is to construct a new spacetime in which points at infinity are added. The Bondi-Sachs metric (2.1)
diverges at infinity, so a new (unphysical) metric is constructed conformal to the (physical) metric g̃µν =Ω2gµν
for some suitable Ω, which can be used as a coordinate around infinity. In Bondi-Sachs coordinates, Ω = 1

r is
an example of a suitable conformal factor. Einstein’s equations in terms of the unphysical metric are

G̃µν−8πTµν = 2Ω−1(g̃µν∇̃λnλ−∇̃µnν)−3Ω−2 g̃µνnλnλ, (2.6)

where nµ := ∇̃µΩ. In some cases it can be advantageous to work with the unphysical metric, since it is of order
Ω0 and hence so are its curvature tensors.

2.2 Spacetimes with a cosmological null asymptote

While many interesting systems are asymptotically flat, on cosmological scales our universe is not. In a recent
paper [4], the Bondi-Sachs formalism was generalised to include a large class of decelerating cosmological
spacetimes which — like the asymptotically flat class — posses a null-infinity. The conformal factor Ω now
includes a scale factor. Hence the Ricci curvature, and by extension the stress-energy, do not vanish at null
infinity unlike the asymptotically flat case. In fact, the stress energy diverges. In particular, the diverging part
of the stress-energy can be written in terms of geometric quantities as

8πTµν = 2sΩ2(s−1)nµnν+2sΩs−1n(µτν) +O (1), (2.7)
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where nµ = 1
1−s ∇µΩ1−s , and 0 ≤ s < 1 is a parameter related to the degree to which the stress-energy diverges.

In the case of FLRW, s = 2
3(1+w) is related to the equation of state parameter w = p

ρ where p and ρ are the
pressure and energy density of a perfect fluid that fills the spacetime. Like for asymptotically flat spacetimes a
coordinate based definition exists for spacetimes with a cosmological null asymptote. The generalised Bondi-
Sachs coordinates are

d s2 =
(

r̃ s

1− s

) 2
1−s

[
− Ṽ

r̃
e2βdu2 −2e2βdudr̃ + r̃ 2hAB (d x A −U Adu)(d xB −U B du)

]
. (2.8)

Much like how asymptotically flat spacetimes are asympotically identical to Minkowski spacetime, spacetimes
with a cosmological null asymptote are in some sense asymptotically identical to FLRW spacetimes. It follows
from Eq. (2.7) and Einstein’s equations that the metric coefficients fall off as

Ṽ = Ṽ (−1)r̃ + Ṽ (0) +O

(
1

r̃

)
, (2.9a)

β= β(1)

r̃
+O

(
1

r̃ 2

)
, (2.9b)

U A = U (1)A

r̃
+O

(
1

r̃ 2

)
, (2.9c)

hAB = qAB + C AB

r̃
+O

(
1

r̃

)
. (2.9d)

A detailed calculation will be given in §4.

3 FLRW in Bondi-Sachs coordinates

In this section we derive the Bondi-Sachs coordinates of decelerating FLRW spacetimes. These coordinates are
an extension of those found in §5.3 of [4], which are only valid near infinity. As it turns out, the metric coef-
ficients are only algebraic in a few cases. Two notable special cases are the radiation dominated universe and
the matter dominated universe, which will be presented in §3.1.

The FLRW metric is conformal to the Minkowski metric, so a natural place to start would be the FLRW met-
ric in Bondi-Sachs-like coordinates conformal to Minkowski in Bondi-Sachs coordinates

d s2 = (r̊ + ů)
2s

1−s [−dů2 −2důdr̊ + r̊ 2qAB d x̊ Ad x̊B ]. (3.1)

Spheres of constant ů and r̊ are ů-dependent however, unlike the spheres of constant u and r̃ of the metric in
Eq. (2.8). We find the Bondi-Sachs coordinate r̃ by setting x̊ A = x A and demanding that the d x Ad xB metric
coefficients of Eq. (2.8) and Eq. (3.1) are equal:(

r̃ s

1− s

) 2
1−s

r̃ 2qAB = (r̊ A)
2s

1−s r̊ 2qAB

=⇒ r̃ = (1− s)r̊ As , (3.2)

where we defined A := 1+ ů
r̊ . Setting u = (1− s)ů for convenience, we find that A must be a solution to the

equation

A = 1+ u

r̃
As . (3.3)

In general, no algebraic solution exists. For example, if s = 1
5 , 5pA ≡ x is a root of the quintic equation x5 −

u
r̃ x −1 = 0, which famously does not have an algebraic solution even in the case u

r̃ = 1. Furthermore, from this
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example it is clear that multiple solutions may exist. However, using Descartes’ rule of signs we can deduce
that there is only one positive real solution, since the coefficients of the polynomial xp − u

r̃ xq −1 = 0 have signs
(+,±,−). The trick to solving Eq. (3.3) is to first find the inverse of A, which is easily found to be

u

r̃
= A1−s − A−s . (3.4)

Using Lagrange’s inversion theorem we can find a series expansion of A. If z = f (w) and f ′(c) 6= 0 then this
theorem states that around a point c where f is analytic,

w = c +
∞∑

n=1
lim
u→c

d n−1

d xn−1

[(
x − c

f (x)− f (c)

)n]
(z − f (c))n

n!
. (3.5)

We take f (w) = w1−s −w−s around the point w = 1 which will get us the positive real solution since f diverges,
and hence is not analytic, at w = 0 for s > 0. Using

x −1

x1−s −x−s = xs ,
d n

d xn

xsn

n!
=

(
sn

n

)
xn(s−1), (3.6)

and including n = 0 we get an expression for A:

A(u, r̃ ) =
∞∑

n=0

(
sn

n

)
1

n(s −1)+1

(u

r̃

)n
(3.7)

= 1+ u

r̃
+ s

(u

r̃

)2
+ 1

2
s(3s −1)

(u

r̃

)3
+ 1

3
s(2s −1)(4s −1)

(u

r̃

)4
+O

(u

r̃

)5

The first few terms agree with the approximation found in [4]. As is then found through Eq. (3.3):

As (u, r̃ ) =
∞∑

n=0

(
s(n +1)

n

)
1

n +1

(u

r̃

)n
. (3.8)

Lastly we will need A2s , which can be found using the Hagen-Rothe identity [6]:

n∑
k=0

(
x +kz

k

)
x

x +kz

(
y + (n −k)z

n −k

)
y

y + (n −k)z
=

(
x + y +nz

n

)
x + y

x + y +nz
. (3.9)

Squaring the sum Eq. (3.8) we find that the n-th coefficient of the resulting sum is of the form Eq. (3.9) with
x = y = z = s, so that

A2s (u, r̃ ) =
∞∑

n=0

[
n∑

k=0

(
s(k +1)

k

)
1

k +1

(
s(n −k +1)

n −k

)
1

n −k +1

](u

r̃

)n

=
∞∑

n=0

(
s(n +2)

n

)
2

n +2

(u

r̃

)n
. (3.10)

In the coordinates (u, r̃ , x A) the scale factor becomes

(r̊ A)
2s

1−s =
(

r̃ s

1− s

) 2
1−s

(1− s)2 A2s . (3.11)
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Finally, we compute the metric coefficients Eq. (2.8)

Ṽ

r̃
e2β = (1− s)2 A2s [(∂u ů)2 +2∂u ů∂u r̊ ] = A2s −2r̃∂u As

=
∞∑

n=0

(
s(n +2)

n

)
2(1+n − s(n +2))

n +2

(u

r̃

)n
, (3.12a)

e2β = (1− s)2 A2s∂u ů∂r̃ r̊ = As − r̃∂r̃ As = r̃∂u A

=
∞∑

n=0

(
s(n +1)

n

)(u

r̃

)n
, (3.12b)

hAB = qAB , (3.12c)

U A = 0, (3.12d)

which concludes the coordinate transform. The FLRW metric in Bondi-Sachs coordinates is

d s2 =
(

r̃ s

1− s

) 2
1−s

([ ∞∑
n=0

−
(

s(n +2)

n

)
2(n +1− s(n +2))

n +2

(u

r̃

)n
du2 −2

(
s(n +1)

n

)(u

r̃

)n
dudr̃

]
+ r̃ 2qAB d x Ad xB

)
.

(3.13)(s(n+1)
n

) < n + 1 for 0 ≤ s < 1, which means that this series converges quicker than a geometric series, which
converges for |u

r̃ | < 1, and hence this metric covers |u| < r̃ <∞.

FLRW is spatially homogenous and isotropic. Isotropy is seen through spherical symmetry, since hAB = qAB ,
U A vanishes, and none of the remaining metric coefficients depend on the coordinates x A . Bondi-Sachs co-
ordinates are not adapted to homogeneity however, which is why (3.13) looks much more complicated com-
pared to the more widely used coordinates which are adapted to these symmetries: d s2 = −d t 2 + t 2s (dr 2 +
r 2qAB d x Ad xB ). The fact that the Ricci curvature is non-vanishing is reflected by the fact that the area of the

spheres of constant u and r̃ is
(

r̃ s

1−s

) 2
1−s

4πr̃ 2.

3.1 The radiation and matter dominated universes

For some values of s, the metric Eq. (3.13) can be simplified further. These values include s = 1
2 , in which case

the metric describes a radiation filled universe, and s = 2
3 in which case the metric describes a universe filled

with dust. When deriving the series in the previous section, it was convenient to express new series in terms of
derivatives and sums of old series, while avoiding multiplication as much as possible, since we could add and
differentiate term by term quite easily. Here, the strategy will be to first find A, and to then compute the metric
coefficients. The following identities will be useful:

e2β = As+1

(1− s)A+ s
, (3.14a)

Ṽ

r̃
e2β = (As +1)2 −1−2e2β. (3.14b)

Deriving these identities involves repeatedly using the defining equation of A (3.3). To compute A for s = 1
2 , we

first notice that the coefficients of the series Eq. (3.8) split into two categories: for odd n,
( 1

2 (n+1)
n

) = 0 except

for n = 1. For even n, we rewrite the coefficients using the identity
(p

q

) ≡ p
q

(p−1
q−1

)
by applying it n

2 -times. The
solution Eq. (3.8) then simplifies to

p
A = u

2r̃
+

∞∑
n=0

(
1
2

n

)( u

2r̃

)2n

= u

2r̃
+

√
1+

( u

2r̃

)2
. (3.15)
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From which we find:

d s2 = r̃ 2

16

−


u
2r̃

(
u
2r̃ +

√
1+ ( u

2r̃

)2
)2

√
1+ ( u

2r̃

)2

du2 −2


2

(
u
2r̃ +

√
1+ ( u

2r̃

)2
)3

1+
(

u
2r̃ +

√
1+ ( u

2r̃

)2
)2

dudr̃ + r̃ 2qAB d x Ad xB

 . (3.16)

We could also have solved Eq. (3.3) directly, as it is now a simple quadratic in
p

A. This is how we will find A for

s = 2
3 . The positive real solution to the cubic equation A3 − (

( u
r̃

)3 +3)A2 +3A−1 = 0 is

A = 1+9
( u

3r̃

)3
+

3
( u

3r̃

)3
(
2+9

( u
3r̃

)3
)

∆
+3∆, (3.17)

where ∆ := 3

√
1

2

( u

3r̃

)3
+9

( u

3r̃

)6
+27

( u

3r̃

)9
+

√
1

4

( u

3r̃

)6
+

( u

3r̃

)9
.

We obtain the somewhat awkward metric coefficients

e2β =
(
9
( u

3r̃

)6 + ( u
3r̃

)3 (2+3∆)+∆2
)(
∆+3

(
9
( u

3r̃

)6 +∆2 + ( u
3r̃

)3 (2+3∆)
))

∆2
(
9
( u

3r̃

)7 + ( u
3r̃

)4 (2+3∆)+ ( u
3r̃

)
∆(1+∆)

) , (3.18a)

Ṽ

r̃
e2β =

(
9
( u

3r̃

)6 + ( u
3r̃

)3 (2+3∆)+∆2
)(

9
( u

3r̃

)6 +2∆
( u

3r̃

)+ ( u
3r̃

)3 (2+3∆)+∆2
)

∆2
( u

3r̃

)2 −2e2β. (3.18b)

4 The linear perturbations of FLRW

In this section we solve the linearized field equations for perturbations on an FLRW background in Bondi-
Sachs coordinates Eq. (3.13). While these linear equations are much simpler than Einstein’s full non-linear
field equations, they are still difficult to solve. In §4.1 we therefore start by identifying and eliminating excess
degrees of freedom. In §4.2 we use separation of variables to split and simplify them further. Finally, we find
the linear perturbations of FLRW near infinity in §4.3.

4.1 Coordinate freedom

The physically relevant properties of a spacetime do not depend on the choice of coordinates. Hence, some
solutions will be redundant because they are related to another solution through a coordinate transformation.

The metrics gµν and g̃µν are physically identical if there is a diffeomorphism φ such that g̃µν = φ∗gµν.
Consider the one-parameter family of metrics gµν(λ) = ḡµν+λγµν, and consider an arbitrary family of diffeo-
morphismsφλ. Since we intend to describeφ∗

λ
gµν(λ) as a small perturbation on a fixed background we require

the transformed perturbation to again be small. Hence, we require φ∗
0 gµν = ḡµν. Then γµν and γ̃µν are related

through:

γµν− γ̃µν = d

dλ

(
gµν(λ)−φ∗

λgµν(λ)
)∣∣∣
λ=0

= lim
λ→0

gµν(λ)− ḡµν−φ∗
λ

gµν(λ)+ ḡµν

λ
= lim
λ→0

φ∗
−λgµν− gµν

λ
, (4.1)

where in the last equality we used that φ∗
λ
≡ −φ∗

−λ. Here we recognize the Lie derivative of gµν along a vector
field generated by the flow φλ. We can thus rewrite Eq. (4.1) as:

γ̃µν = γµν−Lξgµν = γµν−2∇(µξν). (4.2)

Hence, if we can find a ξ that solves Eq. (4.2), then γµν and γ̃µν are physically identical.
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Suppose we are given a background metric gµν in Bondi-Sachs coordinates. We would now like to find a cov-
ector field ξµ such that the perturbed metric remains in Bondi-Sachs form. This coordinate condition is called
the Bondi-gauge. In this gauge, γr̃ r̃ = γr̃ A = h ABγAB = 0. The final condition ensures that det(r̃ 2hAB +γAB ) =
r̃ 4 det(qAB )(1+ r̃−2h ABγAB )+O (γ2) = r̃ 4 det(qAB ). For computational convenience, we factor out the scale fac-
tor and set λ= 1 by rescaling γµν such that the perturbed metric and its coordinate freedom are given by

d s2 =
(

r̃ s

1− s

) 2
1−s

(gµν+γµν)d xµd xν (4.3)

and γ̃µν = γµν−Lξgµν− 2s

1− s

1

r̃
gµνLξr̃ . (4.4)

First, we set γ̃r̃ r̃ = 0:

γr̃ r̃ = 2∇r̃ ξr̃ = 2(∂r̃ −Γr̃
r̃ r̃ )ξr̃

=⇒ ξr̃ = f r̃ (u, x A)e
∫
Γr̃

r̃ r̃ dr̃ +e
∫
Γr̃

r̃ r̃ dr̃
∫

e−
∫
Γr̃

r̃ r̃ dr̃ 1

2
γr̃ r̃ dr̃ , (4.5)

where all other connection coefficients vanish since Γµr̃ r̃ = g r̃µ∂r̃ gµr̃ is only non-zero if µ = r̃ . Next, we set
γ̃r̃ A = 0:

γr̃ A = 2∇(r̃ ξA) = ∂r̃ ξA −2ΓB
r̃ AξB + (∂A −2Γr̃

r̃ A)ξr̃ . (4.6)

This system of equations has no closed form solution for a general ΓB
r̃ A . If we assume that hAB is diagonal

however, which is the case for FLRW, then ΓB
r̃ A is diagonal and ξA has the solution

ξA = f A(u, x A)e2
∫
ΓA

r̃ A dr̃ +e2
∫
ΓA

r̃ A dr̃
∫

e−2
∫
ΓA

r̃ A dr̃ (
γr̃ A − (∂A −2Γr̃

r̃ A)ξr̃
)

dr̃ . (4.7)

Here, ΓA
r̃ A refers to the component and is not being contracted. Lastly, we set h AB γ̃AB = 0 by choosing an ap-

propriate ξu , which is our one remaining component of ξµ. Since g ABΓu
AB =− 1

2 g ur̃ g AB∂r̃ g AB =− 1
2 g ur̃ ∂r̃ det(g AB )

det(g AB )

and since per definition 0 = ∂r̃ det(hAB ) = 1
r̃ 4 ∂r̃ det(g AB )− 4

r̃ 5 det(g AB ), we can conclude that g ABΓu
AB =− 2g ur̃

r̃ 6=
0. Hence, we can solve

h ABγAB = 2h AB∇AξB + 4sr̃

1− s
ξr̃ = 2h AB

(
D AξB −Γu

ABξu +
(

2sr̃

1− s
hAB −Γr̃

AB

)
ξr̃

)
=⇒ ξu =−h AB D AξB + ( 2sr̃

1−s hAB −Γr̃
AB

)
ξr̃ − 1

2γAB

2r̃ g ur̃
. (4.8)

The leftover freedom is captured by the functions f r̃ (u, x A) and f A(u, x A). Sumarizing, we find that for FLRW,
the transformations that preserve the Bondi-gauge are generated by

ξu =
(

r̃ s

1− s

) 2
1−s

(
1

2
(1− s)r D A f A(u, x A)+ ((1− s)D AD A +2−4s) f r̃ (u, x A)+ s(1− s)uD A f A(u, x A)+O

(
1

r̃

))
(4.9a)

ξr̃ =
(

r̃ s

1− s

) 2
1−s

f r̃ (u, x A)

(
2+ 4su

r̃
− 3s(1−3s)u2

r̃ 2 +O

(
1

r̃ 3

))
(4.9b)

ξA =
(

r̃ s

1− s

) 2
1−s

(
r 2 f A(u, x A)+ f r̃ (u, x A)

(
2+ 4su

r̃
− 3s(1−3s)u2

r̃ 2 +O

(
1

r̃ 3

)))
. (4.9c)
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4.2 Separation of variables

Next, we use separation of variables to reduce the linearized field equations to a form we may reasonably ex-
pect to be able to solve. Specifically, we choose a function basis for the angular part of the perturbations. We
are justified in doing this because FLRW is spherically symmetric.

The set of scalar spherical harmonics Y lm form an orthogonal function basis on the two-sphere. We can
also use these to define an orthogonal vector field basis on the two-sphere, consisting of even-parity har-
monics Y lm

A = D AY l m and odd-parity harmonics X lm
A = −εB

ADB Y lm . Extending this one step further, we de-

fine an orthogonal traceless 2-tensor basis on the two-sphere, consisting out of even-parity harmonics Y lm
AB =

(D ADB + 1
2 l (l +1)qAB )Y l m and odd-parity harmonics X l m

AB =− 1
2 (εC

ADB + εC
B D A)DC Y l m . We expand our per-

turbations into these harmonics:

γab = ∑
l ,m

p lm
ab Y lm (4.10a)

γa A = ∑
l ,m

j lm
a Y lm

A +p l m
a X lm

A (4.10b)

γAB = ∑
l ,m

K lm qAB Y lm +G lmY lm
AB +p lm X lm

AB , (4.10c)

where p lm
ab , j lm

a , p l m
a ,K lm ,G lmand p lm are functions of u and r̃ only. The lowercase latin indices index the u

and r̃ components. In the Bondi gauge, p lm
r̃ r̃ = j lm

r̃ = p l m
r̃ = K lm = 0. The linearized part of the Einstein tensor,

δGµν, can be written as:

δGab = ∑
l ,m

Q lm
ab Y lm (4.11a)

δGa A = ∑
l ,m

Q lm
a Y lm

A +P lm
a X lm

A (4.11b)

δG AB = ∑
l ,m

Q lm
[ qAB Y lm +Q l m

] Y l m
AB +P l m X lm

AB . (4.11c)

Of course, since any scalar, vector, or tensor on the two-sphere can be decomposed into these harmonics it is
not obvious that decomposing the Einstein tensor in this manner results in a simpler expression. It turns out,
however, that the coefficients lm in the sums (4.11) are linear functions of p lm

ab , j lm
a , p l m

a ,K lm ,G lmand p l m .
This is a consequence of the combined facts that 1) the objects (4.11) are scalars, vectors, and tensors on the
two-sphere, 2) the linearized field equations are, as their name implies, linear in (4.10), and 3) the harmonics
are eigenfunctions of the Laplacian ∆.

Finally, since these harmonics are orthogonal, we can solve these equations for each lm separately, and
split them into an even-parity (Y lm ,Y lm

A ,Y lm
AB ) and an odd-parity (X l m

A , X lm
AB ) sector.

4.3 Perturbations near infinity

We are left with one final roadblock before we can start solving Eq. (4.11). The linearized field equations in-
volve the curvature tensors of the background metric. Computing these seems simple, albeit cumbersome,
since we could either perform a coordinate transformation on the curvature tensors of the metric in the usual
coordinates, or perform a calculation involving only differentiation, addition, and multiplication of the metric
coefficients in Eq. (3.13). While possible, the results are not "nice" because certain terms, (∂u A)2 for example,
cannot be reduced to a single sum. Instead we will expand γµν and the background curvature tensors in inverse
powers of r̃ , and solve Eq. (4.11) term by term recursively.
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To subleading order, we then find the even-parity Einstein tensor

Quu =
(

1−2s

(1− s)r̃
∂r̃ + l (l +1)(1− s)2 +2+2s(2−5s)

2(1− s)2r̃ 2 +O

(
1

r̃ 3

))
puu +

(
− 1

(1− s)r̃
+ 2su

(1− s)r̃ 2 +O

(
1

r̃ 3

))
∂u puu

+
(
−2(1−2s)2

(1− s)r̃
∂r̃ − l (l +1)(1− s)2(1−2s)+2(1−2s +3s2 −5s3)

(1− s)2r̃ 2 +O

(
1

r̃ 3

))
pur̃

+
(

2(1− s −2s2)

(1− s)r̃
+ 4s2(1+ s)u

(1− s)r̃ 2 +O

(
1

r̃ 3

))
∂u pur̃ +

(
l (l +1)(1−2s)

r̃ 2 ∂r̃ + l (l +1)(1+ s −4s2)

(1− s)r̃ 3

)
ju

− l (l +1)

r̃ 2 ∂u ju +
(
− (l −1)l (l +1)(l +2)(1−2s)

4r̃ 4 − (l −1)l (l +1)(l +2)s(2−3s)u

2r̃ 5 +O

(
1

r̃ 6

))
G , (4.12a)

Qur̃ =
(

1

1− s

1

r̃
∂r̃ − 2su

r̃ 2 ∂r̃ + 1

(1− s)2

1

r̃ 2 + 2s(1−2s)u

(1− s)2r̃ 3 +O

(
1

r̃ 4

))
puu

+
(
−2(1−2s)

(1− s)r̃
∂r̃ − 4s2u

r̃ 2 ∂r̃ − l (l +1)(1− s)2 +2(2−4s + s2)

2(1− s)2r̃ 2 − 2s(2−6s +5s2)u

(1− s)2r̃ 3 +O

(
1

r̃ 4

))
pur̃

+
(

l (l +1)

2r̃ 2 ∂r̃ + 1+ s

1− s

l (l +1)

r̃ 3

)
ju +

(
− l (l +1)(l −1)(l +2)

4r̃ 4 − (l −1)l (l +1)(l +2)su

2r̃ 5 +O

(
1

r̃ 6

))
G , (4.12b)

Qr̃ r̃ =
(
− 2

1− s

1

r̃
∂r̃ + 4su

1− s

1

r̃ 2 ∂r̃ − 4su

1− s

1

r̃ 3 +O

(
1

r̃ 4

))
pur̃ , (4.12c)

Qu =
(
−1

2
∂r̃ + su

r̃
∂r̃ − s

1− s

1

r̃
+ 2s2u

(1− s)r̃ 2 +O

(
1

r̃ 2

))
puu +

(
1

2
(1−2s)∂r̃ − s2

(1− s)r̃
+O

(
1

r̃ 2

))
pur̃

+
(

1

2
− su

r̃
+O

(
1

r̃ 2

))
∂u pur̃ +

(
−1

2
(1−2s)∂r̃∂r̃ − s(2−3s)

(1− s)r̃
∂r̃ + s(4−9s +4s2)

(1− s)2r̃ 2 +O

(
1

r̃ 3

))
ju

+
(

1

2
∂r̃ − su

r̃
∂r̃ − 1

r̃
+ 2su

r̃ 2 +O

(
1

r̃

))
∂u ju − (l −1)(l +2)

4r̃ 2 ∂uG , (4.12d)

Qr̃ =
(

1

2
∂r̃ − su

r̃
∂r̃ − 1

(1− s)r̃
+ s(3− s)u

r̃ 2 +O

(
1

r̃ 3

))
pur̃

+
(
−1

2
∂r̃∂r̃ + su

r̃
∂r̃∂r̃ − s

1− s

1

r̃
∂r̃ − s(1−3s)u

(1− s)r̃ 2 ∂r̃ + 1+ s

(1− s)r̃ 2 − 4s2u

(1− s)r̃ 3 +O

(
1

r̃ 4

))
ju

+
(
− (l −1)(l +2)

4r̃ 2 ∂r̃ + (l −1)(l +2)

2r̃ 3

)
G , (4.12e)

Q[ =
(
−1

2
r̃ 2∂r̃∂r̃ +2sur̃∂r̃∂r̃ − 1+ s

1− s
r̃∂r̃ − s(3+5s)u

1− s
∂r̃ − s2

(1− s)2 − 2s(1−3s2)u

(1− s)2r̃
+O

(
1

r̃ 2

))
puu

+
(

2(1−3s)

1− s
r̃∂r̃ + l (l +1)+ 4s(2−3s)

(1− s)2 +O

(
1

r̃

))
pur̃

+
(
−1

2
l (l +1)∂r̃ + l (l +1)

r̃
∂r̃ − s

1− s

l (l +1)

r̃
+ 2s2u

1− s

l (l +1)

r̃ 2 +O

(
1

r̃ 3

))
ju , (4.12f)

Q] =
(
−1+ 2su

r̃
+O

(
1

r̃ 2

))
pur̃ +

(
∂r̃ − 2su

r̃
∂r̃ + 2s

(1− s)r̃
− 2s2u

(1− s)r̃ 2 +O

(
1

r̃ 3

))
ju

+
(
−1

2
(1−2s)∂r̃∂r̃ − (1−2s)2

(1− s)r̃
∂r̃ − 1+8s −14s2 +6s3

(1− s)2r̃ 2

)
G

+
(
∂r̃ − 2su

r̃
∂r̃ − 1−2s

(1− s)r̃
+ 2s(1−2s)u

(1− s)r̃ 2 +O

(
1

r̃ 3

))
∂uG . (4.12g)

We dropped the l m-superscripts to make the expressions more readable.
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To subleading order, the odd-parity Einstein tensor has the following components:

Pu =
(

l (l +1)(1− s)2 +2s(4− s(9−4s)

2(1− s)2r̃ 2 +O

(
1

r̃ 3

))
pu +

(
−1−2s

2
∂r̃∂r̃ + 1

2
∂r̃ − su

r̃
∂r̃ − 1

r̃
+ 2su

r̃ 2 +O

(
1

r̃ 3

))
∂u pu

+
(
− (l −1)(l +2)

4r̃ 2

)
∂u p, (4.13a)

Pr̃ =
(
−1

2
∂r̃∂r̃ + su

r̃
∂r̃∂r̃ − s

(1− s)r̃
∂r̃ − s(1−3s)u

(1− s)r̃ 2 ∂r̃ + 1+ s

(1− s)r̃ 2 − 4s2u

(1− s)r̃ 3 +O

(
1

r̃ 4

))
pu

+
(
− (l −1)(l +2)

4r̃ 2 ∂r̃ + (l −1)(l +2)

2r̃ 3

)
p, (4.13b)

P =
(
−∂r̃ + 2su

r̃
∂r̃ − 2s

1− s

1

r̃
+ 4s2u

(1− s)r̃ 2 +O

(
1

r̃ 3

))
pu +

(
−1−2s

2
∂r̃∂r̃ + (1−2s)2

(1− s)r̃
∂r̃ − 1−8s +14s2 −6s3

(1− s)2r̃ 2 +O

(
1

r̃ 3

))
p

+
(
∂r̃ − 2su

r̃
∂r̃ − 1−2s

1− s

1

r̃
+ 2s(1−2s)u

(1− s)r̃ 2 +O

(
1

r̃ 3

))
∂u p. (4.13c)

γur̃ = C (u, x A) and γu A = r̃ 2C A(u, x A) are pure gauge and can both be eliminated with a transformation (4.9)
generated by f r̃ = 1

2

∫
C (u, x A)− 1

2 (1− s)
(∫

D AC A(u, x A)du
)

du and f A = ∫
C (u, x A)du. Only in the asymptoti-

cally flat case, s = 0, are the mass- and the angular momentum aspect — the 1
r̃ -coefficients of γuu and γu A —

constants of integration.

The stress-energy perturbation, δTµν, cannot be arbitrary, and must fall off sufficiently fast as r̃ → ∞ to en-
sure that the perturbed spacetime has a cosmological null asymptote. The leading order diverging terms fall
off as

δTur̃ =O (r̃−1), δTr̃ r̃ =O (r̃−3). (4.14)

Note that the stress-energy diverges at infinity despite the fact that all component functions have a well-defined
limit, since the basis one-form dr̃ diverges at infinity as O (r̃ 2). The remaining stress-energy components must
be finite at infinity. Similar to how we treated the metric perturbations and the linearized field equations, we
decompose the stress-energy perturbation δTµν into spherical harmonics:

δTab = ∑
l ,m

t l m
ab Y lm , (4.15a)

δTa A = ∑
l ,m

t l m
a Y lm

A +Slm
a X lm

A , (4.15b)

δTAB = ∑
l ,m

T l m qAB Y l m + t lmY l m
AB +Slm X l m

AB . (4.15c)

Similar to Eq. (2.9d) we write γAB = r̃ (C evenYAB +C odd X AB )+d evenYAB +d odd X AB +O ( 1
r̃ ) and find puu , pur̃ ,

ju , pu , and the evolution ∂u puu , ∂u ju , and ∂u pu in terms of the stress-energy terms and C even and C odd . The
leading and subleading order odd-parity solutions are

pu = 8π(1− s)S(1)
r̃ r̃ +8πs(1− s)uS(1)

r̃ − 1

4
(l +2)(l −1)

1− s

1+ s
C odd +8π

1− s

1+ s
S(2)

r̃ +O

(
1

r̃

)
, (4.16a)

∂u pu =−16πt (0)
u r̃ − 1

4
(l +2)(l −1)∂uC odd −8πS(1)

u +8π
s(2−4s + s2)

1− s
S(1)

r̃ +O

(
1

r̃

)
, (4.16b)

p =C odd r̃ +O

(
1

r̃

)
, (4.16c)
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and the leading and subleading order even-parity solutions are

puu =− (1− s)2

s2 (8πt (0) +4π(1− s)∂u t (3)
r̃ r̃ +4πl (l +1)(1+ s)t (1)

r̃ )+O

(
1

r̃

)
, (4.17a)

∂u puu =−8π(1− s)t (1)
uu −8πl (l +1)(1− s)2∂u t (1)

r̃ + (−8π(1− s)t (2)
uu +2su∂u p(0)

uu − l (l +1)(1− s)∂u j (0)
u − 1

2
(1− s)∆p(0)

uu

+ (1− s)(1−2s)8π∂u t (3)
r̃ r̃ − l (l +1)(1− s)(s2 + s −1)16πt (1)

r̃ + 1+2s −5s2

1− s
p(0)

uu)
1

r̃
+O

(
1

r̃ 2

)
, (4.17b)

pur̃ = 4π(1− s)t (3)
r̃ r̃

1

r̃
+ (2π(1− s)t (4)

r̃ r̃ +8πs(1− s)ut (3)
r̃ r̃ )

1

r̃ 2 +O

(
1

r̃ 3

)
, (4.17c)

ju = 8π(1− s)t (1)
r̃ r̃ +8πs(1− s)ut (1)

r̃ +2π
3− s

1+ s
(1− s)t (3)

r̃ r̃ − 1

4
(l +2)(l −1)

1− s

1+ s
C even +8π

1− s

1+ s
t (2)

r̃ +O

(
1

r̃

)
,

(4.17d)

∂u ju =−16πt (0)
u r̃ − s

1− s
p(0)

uu − 1

4
(l +2)(l −1)∂uC even +2π(1− s)∂u t (3)

r̃ r̃ −8πt (1)
u +8π

s(2−4s + s2)

1− s
t (1)

r̃ +O

(
1

r̃

)
,

(4.17e)

G =C even r̃ +O

(
1

r̃

)
. (4.17f)

It should be noted that it is not clear whether or not the series solution to the expanded linearized field equa-
tions is the same as the expanded solution to the (complete) linearized field equations. There are reasons to
expect that it does, however. Most notably a direct computation shows that the order of expansion is irrelevant
to linear first order differential equations, and the linearized field equations on a Schwarzschild background as
a specific example.

Secondly, it should be remarked that simply solving Eq. (4.13) and Eq. (4.12) as we did here is suboptimal.
It is possible to reduce the number of equations down to six using the Bianchi identities. Additionally, it would
be easier to check if the linear solutions Eq. (4.16) and Eq. (4.17) are consistent with the full non-linear solu-
tions of Einstein’s equations for arbitrary spacetimes with a cosmological null asymptote if we solved both in
the same manner. However, since one of the purposes of this section is to provide us with a way to check the
non-linear solution it makes the comparison more convincing if different steps are involved to reach the same
conclusion.

5 Einstein’s equations and mass loss

It is well known that there is no electromagnetic monopole radiation as a consequence of charge conserva-
tion. Since Maxwell’s equations are linear, this further implies the much stronger result that waves cannot
have any spherically symmetric component at all due to the superposition principle. A similar result exists
for gravitational waves. Birkhoff’s theorem states that spherically symmetric (vacuum) solutions to Einstein’s
equations are static, and hence do not contain waves. However, since general relativity is a non-linear theory,
the superposition principle does not apply, and the theorem therefore does not exclude the possibility of grav-
itational waves having a spherically symmetric component. Indeed, in §1 we saw the Bondi mass loss formula
for asymptotically flat spacetimes (2.5) which shows that the gravitational monopole, the Bondi mass, is not
conserved. With the advent of new methods which generalize the Bondi-Sachs formalism used to determine
this famous formula, a natural question to ask is how this result generalizes to spacetimes with a cosmological
null asymptote. The purpose of this section is therefore to solve Einstein’s equations for the generalised Bondi-
Sachs metric (2.1). In §4.1 we solve the main equations in order to determine the asymptotic solution of the
metric coefficients and in §4.2 we evaluate the evolution equations and obtain generalized mass- and angular
momentum loss formulas. Along the way we check for consistency with the solutions of the linearized field
equations on an FLRW background found in the previous section.
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5.1 The main equations

We can drastically simplify our calculation by computing the curvature tensors of the unphysical metric g̃µν =
Ω2gµν whereΩ= ( r̃

1−s )−
1

1−s . Unlike in the asymptotically flat case,Ω is not a good coordinate at infinity since it

is not analytic there for a general s. We therefore define Ω̃= 1
r̃ and nµ = ∇̃µΩ̃. Eq. (2.6) then becomes

8πTµν−G̃µν = 2Ω̃−1

1− s
(∇̃µnν− g̃µν∇̃λnλ)+ Ω̃−2

(1− s)2 (2snµnν+ (3−2s)g̃µνnλnλ). (5.1)

The Ω̃Ω̃ and Ω̃A components of the unphysical Ricci tensor are relatively simple expressions:

R̃Ω̃Ω̃ =−1

4
∂Ω̃hAB∂Ω̃hC D h AC hBD , (5.2)

R̃Ω̃A =−1

2
∂Ω̃(e−2βhAB∂Ω̃U B )−∂Ω̃ðAβ+ 1

2
ðB (∂Ω̃hAB ), (5.3)

where ðA is the covariant derivative compatible with hAB . The corresponding components of Einstein’s equa-
tions can then be cast into the following form

∂Ω̃β= s

1− s
Ω̃−1 − (1− s)4πTΩ̃Ω̃− 1

8
(1− s)∂Ω̃hAB∂Ω̃hC D h AC hBD , (5.4)

∂Ω̃(e−2βhAB∂Ω̃U B )− 2

1− s
Ω̃−1e−2βhAB∂Ω̃U B =−16πTΩ̃A − 4

1− s
Ω̃−1ðAβ−2∂Ω̃ðAβ+ðB (∂Ω̃hAB ), (5.5)

which can be integrated to obtain β and U A . Contracting Eq. (2.7) with g̃µν and using that g̃µνTµν = T +
O (Ω̃) reveals that nλτλ = O (Ω̃) which means that τu = 0. We can therefore write τµ = τnµ+τA∇µx A . For the
remainder of this section angular indices are raised and lowered with qAB . We then obtain the leading and
subleading order solutions

β=−1

2
sτΩ̃+

(
−(1− s)πT (0)

Ω̃Ω̃
− (1− s)

1

32
C AB C AB

)
Ω̃2 +O (Ω̃3), (5.6)

U A = sτAΩ̃+
(
−1

2
s2ττA − 1

2
sC ABτB − 1

2
s

3− s

1+ s
D Aτ− 1

2

1− s

1+ s
DB C AB − 1− s

1+ s
8πq AB T (0)

Ω̃B

)
Ω̃2 +U (3)AΩ̃3 +O (Ω̃4).

(5.7)

The superscript in brackets X (n) denotes the Ω̃n coefficient of the series expansion of X at infinity. We have
eliminated the constants of integration β(0) and U (0)A by normalizing nλ∇̃λu = 1+O (Ω̃) and nλ∇̃λx A = O (Ω̃)
at infinity. Notice that in the asymptotically flat case s = 0, the left hand side of Eq. (5.5) can be written as
Ω̃2∂Ω̃(Ω̃−2e−2βhAB∂Ω̃U B ) which implies that the angular momentum aspect — the third order solution of U A ,
U (3)A — is not uniquely determined by Einstein’s equations. Intuitively, this can be understood through the fact
that in asymptotically flat spacetimes, the stress-energy vanishes at infinity and an observer located there could
only see the rate at which angular momentum is being radiated, but never the actual amount. In cosmological
spacetimes, the situation is quite different. There may be angular momentum in the form r̃ 2T u

A = 1
8π r̃ sτA +

1
8π s2ττA +T (2)

r̃ A +O ( 1
r̃ ) at infinity. For a general 0 ≤ s < 1, the third order solution of Eq. (5.5) is

sU (3)A =−2

3
sC ABU (2)

B − 1

3
s2d ABτB − 2

3
s2τU (2)A − 1

3
s3ττB C AB + 2

3
s2β(2)τA + 1

6
s3τ2τA

+ 1

8
s(1− s)D A(C BC CBC )+8π(1− s)q AB T (1)

Ω̃B
−2π(1− s)(2− s)D AT (0)

Ω̃Ω̃
. (5.8)

In the asymptotically flat case Ω−2Tµν has a smooth limit to infinity, and hence the right side of Eq. (5.8) also
vanishes when s = 0. It is customary to integrate GuΩ = 8πTuΩ to obtain V . The authors of [4] chose instead to
use the trace of Einstein’s equations, 8πT +R = 0. Solving this equation is equivalent to solving GuΩ = 8πTuΩ.
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Let us prove this by writing Einstein’s equations as Eµν := Gµν−8πTµν. Then the r̃ component of the Bianchi
identities is

0 =∇λEλ
r̃ =

1p−g
∂λ(

p−g Eλ
r̃ )+ 1

2
(∂r̃ gµν)Eµν

= 1p−g
∂r̃ (

p−g g ur̃ Eur̃ )+ (∂r̃ g ur̃ )Eur̃ + 1

2
(∂r̃ g AB )E AB

= (Ω2∂r̃Ω
−2)g ur̃ Eur̃ + g ur̃∂r̃ Eur̃ + (∂r̃ g ur̃ )Eur̃ + 1

2
(∂r̃Ω

2)h AB E AB

= ∂r̃ (g ur̃ Eur̃ ), (5.9)

where in the second line we used that E r̃ r̃ = E r̃ A = 0. In the third line, we used the determinant conditionp−g = gur̃Ω
−2pq together with the fact that gur̃ g ur̃ = 1. Finally, in the fourth line we used that E = 2g ur̃ Eur̃ +

g AB E AB = 0. Hence, if E = 0, then Bianchi’s identities guarantee that Eur̃ = 0 since g ur̃ Eur̃ =O (Ω2). In terms of
the unphysical metric the trace of Einstein’s equations becomes

8πT + R̃ =−6Ω̃−1

1− s
∇̃λnλ+

6(2− s)Ω̃−2

(1− s)2 nλnλ. (5.10)

The unphysical Ricci scalar is quite unwieldy, but to leading order in Ω̃ it becomes a relatively simple expres-

sion. Since R̃µν = O (1) and since the only inverse metric coefficients that are O (1) are g̃ uΩ̃ = 1+O (Ω̃) and
g̃ AB = q AB +O (Ω̃), R̃ = 2R̃uΩ̃ + q AB R̃AB +O (Ω̃). A handful of connection coefficients are relevant. To lowest
order they are:

Γ̃u
u A = 1

2
sτA +O (Ω̃) Γ̃u

AB =−1

2
C AB +O (Ω̃) Γ̃Ω̃

Ω̃Ω̃
=−sτ+O (Ω̃) (5.11)

Γ̃Ω̃
Ω̃A

=−1

2
sτA +O (Ω̃) Γ̃A

uΩ̃
=−1

2
sτA +O (Ω̃) Γ̃A

Ω̃B
= 1

2
C A

B +O (Ω̃) (5.12)

Γ̃Ω̃
uΩ̃

=−Ṽ (−1)Ω̃+ 1

2
s2τAτAΩ̃+O (Ω̃2) Γ̃Ω̃AB =−1

2
NAB Ω̃− sD(AτB)Ω̃+O (Ω̃2). (5.13)

Additionally, Γ̃A
BC are to lowest order equal to the connection coefficients of qAB . A complete list of the connec-

tion coefficients can be found in Appendix A. The relevant leading order Ricci tensor components are therefore:

R̃uΩ̃ =−Ṽ (−1) + 1

2
s2τAτA − 1

2
sD Aτ

A + s∂uτ+O (Ω̃) (5.14)

q AB R̃AB = 2− sD Aτ
A − 1

2
s2τAτA +O (Ω̃). (5.15)

To first order, Eq. (5.10) and its solution become

8πT −2Ṽ (−1) +2+2s∂uτ−2sD Aτ
A + 1

2
s2τAτA +O (Ω̃) = 6s

(1− s)2 Ṽ (−1) − s

1− s
D Aτ

A +O (Ω̃) (5.16)

=⇒ Ṽ (−1) = (1− s)3

2(1− s3)

(
8πT +2+2s∂uτ+ 2s(2+ s)

1− s
D Aτ

A + 1

2
s2τAτA

)
. (5.17)

The mass aspect — which is related to the subleading order solution of Ṽ as M = − 1
2 Ṽ (0) — like the angular

momentum aspect, is not uniquely determined by Einstein’s equations for a general 0 < s < 1. This can be
deduced directly from Eq. (5.10) by observing that the components of nµ and g̃µν are independent of s, and
that 1, 1

1−s and 2−s
(1−s)2 are linearly independent. Since the mass aspect coefficient in [nλnλ](3) = Ṽ (0) + sτṼ (−1) is

non-vanishing, the mass aspect coefficient in Eq. (5.10) must be non-vanishing for a general s. Indeed, a direct
computation shows that the subleading order of Eq. (5.10) is trivially satisfied if and only if gµν is asymptotically
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flat:

s2Ṽ (0) = 4π

3
(1− s)2T (1) − s(1− s + s2)τṼ (−1) − 4

3
(1− s)2∂uβ

(2) − 1

3
s2(1− s)(7− s)τ∂uτ− 1

3
s2(1− s)(2+ s)τD Aτ

A

+ 1

3
(1− s)(1+2s)D AU (2)A + 5

12
s2(1− s)2C ABτ

AτB + 11

12
s(1− s)2τAU (2)A + 5

24
s3(1− s)2ττAτA

− 1

2
s2(1− s)τAD Aτ+ 1

3
s(1− s)2∆τ+ 1

6
s(1− s)2C AB D AτB − 1

12
(1− s)2C AB N AB + 1

6
(1− s)2D ADB C AB .

(5.18)

β, U A and Ṽ reduce to the known solutions for asymptotically flat spacetimes (2.3) when s = τ = τA = 0 and
Ω−2Tµν has a smooth limit to infinity. Their leading order coefficients are the same as those found in [4].

5.2 The evolution equations

We have eliminated four independent components of the metric using four components of Einstein’s equa-
tions. The final two independent components of the metric are encoded in the two degrees of freedom of
hAB whose time evolution can be found by solving the AB components of Einstein’s equations. Note that
the u-component of Bianchi’s identities ensure that g AB E AB = 0 and hence the trace-free part of E AB , E AB −
1
2 g AB g C D EC D , consists of two independent components, as required. Given that E = E r̃ A = E r̃ r̃ = E AB− 1

2 g AB g C D EC D =
0, the remaining components of Bianchi’s identities, in terms of the physical metric, reduce to ∂r̃ (Ω−4e2βE r̃

u) =
∂r̃ (Ω−4e2βE r̃

A) = 0. Hence, in the asymptotically flat case, E r̃
u = E r̃

A = 0 reduce to E r̃ (4)
u = E r̃ (4)

A = 0 (since R r̃
u ,

R r̃
A , and β are order O (Ω2)) which contain the mass- and angular momentum evolution formulas. In the gen-

eral case when 0 < s < 1, we cannot pick out any non-trivial coefficients, however, and the full set of equations

E Ω̃u = E Ω̃A = 0 are trivially satisfied. The mass- and angular momentum evolution can instead be obtained by
differentiating Eqs. (5.8) and (5.18) with respect to u. We will compute this (trivial) set of equations, to make it
easier to compare the mass- and angular momentum evolution formulae to those of asymptotically flat space-

times. The leading and subleading order solutions of E Ω̃u = 0 (E Ω̃(1)
u = E Ω̃(2)

u = 0) are

∂uṼ (−1) = 1

2
s2(1− s)τA∂uτA + s(1− s)D A∂uτ

A + (1− s)8πT Ω̃(0)
u , (5.19)

∂uṼ (0) =−2s∂u(τṼ (−1))+ 1

2
s2(1+ s)τAτB NAB − 1

2
s(1− s)D A(Ṽ (−1)τA)+ 1

2
s3(1− s)∂u(ττAτ

A)− 1

2
s3(1− s)D A(τAτBτ

B )

+ s2(1− s)(∂uτ)(D Aτ
A)+ (1− s)D A∂uU (2)A − 1

2
(1− s)∆Ṽ (−1) + 1

2
s2(1− s)τA∆τ

A + 1

4
(1− s)NAB N AB

+ 1

2
s2(1− s)(D Aτ

B )(DBτ
A)− 1

2
s2(1− s)(D Aτ

B )(D AτB )+ 1

2
s2(1− s)τAD A∂uτ+ s2(1− s)Ṽ (−1)τAτ

A

+ 1

2
s2(1− s)C ABτ

A∂uτ
B − 1

2
s(1− s)τADB NAB +3s(1− s)U (2)A∂uτA + 5

2
s2(1− s)τA∂uτA

+ s2(1− s)τD A∂uτ
A +8π(1− s)T Ω̃(1)

u . (5.20)

In the asymptotically flat case, s = τ = τA = 0 and Ω−2Tµν = O (1). The leading order equation is then trivially
satisfied, and the subleading order reduces to

∂uV (0) = D A∂uU (2)A − 1

2
∆V (−1) + 1

4
NAB N AB . (5.21)

Since in the asymptotically flat case V =Ω−1 −2M +O (Ω) and U (2)A =− 1
2 DB C AB , this is equal to

∂u M =−1

8
NAB N AB + 1

4
D ADB N AB , (5.22)

17



which is simply Eq. (2.4a), as required. Using the three leading order terms of E Ω̃A = 0 (E Ω̃(0)
A = E Ω̃(1)

A = E Ω̃(2)
A = 0)

we find that ∂uUA has the following asymptotic solution:

∂uU (1)
A = 16πT (0)

u A , (5.23)

∂uU (2)
A =−1

2
DB NAB − 1

2
sD A∂uτ− s

1− s
D AṼ (−1) − 1

2
sτAṼ (−1) + sDB D[AτB ] − s2τ∂uτA − 1

2
s2ττA − 1

4
sτB NAB

− 1

2
s3τAτ

BτB + 1

4
sτB N BC C AC − 1

2
s2C ABτC D [BτC ] − 1

2
s∂u(C ABτ

B )+ 1

2
s2τB D[AτB ] +8πT Ω̃(1)

A , (5.24)

∂uU (3)
A = 16π

3
T (2)

u A − 1

3
(U (2)

A + sC ABτ
B )(2−2Ṽ (−1) +2s∂uτ−2sD Aτ

A + 1

2
s2τAτA)+ 8π

3
τAT (1) + 2

3
D A∂uβ

(2) +D AV (0)

− 1

3
sτA

(
6(2s −1)

(1− s)2 Ṽ (−1) − 6

1− s
DB (U (2)B + s2ττB )−τṼ (−1)

)
+ sτAṼ (0) + 2

3
τD AṼ (−1) + 1

6
C AB DB Ṽ (−1)

− 2

3(1− s)
(D AṼ (0) −5sτAṼ (0) − sD A(τṼ (−1))+ (3s2ττA −2U (2)

A −2sC ABτ
B )Ṽ (−1) + (s2ττB +U (2)B )(NAB −2sD[AτB ])

+ 1

2
sτAC BC NBC −2sτB D[AU (2)

B ] −2s2τBτC D[ACB ]C −2sDBτ
B (U (2)

A − sC ABτ
B )−2sτA(DBU (2)B + s2DB (ττB )))

+ 2(3−2s)

3(1− s)2 (sτAṼ (−1) + (U (2)
A + sC ABτ

B )Ṽ (−1))+ 1

3
CC

AB (N B
C +2s2τBτC − sDCτ

B + sDBτC )+ 1

3
sDB (C B

ACτ
C )

+ (sD Aτ− 2

3
U (2)

A − 4

3
sC ABτ

B − 2

3
s2ττA − 1

6
sNABτ

B )Ṽ (−1) + (
1

3
C AB − sτqAB )∂uU (2)B − (NAB + 2

3
s∂uτqAB )U (2)B

− s∂u((
1

6
s2τ2 + 2

3
β(2))τA)+ 1

3
s(2dAB − sτC AB )∂uτ

B − 1

2
sC BC NBCτA − 1

2
s2ττB NAB − 1

3
s2∂uττ

B C AB

+ s(
8

3
U (2) + s2ττB + 1

3
sDBτ+ sC BCτC )D[AτB ] + 5

3
sτB D[AU (2)

B ] +
1

3
s2D A(τB D Aτ)− 1

3
s2DB (τBτA)

+ 1

3
DB (C BC NAC )− 1

6
D A(C BC NBC )+ 2

3
DB D[AU (2)

B ] −
2

3
sDB (C BC D[AτC ])− 2

3
sτB DC D[ACB ]C +2s2τBτC D[ACB ]C

− s2(
2

3
sDBτ+ 1

6
s2ττB + 7

6
sC BCτC + 5

3
U (2)B )τAτB + s2(sC ACτ

C − 1

2
s2ττA + 2

3
U (2)

A )τBτB − 1

3
s2NABτC D [BτC ]

+ 1

6
s2C AB DB (τCτC )+ s(

2

3
U (2)B + 2

3
sC BCτC − 1

3
s2ττB − 1

3
DBτ)D(AτB) − 1

3
sτB D(AU (2)

B) −
1

3
s2τBτC D(ACB)C

− 1

3
s2C ABτC D [BτC ] − 1

3
sDB (qAC CC

BDτ
D )−∂u(C ABU (2)B + sτAC BC CBC ), (5.25)

where we defined CC
AB := 1

2 qC D (D ACDB +DB CC D −DDC AB ) such that ðAV C = D AV C +CC
AB V B Ω̃+O (Ω̃2). In

the asymptotically flat case, the first equation is trivially satisfied and the second equation reduces to

∂uU (2)
A =−1

2
DB NAB , (5.26)

which is consistent with Eq. (2.3) and thus this equation does not provide additional constraints on the asymp-
totically flat metric coefficients.

In the asymptotically flat case, we find the much simpler evolution equation for the angular momentum as-
pect

∂uU (3)
A =−2

3
D A M + 1

8
D A(C BC NBC )+ 1

6
DB DC D[ACB ]C − 1

6
DB (N BC C AC )

+ 1

3
C AB DC N BC − 1

3
C AB DC N BC + 1

3
NAB DC C BC − 1

3
N BC DB C AC . (5.27)

Unfortunately, this equation does not match any of the existing equations found in the literature [1, 7, 8, 9]. In
fact, all four of the expressions obtained in the listed sources contradict each other! In appendix C we therefore
include a brief derivation of the asymptotically flat angular momentum aspect evolution equation, and in ap-
pendix D we list and compare some of the different expressions found elsewhere.
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To illustrate that, in general, none of these equations provide additional constraints let us explicitly compute

Eq. (5.23) through the fact that E Ω̃A = 0 follows from the A components of Bianchi’s identities. The A compo-
nent of the conservation equation is

∇λT λ
A = ∇̃λT λ

A − 2Ω̃−1

1− s
nλT λ

A + Ω̃−1

2(1− s)
(δµνnA +δµAnν− g̃νAnµ)T ν

µ (5.28)

= sΩ̃−1

8π(1− s)
∂uτA − 2Ω̃−1

1− s
T (0)

u A +O (1) = 0 (5.29)

=⇒ s∂uτA = 16πT (0)
u A . (5.30)

Recall that U (1)
A = sτA . Hence, we have rediscovered (5.23), as required.

5.3 The linearized solutions

If gµν is the perturbed FLRW spacetime of the previous section, we can find δgµν using τ = −2u + 1−s
s 4πδT (3)

r̃ r̃

and τA = 1−s
s 8πδT (1)

r̃ A and only keeping terms of order O (δ):

δguu = (1− s)2

1+ s2

(
−4πq ABδT (0)

AB +8πδT (2)
ur̃ +4π(1− s)∂uδT (3)

r̃ r̃ −8π(2+ s)D AδT (1)
r̃ A

)
+O

(
1

r̃

)
, (5.31a)

δgur̃ = 4π(1− s)δT (3)
r̃ r̃

1

r̃
+ (2π(1− s)δT (4)

r̃ r̃ +8πs(1− s)uδT (3)
r̃ r̃ )

1

r̃ 2 +O

(
1

r̃ 3

)
, (5.31b)

δgu A = 8π(1− s)δT (1)
r̃ A r̃ +8πs(1− s)uδT (1)

r̃ A +2π
3− s

1+ s
(1− s)D AδT (3)

r̃ r̃ + 1

2

1− s

1+ s
DB C AB +8π

1− s

1+ s
δT (2)

r̃ A +O

(
1

r̃

)
,

(5.31c)

δg AB =C AB r̃ +O

(
1

r̃

)
. (5.31d)

Note that we switched coordinates from Ω̃ to r̃ , and thus transformed tensor components accordingly (for
example: T (2)

ur̃
1

r̃ 2 = (∂r̃ Ω̃)T (0)
uΩ̃

). In the first line we used that δṼ =−r̃δguu and δT =− 2s
(1−s)2 δg (0)

uu +32πsuδT (2)
ur̃ +

8πq AB T (0)
AB . Clearly, δgur̃ and δgu A are consistent with Eqs. (4.16a), (4.17c) and (4.17d). In order for δguu to be

consistent with Eq. (4.17a), we require

8πδT (2)
ur̃ =− 1

(1− s)2 δguu +4π(3+ s)D AδT (1)
r̃ A . (5.32)

Indeed, using Eq. (5.14) we find

8πTuΩ̃ =−1− 1

4
s2 3+ s

1− s
τAτA − 1

2
s

3+ s

1− s
D Aτ

A + 1

(1− s)2 Ṽ (−1) +O (Ω̃). (5.33)

Upon linearizing, this is equal to Eq. (5.32).

The leading and subleading order of the evolution equation ∂uV take the following form:

∂uδg (0)
uu = 8π(1− s)2D A∂uδT (1)

r̃ A −8π(1− s)δT (0)
uu , (5.34)

∂uδg (1)
uu = 4su∂uδg (0)

uu + 4s −5s2

1− s
δg (0)

uu +8π(1− s)(1−2s)∂uδT (3)
r̃ r̃ −4π(1− s)2(1+2s)D AδT (1)

r̃ A

+ (1− s)D A∂uδg (0)
u A − 1

2
(1− s)∆δg (0)

uu −16πs(1− s)2uD A∂uδT (1)
r̃ A −8π(1− s)δT (2)

uu

+16πs(1− s)u∂uδT (1)
uu −8π(1− s)(1−2s)δT (2)

ur̃ . (5.35)

The ‘mass’ perturbation (5.35) is equal to the solution (4.17b) we found earlier, which can be seen by rewriting
2su∂uδg (0)

uu using the first equation, and using Eq. (5.32) to rewrite δTur̃ .
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5.4 The mass loss formula

Eq. (5.20) looks rather complicated, so let us examine the case in which the background stress-energy tensor is
spherically symmetric. After we set D ATµν = 0 and TµA = 0, we get

∂uṼ (0) =−2s∂u(τṼ (−1))+ (1− s)D A∂uU (2)A + 1

4
(1− s)NAB N AB +8π(1− s)T Ω̃(1)

u

= 1

4
(1− s)NAB N AB − 1

2

(1− s)2

1+ s
D ADB N BC −16π(1− s)∂u(Ṽ (−1)T u(−1)

u )+8π(1− s)T Ω̃(1)
u . (5.36)

In the second line we reordered some terms and used that the only surviving term of U (2)A is U (2)A =− 1
2

1−s
1+s DB C AB .

We rewrote sτ= 8π(1− s)T (−1)
uΩ̃

= 8π(1− s)T u(−1)
u using Eq. (2.7). If we interpret m =− 1

8π

∮
Ṽ (0)d 2S as the mass,

similar to the asymptotically flat case, we get the following mass loss formula:

∂um =−1− s

32π

∮
N AB NAB d 2S +8π(1− s)∂u(Ṽ (−1)T u(−1)

u )−4π(1− s)T Ω̃(1)
u . (5.37)

We recognize the first term as a gravitational radiation term. To interpret the second term, we first observe
that Ṽ measures the length of the vectors nλ. These are null at infinity in the unphysical spacetime, but in the
physical spacetime they are spacelike and orthogonal to surfaces of constant r̃ . If spacetime is asymptotically
flat, Ṽ (−1) = 1. In general, spacetime will not be empty near infinity, and Ṽ (−1) will measure the density of
space at infinity due to the non-zero Ricci curvature. Hence, we can make sense of the second term, as being
proportional to the rate at which the energy at infinity changes. The last term contains the subleading order

contribution to the energy flux through null infinity. The leading order contribution T Ω̃(0)
u also contributes to

the mass evolution through the second term, since ∂uṼ (−1) = 8π(1− s)T Ω̃(0)
u .

Figure 1: Penrose diagram of a spacetime with a cosmological null asymptote. An observer traveling along null infinity sees

an energy density T u
u , and an energy flux T Ω̃u across the boundary. The presence of Gravitational radiation at null infinity is

seen as NAB 6= 0.

At the present moment, it remains unclear how we should define the mass of cosmological spacetimes. We will
discuss some of the difficulties in the next section.
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6 Discussion

The full non-linear field equations were employed to find the asymptotic metric coefficients of spacetimes
with a cosmological null asymptote. Along the way we demonstrated that, in the appropriate limit, these
metric coefficients reduce to the known asymptotically flat solutions. A second, entirely different check was
done to boost our confidence in these new solutions by computing the linear perturbations of decelerating
FLRW spacetimes in Bondi-Sachs coordinates, using the techniques used to study linear perturbations of the
Schwarzschild spacetime as described in a paper by Martel & Poisson [11].

The generalizations of the mass- and angular momentum evolution equations form the highlight of this the-
sis. We found that given the geometry and the news tensor at null infinity, the mass- and angular momentum
aspects of spacetimes with a cosmological null asymptote are uniquely determined through Einstein’s equa-
tions. This is different from the asymptotically flat case, where in order to determine the mass- and angular
momentum aspects one additionally requires initial data in the form of M(u0, x A) and NA(u0, x A) on some hy-
persurface u = u0.

The identification of the Bondi mass with the mass of an asymptotically flat spacetime is supported by sev-
eral results. Firstly, if a spacetime has a timelike Killing vector field, then this Killing vector field gives rise to
a conserved charge, the Komar mass. It can be shown that the Komar mass coincides with the Bondi mass
in asymptotically flat spacetimes (see chapter 11.2 of [10]). Notable examples of such spacetimes include
the Schwarzschild and Kerr spacetimes. Secondly, the Bondi mass can be expressed as an integral over the
‘Coulomb’ part of the asymptotic Weyl tensor (see chapter 7 of [5]). Thirdly, the difference between the Bondi
masses evaluated at two different cross sections of infinity can be expressed as an integral over null infinity
between these cross sections. The integrand then contains precisely the energy flux across null infinity if we
relax the condition that Ω−2Tµν = O (1) somewhat, alongside a geometric term which we recognize as gravita-
tional radiation (again, see chapter 7 of [5]). Lastly, the Bondi mass is the gravitational Hamiltonian belonging
to asymptotic u-translations (see for a pedagogical description chapter 4 of [12]). Unfortunately, none of these
arguments generalize in a straightforward manner to spacetimes with a cosmological null asymptote. These
spacetimes do not have timelike Killing vector fields, and we do not have exact solutions that, for example, de-
scribe a mass in an FLRW spacetime. Neither can we identify a ‘Coulomb’ part of the Weyl tensor since it does
not have the peeling property (see remark 5.1 of [4]). As we saw in §5.5, there is no simple way to interpret the
mass loss.

A Hamiltonian description of spacetimes with a cosmological null asymptote might be worth pursuing. A pos-
sible starting point for further investigations could be the Einstein-perfect fluid Lagrangian described in §2 of
[13].
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A List of Connection Coefficients

The unphysical Bondi-Sachs metric is

d s2 =−W e2βdu2 +2e2βdudΩ+hAB (d x A −U Adu)(d xB −U B du), (A.1)

gµν∂µ∂ν = 2e−2β∂u∂Ω+W e−2β∂2
Ω+2e−2βU A∂Ω∂A +h AB∂A∂B . (A.2)

We will partially compute its connection coefficients. To aid calculations, we will replace all partial derivatives
∂A by covariant derivatives ðA compatible with the metric hAB , such that the resulting ‘Christoffel symbols’ are
tensorial in A. With this definition of Γ, you can essentially replace all ∂A ’s by ðA ’s in all tensor computations,
as long as you compensate by adding the appropriate curvature tensors belonging to hAB : wherever you en-
counter a ∂A in your computation you will necessarily have to find some combination of Christoffel symbols
belonging to hAB such that the resulting expression is tensorial in A, because the line element (A.1) is tensorial
in A. After symplifying, we would find that all ∂A ’s and Christoffel symbols could be recombined into covariant
derivatives and curvature tensors belonging to hAB . The rule can be summarized as follows: replace all ∂A ’s
by ðA ’s, and replace all RABC D ’s by RABC D +RABC D , where RABC D is computed from the ‘Christoffel symbols’
listed below, and where RABC D is the Riemann tensor belonging to hAB . For example, the simplified expres-
sion for RAB becomes: RAB = ∂uΓ

u
AB +∂ΩΓΩAB +ðCΓ

C
AB −ðAΓ

λ
Bλ+ΓλρλΓ

ρ

AB −ΓλAρΓ
ρ

Bλ+RAB . We obtain the

following results:

Γu
uΩ = Γu

ΩΩ = Γu
ΩA = ΓA

ΩΩ = 0 (A.3a)

Γu
uu = 2∂uβ+ 1

2
e−2β∂ΩW − 1

2
e−2β∂Ω(U AUA) (A.3b)

Γu
u A = ðAβ+ 1

2
e−2β∂ΩUA (A.3c)

Γu
AB =−1

2
e−2β∂ΩhAB (A.3d)

ΓΩuu =−1

2
e−2β∂uW − 1

2
e−2βU AU B∂uhAB +2e−2βW ∂uβ+ 1

2
e−2βW ∂Ω̃W − 1

2
e−2βW ∂Ω̃(U AUA)

+ 1

2
e−2βU AðAW − 1

2
e−2βU AðA(U BUB ) (A.3e)

ΓΩuΩ =−1

2
e−2β∂ΩW + 1

2
e−2βU A∂ΩUA −U AðAβ (A.3f)

ΓΩu A =−1

2
e−2βðAW +W ðAβ+ 1

2
e−2βW ∂ΩUA + 1

2
e−2βU B∂uhAB −e−2βU B ð[AUB ] (A.3g)

ΓΩΩΩ = 2∂Ωβ (A.3h)

ΓΩΩA = ðAβ− 1

2
e−2βhAB∂ΩU B (A.3i)

ΓΩAB =−e−2βð(AUB) − 1

2
e−2βW ∂ΩhAB − 1

2
e−2β∂u NAB (A.3j)

ΓA
uu =−e2β∂u(e−2βU A)+ 1

2
e−2βU A∂Ω̃W − 1

2
e−2βU A∂Ω(U BUB )+ 1

2
ðAW − 1

2
ðA(U BUB ) (A.3k)

ΓA
uΩ =−1

2
h AB∂ΩUB − 1

2
ðAe2β (A.3l)

ΓA
uB =U AðBβ+ 1

2
e−2βU A∂ΩUB + 1

2
h AC∂uhBC −h AC ð[BUC ] (A.3m)

ΓA
ΩB = 1

2
h AC∂ΩhBC (A.3n)

ΓA
BC =−1

2
e−2βU A∂ΩhBC (A.3o)
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B Identities involving hAB

Here, we collect some useful identities involving hAB which are used throughout this thesis. We expand hAB

and its inverse as

hAB = qAB +C ABΩ+dABΩ
2 +O (Ω3), (B.1)

h AB = q AB −C ABΩ− (d AB −C AC C B
C )Ω2 +O (Ω3). (B.2)

The determinant condition then yields:

dethAB = det qAB (1+q AB C ABΩ+ (q AB dAB − 1

2
C AB C AB )Ω2)+O (Ω3) := det qAB , (B.3)

i.e.

q AB C AB = 0. (B.4)

q AB dAB = 1

2
C AB C AB . (B.5)

In fact, Mädler & Winicour [8] show that the trace-free part of dAB vanishes, which implies

dAB = 1

4
qAB CC DCC D . (B.6)

Furthermore, we have the following two identities:

N BC D ACBC = N BC DB C AC +NAB DC C BC , (B.7a)

C BC D A NBC =C BC DB NAC +C AB DC N BC . (B.7b)

The covariant derivative and curvature tensors belonging to the metric hAB are:

ðAV B = D AV B + 1

2
V C (D AC B

C +DC C B
A −DB C AC )Ω+O (Ω2), (B.8)

RABC D = qAC qBD −qAB qC D +O (Ω), (B.9)

RAB = qAB + (DC D(ACB)C − 1

2
DC DC C AB )Ω+O (Ω2), (B.10)

R = 2+D ADB C ABΩ+O (Ω2). (B.11)

C Some curvature tensor components

We are after R(2)
u A which contains the angular momentum aspect evolution ∂uU (3)

A . Let us first check for con-

sistency by computing two field equation components containing R(2)
u A , G (2)

u A = GΩ(2)
A = 0. Note that G (2)

u A = R(2)
u A

since R = O (Ω) and gu A =−hABU B = O (Ω2). Einstein’s equations in terms of the unphysical metric gµν in Eq.
(2.6) are

R(2)
u A = [2Ω−1(gu A∇λnλ−∇unA)−3Ω−2 g̃u Anλnλ](2)

= 2D A M − 1

2
DB C AB − 1

2
NAB DC C BC , (C.1)

and R(2)
u A +R(0)

ΩA − 1

2
DB C BC R(0)

AC =−[2Ω−1∇unΩ](2)

= 2D A M , (C.2)
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using∇unA =−ΓΩu A =−(D A M− 1
2 DB C AB− 1

4 NAB DC C BC )Ω3+O (Ω4), ∇λnλ = 2Ω+O (Ω2) and nλnλ =Ω2+O (Ω3)
in the first equation. Note that

R(0)
AB =−NAB +qAB , (C.3)

and recall that RΩA =−1

2
∂Ω(e−2βhAB∂ΩU B )−∂ΩðAβ+ 1

2
ðB (∂ΩhAB )

= DB C AB +O (Ω), (C.4)

which means that (C.1) and (C.2) are consistent. Let us calculate R(2)
u A carefully in steps. The ingredients are:

R(2)
u A = [∂λΓ

λ
u A](2) − [∂uΓ

λ
Aλ](2) + [ΓλρλΓ

ρ

u A](2) − [ΓλuρΓ
ρ

Aλ](2), (C.5a)

[∂λΓ
λ

u A](2) =− 1

16
D A(C BC NBC )+ 3

2
∂uU (3)

A − 3

4
C AB DC C BC +3D A M − 3

2
DB C AB − 3

2
NAB DC C BC

+ 1

2
DB∂udAB − 1

2
DB (C BC NAC )+ 1

2
N BC DB C AC − 1

4
N BC D ACBC + 1

4
DB DC D[ACB ]C , (C.5b)

[∂uΓ
λ

Aλ](2) =−1

8
D A(C BC NBC ), (C.5c)

[ΓλρλΓ
ρ

u A](2) = 0, (C.5d)

[ΓλuρΓ
ρ

Aλ](2) =−DB C AB − 1

2
NAB DC C BC − 1

4
C AB DC N BC . (C.5e)

It should be remarked that the fact that ðA 6= D A (see Eq. (B.8)) contributes a term. ðBΓ
B

u A contains the term

1

2
ðB (hBC∂uhAC ) = 1

2
DB NABΩ+ (

1

2
DB∂udAB − 1

2
DB (C BC NAC )+ 1

2
N BC DB C AC − 1

4
N BC D ACBC )Ω2 +O (Ω3).

(C.6)

Secondly, note that

hABU B =−1

2
DB C ABΩ

2 + (U (3)
A − 1

2
C AB DC C BC )Ω3 +O (Ω4) 6= −1

2
DB C ABΩ

2 +qABU (3)BΩ3 +O (Ω4). (C.7)

Finally, after simplifying using a few identities from appendix B, we obtain

R(2)
u A = 1

16
D A(C BC NBC )+ 3

2
∂uU (3)

A +3D A M − 1

2
DB C AB −NAB DC C BC − 1

2
C AB DC N BC + 1

4
C BC D A NBC

− 1

2
DB (C BC NAC )+ 1

2
N BC DB C AC + 1

4
DB DC D[ACB ]C . (C.8)

The field equation (C.1) (or equivalently (C.2)) becomes:

∂uU (3)
A =−2

3
D A M + 1

8
D A(C BC NBC )+ 1

6
DB DC D[ACB ]C − 1

6
DB (N BC C AC )+ 1

3
NAB DC C BC − 1

3
N BC DB C AC .

(C.9)
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D Comparison of angular momentum evolution equations

We remarked in §5.2 that our expression for the evolution of the angular momentum aspect (Eq. (5.27)), and
several others found in the literature, all contradict each other. In this appendix, we will compare these differ-
ent expressions.

Compère et al. [7] define

N̄A =−3

2
U (3)

A + 3

32
D A(CBC C BC ). (D.1)

We then find its evolution:

∂u N̄A = D A M − 1

4
DB DC D[ACB ]C + 1

4
DB (N BC C AC )− 1

2
C AB DC N BC

+
[

1

4
C AB DC N BC − 3

4
NAB DC C BC + 1

2
N BC DB C AC

]
. (D.2)

Their result is similar to ours, except they do not find the last three terms in the square brackets.

Mädler & Winicour [8] define

−3L A =−3

2
U (3)

A + 1

2
C AB DC C BC . (D.3)

Their News tensor also differs from ours by a factor. They define NAB := 1
2∂uC AB . The evolution equation is

then (sticking to our own convention, NAB := ∂uC AB )

−3∂uL A = D A M − 1

4
DB DC D[ACB ]C + 1

16
D A(C BC NBC )− 1

2
DB (C BC NAC )+ 1

4
C BC D A NBC

+
[

1

2
N BC DB C AC

]
. (D.4)

Their result is almost consistent with ours, except they do not find the last term in square brackets. Comparing
the expressions in [7] and [8], we note that L A is related to N̄A through

−3L A = N̄A − 3

32
D A(C BC CBC )+ 1

2
C AB DC C BC . (D.5)

Their evolution equations also contradict each other:

−3∂uL A −∂u N̄A + 3

16
D A(C BC NBC )− 1

2
∂u(C AB DC C BC )

= 1

2
N BC DB C AC − 1

2
C BC DB NAC − 1

4
∂u(C AB DC C BC ) 6= 0. (D.6)

Finally, Bonga & Poisson [9] simply define

B A =−U (3)A . (D.7)

We find its evolution:

∂uB A = DB

((
2

3
M − 1

16
∂u(CC DCC D )

)
q AB − 1

6
DC D [AC B ]C

)
− 1

2
N A

B DC C BC + 1

6
N B

C DB C AC

+
[

1

6
∂u(C A

B DC C BC )+ 1

3
N B

C DB C AC
]

. (D.8)
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They find this expression except for the terms in square brackets. Their expression also contradicts those of
Compère et al. [7] and Mädler & Winicour [8], since

∂uB A − 2

3
∂u N̄A − 1

16
D A∂u(C BC CBC )

=−1

2
NBC D AC BC − 1

2
DB (C BC NAC ) 6= 0, (D.9)

and ∂uB A +2∂uL A + 1

3
∂u(C AB DC C BC )

= 1

3
C AB DC N BC 6= 0. (D.10)

Hence, our expression for the evolution of the angular momentum aspect in asymptotically flat spacetimes,
and several other expressions found in the literature [7, 8, 9], all contradict each other.
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