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Abstract

We live in exciting times for gravitational wave astronomy. Since the LIGO detectors first observed
a gravitational wave signal in 2015, the ground-based detectors of the LIGO-VIRGO-Kagra col-
laboration have been very successful in observing gravitational waves originating from the merging
of neutron stars and black holes. A new era will emerge when the Laser Interferometer Space
Antenna (LISA) will become operational in about a decade from now. LISA will be able to detect
gravitational wave signals in the low frequency (∼ mHz) range, which makes it well-suited for
probing the dynamics of binaries in the strong gravitational regime. One of LISA’s prime target
sources is extreme mass ratio inspirals, which are binaries characterized by their extremely small
mass ratio. Stellar massive objects living in the vicinity of these inspirals may impact the orbit
of the binary’s smaller mass, thereby leaving an imprint on the gravitational waves emitted by
the binary system. If such a scenario arises, we say that the orbit has encountered a tidal reso-
nance. When LISA provides us with data of an extreme mass ratio inspiral, wrong parameters of
the system may be inferred if we do not model for these resonances correctly. In the worst case
scenario, we may even conclude that the theory of general relativity is wrong. However, if we can
identify tidal resonances from LISA’s data, we may learn about the tidal environment near super-
massive black holes. As this is very difficult to achieve from electromagnetic observations, tidal
resonances have the potential to serve as a new tool in astronomy. In this thesis we will set up a
semi-analytical framework to study tidal resonance effects in extreme mass ratio inspirals. We will
discuss a stationary and a dynamic model, where the tidal perturber is taken to be respectively
stationary or dynamic across a tidal resonance. We will subsequently calculate the size of the
tidally induced ‘jumps’ in the orbital constants of motion using both models. These jump sizes
can then serve as input for the gravitational waveform modeling community, in order to construct
accurate waveform templates for LISA.
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1 Introduction

1.1 Gravitational wave astronomy

For several hundreds of years we have only been able to study the Universe through measurements
of electromagnetic radiation. This drastically changed in September 2015, when the LIGO obser-
vatories detected the first direct signal of a gravitational wave (GW) [2]. GWs are ripples through
the fabric of spacetime and were first predicted by Albert Einstein’s theory of general relativity
(GR), which he published in 1915. Having withstood all tests so far, GR is the most accepted
theory of gravity to date. GWs are caused by gravitationally intense events like the explosion
of stars and the merging of black holes (BHs). They encode details of these violent events and
therefore serve as a tool to explore the Universe in regimes where the gravitational field is strong
and dynamic. In the years following the first GW detection, the ground based detectors of the
LIGO-VIRGO-Kagra collaboration observed about a hundred subsequent GW signals in the fre-
quency range between 10 Hz and 1 kHz [3]. This frequency band will be expanded with the next
generation of detectors, including the ground-based Einstein telescope and the space-borne Taiji,
TianQuin and Laser Interferometer Space Antenna (LISA). LISA will become operational in the
early 2030s and will be able to detect GWs in the mHz frequency range [8].

Information can be extracted from a GW signal by matching it with a waveform template. These
templates predict the functional form of a GW’s strain for the relevant parameter space of the
system radiating the waves. Environmental effects on these systems may invoke changes in the
gravitational waveform. Matched filtering techniques, which are extensively used in GW observa-
tions, heavily depend on the GW’s phase. Therefore, accurate waveform modeling is necessary.
Because LISA will have a higher sensitivity compared to the ground-based detectors, it is expected
that the space-borne interferometer will detect several hundreds to thousands overlapping GW sig-
nals at the same time [4]. In order to distinguish these signals, strong theoretical input for the
waveform models is needed. In this work we will focus on tidal effects exerted on extreme mass
ratio inspirals (EMRIs), which is one of LISA’s main targets.

1.2 Extreme mass ratio inspirals

An EMRI is a binary system where a stellar-mass object of mass µ ∼ 1 − 100M⊙ spirals into
a supermassive BH of mass 105 − 107M⊙. This inspiral causes both masses to dissipate energy
through the emission of GWs [26]. EMRIs can spend 104−105 cycles in LISA’s observational band,
which corresponds to several years. Therefore they accommodate a unique possibility to probe
the spacetimes of massive BHs and can serve as a tool to perform high precision tests of GR. It is
of great importance that we accurately model for the EMRI’s evolution, since it is expected that
LISA can detect about 1 − 1000 EMRI signals during a four-year mission [6]. We can then infer
the correct parameters of the EMRI’s spacetime, and we can perform these high-precision tests [53].

An EMRI is characterized by its small mass ratio η = µ
M ∼ 10−4 − 10−7, which allows for a

perturbative treatment of the EMRI’s dynamics. To lowest order, the secondary mass is well-
approximated by a test particle on a bound orbit around the central BH. Consequently, the orbital
motion can be formulated in terms of the geodesics equations in the Kerr spacetime. Such rel-
ativistic orbits possess three orbital frequencies, being the radial ωr, polar ωθ and azimuthal ωϕ

frequencies [10]. At next-to-lowest order, the gravitational field of the secondary mass is taken into
account, which results in a leading perturbative term in the expansion known as the ‘self-force’.
This force consists of a dissipative and a conservative piece. The dissipative piece drives the inspi-
ral, causing the dissipation of energy through the ‘radiation reaction’. This reaction is most often
modeled for in the so-called ‘adiabatic approximation’ [27], which only comprises the prolonged
dynamics of the self-force. The conservative piece of the self-force can cause shifts in the orbital
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frequencies. These shifts occur when a so-called ‘self-force resonance’ is encountered. This happens
when the polar and azimuthal frequencies become commensurate, such that nωr + kωθ = 0 for
some integers n and k [17]. The EMRI’s orbital evolution is altered after a self-force resonance
is crossed. This changes the amount of energy dissipated by the binary system, which ultimately
impacts the EMRI’s parameter estimation through the detection of its GWs [7, 31].

1.3 Tidal resonances

In general, EMRIs are not isolated systems. They can be accompanied by other nearby astrophysi-
cal objects like stars or smaller BHs. These objects exert a tidal force on the EMRI, which changes
the EMRI’s orbital dynamics. At the same time, this effect can be neglected through most of the
inspiral, as it is of a periodic nature. Therefore, the net tidal force will evaluate to zero when
averaged over many orbits. This is not true, however, when a so-called ‘tidal resonance’ occurs in
the EMRI’s inspiral [22]. During a tidal resonance, the gravitational potential of a tidal perturber
can effect the orbit of the EMRI’s smaller mass by causing a ‘jump’ in the orbital constants of
motion. An example of tidally induced jumps in an orbit’s axial angular momentum (Lz) and
Carter constant (Q) is displayed in Fig. 1. The orbital evolution is altered after a tidal resonance
is crossed, which in turn modifies the GWs radiated by the EMRI. A tidal resonance occurs when
all three orbital frequencies of the EMRI’s secondary mass become commensurate, so when, in the
simplest case, nωr + kωθ +mωϕ = 0 for integers n, k and m. In contrast to self-force resonances,
the azimuthal frequency has to be taken account in the resonance condition, because the introduc-
tion of the tidal perturber breaks the axial symmetry in the EMRI’s spacetime. Tidal resonances
with m = 0 also differ from self-force resonances, because they both arise from a different force.
The effect of both types of resonances is the same, in the sense that they both complicate EMRI
parameter estimation [9].

On the other hand, tidal resonances, when identified correctly, can be used to map out the total
spacetime of the EMRI. In particular, it is possible to infer details of the stellar distribution close
to the supermassive BH, which is significantly more difficult to obtain through observations of
electromagnetic waves. Furthermore, both tidal and self-force resonances can be used as precision
tests of GR. When these resonances are not modeled for correctly, one may falsely draw the
conclusion that GR fails in the strong gravitational regime. But if tidal and self-force resonance
effects are properly taken into account, the theory of GR may be tested to high precision [5].

(a) The difference in Lz caused by a tidal perturber. (b) The difference in Q caused by a tidal perturber.

Figure 1: The effect on an EMRI’s orbital constants Lz and Q caused by a tidal perturber with
mass M∗ = 30M⊙ at a distance b = 10AU from the EMRI’s central BH with mass M = 4×106M⊙.
The orbit’s initial conditions are given by {a, p, e, x} = {0.9M, 9M, 0.7, cos 50◦} and the EMRI’s
mass ratio corresponds to η = 7.5 × 10−6. The orbit crosses the (3, 0,−2)-tidal resonance. This
leads to ‘jumps’ in Lz and Q, which can be analyzed using a stationary and a dynamic model.
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1.4 Goals of this thesis

In this thesis we will construct a theoretical framework to study tidal resonance effects in EMRIs.
We will primarily focus on the semi-analytical calculation of the tidally induced jump sizes in
the EMRI’s orbital constants of motion, which thereafter alter the EMRI’s orbital evolution and
subsequently cause a phase shift in the radiated GWs. This work is based on earlier research
[9, 22, 24], where the tidally induced jumps were computed using a model considering a stationary
tidal field at the time of resonance. The research performed in this thesis complements this research
in several ways. Firstly, we will reproduce the results of previous research in more computationally
inexpensive ways. We will therefore consult to Schwarzschild perturbation theory instead of its
Kerr counterpart, and we will study a faster integration method to determine the amplitude of
the tidally induced jumps. Secondly, we will construct a dynamic model to study tidal resonance
effects. In this model, the tidal perturber is allowed to move in a circular orbit around the EMRI
system. We will compare the results of this model with the stationary model and discuss the impact
on the gravitational waveform. Lastly, we will give a more complete analysis on the position of
the tidal perturber in both the stationary and dynamic model. In contrast to previous research,
where this analysis was performed through numerical fits, we will use a full analytical treatment
of the perturber’s position. The theoretical framework developed in this thesis can be used to
determine more realistic tidally induced jumps in an EMRI’s orbital constants of motion at low
computational costs. The jump sizes can subsequently be used by the EMRI waveform modeling
community [13, 24, 28] in the construction of more realistic EMRI waveform templates.

1.5 Outline of this work

We will calculate the tidally induced jumps in the constants of motion (∆C) based on the flow dia-
gram presented in Fig. 2. We will first determine the jump’s amplitudes (dCdt ). The full calculation
of these amplitudes can be divided in three theoretical branches, being the metric perturbation,
Kerr geodesics and action-angle variables. After the jump’s amplitudes have been obtained, we
can determine the jump size as sketched by the flowchart in Fig. 9. We will now discuss the
calculations performed in each branch in more detail.

At first we will calculate the perturbation in the metric arising from the presence of the tidal
perturber. The roadmap of this calculation is sketched in Fig. 4. We will determine the functional
form of the metric perturbation in the framework of Schwarzschild perturbation theory, which will
be described in section 2.1. This is a major difference from the methods used in previous research
[22, 24], where the metric perturbation was calculated in the framework of Kerr perturbation the-
ory. We motivate this choice in section 2.1.1. The nature of the tidal perturber is incorporated in
so-called tidal quadrupole moments. Generally, these moments are time dependent, which makes
them well-suited for studying resonance effects induced by a dynamic tidal perturber. We will also
construct the tidal moments for a stationary perturber, thereby setting-up the stationary tidal res-
onance model. In section 2.1.3 we formulate a metric ansatz of a tidally perturbed Schwarzschild
BH based on the tidal quadrupole moments. This metric will subsequently be matched with a
post-Newtonian metric to find the full functional form of the tidal moments.

An EMRI is characterized by its small mass ratio. Therefore the motion of the EMRI’s smaller
mass is well-approximated by geodesic motion plus a perturbative term known as the self-force.
In section 2.2, we will focus on the geodesic motion only. We will formulate this motion in terms
of the geodesics equations in Kerr spacetime, since we will treat the EMRI’s larger mass as a Kerr
BH again. We will parametrize the equations of motion with respect to Mino time, which will
allow us to use fully analytical solutions for bound timelike orbits. The equations of motion, as
well as its solutions, serve as input for the tidal force, as can be noted from the flowchart in Fig.
9. Since the solutions of the equations of motion are periodic in Mino time, the EMRI’s orbital
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motion can also be described by the so-called fundamental orbital frequencies, which are key to
study tidal resonance effects. The flowchart leading to the orbital frequencies is given in Fig. 6.

Metric perturbation

Kerr Geodesics

Action-angle variables

Numerics

dC
dt

∆C

Figure 2: A flowchart describing the steps leading to the tidally induced jump size ∆C for
C ∈ {Lz, Q}. Each process leading to the jump’s amplitudes dC

dt is discussed individually in the
flowcharts presented in Figs. 4, 6 and 8. The full calculation of ∆C is presented in the flowchart
in Fig. 9.

The last theoretical pillar needed to find the tidally induced jump’s amplitudes is the framework
of action-angle variables, which will be presented in section 2.3. This framework is well-suited
to model for the EMRI’s smaller mass’ motion, as both the self-force and the tidal force can be
taken into account perturbatively. We will neglect the self-force in our studies, because we are
only interested in tidal resonances. In order to find the rate of change in the orbital constants of
motion due to a tidal resonance, we will first perform a Fourier decomposition of the tidal force.
Thereafter, we will make an adiabatic approximation, allowing us to find the resonance condition
as well as the resonant amplitudes. The roadmap of this calculation is given in Fig. 8 in the case of
a stationary tidal perturber. The analysis in the case of a dynamic perturber is slightly different,
and will be discussed in detail in section 2.3.3.

All three pillars come together in the calculation of the jump’s amplitudes, as presented in the
flowchart in Fig. 9. In section 2.4, we will describe how we determine the tidal force. Moreover,
we will discuss the averaging integral, which we use to calculate the jump’s amplitudes semi-
analytically. Furthermore, we will formulate the equations to calculate the total jump size. In
these calculations we distinguish between the stationary model in section 2.4.1 and the dynamic
model in section 2.4.2. In section 2.4.3 we will present efficient computational methods which can
be used in the calculations of the total jump size. This involves the so-called two-for-one deal [23],
which relates the jump size of the orbital axial angular momentum to the jump size of the Carter
constant, and a faster method to perform the averaging integral. Both methods are completely
new compared to previous research [22, 24] and allow for calculations of the tidally induced jump
size at low computational costs.

In section 3.1 we will briefly discuss the numerical method of forced osculating orbital elements.
This method will merely be used as a consistency check on our semi-analytical calculations. In
section 3.2, we will discuss the results of our stationary model in detail. Moreover, they will
be compared to the results of previous research. We will first discuss the case where the tidal
perturber is situated on the x-axis in the equatorial plane, as sketched in Fig. 3. We will describe
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how we constructed fitting formulas for the jump’s amplitudes in section 3.2.1, we will analyze
different resonance combinations in section 3.2.2 and we will compare semi-analytical and numerical
results in section 3.2.3. In section 3.2.4 we will analyze tidal resonance effects for an arbitrary sky
location of the perturber. The impact of tidal resonances on the gravitational waveform will be
briefly discussed in section 3.2.5. We will then present our results of the dynamic model in section
3.3. We will first discuss the case of the equatorial plane again, after which we will assume an
arbitrary sky location of the perturber. We will compare semi-analytical and numerical results,
and discuss the differences between the results of the stationary and dynamic model.

1.6 Notation and conventions

In this thesis we will use geometric units, meaning that we will set the speed of light c and the
gravitational constant G to a value of 1. We will use the metric signature (−,+,+,+) for all
metrics encountered in this work. All spacetime coordinates will be denoted by Greek indices,
ranging from 0 to 3. When considered separately, we will denote all spatial coordinates by Latin
indices, ranging from 1 to 3. In addition, we will sometimes denote the angular coordinates by
θA = (θ, ϕ). The Einstein summation convention for repeated indices will be implied at all times.

In this work we will consider a tidally perturbed EMRI as sketched in Fig. 3. We will denote
the mass of the tidal perturber by M∗, the mass of the EMRI’s central BH by M and its smaller
mass by µ. The EMRI’s mass ratio is denoted by η = µ/M . We will use an Euclidean coordinate
system in the construction of the tidal moments, where the z-axis is alligned with the spin axis
of M and the (x, y)-plane corresponds to the equatorial plane. In the stationary model, M∗ is
initially situated on the x-axis at a distance b from M . In the dynamic model, M∗ is allowed to
move in a circular orbit of radius b. A more general sketch of a tidally perturbed EMRI, where
the perturber is situated at an arbitrary position in the sky, is given in Fig 15.

Figure 3: A sketch of an EMRI, whose central BH is of mass M , in the vicinity of a tidal perturber
of mass M∗. The EMRI’s secondary mass is not shown for illustrative purposes. The spin axis of
M coincides with the z-axis, and the (x, y)-plane is referred to as the equatorial plane. The tidal
perturber is situated on the x-axis on a distance b from M . In the dynamic model, the perturber
is allowed to move in a circular orbit of radius b in the equatorial plane.
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2 Theory

The goal of this thesis is to formulate a semi-analytical framework for estimating tidally induced
jump sizes in an EMRI’s orbital constants of motion. We will construct this framework in this
theoretical section, following the roadmap as sketched in Fig. 2. In section 2.1 we will construct
the perturbation in the metric induced by a tidal perturber, in section 2.2 we will describe the
EMRI’s orbital motion using the geodesic equations in Kerr spacetime, and section 2.3 is dedicated
to the action-angle formalism. The results of these three sections come together in the calculation
of the jump sizes in section 2.4, as given by the flowchart in Fig. 9.

2.1 Black hole perturbation theory

We have to resort to perturbative methods to study the influence of a tidal perturber on an EMRI
system. In this subsection we will derive an expression for the metric perturbation hµν induced
by a tidal perturbation. The steps of this derivation are sketched in the flow diagram displayed in
Fig. 4. The tidal quadrupole moments Eab(t) and Bab(t) capture the nature of the tidal perturber,
and therefore fully determine the functional form of the metric perturbation hµν . The functional
form of the tidal moments follows from the matching of two distinct metrics in their corresponding
region of validity. This matching of metrics will be explained in section 2.1.3. Before that, we will
discuss the set-up of this procedure.

Eab(t)

Y lm(θA)

Bab(t)

X lm
A (θA)

Eq(t, θA)

Bq
A(t, θ

A)

Radial functions

g̃µν hµν

. . .

Figure 4: A flowchart describing the calculations of the metric perturbation hµν , which will serve
as input for the calculation of the tidally induced stationary jump’s amplitude as described in Fig.
9.

2.1.1 Weak field approximation

The full metric g̃µν of a perturbed Kerr spacetime is defined as

g̃µν = gµν + hµν . (2.1.1)
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Here, gµν is the Kerr metric and describes the unperturbed spacetime around the central BH. The
line element of the Kerr solution in Boyer-Lindquist coordinates is given by [50]

ds2 = −
(
1− 2Mr

Σ

)
dt2− 4Mar sin2 θ

Σ
dtdϕ+

Σ

∆
dr2+Σdθ2+

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θdϕ2,

(2.1.2)
where ∆ ≡ r2−2Mr+a2 and Σ ≡ r2+a2 cos2 θ. The angular momentum J of the BH is captured
by the spin parameter a = J

M , which is bounded by 0 < a ≤ M . Our interest lies in hµν , which can
be fully described in terms of tidal multipole moments when the tidal gravitational field is weak
[56]. In this case, the central BH’s scale is small compared to the radius of curvature R of the total

spacetime. This radius is given by R =
√

b3

M+M∗
, where b is the separation between the central

BH and the tidal perturber. The limit where M ≪ R is known as the small-tide approximation
[48], and is given by

M

R
=

M

M +M∗

(
M +M∗

b

) 3
2

≪ 1. (2.1.3)

This condition is satisfied by taking
M +M∗

b
≪ 1, (2.1.4)

which is called the weak-field approximation [48]. In this case, the perturbed EMRI system can
be seen as post-Newtonian. Consequently the orbital velocity of the perturber around the central
BH is given by

u =

√
M +M∗

b
. (2.1.5)

The metric perturbation can be determined using Kerr perturbation theory, as was done in pre-
vious research [22, 24]. The Teukolsky equation [49] was solved in the weak field approximation,
and the full metric was obtained in the ingoing radiation gauge after the metric reconstruction
procedure [54]. This method, however, involves mathematically heavy calculations, which makes
it computationally expensive. In this work, we will calculate hµν using Schwarzschild perturbation
theory, which is less mathematically intense than its Kerr counterpart. So we will consider M to
be a Schwarzschild BH throughout the whole construction of the metric perturbation. This means
that we do not account for the central BH’s spin in the tidal moments when constructing hµν .
When we analyze the dynamics of µ and investigate resonance effects, we will treat M as a Kerr
BH again. While this strictly speaking is inconsistent, it notably simplifies the functional form of
hµν . This in turn enhances the computational time of analyzing the resonance effects significantly.
To affirm the validity of this method, we first reproduce the results of [22, 24], in which the central
BH’s spin was taken into account in the construction of hµν . Once we have established that this
faster method yields accurate results, we use it to take the motion of the tidal perturber into
account.

2.1.2 Tidal moments and potentials

The tidal moments encode all the information of the perturber and play a crucial role in the char-
acterization of tidal resonances. There are two types of tidal moments, namely the gravitoelectric
moments Eab, Eabc, Eabcd, ... and the gravitomagnetic moments Bab,Babc,Babcd, .... Moments with
two, three and four indices are referred to as quadrupole, octupole and hexadecapole moments,
respectively. The electric moments are the result of the presence of the tidal perturber, whereas
the magnetic moments are produced by the perturber’s dynamics. Consequently, the magnetic mo-
ments are always proportional to the perturber’s orbital velocity u at the lowest post-Newtonian
(0PN) order. Using a scaling analysis of the tidal environment, one can determine the scaling
relations for the tidal fields [37, 39]. The electric moments scale as

Eab ∼
M∗
b3

, Eabc ∼
M∗
b4

, Eabcd ∼ M∗
b5

, (2.1.6)
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and the magnetic moments as

Bab ∼
M∗u

b3
, Babc ∼

M∗u

b4
, Babcd ∼ M∗u

b5
. (2.1.7)

The octupole and hexadecapole moments scale with extra factors of 1
b compared to the quadrupole

moments. Furthermore, the time derivatives of any of the moments above scale with an extra factor
of u

b . As a result, all of these moments are suppressed in the small-tide approximation compared
to the quadrupole moments. Therefore we will only consider Eab and Bab for the remainder of this
thesis.

Formerly, tidal moments are given by the components of the Weyl tensor Cabcd of the external
spacetime. The quadrupole moments are given by [35]

Eab = Ca0b0, (2.1.8a)

Bab =
1

2

(
ϵapqC

pq
b0

)
, (2.1.8b)

where ϵabc is the Levi-Civita symbol in three dimensions with ϵ123 = 1. All tidal tensors are
symmetric and tracefree, as these properties are inherited from the Weyl tensor. Moreover, by
studying parity transformations on the Weyl tensor and by mapping these relations back to the
tidal tensors, it can be shown that the electric moments transform as Cartesian tensors under
parity transformations while the magnetic moments transform as pseudotensors. Ergo, the electric
moments have even parity while the magnetic moments have odd parity [39].

Y 2,0 = 1− 3 cos2 θ Eq
0 = 1

2
(E11 + E22)

Y 2,1c = 2 sin θ cos θ cosϕ Eq
1c = E13

Y 2,1s = 2 sin θ cos θ sinϕ Eq
1s = E23

Y 2,2c = sin2 θ cos 2ϕ Eq
2c =

1
2
(E11 − E22)

Y 2,2s = sin2 θ sin 2ϕ Eq
2s = E12

Table 1: Scalar l = 2 spherical harmonic functions (left column) and the harmonic components of
the type-E tidal potential (right column).

The tidal moments are incorporated in the tidally deformed metric through irreducible tidal poten-
tials. These tidal potentials can be constructed in terms of scalar, vectorial and tensorial spherical
harmonics. Each potential is also related to a specific parity label and a multipole order l. For
example, the quadrupolar tidal potentials are of multipole order l = 2 and are therefore given
in terms of l = 2 spherical harmonics. The octupolar and hexadecapolar potentials have multi-
pole order l = 3 and l = 4, respectively. The even-parity electric quadrupolar scalar potential is
expressed in terms of scalar spherical harmonic functions Y lm(θA) as

Eq(t, θA) =
∑

−2≤m≤2

Eq
m(t)Y 2m(θA). (2.1.9)

The scalar harmonics satisfy the eigenvalue equation

ΩABDADBY
lm = −l(l + 1)Y lm (2.1.10)

and only depend on θA = (θ, ϕ), which denotes the angular coordinates on the unit two-sphere
with metric ΩAB = diag[1, sin2 θ] and covariant derivative DA. The sum in m in Eq. (2.1.9) ranges
from −2 to 2, because the quadrupole moments carry the l = 2 multipole order. We preferably
work with real-valued spherical harmonic functions, because then the tidal moments can be treated
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in a real setting as well. Therefore we rewrite Y 2m(θA) in a real (cosine) part Y 2,mc(θA) and an
imaginary (sine) part Y 2,ms(θA) for m = ±1 and m = ±2. The harmonic components Eq

m, as a
function of Eab, as well as the the functional forms of Y 2,mc and Y 2,ms are displayed in Table 1. In
the description of the tidally perturbed metric, we also need the odd-parity magnetic quadrupolar
vector potential, which is given by

Bq
A(t, θ

A) =
1

2

∑
−2≤m≤2

Bq
m(t)X2m

A (θA). (2.1.11)

The harmonic components Bq
m are displayed in Table 2. The odd-parity vectorial harmonics

X lm
A (θA) are given by

X lm
A (θA) = −ϵ B

A DBY
lm(θA), (2.1.12)

where ϵAB is the Levi-Civita tensor on the unit-two sphere. The nonzero components of the Levi-
Civita tensor are given by ϵθϕ = −ϵϕθ = sin θ. The l = 2 vectorial harmonics are shown in Table
2. [36, 37]

X2,0
θ = 0 X2,0

ϕ = 6 sin2 θ cos θ Bq
0 = 1

2
(B11 + B22)

X2,1c
θ = 2 sin θ cos θ sinϕ X2,1c

ϕ = 2 sin θ cos 2θ cosϕ Bq
1c = B13

X2,1s
θ = −2 sin θ cos θ cosϕ X2,1s

ϕ = 2 sin θ cos 2θ sinϕ Bq
1s = B23

X2,2c
θ = 2 sin2 θ sin 2ϕ X2,2c

ϕ = 2 sin2 θ cos θ cos 2ϕ Bq
2c =

1
2
(B11 − B22)

X2,2s
θ = −2 sin2 θ cos 2ϕ X2,2s

ϕ = 2 sin2 θ cos θ sin 2ϕ Bq
2s = B12

Table 2: Vector l = 2 spherical harmonic functions (left and middle column) and the harmonic
components of the type-B tidal potential (right column).

2.1.3 Metric matching

The metric of a tidally deformed Schwarzschild BH can be given as an expansion in r
b , which is

valid in the regime where r < rmax ≪ b. Here, rmax is a value of r that is sufficiently smaller than
b. The tidally distorted Schwarzschild metric is presented in the Regge-Wheeler gauge, so that
the magnetic potentials of odd parity only appear in the tA and rA metric coefficients, while the
even-parity electric potentials appear in the tt, tr, rr and AB components of the metric [32]. As
we will only include the leading order quadrupole moments, the tidally distorted Schwarzschild
metric in (t, r, θ, ϕ)-coordinates takes the form

g̃tt = −f + r2eqttEq, (2.1.13a)

g̃tr = 0, (2.1.13b)

g̃rr = f−1 + r2eqrrEq, (2.1.13c)

g̃tA = r3bqtB
q
A, (2.1.13d)

g̃rA = 0, (2.1.13e)

g̃AB = r2ΩAB

(
1 + r2eqEq

)
, (2.1.13f)

where f = 1− 2M
r and eqtt, e

q
rr, eq and bqt are radial functions which are stated in Table 3. These

functions can be determined by solving the linearized Einstein field equations in vacuum. An
example of such a calculation is given in Appendix A. [37]
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eqtt = −f 2

eqrr = −1

eq = −1 + 2M2

r2

bqt =
2
3
f

Table 3: Radial functions appearing in Eq. (2.1.13).

In order to determine the functional form of the tidal moments, we have to match the metric given
in Eq. (2.1.13) with a post-Newtonian (PN) metric of the Schwarzschild BH. A general form of
such a metric up to 1PN order is given by

g̃tt = −1 + 2U + 2(Ψ− U2) + 2PN, (2.1.14a)

g̃ta = −4Ua + 2PN, (2.1.14b)

g̃ab = (1 + 2U)δab + 2PN, (2.1.14c)

and involves a Newtonian potential U , a PN potential Ψ and a vector potential Ua [52]. We have
denoted the flat three-dimensional Euclidean metric by δab. The metric in Eq. (2.1.14) is valid in
the PN zone, marked by r > rmin ≫ M . Here, rmin corresponds to a value of r sufficiently greater
than M . This in turn allows for a PN description of the tidal moments

Eab = Eab(0PN) + Eab(1PN) + 2PN, (2.1.15a)

Bab = Bab(0PN) + Bab(1PN) + 2PN. (2.1.15b)

These expressions can be substituted in Eqs. (2.1.9) and (2.1.11), which in turn can be substituted
in Eq. (2.1.13). The resulting metric can thereafter be matched with the PN metric of Eq. (2.1.14).
This metric matching procedure is only allowed in the regime where both metrics are valid. This
region of validity is given by the regime M ≪ rmin < r < rmax ≪ b and is graphically shown in
Fig. 5. [7, 36, 48]

Figure 5: The metric of Eq. (2.1.13) is valid in the region where r < rmax ≪ b. This region
is relatively close to the central BH and is depicted by the wavy pattern. The PN metric (Eq.
(2.1.14)) is valid in the green PN zone, characterized by r > rmin ≫ M . The region of validity in
the metric matching procedure is given by rmin < r < rmax if M ≪ b. Figure adapted from [36].
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The PN-expanded tidal moments can be expressed in terms of the potentials U , Ψ and Ua as
a result of the metric matching procedure. The functional form of the tidal moments can then
be retrieved by specifying the nature of these potentials. We assume the relatively simple case
that the tidal perturber moves in a circular orbit around the central BH, as displayed in Fig. 3.
Consequently, the functional form of the potentials U , Ψ and Ua can be fully specified in terms of
M∗, b and u. As the subsequent calculations leading to the tidal quadrupole moments are quite
long, we only state the final form of these moments. More details regarding the metric matching
procedure can be found in [36, 37]. The electric and magnetic quadrupole moments are given by

Eab(t) = −3
M∗
b3

n⟨anb⟩ + 1PN, (2.1.16a)

Bab(t) = −6
M∗u

b3
n⟨aλb⟩ + 1PN. (2.1.16b)

Here, the angular brackets around the indices denote the symmetrization and trace removal of the
vector product [11]:

n⟨aλb⟩ ≡
1

2
(naλb + λanb)−

1

3
δabn

cλc. (2.1.17)

The tidal moments in Eq. (2.1.16) are expressed in terms of the orthogonal unit vectors

na ≡ na(t) = −(cos (Ωϕt), sin (Ωϕt), 0), (2.1.18a)

λa ≡ λa(t) = (sin (Ωϕt),− cos (Ωϕt), 0), (2.1.18b)

which are given in a Cartesian (x, y, z)-notation in the frame of the central BH. The z-axis coincides
with the spin axis of the central BH and the (x, y)-plane corresponds to the equatorial plane. We
have chosen that the perturber is situated on the x-axis at the time t = 0. The time dependence of
the tidal moments is encoded in the unit vectors na and λa. The orbital frequency of the perturber
is given by

Ωϕ =

√
M +M∗

b3
+ 1PN. (2.1.19)

Both tidal moments are only given at 0PN order, as the 1PN order scales with u2. In the region of
validity where M ≪ b, the contribution of the 1PN term will be small compared to the zeroth PN
order. Therefore we will not include any higher order PN terms in further calculations performed
in this thesis. [37]

The metric of the full spacetime is now given by Eq. (2.1.13), where the tidal potentials are
constructed in terms of the tidal moments expressed in Eq. (2.1.16). The metric perturbation is
then easily retrieved by subtracting the Schwarzschild metric.
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2.2 Kerr geodesics

Since the EMRI mass ratio η = µ
M is extremely small, the motion of the secondary mass around the

central BH can be described by the geodesic equations in Kerr spacetime plus radiation reaction
causing the inspiral [40]. In this subsection we will only focus on the geodesic motion. We will
follow the roadmap as given in Fig. 6. We will present the equations of motion in Kerr spacetime
with respect to Mino time, as that will be beneficial to us when we will perform the so-called
averaging integrals in section 2.4. These equations of motion can be solved analytically, and will
ultimately lead to the fundamental orbital frequencies needed to study different tidal resonance
combinations.

gµν dxµ

dλ
xµ(λr, λθ, λϕ)

Γr,θ,ϕ

Γt

ωr,θ,ϕ

. . .

. . .

. . . . . .

parametrization

Mino time

Figure 6: A flowchart describing the calculations of several quantities based on the Mino time
parametrization. These quantities will serve as input for the calculation of the tidally induced
jump’s amplitude as described in Fig. 9.

The geodesic equations in Kerr spacetime can be described by four constants of motion {µ,E,Lz,Q},
where µ is the EMRI’s smaller mass. The orbital energy E = −ut is given per unit µ, the
z-component of the orbital angular momentum Lz = uϕ is given per unit µM and the Carter

constant Q = u2θ + cos2 θ
(
a2(1− E2) +

(
Lz
sin θ

)2)
[12] is given per unit µ2M2. Here, uµ is the

four-velocity of the EMRI’s smaller mass. Consequently, its motion is fully determined by the
constants {E,Lz,Q}. By using the definitions of these constants of motion in combination with the
Kerr metric (Eq. (2.1.2)), we find four ordinary differential equations for the geodesics in terms of
the Boyer-Lindquist coordinates [14, 33, 34]:

dt

dλ
= Tr(r) + Tθ(cos θ) + aLz, (2.2.1a)(

dr

dλ

)2

= R(r), (2.2.1b)(
dθ

dλ

)2

= Θ(θ), (2.2.1c)

dϕ

dλ
= Φr(r) + Φθ(cos θ)− aE. (2.2.1d)

The radial functions are given by

R(r) =
(
E(r2 + a2)2 − aLz

)2 −∆
(
r2 + (Lz − aE)2 +Q

)
, (2.2.2a)

Tr(r) =
r2 + a2

∆

(
E(r2 + a2)− aLz

)
, (2.2.2b)

Φr(r) =
a

∆

(
E(r2 + a2)− aE

)
, (2.2.2c)
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and the polar functions are given by

Θ(θ) = Q− Lz cot
2 θ − a2(1− E2) cos2 θ, (2.2.3a)

Tθ(cos θ) = a2E(cos2 θ − 1), (2.2.3b)

Φθ(cos θ) =
Lz

1− cos2 θ
. (2.2.3c)

The equations of motion in Eq. (2.2.1) are parametrized in terms of Mino time λ, which is related
to µ’s proper time τ by dτ = Σdλ. We have chosen this parametrization as this decouples the radial
and polar differential equations. Because of the quadratic nature of Eqs. (2.2.2a) and (2.2.3a),
r(λ) and θ(λ) are periodic functions for bound orbits with respective Mino-time periods Λr and
Λθ. These periods are given by [16, 42]

Λr = 2

∫ ra

rp

dr√
R(r)

, Λθ = 4

∫ π
2

θmin

dθ√
Θ(θ)

. (2.2.4)

Here, rp and ra correspond to the values of r at the periapsis and the apoapsis, respectively, and
θmin is the minimum value of θ. The periodic motion in r and θ ensures that rp ≤ r ≤ ra and
θmin ≤ θ ≤ π − θmin. Consequently, a bound geodesic in Kerr spacetime can also be described by
the constants {rp,ra,θmin} instead of {E,Lz,Q}. The relations between both sets of constants can
be found in Appendix B of [44].

The motion in t and ϕ is not fully periodic. However, Eqs. (2.2.1a) and (2.2.1d) are given as a
sum of a radial and a polar function, which both oscillate with their respective Mino-time periods
given in Eq. (2.2.4), and a constant term. Hence, the motion in t and ϕ is given by [18, 22, 31]

t(λ) = t0 + Γtλ+ t
(r)
λ + t

(θ)
λ , (2.2.5a)

ϕ(λ) = ϕ0 + Γϕλ+ ϕ
(r)
λ + ϕ

(θ)
λ , (2.2.5b)

where t0 and ϕ0 specify the initial conditions and t
(r)/(θ)
λ and ϕ

(r)/(θ)
λ are oscillatory functions with

periods Λr/θ. Furthermore, the linear terms in λ depend on the temporal and azimuthal Mino-time
frequencies [18]

Γt = ⟨Tr(r)⟩λ + ⟨Tθ(cos θ)⟩λ + aLz, (2.2.6a)

Γϕ = ⟨Φr(r)⟩λ + ⟨Φθ(cos θ)⟩λ − aE. (2.2.6b)

Here, ⟨· · · ⟩λ refers to time averaging with respect to λ [34]:

⟨Tr(r)⟩λ =
1

Λr

∫ Λr

0
Tr(r)dλ, ⟨Tθ(cos θ)⟩λ =

1

Λθ

∫ Λθ

0
Tθ(cos θ)dλ, (2.2.7a)

⟨Φr(r)⟩λ =
1

Λr

∫ Λr

0
Φr(r)dλ, ⟨Φθ(cos θ)⟩λ =

1

Λθ

∫ Λθ

0
Φθ(cos θ)dλ. (2.2.7b)

The radial and polar Mino-time frequencies are given by their corresponding periods

Γr,θ =
2π

Λr,θ
. (2.2.8)

Analytical solutions of all four Mino-time frequencies as a function of {a,rp,ra,θmin} are presented
in sections 3.2 and 3.3 of [18] and are implemented in the KerrGeodesics package of the Black Hole
Perturbation Toolkit (BHPT) [1].
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The fundamental orbital frequencies as measured by a distant observer are obtained by dividing
the orbital Mino-time frequencies by Γt [15]:

ωr,θ,ϕ =
Γr,θ,ϕ

Γt
. (2.2.9)

Here, ωϕ describes the periodic motion in the equatorial plane, while ωr and ωθ give the oscillations
in the radial and polar direction, respectively. The Kerr geodesic orbit can also be specified in
terms of the semi-latus rectum p, the orbital eccentricity e and cosine of the orbital inclination
angle x = cos I. These orbital parameters are given as a function of {rp,ra,θmin} by [22]

p =
2rpra

M(rp + ra)
, (2.2.10a)

e =
ra − rp
ra + rp

, (2.2.10b)

x = cos
(π
2
− sgn(Lz)θmin

)
. (2.2.10c)

It is convenient to use this characterization of the Kerr geodesic orbit in order to map out the
whole parameter space, because 0 < e < 1 and −1 ≤ x ≤ 1. The semi-latus rectum is bounded
from below by the separatrix ps. The gravitational pull of the central BH is too strong when
p < ps, as a result of which the bound orbit becomes a plunge orbit. [44]

The fundamental orbital frequencies can also be written as a function of {a,p,e,x}. Figure 7 shows
these frequencies as a function of p. Near the central BH the frequencies strongly deviate from each
other, whereas they asymptotically tend towards the frequency given by Kepler’s law in the weak
field regime. The orbital frequencies as a function of {a,p,e,x} are also implemented in the Ker-
rGeodesics package of the Black Hole Perturbation Toolkit (BHPT) [1], and are comprehensively
used in this work to study tidal resonance effects.

Figure 7: The dimensionless fundamental orbital frequencies as a function of the semi-latus rectum
p for given values of a, e and x = cos I. The separatrix is shown by the vertical grey line.
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2.3 EMRI evolution

In this subsection we will focus on the radiation reaction which drives the evolution of the EMRI.
The radiation reaction can be described by the gravitational self-force, which is given by a dis-
sipative and a conservative piece. The inspiral is caused by the dissipative part of the self-force,
corresponding to slow timescales (∼ M/η), and induces the dissipation of orbital angular momen-
tum and energy through gravitational radiation. The conservative part of the self-force describes
the orbital dynamics of the secondary mass around the central BH. It is associated with short
timescales (∼ M) and is therefore generally subdominant to the dissipative piece of the self-force.
This is referred to as the adiabatic approximation [25, 41].

The EMRI’s evolution is most easily modeled in the formalism of action-angle variables, because the
EMRI spacetime is highly symmetric in the test particle limit of the EMRI’s smaller mass. Besides
that, both the gravitational self-force and the tidal force can be added to the EMRI’s evolution
equations perturbatively. When we analyze the perturbed EMRI, we can easily distinguish the
adiabatic terms from the resonant terms, which makes this formalism of action-angle variables

well-suited to study resonance effects in EMRIs [29]. The resonant terms (G
(1)
i,nkm) can cause a

jump in the EMRI’s orbital constants of motion when the tidal resonance condition (ωnkm = 0) is
satisfied. The roadmap to determine the resonant terms and the resonance condition is presented in
Fig. 8 in the case of the stationary model. The roadmap for the dynamic model has an equivalent
structure, but a slightly different notation.

dqi
dτ
, dJi

dτ G
(1)
i (qr, qθ, qϕ,J)

∑
n,k,mG

(1)
i,nkm(J)e

iqnkm

G
(1)
i,000(J)

G
(1)
i,nkm(J)

ωnkm(J) . . .

tidal force

Only consider

Fourier decomposition

Figure 8: A flowchart describing the determination of the resonance condition ωnkm = 0, which will
serve as input for the calculation of the tidally induced stationary jump’s amplitude as described
in Fig. 9. Furthermore, the Fourier decomposition of the tidal force allows the resonant terms

G
(1)
i,nkm(J) to be distinguished from the adiabatic terms G

(1)
i,000(J).

2.3.1 Action-angle variables

In the framework of action-angle variables, the equations of motion in the EMRI’s spacetime can
be written in terms of angles qi with corresponding actions Ji. The actions are functions of the
orbital constants {E,Lz,Q} and correspond to integrals of motion. They are generally given (per
unit µ) as [29]

Ji =
1

2π

∮
ui dxi. (2.3.1)
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The integrals are calculated for one oscillation with respect to the integration variable. In Boyer-
Lindquist coordinates, the actions are given by [44]

Jt = −E, Jr =
1

2π

∮ ±
√
R(r)

∆
dr, (2.3.2a)

Jϕ = Lz, Jθ =
1

2π

∮
±
√

Θ(θ)dθ. (2.3.2b)

The plus-minus signs in the equations on the right-hand side are chosen to be negative/positive if
the integration variable decreases/increases. The actions are conserved if the motion is geodesic.
The angles qi then evolve at constant rates, which are equal to the fundamental orbital frequencies
given in Eq. (2.2.9). As a result, the geodesic motion in r, θ and ϕ can be written as

dqi
dτ

= ωi(J), (2.3.3a)

dJi
dτ

= 0, (2.3.3b)

where the orbital frequencies are now given in terms of the actions J = {Jr, Jθ, Jϕ}. The action-
angle formalism is well suited to perturbatively add the effect of the gravitational self-force and
the tidal force. Therefore we expand the equations of motion in the smallness parameters η and
ϵ, where the latter determines the strength of the tidal field:

ϵ =
M∗M

2

b3
. (2.3.4)

2.3.2 Stationary approach

Before we can perturb the equations of motion, we have to specify the nature of the tidal perturber.
We will first assume that the perturber is stationary on the timescale of a tidal resonance, which
means that the tidal force does not depend on the dynamics of the perturber. As a result, the
perturbative expansion of Eq. (2.3.3) is given by [9, 30]

dqi
dτ

= ωi(J) + η g
(1)
i,sf(qr, qθ,J) + ϵ g

(1)
i,td(qr, qθ, qϕ,J) +O(η2, ϵ2, ηϵ), (2.3.5a)

dJi
dτ

= η G
(1)
i,sf(qr, qθ,J) + ϵ G

(1)
i,td(qr, qθ, qϕ,J) +O(η2, ϵ2, ηϵ). (2.3.5b)

We note that the self-force terms
(
g
(1)
i,sf, G

(1)
i,sf

)
scale with the EMRI mass ratio while the tidal force

terms
(
g
(1)
i,td, G

(1)
i,td

)
scale with ϵ. Moreover, the self-force is independent of the angle qϕ, because

the Kerr spacetime is axisymmetric in the central BH’s spin axis. The tidal force does depend on
qϕ, as the introduction of the tidal perturber breaks the axisymmetry of the Kerr spacetime unless
the perturber is situated exactly at the central BH’s spin axis.

Because we want to study tidal resonance effects in the EMRI system, we will only focus on the

tidal force G
(1)
i,td and omit the subscript ‘td’. The adiabatic approximation tells us that, to lowest

order, Eq. (2.3.5) can be written as [25]

dqi
dτ

≈ ωi(J), (2.3.6a)

dJi
dτ

≈ ϵ
〈
G

(1)
i (qr, qθ, qϕ,J)

〉
. (2.3.6b)

20



Here, the angular brackets denote the phase space average over the 3-torus spanned by the angles.
In order to calculate the average of the tidal force, we first rewrite the force by performing a Fourier
decomposition:

G
(1)
i (qr, qθ, qϕ,J) =

∑
n,k,m

G
(1)
i,nkm(J)ei(nqr+kqθ+mqϕ). (2.3.7)

Here we have decoupled the angles from the actions. The angles appear in the exponential function
as a total angular phase qnkm := nqr+kqθ+mqϕ. Because the exponential is an oscillatory function,
all these terms generally drop out in the averaging process. This is true, except for two cases when
the exponential does not oscillate. The first case corresponds to the adiabatic approximation,
where n = k = m = 0. The second case occurs when the time derivative of the exponent vanishes.
By using the definition of the time derivatives of the angles in Eq. (2.3.6a), we find the stationary
resonance condition

ωnkm := nωr + kωθ +mωϕ = 0. (2.3.8)

We say that a tidal resonance occurs if we can find any set of integers (n,k,m) that satisfies the
resonance condition. If the EMRI is on resonance, the geodesic orbit only traverses a subset of the
(qr,qθ,qϕ)-torus, whereas the orbit generally covers this torus entirely. As a result, the average of

the tidal force is given by the sum of G
(1)
i,000 and the other coefficients G

(1)
i,nkm for which n, k and

m satisfy the stationary resonance condition in Eq. (2.3.8). However, the contribution of G
(1)
i,000 is

suppressed compared to the resonant coefficients, because the tidal field is weak. As a result, the

change in the actions is completely determined by the coefficients G
(1)
i,nkm at the time of resonance

[22].

The resonance condition can effectively be satisfied an infinite number of times, as the only restric-
tion on (n,k,m) is that they have to be integers. However, the EMRI is not on resonance during
most of the inspiral. This can be explained from the fact that only resonances with low values of
(n,k,m) dominate. Such resonances are referred to as low-order resonances. Resonant orbits with
a high resonance order already cover a large part of the (qr,qθ,qϕ)-torus and genuinely average over
the torus in the process. Furthermore, if a tidal resonance occurs for a set of integers (n,k,m),
it actually means that the resonance condition is also satisfied for the set (jn,jk,jm) for every
j ∈ Z. However, these higher order resonances are also subdominant based on the previous ar-
gument. Therefore we will only consider resonances with |j| = 1 for the remainder of this work. [47]

The assumption of a stationary perturber is valid as long as tidal resonances occur on much shorter
timescales than the orbital period of the perturber. The latter is given by Ttd = 2π

Ωϕ
, where Ωϕ is

given by Eq. (2.1.19). In order to determine the resonance duration τres, we can expand qnkm in
a Taylor series around the time of resonance τ = τ0:

qnkm = χs + (nωr0 + kωθ0 +mωϕ0)(τ − τ0) +
1

2
Γ(τ − τ0)

2 + · · · . (2.3.9)

Here, χs = qr0 + qθ0 + qϕ0 denotes the total phase at the time of resonance. The second term
involves the stationary resonance condition at the time of resonance and therefore evaluates to
zero. In the third term, Γ = nω̇r0 + kω̇θ0 + mω̇ϕ0, where the ω̇i0 represent the derivative of the
fundamental frequencies with respect to proper time evaluated at τ0. A tidal resonance endures as
long as the total phase remains stationary. This condition is violated when the third term on the
right-hand side of Eq. (2.3.9) becomes dominant. Therefore, the factor 1

2Γ scales with τ−2
res . This

leads to our definition of the resonance duration [24]

τres =

√
4π

|Γ|
∼ M

√
1

η
. (2.3.10)
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Hence, the stationary perturber approximation holds when τres ≪ Ttd. This can also be translated
in terms of orbital frequencies as Ωϕ ≪ ωϕ. Generally, the stationary perturber approximation
holds when a resonance takes place in the central BH’s weak field regime. However, this approx-
imation is violated when the perturber is too close to the central BH. Therefore we will have to
model for the perturber’s dynamics, which is accomplished in the next chapter.

2.3.3 Dynamic approach

We will now allow the perturber to move in a circular orbit in the equatorial plane. The orbital
frequency of the perturber is given in Eq. (2.1.19). This slightly alters the perturbative expansion
of the equations of motion in Eq. (2.3.5), because the tidal force terms are now also a function
of Ωϕ. As we work in the framework of action-angle variables, this functional dependence is
incorporated as a phase Qϕ, which relates to the perturber’s orbital frequency as

Ωϕ =
dQϕ

dt
. (2.3.11)

In order to compare this frequency with the fundamental frequencies of the EMRI’s secondary
mass, we define the perturber’s orbital frequency with respect to proper time as

Ω̃ϕ =
dQϕ

dτ
= Ωϕ

dt

dτ
. (2.3.12)

The function dt
dτ is presented in the KerrGeodesic package of the BHPT [1] and can be determined

from the roots of Eqs. (2.2.2a) and (2.2.3a). The adiabatic approximation still holds, and Eq.
(2.3.6b) is now given by

dJi
dτ

≈ ϵ
〈
G

(1)
i (qr, qθ, qϕ, Qϕ,J)

〉
. (2.3.13)

The angular torus is now spanned by four angles, so the angular brackets represent a four-
dimensional averaging integral in this case. To calculate this integral we can perform a Fourier
decomposition of the tidal force again, which now looks like

G
(1)
i (qr, qθ, qϕ, Qϕ,J) =

∑
n,k,m,s

G
(1)
i,nkms(J)e

i(nqr+kqθ+mqϕ+sQϕ). (2.3.14)

The solution representing the adiabatic approximation is given by G
(1)
i,0000, and is again suppressed

in the weak field approximation. The post-adiabatic solutions correspond to the coefficientsG
(1)
i,nkms

for which the set of integers (n,k,m,s) satisfies the dynamic resonance condition

ωnkms := nωr + kωθ +mωϕ + sΩ̃ϕ = 0. (2.3.15)

While it still holds that high order resonances are suppressed, this new resonance condition intro-
duces new features. Firstly, it complements the stationary resonances in the weak field regime.
Because we have that Ωϕ ≪ ωϕ in this region, we expect that the magnitude of the jumps in the
orbital constants is only slightly altered in this case. However, the time when a resonance occurs
differs in the dynamic and stationary models, which can have a measurable effect on the waveform
of the GWs emitted by the EMRI. Secondly, it is also possible to explore resonances in the case
where the perturber is placed closer to the central BH. Lastly, the dynamic model introduces a
whole new class of resonances. In the case of prograde orbits, whose rotation is aligned with the
rotation of the central BH, all fundamental frequencies are positive. Therefore at least one of the
integers in the set (n,k,m) had to be negative for the stationary resonance condition to hold. If
we consider a dynamic perturber, (n,k,m) can all be positive while s is negative. This gives rise
to resonances where Ωϕ can in theory even be larger than the orbital frequencies of the EMRI’s
secondary mass.
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2.4 Calculating the jump size

We will use the input from the previous subsections to determine the tidally induced jump sizes
∆C for C ∈ {Lz, Q}. We will follow the flowchart in Fig. 9. In order to calculate a jump size, the
values of the set {a, e, x, n, k,m} have to be specified beforehand. They will be substituted in the
resonance condition to find the resonant value of the semi-latus rectum p. The set {a, p, e, x} will
then serve as input to determine the rate of change in C at the time of resonance. The jump’s
amplitude can subsequently be found using a semi-analytical averaging integral. Lastly, the jump
size can be found by multiplying the amplitude with the duration of the tidal resonance and a
total phase factor. These last two quantities have to be determined using a full numerical analysis.
Finally we note that the diagram in Fig 9 is only presented for the stationary model. However,
the diagram is completely similar in the dynamic model apart from some differences in notation.

dC
dλ

xµaµ

dxµ

dλ
hµν

dC
dλ

∣∣
nkm

(a, e, x)

p

ωnkm

ωr,θ,ϕ n, k,m

a, e, x

〈
dC
dt

〉 ∣∣
nkm

(a, e, x)

Γt

∆C

Γ

χs

Resonance

integral

Averaging

Figure 9: A flowchart describing the calculation of the tidally induced stationary jump size ∆C.
The quantities in green have to be given as input for this calculation. The quantities in red,
yellow and orange are the output of the flowcharts presented in Figs. 4, 6 and 8, respectively.
The quantities in blue are found using a numerical analysis. This numerical method of osculating
elements is discussed in section 3.1. We remark that these quantities in blue, as well as Γt, have
to be taken at the time of resonance.
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2.4.1 Stationary approach

We will first determine the jump sizes in Lz and Q based on a stationary metric perturbation.
From Eq. (2.3.6b) we can estimate the change in the actions as [17]

∆Ji ≈ ϵ

∫ ∞

−∞

〈
G

(1)
i (qϕ, qθ, qϕ,J)

〉
dτ

= ϵ
∑
j=±1

√
2π

|jΓ|
exp

[
sgn (jΓ)

iπ

4
+ ijχs

]
G

(1)
i,jn,jk,jm(J).

(2.4.1)

Here, Γ and χs are specified below Eq. (2.3.9). As discussed below Eq. (2.3.8) we will only
take the dominant low order resonances into account by only summing over j = ±1. Because the
combinations (n,k,m) and (−n,−k,−m) will lead to the same resonant values of {a, p, e, x} and
therefore also to the same jump size, we will always take n > 0. For resonances with n = 0 we will
take k > 0. The square root in Eq. (2.4.1) resembles the duration of the resonance, as becomes
clear from Eq. (2.3.10), while the exponential term comes down to an overall phase factor. Hence,
Eq. (2.4.1) is loosely translated as

Jump size = resonance duration × phase × jump amplitude. (2.4.2)

The jump’s amplitudes are characterized by the Fourier coefficients G
(1)
i,nkm(J). These coefficients

are determined by the evolution of the conserved quantities, which can be obtained from the
acceleration in Kerr spacetime induced by the metric perturbation. This acceleration up to first
order in the metric perturbation is derived in Appendix B and is given by

aα = −1

2

(
gαβ + uαuβ

)
(2∇ρhβλ −∇βhλρ)u

λuρ +O(h2). (2.4.3)

Here, gαβ is the Kerr metric and hαβ is the metric perturbation (see Eq. (2.1.1)). The covariant
derivative ∇ρ is compatible with the Kerr metric and uα is the four-velocity of EMRI’s secondary
mass. The induced acceleration is completely determined by the metric perturbation, which can be
constructed from the tidal fields as described in section 2.1. In the case of a stationary perturber,
the electric quadrupole tidal field is given by Eab(0) in Eq. (2.1.16a) and the magnetic quadrupole
tidal field Bab(t) vanishes, because u = 0. [22]

To find the evolution of Lz and Q, one simply takes the derivative with respect to proper time of
their definitions as given above Eq. (2.2.1). This gives [53]

dLz

dτ
= aϕ, (2.4.4a)

dQ

dτ
= 2uθaθ − 2a2 cos2 θutat + 2 cot2 θuϕaϕ. (2.4.4b)

The four-acceleration is given by Eq. (2.4.3), and the four-velocity is given by

uµ =
dxµ

dτ
=

dxµ

dλ

dλ

dτ
=

1

Σ

dxµ

dλ
, (2.4.5)

where dxµ

dλ is given by the equations of motion in Eq. (2.2.1). We can then obtain the Fourier
coefficients by averaging over the rates in Eq. (2.4.4) by means of an inverse Fourier transform. If
C ∈ {Lz, Q}, then〈

dC

dt

〉 ∣∣∣∣
nkm

=
1

Γt(2π)3

∫ 2π

0
dqr

∫ 2π

0
dqθ

∫ 2π

0
dqϕ

dC

dλ
e−i(nqr+kqθ+mqϕ). (2.4.6)
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Here, the rates of Eq. (2.4.4) are given with respect to Mino time. We have recovered the evolution
of C with respect to Boyer-Lindquist coordinate time t by multiplying the standard inverse Fourier
transform by Γ−1

t [14]. In order for this formulation to work, the rates dC
dλ have to be written in

terms of the angles qi. However, we have constructed these rates in terms of Boyer-Lindquist
coordinates through the definitions of aα and uα. The solution to this problem is to write Eq.
(2.4.6) in a complete Mino time formulation. Therefore we introduce three separate Mino times
λi for i ∈ {r, θ, ϕ}, which relate to the angles qi as

qi =
2π

Λi
λi. (2.4.7)

Here, Λi are the Mino-time periods. Λr and Λθ are defined in Eq. (2.2.4), while Λϕ = 2π
Γϕ

. This

parametrization allows the Boyer-Lindquist coordinates to be written in terms of individual Mino
times as well. Since the motion in r and θ is decoupled, the solutions to Eq. (2.2.1b) and Eq.
(2.2.1c) are given by r(λr) and θ(λθ), respectively. The motion in ϕ in terms of Mino time was
already presented in Eq. (2.2.5b). In terms of the individual Mino times, this equation can be
rewritten as

ϕ(λr, λθ, λϕ) = ϕ
(r)
λ (λr) + ϕ

(θ)
λ (λθ) + ϕ

(ϕ)
λ (λϕ), (2.4.8)

where ϕ
(ϕ)
λ (λϕ) = Γϕλϕ, and for simplicity we have assumed that ϕ0 = 0. The analytical solutions

of r(λr), θ(λθ), ϕ
(r)
λ (λr) and ϕ

(θ)
λ (λθ) are presented in sections 4.1 and 4.2 of [18]. These solutions

are incorporated in the KerrGeodesic package of the BHPT [1] in terms of the central BH’s di-
mensionless spin parameter a and the orbital parameters {p,e,x}.

Before we can perform the averaging integral, we have to specify the values of the set {a,p,e,x} and
we have to make sure that the orbit is on a resonance. Therefore we first determine our resonance
of interest by stating the values of (n,k,m), after which we specify the values of {a,e,x}. Because
the fundamental frequencies are a function of {a,p,e,x}, we can demand that we are on a resonance
by solving the stationary resonance condition in Eq. (2.3.8) for p. The resulting set of parameters
{a,p,e,x} can then be inserted in r(λr), θ(λθ) and ϕ(λr, λθ, λϕ), which in turn determine the rates
dC
dλ . To state the dependence of the different parameters, we will denote the rates as dC

dλ

∣∣
nkm

(a, e, x)
from this point on. To do the averaging integral of Eq. (2.4.6) in terms of Mino times, we perform
a change of variables according to Eq. (2.4.7). We find〈

dC

dt

〉∣∣∣∣
nkm

(a, e, x) =

1

ΓtΛrΛθΛϕ

∫ Λr

0
dλr

∫ Λθ

0
dλθ

∫ Λϕ

0
dλϕ

dC

dλ

∣∣∣∣
nkm

(a, e, x) e
−i

(
n 2π

Λr
λr+k 2π

Λθ
λθ+m 2π

Λϕ
λϕ

)
.

(2.4.9)

The jumps ∆C are then determined by substituting these averaged rates for the Fourier coefficients

G
(1)
i,nkm(J) in Eq. (2.4.1).

2.4.2 Dynamic approach

If we consider the scenario where we include the perturber’s dynamics at the time of resonance,
Eq. (2.4.1) is slightly altered because the tidal force now also depends on the azimuthal phase of
the perturber:

∆Ji ≈ ϵ

∫ ∞

−∞

〈
G

(1)
i (qϕ, qθ, qϕ, Qϕ,J)

〉
dτ

= ϵ
∑
j=±1

√
2π

|jΓ|
exp

[
sgn (jΓ)

iπ

4
+ ijχd

]
G

(1)
i,jn,jk,jm,js(J).

(2.4.10)
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Here, χd = χs + Qϕ0 where Qϕ0 is the perturber’s angular phase at the time of resonance. The
resonance duration is not different in the case of a dynamic perturbation, as Γ does not change
due to the fact that Ω̇ϕ = 0. The induced acceleration remains the same, except for the functional
form of metric perturbation. This perturbation is now driven by the time-dependent quadrupole
moments Eab(t) and Bab(t) as specified in Eq. (2.1.16). We will substitute Qϕ = Ωϕt in these
moments to model for the perturber’s dynamics. The induced acceleration can then be substituted
in Eq. (2.4.4) to obtain the rates in Lz and Q. Lastly we perform the averaging integral in terms
of Mino times, analogous to the stationary case. However, we also have to average over the phase
of the perturber, which results in a four-dimensional integral〈

dC

dt

〉 ∣∣∣∣
nkms

(a, e, x) =

1

2πΓtΛrΛθΛϕ

∫ Λr

0
dλr

∫ Λθ

0
dλθ

∫ Λϕ

0
dλϕ

∫ 2π

0
dQϕ

dC

dλ

∣∣∣∣
nkms

(a, e, x) e
−i

(
n 2π

Λr
λr+k 2π

Λθ
λθ+m 2π

Λϕ
λϕ+sQϕ

)
.

(2.4.11)

These averaged rates are substituted for G
(1)
i,jn,jk,jm,js(J) in Eq. (2.4.10) to find the dynamic jump

sizes in Lz and Q.

2.4.3 Efficient jump calculations

Up to this point, our analysis has been purely analytical. However, the averaging integrals in Eqs.
(2.4.9) and (2.4.11) are too complicated to do analytically, because the radial and polar functions
depending on λr and λθ involve elliptical integrals. Therefore we have to perform the averaging
integrals numerically. We specify the accuracy of a single integral by a given number ns, which
corresponds to the total number of integration steps in each single integral. Consequently, the
size of each integration step is given by ∆λi =

Λi
ns

for the integrals over the Mino times and by

∆Qϕ = 2π
ns

for the integral over the azimuthal phase of the perturber. This means that the compu-

tational costs in Eq. (2.4.9) scale with n3
s while they scale with n4

s in Eq. (2.4.11). Concretely, the
dynamic jump calculation would take ns times as long as a stationary jump calculation. Motivated
by this difference, we found a faster way to compute the averaging integrals by splitting them in
an analytical and a numerical part. We will show this for the dynamic case, as this analysis can
then be easily adapted to the stationary case.

The functional dependence of the rates dC
dλ

∣∣
nkms

on λϕ and Qϕ is not so complicated that we have
to resort to numerical integration to perform the integrals over these two variables. The only
dependence on λϕ resides in Eq. (2.4.8) and can easily be rewritten as

ϕ
(ϕ)
λ (λϕ) = Γϕλϕ =

2π

Λϕ
λϕ

2.4.7
= qϕ. (2.4.12)

Hence we rewrite Eq. (2.4.11) as〈
dC

dt

〉 ∣∣∣∣
nkms

(a, e, x) =

1

(2π)2ΓtΛrΛθ

∫ Λr

0
dλr

∫ Λθ

0
dλθ

∫ 2π

0
dqϕ

∫ 2π

0
dQϕ

dC

dλ

∣∣∣∣
nkms

(a, e, x) e
−i

(
n 2π

Λr
λr+k 2π

Λθ
λθ

)
z−my−s.

(2.4.13)

Here, the dependence on the azimuthal angles is written as exponential functions z = eiqϕ and
y = eiQϕ . The rates can also be written in terms of z and y as

dC

dλ

∣∣∣∣
nkms

(a, e, x) =
∑

−2≤µ,σ≤2

Ankµσz
µyσ, (2.4.14)
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where Ankµσ are functions of λr and λθ. The sum in µ and σ runs from −2 to 2, as the metric
perturbation is constructed from the quadrupole tidal potentials only, which consist of the l = 2
spherical harmonics. This formulation of the rates in Eq. (2.4.14) decouples the four-dimensional
integral of Eq. (2.4.13) into a double integral over λr and λθ and two single integrals over qϕ and
Qϕ. These two single integrals can be performed by making use of the standard integral

1

2π

∫ 2π

0
eiaxdx =

{
1 if a = 0

0 if a ∈ Z/{0}.
(2.4.15)

The two integrals over the azimuthal angles in Eq. (2.4.13) are then calculated as

1

(2π)2

∫ 2π

0
dqϕ

∫ 2π

0
dQϕ

dC

dλ

∣∣∣∣
nkms

(a, e, x) z−my−s

2.4.14
=

1

(2π)2

∑
−2≤µ,σ≤2

Ankµσ

∫ 2π

0
zµ−mdqϕ

∫ 2π

0
yσ−sdQϕ

2.4.15
= Ankms.

(2.4.16)

Because the values of the set (n,k,m,s) are specified beforehand, we do not have to perform the
two integrals over the azimuthal angles, as these integrals evaluate to the function Ankms. The
remaining part of the averaging integral then has to be done numerically:〈

dC

dt

〉 ∣∣∣∣
nkms

(a, e, x) =
1

ΓtΛrΛθ

∫ Λr

0
dλr

∫ Λθ

0
dλθ Ankms e

−i
(
n 2π

Λr
λr+k 2π

Λθ
λθ

)
. (2.4.17)

Because the computational costs of this integral only scale with n2
s, this integral is calculated

n4−2
s = n2

s times faster than the four-dimensional integral in Eq. (2.4.11). A similar analysis holds
for the stationary scenario, where the computational costs can be reduced by a factor of ns. In
this case, the rates can be written as

dC

dλ

∣∣∣∣
nkm

(a, e, x) =
∑

−2≤µ≤2

Ankµz
µ, (2.4.18)

which leads to the stationary averaging integral〈
dC

dt

〉 ∣∣∣∣
nkm

(a, e, x) =
1

ΓtΛrΛθ

∫ Λr

0
dλr

∫ Λθ

0
dλθ Ankm e

−i
(
n 2π

Λr
λr+k 2π

Λθ
λθ

)
. (2.4.19)

Additionally, one can reduce the computational costs of the stationary jump calculations by almost
50% by making use of the so-called two-for-one deal. As stated in a recent paper by Gupta et al.
[23], the jumps in Lz and Q are related by

dQ

dt
=

πak
m

√
1− E2y+ − 2Lz

(
K

[(
y−
y+

)2
]
−Π

[
y2−,

(
y−
y+

)2
])

K

[(
y−
y+

)2
] dLz

dt
, (2.4.20)

provided that m ̸= 0. Here, y± = cos θ±, where θ± are the zeroes of Θ(θ) in Eq. (2.2.3a), and
y+ > y−. This expression also involves elliptical integrals of the first and second kind, denoted as
K[m] and Π[n,m] respectively. Hence, the jumps in Q can also be determined from the jumps in
Lz at low computational costs.
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3 Results

3.1 Osculating orbital elements method

We will use the method of forced osculating orbital elements to perform a consistency check on
the semi-analytical calculations of the jumps in the constants of motion. Using this method, the
equations of motion in the perturbed Kerr spacetime can be integrated numerically as long as
the orbital motion is bounded. Osculating orbits are reference geodesics tangent to the worldline
of the EMRI’s secondary mass. These geodesics are characterized by a set of constants, referred
to as orbital elements. The orbit’s motion is determined by the change in the osculating orbits,
which in turn is governed by the evolution of the orbital elements [40]. This evolution is driven
by the radiation reaction, which causes the orbit’s adiabatic inspiral, and the perturber’s tidal
force, which is completely determined by the metric perturbation hµν . The radiation reaction is
determined by post-Newtonian radiation fluxes. These fluxes describe the rate of change of the
orbital parameters due to the dissipative piece of the gravitational self-force up to 5PN order and
tenth order in the eccentricity [19]. Analytical expressions of the radiation fluxes can be found in
[43, 55]. In order to compute the numerical jumps in the constants of motion, we use the already
existing osculating elements code as used in previous research [22, 24], which is a modified version
of the code used in the ‘gas-drag’ problem in [20]. In the dynamic model, we made some minor
changes to account for the perturber’s dynamics.

(a) The difference in Lz caused by a tidal perturber. (b) The difference in Q caused by a tidal perturber.

Figure 10: The effect on an EMRI’s orbital constants Lz and Q caused by a tidal perturber with
mass M∗ = 30M⊙ at a distance b = 10AU from the EMRI’s central BH with mass M = 4×106M⊙.
The orbit’s initial conditions are given by {a, p, e, x} = {0.1M, 7M, 0.6, cos 20◦} and the EMRI’s
mass ratio corresponds to η = 7.5 × 10−6. The orbit crosses the (3, 0,−2)-tidal resonance at
t = 5.78M in the stationary model and at t = 8.24M in the dynamic model. The (3,−2, 0)-tidal
resonance is crossed at t = 7.05M in both models.

The influence of the tidal perturber on the EMRI’s secondary mass can be determined by taking
the difference of a full trajectory, constructed from both radiation fluxes and the tidal force, and
a trajectory consisting of radiation effects only. Both trajectories have to be specified by the same
set of initial conditions. Examples of the effect of the tidal perturber on the orbit’s constants of
motion are shown in Figs. 1 and 10. The jumps in ∆Lz and ∆Q occur when the orbit is on a
tidal resonance. The static jumps are calculated using a stationary metric perturbation, while the
dynamic jumps are the result of a dynamic metric perturbation. The fast oscillations in Figs. 1
and 10 correspond to the timescales associated with the orbital motion. These oscillations are
‘averaged out’, as discussed below Eq. (2.3.7), and do not induce a secular change in the orbit’s
constants of motion. However, after the orbit has experienced a resonance, the orbital evolution is
altered, because the orbital constants of motion now have different values. As a result, ∆Lz and

28



∆Q tend to increase or decrease after a resonance crossing, rather than evolve around a constant
value. Therefore the GWs emitted by the EMRI can suffer from significant dephasing after a
tidal resonance is encountered. While the osculating elements method is a powerful tool to study
tidal resonance effects, it is rather slow and computationally expensive. Therefore it is not well
suited for the data analysis of GW measurements by LISA. The semi-analytical analysis, on the
other hand, allows for computationally inexpensive calculations of the tidally induced jumps in
the orbit’s constants of motion. Hence, we will only use the osculating elements method to verify
the semi-analytical results.

3.2 Stationary model

3.2.1 Fitting formulas

In this section we will discuss the jumps in Lz and Q obtained from the semi-analytical analysis
based on a stationary metric perturbation. No jump in E is induced, because the tidal perturbation
is considered to be stationary when a tidal resonance is encountered [53]. As mentioned above Eq.
(2.4.9), the values of the integers (n,k,m) as well as the set {a,e,x} have to be specified beforehand
in order to calculate the jump’s amplitude. As a, e and x are all bounded, the whole parameter
space can be surveyed for a given resonance. Therefore we compute jumps for a/M ∈ [0.1, 0.5, 0.9],
e ∈ [0.10, 0.15, · · · , 0.80, 0.85] and I ∈ [1◦, 5◦, 10◦, · · · , 80◦, 85◦, 89◦] where x = cos I. We only con-
sider prograde orbits for which Lz is positive, leading to the range 0◦ ≤ I ≤ 90◦ according to Eq.
(2.2.10c). Using all these jumps we make a polynomial ansatz for the jump’s amplitude in terms
of a, e and x, which we will refer to as a fitting formula. These fitting formulas can then be used
to determine the jump size at low computational costs for arbitrary {a,e,x}. A similar analysis
can be performed for retrograde orbits, which rotate in the opposite direction compared to the
central BH and have orbital inclination angles in the range 90◦ ≤ I ≤ 180◦. The jump size due to
a tidal resonance in a retrograde orbit will be somewhat larger than a jump in a prograde orbit,
because these resonances occur at larger p values. Here, the radiation reaction is slower compared
to regions closer to the central BH. Consequently, the resonance duration will be longer, leading
to larger jump sizes. [24]

We have calculated jumps using the triple numerical integral in Eq. (2.4.9) and the faster integral
in Eq. (2.4.19), where we specified the accuracy of a single integral to ns = 60. Both methods give
equivalent results, while the faster integration method reduced the computational time by a factor
between 20 and 50, depending on intrinsic parameters. We have also checked the two-for-one deal
by calculating jumps in Q using Eq. (2.4.20). The jump sizes obtained from this method match
with the jump sizes obtained from the other integration methods within the range of 0.1%.

Fitting formulas for the tidal resonance with (n,k,m)=(3,0,−2) are given in Appendix C. Eqs.
(C.1.1) and (C.1.2) are calculated from a Schwarzschild-like metric perturbation, as discussed in
section 2.1. Eqs. (C.2.1) and (C.2.2) are based on a metric perturbation in Kerr spacetime, which
is constructed using the Teukolsky equation and the metric reconstruction procedure as discussed
in [22, 24]. We have constructed the fitting formulae for the change in Lz for a lower polynomial
order than the formulae for the change in Q, such that each fitting coefficient in Eq. (C.1.1)
can be directly compared to its counterpart in Eq. (C.2.1). A scan across the whole parameter
space shows that the Kerr and Schwarzschild fitting formulas generally only differ by less than
0.1%. An exception are highly eccentric orbits, where this difference maximally equals 1.0%. This
observation also holds for other resonances. Hence, the effect of the central BH’s spin only has
a small effect on the metric perturbation in the weak-field approximation. It is also much more
feasible to calculate the tidally induced jump amplitudes based on a Schwarzschild-like metric
perturbation. Concretely, the calculation of the perturbation in the metric took approximately 15
times as long using Kerr perturbation theory in comparison to its Schwarzschild counterpart.
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3.2.2 Resonance characterization

We only encounter tidal resonances with m ranging from −2 to 2, because the metric perturbation
is constructed in terms of quadrupolar tidal moments corresponding to l = 2 modes. In practice,
we merely find resonances with m ∈ {−2, 0, 2} in the equatorial plane. This can be explained from
the functional form of the harmonic components of the electric tidal potential, displayed in the
right column of Table 1. The electric quadrupole moment in Eq (2.1.16a) only has diagonal en-
tries, causing the potential’s components Eq

1c, E
q
1s and Eq

2s to vanish. These components correspond
directly with the values of m. As both m = 1 components vanish in the equatorial plane, we do
not find resonances with m = ±1. If the perturber is not situated on the equatorial plane, the
electric quadrupole moment will have off-diagonal entries, which will allow m = ±1 resonances to
manifest. This will be discussed in more detail in section 3.2.4.

The tidal force is ϕ-independent for tidal resonances with m = 0. Consequently, the axisymmetry
of the Kerr spacetime is preserved during such resonances. As a result, no jump in Lz is induced.
There does occur a jump in Q, which still can lead to significant dephasing of the gravitational
waveform. Additionally, m = 0 tidal resonances are degenerate with self-force resonances, which
occur if only the radial and polar orbital frequencies become commensurate. Both resonances occur
at the same time, and only differ by their respective driving force. In order to distinguish tidal
and self-force resonances, one has to correctly implement both types of resonances when modeling
for the EMRI waveform.

Figure 11: Resonance contour of low order stationary resonances for a = 0.9M and x = cos 50◦.
The stationary resonance condition of Eq. (2.3.8) is satisfied at each line. The set of numbers
corresponds to the values of the set {n, k,m}. An orbit in the equatorial plane only encounters the
resonances displayed by a black line. If the orbit has an arbitrary configuration in the sky, it can
cross both black and red resonances.

The EMRI’s secondary mass can experience several tidal resonances during the inspiral, as can
be seen in Fig. 11. This figure displays a resonance contour in the (e,p)-plane for an orbital
inclination of x = cos 50◦ and a value of the central BH’s spin of a = 0.9M . The lines denote
when the stationary resonance condition of Eq. (2.3.8) is satisfied for the corresponding values of
the set {n, k,m}. The resonance contour shows all low order resonances for n, k ∈ {−4, 4} and
m ∈ {−2, 2}, except for resonances for which k + m = odd. That’s because in the stationary
model, only tidal resonances with k +m = even contribute to shifts in Lz and Q. This statement
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is referred to as a ‘selection rule’. If the perturber is situated on the equatorial plane, tidal reso-
nances with m = ±1 are not encountered, meaning that an orbit only encounters resonances with
k = even. The derivation of both selection rules will be given in Appendix D.

The value of p decreases during the adiabatic inspiral. As a result, the orbit crosses all the
resonances displayed in the resonance contour. However, an orbit can also pass through a resonance
without actually feeling the resonance effect. If we work out the sum in Eq. (2.4.1), we find that
the jump size has a sinusoidal dependence on the total phase, with which it enters the resonance.
Therefore, the EMRI’s secondary mass does not notice that it is on a resonance if its phase equals
zero.

3.2.3 Comparing analytical and numerical results

The jumps as calculated using the semi-analytical analysis can be compared to the numerical
jumps obtained by the osculating elements method. In Figs. 12 and 13 we compare the stationary
jumps in Lz and Q for the (3, 0,−2)-tidal resonance. In these figures, the horizontal lines denote
the jump sizes as calculated using the semi-analytical analysis. In order to determine these jumps,
the values of a, e and x are taken at the resonance and are subsequently substituted in Eqs. (C.1.1)
and (C.1.2) to obtain the jump’s amplitude. This gives the maximal jump size.

(a) ∆Lz = −3.1909× 10−6. (b) ∆Q = −7.59287× 10−6.

Figure 12: A closer look at the stationary jumps in Lz and Q in Fig. 1.

To match with the numerical results, we also need the phase at the moment of resonance. This is
calculated by numerically integrating the stationary resonance condition

χs =

∫ t0

0
(nωr(t) + kωθ(t) +mωϕ(t)) dt, (3.2.1)

where t0 is the time of resonance and the orbital frequencies are now a function of Boyer-Lindquist
time t. The phases modulo 2π correspond to χs = 3.47 for Fig. 12 and χs = 4.67 for Fig. 13. The
rate of change of the orbital frequencies (Γ) is also determined with respect to t, and is negative
in both cases. Therefore the total phase dependence is given by 2 sin (π4 − χs). As the sign of this
factor differs for the jumps in Figs. 12 and 13, the jumps are positive in one figure and negative
in the other. The outer vertical lines in both figures denote the duration of the resonance, as
calculated using Eq. (2.3.10), while the value of t0 is marked by the middle vertical line. The
analytical jump sizes are given below each figure. They match with the jump sizes obtained from
the osculating code, as can be clearly seen from both figures.

31



(a) ∆Lz = 9.12761× 10−6. (b) ∆Q = 4.28646× 10−6.

Figure 13: A closer look at the stationary jumps in Lz and Q in Fig. 10, corresponding to the
(3, 0,−2)-resonance.

Fig. 14 zooms in on the (3,−2, 0)-tidal resonance of Fig. 10. No jump in Lz is induced because
m = 0. The vertical axis is rescaled with the jump in Q of the (3, 0,−2)-resonance, since in
the stationary model this resonance is encountered earlier in the inspiral. Because the orbital
evolution is altered after the (3, 0,−2)-resonance, the trajectory is not perfectly oscillating around
the rescaled horizontal axis before the (3,−2, 0)-resonance is encountered. As a consequence, the
numerical results do not perfectly match with the semi-analytical results in this case.

Figure 14: A closer look at the stationary jump in Q in Fig. 10, corresponding to the (3,−2, 0)-
resonance. The vertical axis is shifted, because the orbit crosses the (3, 0,−2)-resonance earlier in
the inspiral. The phase at the resonance is given by χs mod 2π = 1.83 and the jump size obtained
from the semi-analytical analysis is given by ∆Q = 4.68096× 10−6.
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3.2.4 General sky location of the perturber

If we want to study tidal resonance effects caused by a perturber that is not situated on the x-axis,
we have to rotate our tidal field by two angles θy and θz, where θy/z describes a rotation around
the y/z-axis. The rotated electric quadrupole moment then has the functional form

Eab(t, θy, θz) = Rz(θz)Ry(θy)Eab(t)Ry(θy)
TRz(θz)

T . (3.2.2)

Here, Eab(t) is the electric quadrupole moment in the equatorial plane, as given in Eq. (2.1.16a).
Ry(θy) and Rz(θz) are rotation matrices given by

Ry(θy) =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 , Rz(θz) =

 cos θz − sin θz 0
sin θz cos θz 0
0 0 1

 , (3.2.3)

where θy ∈ [−π
2 ,

π
2 ] and θz ∈ [0, 2π). The perturber is on the x-axis when θy = θz = 0. The

perturber can now be situated at an arbitrary position in the sky, as can be seen in Fig. 15. As we
deal with a stationary perturber, we substitute t = 0 in Eq. (3.2.2) and use this tidal moment to
determine the metric perturbation. The jumps in the constants of motion are then also a function
of the perturber’s inclination angles and can subsequently be calculated using a similar analysis
as in the equatorial plane.

Figure 15: A sketch of an EMRI, whose central BH is of mass M , in the vicinity of a tidal perturber
of mass M∗. The EMRI’s secondary mass is not shown for illustrative purposes. The spin axis
of M coincides with the z-axis, and the (x, y)-plane is denoted as the equatorial plane. The tidal
perturber is situated on a distance b from M and is rotated by the angles θy and θz as compared
to the situation sketched in Fig 3. In the dynamic model, the perturber is allowed to move in a
circular orbit of radius b.
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In previous research [24], only rotations around the y-axis were considered, and the functional
dependence on the rotation angle was determined by fits. We found analytical expressions of
the functional dependence on both rotation angles by analyzing the functional form of the jump
amplitude. In the case of a rotated tidal field, Eq. (2.4.18) is given by

dC

dλ

∣∣∣∣
nkm

(a, e, x, θy, θz) = Ank−2 z
−2e2θz cos2 θy +Ank−1 z

−1eθz sin 2θy

+
1

2
Ank0 (3 cos 2θy − 1) +Ank1 z e

−θz sin 2θy +Ank2 z
2e−2θz cos2 θy

≡
∑

−2≤µ≤2

Ankµz
µe−µθzfµ(θy),

(3.2.4)

where in the last step we incorporated the functions of θy as fµ(θy), which are given in Tab. 4. This
equation tells us that the functional dependence on the perturber’s inclination angles is completely
determined by the value of m, since the averaging integral of Eq. (2.4.19) is now given by〈

dC

dt

〉 ∣∣∣∣
nkm

(a, e, x, θy, θz) =
1

ΓtΛrΛθ

∫ Λr

0
dλr

∫ Λθ

0
dλθ Ankm e−mθzfm(θy) e

−i
(
n 2π

Λr
λr+k 2π

Λθ
λθ

)

=

〈
dC

dt

〉 ∣∣∣∣θm
nkm

(a, e, x) e−mθzfm(θy).

(3.2.5)

Here,
〈
dC
dt

〉 ∣∣θm
nkm

(a, e, x) is the jump amplitude in C calculated for θz = 0 and θy = θm, which
is a fixed reference angle. Logically, one takes θm = 0. We cannot always do this, however, as
some jump amplitudes always vanish in this case. For example, f±1(θm) = 0 for θm = 0, which
causes the m = ±1 jump amplitudes to vanish at all times. Therefore the values of θm have to be
specified for each value of m. This is shown in Table 4, in combination with with the functions
fm(θy). There are only three distinct functions, since fm(θy) = f−m(θy). All three coincide with
the functions as obtained by fits in [24]. It is possible to choose another reference angle θ̃m instead
of θm, as long as fm(θ̃m) ̸= 0 for the given value of m. In this case, the total jump amplitude will
be given as 〈

dC

dt

〉 ∣∣∣∣
nkm

(a, e, x, θy, θz) =
1

fm(θ̃m)

〈
dC

dt

〉 ∣∣∣∣θ̃m
nkm

(a, e, x) e−mθzfm(θy). (3.2.6)

The dependence on θz is always given by an exponential. Therefore, from now on, we will include
it as an additional phase dependence rather than an amplitude. The total phase of the jumps in
Lz and Q will then be given as 2 sin

(
±π

4 − χs +mθz
)
.

m θm fm(θy)
−2 0 cos2 θy
−1 π/4 sin 2θy
0 0 1

2
(3 cos 2θy − 1)

1 π/4 sin 2θy
2 0 cos2 θy

Table 4: The functional dependence of the jumps on θy in the case of a stationary perturber.

34



3.2.5 Impact on gravitational waveform

The orbital evolution of the secondary EMRI mass is altered after the passing of a resonance. It
becomes out of phase as compared to the pre-resonance evolution. As a result, there occurs a shift
in the orbital phases. This in turn causes a deviation in the GW phases. The total phase shift
induced by one resonance from the resonance time until the secondary plunges into the central BH
is

∆Ψi = 2

∫ tplunge

t0

∆ωi dt (3.2.7)

for i ∈ (r, θ, ϕ). Here, ∆ωi are the shifts in the orbital frequencies, as caused by the change in
the orbital’s constants of motion due to a tidal resonance. The integration is performed from the
resonance time t0 up to the plunge time tplunge. So even if a tidal resonance induces a relatively
small change in the orbital constants of motion, the gravitational waveform can become significantly
dephased if a resonance is crossed early in the inspiral. The phase shifts in the gravitational
waveform can be measured by LISA if ∆Ψϕ ≥ 0.1, if we assume a signal-to-noise ratio of 20 [28, 47].
Phase contours of the (3, 0,−2)-tidal resonance are displayed in Fig. 16 for different values of the
spin parameter a. They are constructed by taking M = 4× 106M⊙, µ = M∗ = 30M⊙, b = 10AU
and θy = 0. They show that the phase shifts in the waveform caused by this resonance can all be
detected by LISA for these parameters, except for orbits with e < 0.2.

Figure 16: Phase contours in the (x, e)-plane displaying the phase shifts ∆Ψi in the gravitational
waveform caused by the crossing of the (3, 0,−2)-tidal resonance. Figure adapted from [22].
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Throughout our whole analysis we have assumed fixed values for the three masses M , µ and M∗.
The position of the perturber is determined by the distance b to the central BH and the inclination
angle θy, which both have to be specified beforehand as well. The accumulated phase shifts ∆Ψ′

i

for a different set of parameters {M ′, µ′,M ′
∗, b

′, θ′y} can be easily obtained from the scaling relation

∆Ψ′
i = ∆Ψi

(
M ′

M

) 7
2
(
µ′

µ

)− 3
2
(
M ′

∗
M∗

)(
b′

b

)−3(fm(θ′y)

fm(θy)

)
. (3.2.8)

The phase evolution of the gravitational waveform depends on all three phases Ψi. Shifts in each
of these phases can lead to significant dephasing of the GWs radiated by the EMRI. Fig 17 dis-
plays two h+ snapshots of EMRI waveforms during the last hours of the inspiral. Tidal effects
are neglected in the construction of the red waveform, while the green waveform is constructed
from a trajectory that crosses one tidal resonance in its inspiral. Directly after the resonance
crossing, both waveforms only slightly differ. This difference, however, increases after each orbital
revolution. Therefore, after many orbits, a significant mismatch appears between both waveforms.
Furthermore, the orbit corresponding to the red waveform in Fig. 17 plunges earlier than the
orbit of the green waveform. Since the orbit corresponding to the green waveform has encoun-
tered a tidal resonance, we can deduce from Fig. 17 that it has experienced a positive jump in its
constants of motion, allowing the radiation reaction to last longer as compared to the red waveform.

Fig. 17 only shows the dephasing of the gravitational waveform due to one tidal resonance.
However, as we have noted from the resonance contour in Fig. 11, an orbit can cross several
tidal resonances during its inspiral. These additional resonance crossings can result in an even
more dephased waveform, but they can also potentially ‘cancel out’ previous phase shifts. So, to
correctly predict an EMRI’s waveform, strong theoretical input is needed.

Figure 17: A comparison of h+ waveforms. The green waveform is constructed by taking one tidal
resonance into account, whereas this resonance crossing is neglected in the dashed red waveform.
Figure adapted from [24].
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3.3 Dynamic model

3.3.1 Equatorial plane

We will now discuss the jumps in Lz and Q obtained from a dynamic metric perturbation. At first,
we will focus on the scenario where the tidal perturber is restricted to the equatorial plane. Similar
to the stationary case, we only encounter resonances with m ∈ {−2, 0,−2} here, because the elec-
tric quadrupole moment in Eq. (2.1.16a) is diagonal. When we assume an arbitrary inclination of
the perturber with respect to the equatorial plane, we will find m = ±1 resonances. A similar anal-
ysis applies to the s-modes, as they also correspond to azimuthal motion. The fact that the electric
quadrupole moment is diagonal explains that we only find resonances with s ∈ {−2, 0, 2} for a
perturber on the equatorial plane. Resonances with s = ±1 are again encountered if the perturber
has an arbitrary configuration in the sky. However, these resonances are not formed from the
electric quadrupole moment, but from the magnetic quadrupole moment in Eq. (2.1.16b), which
is nonzero in the dynamic model. Generally, the only non-vanishing harmonic components of the
magnetic quadrupole vector potential in Eq. (2.1.11) are given by Bq

1c and Bq
1s, which correspond

to the s = ±1 modes. These harmonic components are zero for a perturber on the equatorial
plane. They are nonzero if the perturber has a general sky location, allowing the manifestation of
s = ±1 resonances. Hence, we find that the electric quadrupole moments of even parity provide
resonances with even s, while resonances with odd s are the consequence of the odd-parity mag-
netic quadrupole moments. This allows for a separate treatment of the electric and magnetic sector.

We focus on the electric sector first. Not every resonance with combinations of m, s ∈ {−2, 0, 2}
occurs in the equatorial plane. We can determine the resonance combinations of m and s by
analyzing the functional form of the jump size as given in Eq. (2.4.14). In the equatorial plane we
find

dC

dλ

∣∣∣∣
nkms

(a, e, x) = Ank00 +Ank−22 z
−2y2 +Ank2−2 z

2y−2. (3.3.1)

If we then perform the double integral over the azimuthal phases as given in Eq. 2.4.16), we find
that we only encounter resonances with m = −s, which is in agreement with [45]. The functional
form of the jump in Eq. (3.3.1) also confirms that resonances with m, s = ±1 are not encountered.
The semi-analytical jump amplitudes can then be obtained by doing the integral in Eq. (2.4.17)
numerically. We performed a consistency check on these amplitudes by also calculating them us-
ing the numerical four-dimensional integral as given in Eq. (2.4.11). The results were equivalent,
while the four-dimensional integral was almost 400 times slower in some cases. We also calculated
dynamical jump amplitudes in Q using the two-for-one deal as given by Eq. (2.4.20). Similarly
to the stationary model, these amplitudes matched with the other integration methods within the
margin of 0.1%. We find that no jump in the orbital energy E is induced despite that the perturber
is allowed to move during the resonance. This can be explained from the fact that we found that
the condition Ωϕ ≪ ωϕ still holds for the cases we studied. Therefore the stationary perturber
approximation effectively still holds, leading to no jump in the orbital energy.

In order to compare the stationary and dynamic resonance models, we will look at the tidal res-
onance with (n, k,m, s) = (3, 0,−2, 2). Fitting formulas for the jump’s amplitude are given in
Eqs. (C.3.1) and (C.3.2), where θy = 0 again corresponds to the case of a tidal perturber on the
equatorial plane. If we compare these with the corresponding stationary fitting formulas in Eqs.
(C.1.1) and (C.1.2), we find that the dynamic amplitudes of this resonance are smaller by a factor
of 2.5− 12% for orbits with eccentricities below e = 0.7. For more eccentric orbits, this difference
can be over 30%. As a result, the maximal jump sizes in the dynamic model are smaller than the
maximal jump sizes in the stationary model for this tidal resonance.
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We can explain the difference in maximal jump sizes between both models by looking at the res-
onance contour in Fig. 21a. The (3, 0,−2, 2)-resonance corresponds to the thickly dashed black
line. The solid black line, corresponding to the dynamic (3, 0,−2, 0)-resonance, is equivalent to the
stationary (3, 0,−2)-resonance, because the dynamic resonance condition in Eq. (2.3.15) equals
the stationary resonance condition in Eq. (2.3.8) if s = 0. The dynamic (3, 0,−2, 0)-resonance
and the stationary (3, 0,−2)-resonance therefore occur at the same moment in the inspiral, which
results in the same tidally induced amplitude in the orbital constants. The upper dashed black line
in Fig. 21a corresponds to the (3, 0,−2,−2)-resonance. This resonance, as well as the (3, 0,−2, 0)-
resonance, is not encountered when the perturber resides in the equatorial plane, since m ̸= s.
These resonances can be crossed by an orbit when the perturber is situated off the equatorial
plane, as will be discussed in section 3.3.2.

Fig. 21a shows us that the (3, 0,−2, 2)-resonance always occurs at a lower value of p compared
to the (3, 0,−2)-resonance. As a consequence, the dynamic jump amplitudes will be smaller than
the stationary amplitudes for these resonances. This statement holds for all resonant orbits with
s > 0, irrespective of the perturber’s orbital inclination and the values of the set {n, k,m, a, e, x}.
The opposite statement holds for dynamic resonances with s < 0. They occur earlier during the
inspiral, leading to larger jump amplitudes. Figure 21a also shows that the difference in the value
of p between stationary and dynamic resonances increases for higher values of e, which explains
the larger difference in the jump’s amplitude for more eccentric orbits. This effect becomes even
bigger for resonances that occur at larger p-values.

Since the (3, 0,−2, 2)-resonance occurs at a smaller value of p compared to its stationary counter-
part, it also occurs at a later moment in time. This can be easily seen in Figs. 1 and 10a, where
both stationary and dynamic jumps of this resonance are displayed. This time delay can even be so
large that the sequence of resonances encountered during the inspiral differs in the stationary and
dynamic model. An example of such a scenario is shown in Fig. 10b. In the stationary model, the
orbit crosses the (3, 0,−2)-resonance before encountering the (3,−2, 0)-resonance. In the dynamic
model, on the other hand, the (3, 0,−2, 2)-resonance is crossed after the (3,−2, 0, 0)-resonance.
The difference in the time of resonance between the stationary and dynamic jumps also results in
different phases of the resonant orbit, which in turn can cause significant differences in the total
jump size between the stationary and dynamic jumps. For example, an orbit can experience a
jump in its constants of motion at a resonance crossing in the stationary model, while it can pass
through the corresponding resonance in the dynamic model without noticing anything at all.

(a) ∆Lz = −4.83655× 10−6. (b) ∆Q = −1.17286× 10−5.

Figure 18: A closer look at the dynamic jumps in Lz and Q in Fig. 1.
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We compare the numerical and analytical jump sizes in Lz and Q for the (3, 0,−2, 2)-resonance in
Figs. 18 and 19. The phase at the resonance can now be obtained by numerically integrating Eq.
(2.3.15) with respect to Boyer-Lindquist time t:

χd =

∫ t0

0
(nωr(t) + kωθ(t) +mωϕ(t) + sΩϕ) dt. (3.3.2)

We find that χd mod 2π = 2.30 for the jumps in Fig. 18 and χd mod 2π = 5.99 for the jumps
in Fig. 19. The sine of the total phase again differs by a sign in both cases, resulting in negative
jumps in Fig 18 and positive jumps in Fig 19. The total semi-analytical jump sizes are given below
each figure and slightly underestimate the numerical jump sizes. The axis in Fig. 19b is shifted
with the semi-analytical jump size of the (3,−2, 0, 0)-resonance, because this resonance is crossed
first in the dynamic model. The jump in Q as a result of the (3,−2, 0, 0)-resonance is shown in
Fig. 20.

(a) ∆Lz = 8.43727× 10−6. (b) ∆Q = 3.93317× 10−6.

Figure 19: A closer look at the dynamic jumps in Lz and Q in Fig. 10, corresponding to the
(3, 0,−2)-resonance. The vertical axis in the right plot is shifted, because the orbit crosses the
(3,−2, 0)-resonance earlier in the inspiral.

Figure 20: A closer look at the dynamic jump in Q in Fig. 10, corresponding to the (3,−2, 0)-
resonance. The phase at the resonance is given by χs mod 2π = 1.53 and the jump size obtained
from the semi-analytical analysis is given by ∆Q = 3.75095× 10−6.
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3.3.2 General sky location of the perturber

We can again place the tidal perturber at an arbitrary location in the sky by rotating the tidal
moments using the rotation matrices of Eq. (3.2.3). The rotated electric quadrupole moment is
given by Eq. (3.2.2), and its magnetic counterpart can be constructed completely analogously as

Bab(t, θy, θz) = Rz(θz)Ry(θy)Bab(t)Ry(θy)
TRz(θz)

T , (3.3.3)

where Bab(t) is given in Eq. (2.1.16b). As a result, the magnetic sector of the metric perturbation
is also non-vanishing, and we can encounter tidal resonances with m, s ∈ {−2,−1, 0, 1, 2}. The
rates of Eq. (2.4.14) now also depend on θy and θz:

dC

dλ
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nkms

(a, e, x, θy, θz) =
∑

−2≤µ,σ≤2

Ankµσz
µyσe−µθzfµσ(θy). (3.3.4)

Analogous to Eq. (3.2.5), the jump amplitudes are then given as〈
dC

dt

〉 ∣∣∣∣
nkms

(a, e, x, θy, θz) =

〈
dC

dt

〉 ∣∣∣∣θms

nkms

(a, e, x) e−mθzfms(θy). (3.3.5)

The dependence on θy is incorporated in the functions fms(θy), which depend on m and s in

the dynamic model. The amplitudes
〈
dC
dt

〉 ∣∣θms

nkms
(a, e, x) are calculated for θz = 0 and θy = θms.

The reference angle θms also depends on both m and s and must be chosen such that fms(θms)
is nonzero. Table 5 displays θms and fms(θy) for all combinations of m and s. As these modes
both correspond to azimuthal motion, we have fms(θy) = fsm(θy). Additionally we find that
fms(θy) = f−m−s(θy). As a result, there are nine distinct functions of θy in the dynamic model.
Similarly to the stationary case, it’s possible to choose another reference angle θ̃ms provided that
fms(θ̃ms) ̸= 0. The jump amplitude is then obtained as〈

dC

dt

〉 ∣∣∣∣
nkms

(a, e, x, θy, θz) =
1

fms(θ̃ms)

〈
dC

dt

〉 ∣∣∣∣θ̃ms

nkms

(a, e, x) e−mθzfms(θy). (3.3.6)

The dependence on θz is equivalent to the stationary case and only depends on m. It can be
included in the total phase of the jump, which is then given by 2 sin

(
±π

4 − χd +mθz
)
.

When the perturber is taken off the equatorial plane, the EMRI’s secondary mass can cross all the
resonances as displayed in the resonance contours in Figs. 21 and 22. These contours show all the
places in the (e, p)-plane where the dynamic resonance condition of Eq. (2.3.15) is satisfied for given
values of a = 0.9M and x = cos 50◦. The set of numbers denotes the values of (n, k,m), whereas
the value of s is specified by the type of line. These resonance contours show all low order dynamic
resonances for which k +m+ s = even, since resonances with k +m+ s = odd vanish. This third
selection rule is derived in Appendix D.3. The locations of the dynamic resonances with s = 0 in
Fig. 21 coincide with the corresponding stationary resonances in Fig. 11. The dynamic contours
in Fig 21 complement the stationary resonance contour by also including the dynamic s = ±2
resonances. So for each resonance crossed in the stationary model, an orbit potentially crosses
three resonances in the dynamic model. Furthermore, an orbit also encounters the resonances
displayed in Fig. 22 in the dynamic model. In the stationary model, these resonances vanished
because they have k+m = odd. These resonances are present in the dynamic model since we can
take s = ±1, leading to k +m+ s = even.
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(a) Resonances with m even. (b) Resonances with m odd.

Figure 21: Resonance contours of low order dynamic resonances for a = 0.9M , x = cos 50◦ and
k +m = even. The dynamic resonance condition of Eq. (2.3.15) is satisfied at each line. The set
of numbers corresponds to the values of the set {n, k,m}, while the value of s is specified by the
type of the line. The solid lines denote resonances with s = 0, the thickly dashed lines represent
s = 2 resonances while s = −2 for the other dashed lines.

Figure 22: Resonance contour of low order dynamic resonances for a = 0.9M , x = cos 50◦ and
k +m = odd. The set of numbers corresponds to the values of the set {n, k,m}, while the value
of s is specified by the type of the line. The thickly dashed lines represent s = 1 resonances while
s = −1 for the other dashed lines.

To illustrate the many crossings of dynamic tidal resonances, we analyzed an orbit’s inspiral where
the perturber is inclined with an angle of θy = π

4 . The results are obtained using the osculating
elements method and are displayed in Fig. 23. The jumps caused by the resonances are smaller
compared to the jumps in Figs. 1 and 10, because they occur at lower values of p and e. Neverthe-
less, each jump in Fig. 23 has an impact on the gravitational waveform and can convey valuable
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information on the environment close to the central BH. The biggest jumps are caused by the low
order resonances and are displayed in Table 6, together with their time of resonance t0 and sign
of the jump. The other resonances that occur are of higher order, and therefore do not induce a
large jump in Lz and Q.

As discussed below Eq. (2.3.15), the model of a dynamic perturber introduces additional resonances
where n, k,m ≥ 0 and s < 0. In practice, however, only a select group of these resonances manifests
in the region of validity as displayed in Fig. 5. Other resonances occur in the regime where p > b,
thereby violating the weak-field approximation. We find that highly eccentric orbits experience the
extra resonances at a lower p-value. The (1, 0, 0,−2)-resonance is crossed closest to the central BH.
An example of its resonant parameters are {a, p, e, x} = {0.5M, 29.9228M, 0.9, cos 30◦} for a per-
turber inclination of θy = π

4 . From these conditions we can then calculate the jump size in Lz and
Q in the usual semi-analytical way. This results in jump sizes in the order of 10−5, which is similar
in size to the resonances we have encountered in this thesis. Unfortunately this resonance cannot
be analyzed using the osculating elements method, because the amplitude of the oscillations in Lz

and Q, corresponding to the orbital motion at these large p-values, is of order 10−2. Therefore
the (1, 0, 0,−2)-resonance cannot be identified using the numerical plots of ∆Lz and ∆Q. The
orbital oscillations will even get bigger for higher values of p. Hence, the extra resonances cannot
be studied numerically. A jump based on these resonances can still be induced, because it follows
from the semi-analytical analysis that the jump amplitudes do not vanish. Moreover, the impact
of these extra resonances on the gravitational waveform will be bigger, since they occur at higher
p-values. However, because these extra resonances manifest at larger distances from the central
BH, the radiation reaction is so slow that the EMRI’s smaller mass can be thousands of years away
from the plunge. For example, we have calculated that an orbit crossing the (1, 0, 0,−2)-resonance
is at least 1.3 × 103 years away from becoming a plunge orbit, which is much larger than the
maximum of ∼ 10 years that an EMRI lies in LISA’s observational frequency band. Resonances
occurring at larger p-values will plunge at an even later moment in time. Therefore these extra
resonances are not relevant for LISA.

(a) The difference in Lz caused by a tidal perturber. (b) The difference in Q caused by a tidal perturber.

Figure 23: The effect on an EMRI’s orbital constants Lz and Q caused by a tidal perturber
with mass M∗ = 30M⊙ at a distance b = 10AU from the EMRI’s central BH with mass M =
4 × 106M⊙. The EMRI’s mass ratio corresponds to η = 7.5 × 10−6 and the tidal perturber is
inclined with π

4 rad with respect to the equatorial plane. The orbit’s initial conditions are given by
{a, p, e, x} = {0.5M, 8M, 0.4, cos 70◦}. Ten low order resonances take place. Their resonance times
are given in Tab. 6.
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The dephasing of the waveform can be studied using the same methods as discussed in section
3.2.5. The scaling relation of Eq. (3.2.8) is now given by

∆Ψ′
nkms = ∆Ψnkms

(
M ′

M

) 7
2
(
µ′

µ

)− 3
2
(
M ′

∗
M∗

)(
b′

b

)−3(fms(θ
′
y)

fms(θy)

)
. (3.3.7)

However, this relation is now only approximately true, since M ′, M ′
∗ and b′ are also used to de-

termine Ω′
ϕ. This frequency is used in the dynamic resonance condition to determine the resonant

value of the semi-latus rectum (p′), which differs from the original resonant value p.

m s θms fms(θy)
−2 −2 π/2 (cos θy − 1)2

−2 −1 π/2 (1− cos θy) sin θy
−2 0 π/2 sin2 θy
−2 1 π/2 (1 + cos θy) sin θy
−2 2 π/2 (cos θy + 1)2

−1 −2 π/2 (1− cos θy) sin θy
−1 −1 π/2 cos θy − cos 2θy
−1 0 π/4 sin 2θy
−1 1 π/2 − cos θy − cos 2θy
−1 2 π/2 (1 + cos θy) sin θy
0 −2 π/2 sin2 θy
0 −1 π/4 sin 2θy
0 0 π/2 3 sin2 θy − 2
0 1 π/4 sin 2θy
0 2 π/2 sin2 θy
1 −2 π/2 (1 + cos θy) sin θy
1 −1 π/2 − cos θy − cos 2θy
1 0 π/4 sin 2θy
1 1 π/2 cos θy − cos 2θy
1 2 π/2 (1− cos θy) sin θy
2 −2 π/2 (cos θy + 1)2

2 −1 π/2 (1 + cos θy) sin θy
2 0 π/2 sin2 θy
2 1 π/2 (1− cos θy) sin θy
2 2 π/2 (cos θy − 1)2

Table 5: The functional depen-
dence of the jumps on θy in the
case of a dynamic perturber.

n k m s t0/M Sign of jump
2 1 −2 1 9.97× 105 −
4 0 −2 0 1.72× 106 +
2 0 −1 1 1.80× 106 −
4 −1 −1 0 2.08× 106 +
4 −1 −1 2 2.16× 106 −
2 −1 0 −1 2.35× 106 −
4 −2 0 0 2.41× 106 +
2 −1 0 −1 2.48× 106 −
4 −3 1 −2 2.66× 106 − (Lz), +(Q)
4 −3 1 0 2.76× 106 − (Lz), +(Q)

Table 6: Low order resonances
of Fig. 23.
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4 Summary and conclusion

In this thesis we constructed a semi-analytic framework to study tidal resonance effects in EM-
RIs for both a stationary and a dynamic tidal field. We focused on a tidal field consisting of a
single stellar mass object with a similar mass as the EMRI’s secondary. In the dynamic model,
the perturber was allowed to move in a circular orbit around the central massive BH at the time
of resonance. Our research mainly revolved around the calculation of the tidally induced jump
amplitudes in the EMRI’s orbital constants of motion in both the stationary and the dynamic
model. In doing so, we focused on keeping the computational costs as low as possible. This was
firstly achieved in the computation of the metric perturbation due to the tidal perturber. We used
Schwarzschild perturbation theory to calculate this perturbation in the metric, thereby neglecting
spin effects of the EMRI’s central BH. We found that this approach was approximately 15 times
faster than using Kerr perturbation theory, as was done in previous research [22, 24]. Yet, the
results remained accurate within 1.0%. We could fully characterize the metric perturbation on the
basis of so-called tidal quadrupole moments, whose functional form was determined using a metric
matching procedure. We then formulated a metric ansatz of the total spacetime as a function of
these tidal moments, spherical harmonics and radial functions. The functional form of the radial
functions could be determined by solving the linearized Einstein Equations in vacuum, and the
metric perturbation was found by subtracting the Schwarzschild metric from the metric of the
total spacetime.

When we modelled for the motion of the EMRI’s secondary mass, we allowed the massive cen-
tral BH to rotate again. To lowest order, the orbital motion could be described by the geodesic
equations in Kerr spacetime. We described the EMRI’s smaller mass’ four-velocity in a Mino
time formalism, and were able to reformulate the geodesic orbital motion in terms of fundamental
orbital frequencies, which played a key role in describing tidal resonances. The tidal force was
accounted for in the orbital motion by using an action-angle formalism. We made an adiabatic
approximation, after which we rewrote the tidal force in its Fourier components. This led to the
resonance condition and the resonant tidal force terms in both the stationary and dynamic model.

We used the metric perturbation and the EMRI’s four-velocity to find the tidally induced accel-
eration, which in turn led us to the general evolution in the constants Lz and Q induced by a
tidal perturbation. We calculated the change in these constants, as caused by a tidal resonance,
by performing an averaging integral. We managed to do this integral semi-analytically, in contrast
to the full numerical integral used in previous research [22, 24]. This enhanced computational
times by at least 20 times in the stationary model and almost 400 times in the dynamic model.
Ultimately, we constructed fitting formulae of these jump amplitudes across the whole parameter
space, allowing for efficient future jump calculations.

In the stationary model, we first studied low order tidal resonances for a tidal perturber situated
on the equatorial plane. We found that only resonances with m ∈ {−2, 0, 2} contributed to shifts
in the orbital constants of motion, which could be explained from the functional form of the electric
quadrupole moment. Additionally, we found that resonances with m = 0 do not induce a jump in
Lz, as the axisymmetry of the EMRI spacetime is preserved in this case. We further characterized
stationary resonances on the basis of resonance contours and the first selection rule, i.e., only
resonances with k = even contribute to the shifts in the orbital constants of motion. Moreover,
we used the numerical method of forced osculating elements as a consistency check on our semi-
analytical calculations, and found a great match between the numerical and semi-analytical jump
sizes. Next, we moved the tidal perturber off the equatorial plane, and exploited the functional
dependence on the perturber’s sky location analytically. This also allowed the manifestation of
resonances with m = ±1, which required a new selection rule, stating that tidal resonances with
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k + m = odd are suppressed. Lastly, we discussed the impact of tidal resonances on the GWs
radiated by an EMRI. In the end, we calculated jump sizes that matched to great extent with the
jump sizes from previous research, while we computed them using less computationally expensive
methods.

In the dynamic model, we first analyzed tidal resonance effects for a perturber moving in a circular
orbit in the equatorial plane. We found that only tidal resonances with m = −s alter the orbit
of the EMRI’s smaller mass in this case. Moreover, we compared stationary and dynamic jump
amplitudes, discovering that they only differ by a few percent for general orbits with eccentricities
below e = 0.7. This difference could be as big as 30% for highly eccentric orbits. We were able to
study this effect of the orbital eccentricity on the jump amplitudes by comparing stationary and
dynamic resonance contours. They deviated most in the highly eccentric regime. Consequently,
dynamic resonances for highly eccentric orbits could be encountered much earlier/later in the in-
spiral, leading to significantly larger/smaller jump amplitudes compared to the stationary model.
In general, we found that the difference in the time of resonance between dynamic and stationary
models does have a noticeable impact on the total jump size. Firstly, this led to different orbital
phases at the time of resonance in both models. In an extreme case, an orbit’s constants of motion
experience a jump by crossing a tidal resonance in the stationary model, while the same orbit
did not feel a resonance effect in the dynamic model (and vice versa). Secondly, the order in
which tidal resonances appear during the inspiral could even differ in both models. The order
of resonance crossings is extremely important in the construction of EMRI waveform templates.
Therefore, if we do not model for the perturber’s dynamics, incorrect EMRI waveform templates
may be constructed. This can ultimately lead to the estimation of wrong parameters of the EMRI
spacetime, or even the conclusion that GR is an incorrect theory of gravity.

Next, we placed the tidal perturber at an arbitrary sky location in the dynamic model, thereby
allowing it to move on an inclined circular orbit. We discovered that the functional dependence of
this inclination angle on the total jump size is completely determined by the values of m and s. We
found this functional dependence explicitly by using a full analytical analysis. Furthermore, we
also found tidal resonances with m, s = ±1 when the perturber was not situated on the equatorial
plane. Consequently, we formulated the most general selection rule, stating that only resonances
with k + m + s = even lead to jumps in the orbital constants of motion. Lastly, we discussed
the dynamic resonance contours in greater detail. We found that, for given values of the set
(n, k,m) with n > 0, resonances with a positive value of s are encountered earlier in the inspiral
than resonances with negative s. If n = 0, the same statement holds if k > 0. Moreover, we
discovered that an orbit crosses several more tidal resonances in the dynamic model compared to
the stationary model. As each resonance crossing can lead to a phase shift in the radiated GWs,
a gravitational waveform constructed from the dynamic model would potentially be even more
dephased than a waveform obtained from the stationary model. To conclude, the inclusion of the
perturber’s dynamics in EMRI modeling may significantly impact the analysis on LISA’s data in
the future, while the maximal jump sizes are generally not altered much compared to the model
of a stationary perturber.
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5 Discussion and outlook

The framework provided in this thesis can be used to efficiently analyze tidal resonance effects in
EMRIs for both stationary and dynamic tidal perturbations. In our studies, we only considered
the tidal perturbation to be due to a single pointlike stellar mass object. In practice, an EMRI
can be accompanied by several of such objects, each having the potential to cause tidal resonance
effects. Even an accretion disk around an EMRI’s central massive BH can impact the waveform of
the emitted GWs. If we could calculate the perturbation in the metric arising from an accretion
disk, we could study its impact on the EMRI’s orbital motion by applying the same methods as
presented in this work. We can learn useful information about the accretion disk by identifying the
induced tidal resonances correctly. Additionally, an accretion disk can also secularly impact the
orbit of the EMRI’s secondary mass. Future studies may point out the magnitude of this secular
effect, and compare it with the impact through resonances.

Our work has been based on the the weak field approximation, which allowed for a Keplerian
treatment of the tidal perturber. In our numerical analysis, we have assumed that EMRI’s central
BH is significantly larger than the perturber. Thereby we have shown the minimal impact of tidal
resonances, as the jump size in the orbital constants of motion scales linearly with the perturber’s
mass. In practice, the tidal perturber could have a mass in the same order of magnitude as the
central BH’s mass. If the distance between both bodies remains sufficiently large, the weak field
approximation stays valid, so that the framework provided in this thesis can also be applied to
study tidal resonance effects for such scenarios. Furthermore, we have assumed that the perturber
is on a circular orbit around the central massive BH, which can be generalized to an elliptic orbit
in future research. This scenario is automatically accounted for in the stationary model, as only
the distance between central BH and perturber could be different. In the dynamic model, on the
other hand, the tidally induced jump sizes will be impacted.

We only constructed the metric perturbation from the quadrupole moments of the lowest post-
Newtonian order. This may be insufficient when we place the perturber closer to the central BH,
as this causes the perturber’s orbital velocity to increase. Consequently, we will have to take higher
order terms into account through the whole derivation of the metric perturbation. Firstly, we will
have to add terms of first post-Newtonian order to the quadrupole moments and the perturber’s
orbital frequency. Secondly, we have to take the octupole moments into account as well, which will
introduce new tidal resonances with m, s = ±3. As the perturber is situated closer to the EMRI
system, these resonances cannot be neglected anymore. Lastly, we will need to consider the time
derivatives of all tidal moments too.

If the perturber is relatively close to the central massive BH, we also cannot neglect the latter’s
spin in the calculation of the metric perturbation. Moreover, we can allow the tidal perturber to
be rotating as well, which can have a small effect on the tidally induced jumps. The spin effects
of both bodies can be incorporated as perturbative terms in the metric of the total spacetime
[36]. The perturbation in the metric can then still be calculated in the framework of Schwarzschild
perturbation theory. At some particular distance between perturber and central BH, however, it
is expected that the central BH’s spin effects play such a big role that one has to consult to Kerr
perturbation theory again to compute the metric perturbation. Moreover, we cannot place the
perturber too close to the central BH, as this violates the weak field approximation. This breaks
the perturbative treatment of our analysis, and we have to regard the total system as a three-body
problem. As a consequence, we can only study resonance effects in this case using full numerical
relativity, which at this stage even cannot handle isolated EMRIs, let alone three-body systems
with such mass differences.
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The stationary and dynamic models for computing tidally induced jump sizes in an EMRI’s orbital
constants of motion serve as input for the creation of fast EMRI waveform templates. We have
motivated the importance of including the tidal perturber’s dynamics in the modelling of an
EMRI’s orbital evolution. A next step in this research field would be to construct these waveforms
based on a dynamic tidal perturbation. These waveforms can subsequently be compared to the
waveforms constructed from the stationary resonance model as described in [24]. Ultimately,
these more realistic EMRI waveforms based on a dynamic tidal perturbation can be used to
extract information from the data gathered by LISA in the future. By modelling for the tidal
perturbation’s dynamics, we retain the ability to perform high precision tests of GR, and we will
be able to infer valuable information about the EMRI, as well as its tidal environment.
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[29] M. Kerachian, L. Polcar, V. Skoupý, C. Efthymiopoulos, and G. Lukes-Gerakopoulos. Action-
angle formalism for extreme mass ratio inspirals in kerr spacetime, 2023.

[30] J. Kevorkian and J. D. Cole. Multiple scale and singular perturbation methods. 1996.

[31] P. Lynch, M. van de Meent, and N. Warburton. Eccentric self-forced inspirals into a rotating
black hole. Classical and Quantum Gravity, 39(14):145004, jun 2022.

[32] K. Martel and E. Poisson. Gravitational perturbations of the schwarzschild spacetime: A
practical covariant and gauge-invariant formalism. Physical Review D, 71(10), may 2005.

[33] Y. Mino. Perturbative approach to an orbital evolution around a supermassive black hole.
Physical Review D, 67(8), apr 2003.

[34] Z. Nasipak. Adiabatic evolution due to the conservative scalar self-force during orbital reso-
nances. Physical Review D, 106(6), sep 2022.

[35] E. Poisson. Metric of a tidally distorted nonrotating black hole. Physical Review Letters,
94(16), apr 2005.

[36] E. Poisson. Tidal deformation of a slowly rotating black hole. Physical Review D, 91(4), feb
2015.

[37] E. Poisson and E. Corrigan. Nonrotating black hole in a post-newtonian tidal environment.
II. Physical Review D, 97(12), jun 2018.

[38] E. Poisson, A. Pound, and I. Vega. The motion of point particles in curved spacetime. Living
Reviews in Relativity, 14(1), sep 2011.

[39] E. Poisson and I. Vlasov. Geometry and dynamics of a tidally deformed black hole. Physical
Review D, 81(2), jan 2010.

[40] A. Pound and E. Poisson. Osculating orbits in schwarzschild spacetime, with an application
to extreme mass-ratio inspirals. Physical Review D, 77(4), feb 2008.

[41] A. Pound and B. Wardell. Black hole perturbation theory and gravitational self-force. In
Handbook of Gravitational Wave Astronomy, pages 1–119. Springer Singapore, 2021.

[42] N. Sago, L. Barack, and S. Detweiler. Two approaches for the gravitational self-force in black
hole spacetime: Comparison of numerical results. Physical Review D, 78(12), dec 2008.

49



[43] N. Sago and R. Fujita. Calculation of radiation reaction effect on orbital parameters in Kerr
spacetime. Progress of Theoretical and Experimental Physics, 2015(7), 07 2015. 073E03.

[44] W. Schmidt. Celestial mechanics in kerr spacetime. Classical and Quantum Gravity,
19(10):2743–2764, apr 2002.

[45] M. Silva and C. Hirata. Dynamical perturbations around an extreme mass ratio inspiral near
resonance. Physical Review D, 106(8), oct 2022.

[46] A. D. A. M. Spallicci, P. Ritter, and S. Aoudia. Self-force driven motion in curved spacetimes,
2014.

[47] L. Speri and J. R. Gair. Assessing the impact of transient orbital resonances. Physical Review
D, 103(12), jun 2021.

[48] S. Taylor and E. Poisson. Nonrotating black hole in a post-newtonian tidal environment.
Physical Review D, 78(8), oct 2008.

[49] S. A. Teukolsky. Perturbations of a rotating black hole. 1. Fundamental equations for gravi-
tational electromagnetic and neutrino field perturbations. Astrophys. J., 185:635–647, 1973.

[50] S. A. Teukolsky. The kerr metric. Classical and Quantum Gravity, 32(12):124006, jun 2015.

[51] R. M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.

[52] C. M. Will. Gravity: Newtonian, Post-Newtonian, and General Relativistic. 2016.

[53] H. Yang and M. Casals. General relativistic dynamics of an extreme mass-ratio binary inter-
acting with an external body. Physical Review D, 96(8), oct 2017.
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A Radial functions

In this appendix we will solve the linearized Einstein equations in vacuum to retrieve the func-
tional form of the radial functions eqtt, e

q
rr and eq appearing in the tidally deformed Schwarzschild

metric in Eq. (2.1.13). So we restrict ourselves to metric perturbations due to quadrupolar electric
tidal perturbations. Therefore we will only focus on the even-parity sector of the metric pertur-
bation, which is decoupled from the odd-parity sector. The derivation of these radial functions is
most easily done in Eddington-Finkelstein (EF) coordinates. Therefore we perform a coordinate
transformation from the usual (t, r, θ, ϕ)-coordinates to EF coordinates using

v = t+ r + 2M ln
( r

2M
− 1

)
. (A.0.1)

The even-parity sector of the tidally deformed Schwarzschild metric in EF coordinates looks like

g̃vv = −f + r2eqvvEq, (A.0.2a)

g̃vr = 1 + r2eqvrEq, (A.0.2b)

g̃rr = r2ẽqrrEq, (A.0.2c)

g̃tA = 0, (A.0.2d)

g̃rA = 0, (A.0.2e)

g̃AB = r2ΩAB

(
1 + r2eqEq

)
. (A.0.2f)

The radial functions are now given by eqvv, e
q
vr, ẽ

q
rr and eq. Here, ẽqrr is not equivalent to eqrr in Tab.

3. The function eq is equivalent in both Eqs. (2.1.13) and (A.0.2), because the angular coordinates
are not altered by the coordinate transformation of Eq. (A.0.1). We will now solve the linearized
Einstein equations for the new radial functions. The functional form of the original radial functions
eqtt, e

q
rr and eq is then found by transforming the total metric back to (t, r, θ, ϕ)-coordinates.

The linearized Einstein equations in vacuum are given by

Gµν := Rµν −
1

2
g̃µνR = 0. (A.0.3)

Here, Rµν is the Ricci tensor, which can be determined from the perturbed metric g̃µν as given in
Eq. (A.0.2). The Ricci scalar is given by R = g̃µνRµν , where g̃µν is the inverse perturbed metric.
Hence, the Einstein tensor Gµν can purely be determined from the functional form of g̃µν . We
now substitute this metric in Eq. (A.0.3), where we substitute Eq as given in Eq. (2.1.9). The
harmonic components Eq

m are only given in their general form as displayed in Tab. 1, meaning
that the nature of the tidal perturber is not specified yet. By solving the equation Gθϕ = 0, we
find that

ẽqrr = −2f−1eqvr. (A.0.4)

We now eliminate ẽqrr by substituting this expression in the other Einstein equations. If we then
solve for Gvv + f Gvr = 0, we find

eqvr = −f−1eqvv. (A.0.5)

This equation is again substituted in Gµν to eliminate eqvr. The Einstein equations are now only a
function of eqvv, eq, their derivatives with respect to r and the angular coordinates θA. The angular
part is completely decoupled from the radial part, as can easily be seen from the metric in Eq.
(A.0.2). To this end, we define the tensor Rµν as the radial part of the Einstein tensor Gµν . We
can then solve the linearized Einstein equations in vacuum by solving

Rµν = 0. (A.0.6)
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Three nonzero components of the radial tensor are given by

Rrr = −6eq + r

(
−rëq − 6ėq +

6r

(−2M + r)2
eqvv

)
, (A.0.7a)

Rrθ = −f−1 ((−4M + 2r)eq + r (−2eqvv + (−2M + r)ėq − rėqvv)) , (A.0.7b)

Rθθ = − 1

16
r ((−8M + 6r)eq + r (−6eqvv + (−10M + 6r)ėq + r (−6ėqvv + (−2M + r)ëq − rëqvv))) .

(A.0.7c)

Here, a dot denotes a derivative with respect to the radial coordinate r, and all three components
should vanish according to Eq. (A.0.6). We can eliminate all dependence on eq and its derivatives
by adding the three components in a clever way:

0 =
(−2M + r)2

r
Rrr −

2M(2M − r)

r2
Rrθ +

16(2M − r)

r2
Rθθ (A.0.8a)

= r2(2M − r)ëqvv + r(14M − 6r)ėqvv + 16Meqvv. (A.0.8b)

The resulting equation is a second order differential equation for eqvv. The corresponding solution
can then be fully determined up to two integration constants. We can fix one of these constants by
demanding that the solution is regular at the Schwarzschild event horizon of r = 2M . The other
integration constant is then resolved by demanding that eqvv evaluates to 1 in the limit of r → ∞
[39]. As a result, we find the solution

eqvv = −f2. (A.0.9)

We now substitute this value and its derivative in Eq. (A.0.7b), which should vanish, resulting in
a first order differential equation for eq. The solution of this equation is then determined up to
one constant of integration. This constant can be found by substituting the solution of eq, as well
as the solution of eqvv as given in Eq. (A.0.9), in the equation Rvv = 0. We then solve for the
integration constant, which in turn leads to the solution

eq = −1 +
2M2

r2
. (A.0.10)

Finally, we substitute Eq. (A.0.9) in Eq. (A.0.4) to find

eqvr = f, (A.0.11)

which we subsequently substitute in Eq. (A.0.5) to find the last radial function

ẽqrr = −2. (A.0.12)

The resulting four radial functions can then be substituted back in Eq. (A.0.2) to find the tidally
deformed Schwarzschild metric in EF coordinates. Lastly, we use the transformation of Eq. (A.0.1)
to find the perturbed Schwarzschild metric in (t, r, θ, ϕ)-coordinates again. We retrieve the metric
as displayed in Eq. (2.1.13), where the corresponding radial functions eqtt, e

q
rr and eq now have the

functional form as shown in Tab. 3. The functional form of the radial function bqt can be found
by performing a similar analysis on the odd-parity sector of the metric perturbation.
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B Induced acceleration

In this appendix we will derive Eq. (2.4.3), which states the acceleration aα of a test particle in
a Kerr background gµν , induced by a given metric perturbation hµν . The full metric g̃µν is given
by Eq. (2.1.1). We will first introduce the normal projection operator, as this operator serves as
a powerful tool in the derivation. Secondly, we will derive the connection between the covariant
derivatives in the Kerr spacetime

(
∇α

)
and the full spacetime

(
∇̃α

)
. Ultimately we will derive an

equation for aα up to first order in h. Therefore, we will neglect terms of O(h2) or higher in the
whole derivation.

B.1 Normal projection operator

First we will introduce the so-called normal projection operator P . This operator provides the
projection of an arbitrary vector onto the vector’s tangent space. Projection operators are idem-
potent, which means they have to satisfy P 2 = P . The normal projection operator is defined as
P β
α = δ β

α + uαu
β. Here, uα = dxα

dτ is the four-velocity of the test particle in the Kerr background,
and τ is its proper time. [21]

The normal projection onto the four-velocity itself should vanish, because uα is defined to be the
unit vector tangent to the worldline of the test particle. This is can be easily verified:

P β
α uα = (δ β

α + uαu
β)uα

= uβ + uαu
αuβ

= uβ − uβ

= 0.

(B.1.1)

In the third line of this calculation, the normalization of the four velocity is used:

uαu
α = −1. (B.1.2)

The idempotence of P β
α can be easily shown as well:

P β
α P γ

β = (δ β
α + uαu

β)(δ γ
β + uβu

γ)

= δ γ
α + uαu

γ + uαu
γ + uαu

βuβu
γ

B.1.2
= δ γ

α + uαu
γ

= P γ
α .

(B.1.3)

In the derivation of the induced acceleration we will need its projection. In the Kerr background
spacetime, the acceleration is defined as aα = duα

dτ = uγ∇γu
α. We notice that the particle’s

four-velocity and four-acceleration are orthogonal:

uαa
α = uαu

γ∇γu
α =

1

2
uγ∇γ (u

αuα)
B.1.2
=

1

2
uγ∇γ (−1) = 0. (B.1.4)

The normal projection of aα is then given by

P β
α aα = (δ β

α + uαu
β)aα = aβ + uαa

αuβ
B.1.4
= aβ. (B.1.5)

B.2 Covariant derivative connection

Because ∇̃α and∇α are both derivative operators, there exists a connection between both operators
when acted on any tensor field Tα...β

γ...δ in the Kerr background. This connection is given by [51]

∇̃νT
α...β
γ...δ = ∇νT

α...β
γ...δ + Cα

νµT
µ...β
γ...δ + ...+ Cβ

νµT
α...µ
γ...δ − Cµ

νγT
α...β
µ...δ − ...− Cµ

νδT
α...β
γ...µ , (B.2.1)
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where Cα
µν is a tensor field in the Kerr background, symmetric in its two lower indices. This tensor

field can be constructed in terms of g̃µν by exploiting the metric connection

∇̃ρg̃µν = 0. (B.2.2)

We state this connection three times:

∇̃ρg̃µν = ∇ρg̃µν − Cσ
ρµg̃σν − Cσ

ρν g̃µσ = 0,

−∇̃µg̃νρ = −∇µg̃νρ + Cσ
µν g̃σρ + Cσ

µρg̃νσ = 0,

−∇̃ν g̃ρµ = −∇ν g̃ρµ + Cσ
νρg̃σµ + Cσ

νµg̃ρσ = 0.

(B.2.3)

By adding these equations and making use of the symmetric properties of Cσ
µν and g̃µν , we find

∇ρg̃µν −∇µg̃νρ −∇ν g̃ρµ + 2Cσ
µν g̃σρ = 0. (B.2.4)

Now we multiply by the inverse metric g̃λρ and write for the tensor field

Cλ
µν =

1

2
g̃λρ (∇µg̃νρ +∇ν g̃ρµ −∇ρg̃µν) . (B.2.5)

To make sure that we only include first order terms in h, we write the metric according to Eq.
(2.1.1). Additionally we use the metric connection in the background spacetime. We find

Cλ
µν =

1

2

(
gλρ − hλρ

)
(∇µ (gνρ + hνρ) +∇ν (gρµ + hρµ)−∇ρ (gµν + hµν))

=
1

2

(
gλρ − hλρ

)
(∇µhνρ +∇νhρµ −∇ρhµν)

=
1

2
gλρ (∇µhνρ +∇νhρµ −∇ρhµν) +O(h2).

(B.2.6)

We will now proceed with the last part of the derivation, where we will need the connection
coefficient to calculate ∇̃νu

µ.

B.3 Acceleration derivation

The motion of the test mass in the total spacetime can be described by the geodesic equation [38]

ãµ = ũν∇̃ν ũ
µ = 0. (B.3.1)

Here, ũµ = dxµ

dτ̃ is the four-velocity of the particle and τ̃ is the proper time in the total spacetime.
Notice that we use the same coordinates xµ in the Kerr background and the actual spacetime. We
can relate both proper times by writing out the line element

dτ̃2 = −g̃µνdx
µdxν

2.1.1
= − (gµν + hµν) dx

µdxν = dτ2 − hµνdx
µdxν . (B.3.2)

We divide this expression by dτ2 and use the definition of the four-velocity to find(
dτ̃

dτ

)2

= 1− hµνu
µuν . (B.3.3)

Next, we take the square root and use a Taylor expansion to keep the lowest order terms only:

dτ̃

dτ
=

√
1− hµνuµuν = 1− 1

2
hµνu

µuν +O(h2). (B.3.4)

The inverse of this expression is then given by [42]

dτ

dτ̃
= 1 +

1

2
hµνu

µuν +O(h2). (B.3.5)
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This expression can be used to relate the four-velocity in the background and actual spacetime:

ũµ =
dxµ

dτ̃
=

dxµ

dτ

dτ

dτ̃

B.3.5
= (1 +

1

2
hρσu

ρuσ)uµ +O(h2). (B.3.6)

Substituting this in Eq. (B.3.1) results in

0 = ũν∇̃ν ũ
µ = (1 +

1

2
hαβu

αuβ)uν∇̃ν

(
(1 +

1

2
hρσu

ρuσ)uµ
)
+O(h2). (B.3.7)

As the multiplication by the first term of this expression will only lead to terms of higher order in
h, we can neglect it. If we then expand, and write ∇̃ν in terms of ∇ν using Cµ

νβ , we obtain

0 = uν∇̃ν(u
µ +

1

2
hρσu

ρuσuµ) +O(h2)

= uν∇̃νu
µ +

1

2
uν∇̃ν(hρσu

ρuσuµ) +O(h2)

B.2.1
= uν∇νu

µ + uνCµ
νβu

β +
1

2
uν∇ν(hρσu

ρuσuµ) +O(h2)

B.2.6
= aµ +

1

2
gµγ (∇νhβγ +∇βhγν −∇γhνβ)u

νuβ

+
1

2
uν(∇νhρσ)u

ρuσuµ +
1

2
hρσ(a

µuρuσ + aρuσuµ + aσuρuµ) +O(h2).

(B.3.8)

Collecting terms proportional to aµ gives(
1 +

1

2
hρσu

ρuσ
)
aµ =− 1

2
gµγ (∇νhβγ +∇βhγν −∇γhνβ)u

νuβ

− 1

2
(uν(∇νhρσ)u

ρuσ + hρσa
ρuσ + hρσa

σuρ)uµ +O(h2).

(B.3.9)

We will now a perform a normal projection by acting with P α
µ on both sides of Eq. (B.3.9). The

left-hand side of the equation is evaluated using Eq. (B.1.5), as P α
µ only acts on aµ. In addition,

the term proportional to uµ on the right-hand side of the equation vanishes because of Eq. (B.1.1).
We use the definition of P α

µ to evaluate the remaining part of the right-hand side [46]:(
1 +

1

2
hρσu

ρuσ
)
aα = −1

2

(
δ α
µ + uµu

α
)
gµγ (∇νhβγ +∇βhγν −∇γhνβ)u

νuβ +O(h2)

= −1

2
(gγα + uγuα) (∇νhβγ +∇βhγν −∇γhνβ)u

νuβ +O(h2).

(B.3.10)

The expression on the right-hand side should not change when interchanging indices β and ν.
Therefore we can rewrite the total equation as(

1 +
1

2
hρσu

ρuσ
)
aα = −1

2
(gγα + uγuα) (2∇νhβγ −∇γhνβ)u

νuβ +O(h2). (B.3.11)

Lastly we divide by the prefactor of aα, and make sure that we only keep terms of first order in
h. This leaves us with the final expression of the induced acceleration, which is equivalent to Eq.
(2.4.3):

aα = −1

2

(
1− 1

2
hρσu

ρuσ
)
(gγα + uγuα) (2∇νhβγ −∇γhνβ)u

νuβ +O(h2)

= −1

2
(gγα + uγuα) (2∇νhβγ −∇γhνβ)u

νuβ +O(h2).

(B.3.12)
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C Fitting formulas

Here we provide fitting formulas for several resonance combinations in both the stationary and
the dynamic model. We also included the dependence on the perturber’s inclination angle θy.
Expressions for a perturber in the equatorial plane can be retrieved by substituting θy = 0 in
the formulas. The dependence on θz is not stated, as this can be incorporated in the total phase
of the jump. In the stationary model we distinguish between fitting formulas determined from
a Schwarzschild-like and a Kerr-like metric perturbation. The dynamic formulae are purely con-
structed from a Schwarzschild-like metric perturbation.

In both models, the fitting formulae are computed by making a polynomial ansatz of the type〈
dC

dt

〉∣∣∣∣
nkm(s)

(a, e, x, θy) =
e2

(1− e)2

Ni∑
i=1

Nj∑
j=1

Nk∑
i=k

Cijka
iejxkfm(s)(θy) (C.0.1)

for C ∈ {Lz, Q}. We have included the prefactor e2

(1−e)2
to make sure that the amplitudes vanish

for circular orbits, which have e = 0. In order to determine the coefficients Cijk, we first calculated
jump amplitudes using the semi-analytical averaging integrals. We did this for different values of
a, e and x, thereby covering the whole parameter space. After that, we used Mathematica’s fitting
procedure to find the coefficients Cijk for given fitting orders Ni, Nj and Nk.
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C.1 Stationary - Schwarzschild

Fitting formulas for the (3,0,−2)-resonance, based on a Schwarzschild-like metric perturbation:〈
dLz

dt

〉∣∣∣∣
30−2

(a, e, x, θy) =
e2

(1− e)2
i

(
e4
(
(−32.4381a2 + 82.5474a− 22.3164)x2

+ (23.2914a2 − 4.02486a− 44.3466)x+ 1.02527a2 − 4.05997a− 22.2394
)

+ e3
(
(94.5972a2 − 238.919a+ 64.6126)x2 + (−68.0359a2 + 11.6784a+ 128.415)x

− 2.66177a2 + 11.8194a+ 64.3835
)
+ e2

(
(−118.506a2 + 292.893a− 76.3404)x2

+ (84.5264a2 − 16.1104a− 151.596)x+ 2.62407a2 − 15.3716a− 76.01
)

+ e
(
(73.9985a2 − 184.069a+ 48.6963)x2 + (−53.0538a2 + 9.83736a+ 96.7252)x

− 1.8061a2 + 9.48732a+ 48.4976
)
+ (0.330326a2 − 0.836528a+ 0.231949)x2

+ (−0.241884a2 + 0.0424229a+ 0.45964)x− 0.0103485a2 + 0.0410217a+ 0.230342

)
cos2 θy,

(C.1.1)

〈
dQ

dt

〉∣∣∣∣
30−2

(a, e, x, θy) =
e2

(1− e)2
i

(
e5
(
(−350.303a2 + 324.523a+ 1.77058)x6 + (997.632a2 − 962.616a− 18.085)x5 + (−1269.95a2

+ 1251.04a+ 33.1021)x4 + (743.425a2 − 382.529a− 160.802)x3 + (−79.7357a2 − 106.556a

− 144.551)x2 + (−22.0552a2 − 165.183a+ 146.082)x− 19.0792a2 + 41.3918a+ 142.472
)

+ e4
(
(843.714a2 − 794.492a− 10.0955)x6 + (−2322.02a2 + 2350.16a+ 65.9228)x5 + (3122.45a2

− 3261.7a− 111.017)x4 + (−1908.19a2 + 739.306a+ 574.263)x3 + (101.06a2 + 534.05a

+ 512.585)x2 + (95.4933a2 + 579.224a− 520.372)x+ 67.6492a2 − 146.732a− 511.26
)

+ e3
(
(−738.9a2 + 712.284a+ 16.7901)x6 + (1875.1a2 − 2102.59a− 87.933)x5 + (−2887.61a2

+ 3356.97a+ 139.319)x4 + (1936.44a2 − 271.834a− 878.968)x3 + (89.9658a2 − 1037.73a

− 793.9)x2 + (−173.713a2 − 881.421a+ 806.62)x− 101.436a2 + 224.504a+ 798.045
)

+ e2
(
(277.294a2 − 281.465a− 11.6054)x6 + (−516.262a2 + 834.747a+ 52.9907)x5 + (1287.18a2

− 1862.11a− 80.2363)x4 + (−1070.25a2 − 330.574a+ 745.28)x3 + (−239.536a2 + 1077.13a

+ 691.434)x2 + (177.408a2 + 769.623a− 700.812)x+ 84.233a2 − 207.437a− 697.039
)

+ e
(
(−36.6328a2 + 44.9437a+ 3.37486)x6 + (−67.0153a2 − 138.552a− 13.9053)x5 + (−318.61a2

+ 686.771a+ 20.4644)x4 + (388.599a2 + 362.577a− 407.257)x3 + (184.938a2 − 642.257a

− 391.75)x2 + (−103.5a2 − 427.826a+ 394.944)x− 47.7934a2 + 114.36a+ 394.127
)

+ (3.09102a2 − 3.12318a− 0.177352)x6 + (−9.07793a2 + 8.34304a+ 0.944115)x5 + (8.91102a2

− 7.04705a− 1.56844)x4 + (−3.82138a2 + 3.7586a+ 0.382147)x3 + (1.22257a2 − 1.48748a

− 0.8553)x2 + (−0.246704a2 − 0.590026a+ 0.629687)x− 0.0777528a2 + 0.144901a+ 0.645359

)
cos2 θy.

(C.1.2)
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C.2 Stationary - Kerr

Fitting formulas for the (3,0,−2)-resonance, based on a Kerr-like metric perturbation:〈
dLz

dt

〉∣∣∣∣
30−2

(a, e, x, θy) =
e2

(1− e)2
i

(
e4
(
(−32.3879a2 + 82.4572a− 22.3083)x2

+ (23.2491a2 − 3.91293a− 44.3636)x+ 1.05349a2 − 4.08057a− 22.2342
)

+ e3
(
(94.5435a2 − 238.924a+ 64.6023)x2 + (−67.659a2 + 11.6636a+ 128.444)x

− 2.63326a2 + 11.9476a+ 64.3733
)
+ e2

(
(−118.477a2 + 293.127a− 76.34)x2

+ (83.7703a2 − 16.3509a− 151.612)x+ 2.47939a2 − 15.5658a− 76.0033
)

+ e
(
(73.9756a2 − 184.208a+ 48.6983)x2 + (−52.6398a2 + 9.98161a+ 96.7283)x

− 1.71971a2 + 9.5751a+ 48.4959
)
+ (0.332485a2 − 0.839281a+ 0.23218)x2

+ (−0.244123a2 + 0.0464889a+ 0.459004)x− 0.00890793a2 + 0.0395971a+ 0.230579

)
cos2 θy,

(C.2.1)

〈
dQ

dt

〉∣∣∣∣
30−2

(a, e, x, θy) =
e2

(1− e)2
i

(
a2
(
e5
(
3083.2x6 − 10377.2x5 + 13254.4x4 − 8160.38x3 + 2550.55x2 − 340.144x− 10.0236

)
+ e4

(
− 7897.46x6 + 26642.3x5 − 33870.9x4 + 20776.6x3 − 6603.63x2 + 907.278x+ 44.6096

)
+ e3

(
7582.19x6 − 25708.9x5 + 32360.5x4 − 19691.2x3 + 6486.1x2 − 948.83x− 78.7503

)
+ e2

(
− 3347.6x6 + 11509.1x5 − 14093.8x4 + 8377.65x3 − 3034.46x2 + 515.645x+ 73.0184

)
+ e

(
660.341x6 − 2381.86x5 + 2646.78x4 − 1436.27x3 + 724.611x2 − 168.486x− 45.0386

)
+
(
− 40.6976x6 + 136.458x5 − 177.67x4 + 111.188x3 − 33.0864x2 + 4.01312x− 0.210877

))
+ a

(
e5
(
− 4350.13x6 + 14506.3x5 − 18462.6x4 + 11659.1x3 − 3638.15x2 + 253.231x+ 31.5923

)
+ e4

(
11213.4x6 − 37374.x5 + 47344.x4 − 30157.6x3 + 9591.26x2 − 493.825x− 121.648

)
+ e3

(
− 10844.9x6 + 36120.5x5 − 45318.6x4 + 29433.1x3 − 9742.32x2 + 150.089x+ 200.56

)
+ e2

(
4825.77x6 − 16051.3x5 + 19631.5x4 − 13439.8x3 + 4917.2x2 + 314.363x− 197.074

)
+ e

(
− 957.047x6 + 3172.43x5 − 3523.9x4 + 2927.79x3 − 1393.09x2 − 338.697x+ 112.382

)
+
(
61.8665x6 − 205.98x5 + 264.857x4 − 161.429x3 + 46.7357x2 − 6.33306x+ 0.291156

))
+ e5

(
1570.78x6 − 5161.41x5 + 6509.6x4 − 4055.x3 + 973.716x2 + 17.1006x+ 145.478

)
+ e4

(
− 4090.14x6 + 13427.x5 − 16915.2x4 + 10666.x3 − 2383.42x2 − 185.962x− 518.95

)
+ e3

(
4010.25x6 − 13148.5x5 + 16540.5x4 − 10713.2x3 + 2025.65x2 + 480.624x+ 805.395

)
+ e2

(
− 1818.74x6 + 5951.92x5 − 7471.29x4 + 5166.37x3 − 574.014x2 − 554.314x− 700.237

)
+ e

(
370.741x6 − 1209.15x5 + 1512.11x4 − 1295.51x3 − 138.408x2 + 365.572x+ 394.711

)
+

(
− 25.516x6 + 82.8209x5 − 102.871x4 + 60.0994x3 − 17.7144x2 + 2.57959x+ 0.597364

))
cos2 θy.

(C.2.2)
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C.3 Dynamic

Fitting formulas for the (3,0,−2,2)-resonance, based on a Schwarzschild-like metric perturbation:〈
dLz

dt

〉∣∣∣∣
30−22

(a, e, x, θy) =
e2

(1− e)2
i

(
e4
(
(−16.4015a2 + 39.1014a− 9.85389)x2

+ (11.565a2 − 2.55902a− 19.6348)x− 0.00519701a2 − 2.06224a− 9.86451
)

+ e3
(
(34.7861a2 − 85.3948a+ 22.1898)x2 + (−24.9081a2 + 5.18503a+ 44.1958)x

− 0.262398a2 + 4.37238a+ 22.1933
)
+ e2

(
(−34.8772a2 + 85.7044a− 22.0524)x2

+ (24.9507a2 − 5.16425a− 43.8988)x+ 0.447507a2 − 4.52774a− 22.0319
)

+ e
(
(18.978a2 − 47.5157a+ 12.5594)x2 + (−13.707a2 + 2.64862a+ 25.0004)x

− 0.416963a2 + 2.44956a+ 12.5418
)
+ (−0.00488119a2 − 0.00919803a+ 0.0108231)x2

+ (0.0005391a2 − 0.005918a+ 0.021342)x− 0.005835a2 − 0.0006785a+ 0.010522

)
(cos θy + 1)2 ,

(C.3.1)

〈
dQ

dt

〉∣∣∣∣
30−22

(a, e, x, θy) =
e2

(1− e)2
i

(
e4
(
(125.038a2 − 323.6a+ 81.1229)x3 + (−191.742a2 + 290.59a+ 83.6807)x2

+ (59.452a2 + 58.9459a− 82.6308)x+ 6.30343a2 − 25.2159a− 82.1798
)

+ e3
(
(−266.124a2 + 696.596a− 178.542)x3 + (408.834a2 − 623.497a− 182.975)x2

+ (−125.694a2 − 126.189a+ 181.175)x− 15.0454a2 + 51.5777a+ 180.354
)

+ e2
(
(265.063a2 − 678.982a+ 171.067)x3 + (−407.045a2 + 611.924a+ 173.717)x2

+ (125.059a2 + 118.511a− 172.66)x+ 15.0869a2 − 50.063a− 172.131
)

+ e
(
(−148.565a2 + 378.531a− 96.8481)x3 + (228.373a2 − 341.196a− 97.5503)x2

+ (−69.4165a2 − 64.6291a+ 97.2706)x− 9.42566a2 + 26.5603a+ 97.1285
)

+ (−0.117927a2 + 0.101404a− 0.0479041)x3 + (0.188465a2 − 0.132458a− 0.0138666)x2

+ (−0.040434a2 + 0.068733a+ 0.027430)x− 0.03226a2 − 0.035929a+ 0.034214

)
(cos θy + 1)2 .

(C.3.2)
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D Selection rules

In this appendix we will derive the so-called selection rules. These rules state that a jump in the
orbital constants of motion due to a tidal resonance can only occur for certain combinations of the
resonant integers k, m and s. We will first derive these selection rules in the stationary model,
where the perturber can be situated both on and off the equatorial plane. Lastly, we will derive
the most general selection rule in the dynamic model, where the perturber moves in a circular
orbit that is inclined with respect to the equatorial plane.

D.1 Stationary perturber on the equatorial plane

We will show that the tidally induced jump sizes in Lz and Q do not change under a reflection of
the orbit in the equatorial plane. Therefore we rewrite the induced acceleration of Eq. (2.4.3) as

aα =
(
g β
α + uαu

β
)
uλuρ

(
−∇ρhβλ +

1

2
∇βhλρ

)
+O(h2)

= uλuρ
(
−∇ρhαλ +

1

2
∇αhλρ

)
+ uα

−uβuλuρ∇ρhβλ︸ ︷︷ ︸
β⇄ρ

+
1

2
uβuλuρ∇βhλρ

+O(h2)

= uλuρ

−∇ρhαλ︸ ︷︷ ︸
1

+
1

2
∇αhλρ︸ ︷︷ ︸

2

− 1

2
uαu

β∇βhλρ︸ ︷︷ ︸
3

+O(h2).

(D.1.1)

We will now perform a reflection in the equatorial plane on all three terms as marked above. This
will give us the full reflection of the induced acceleration. Under a reflection in the equatorial
plane, the polar coordinate is shifted according to θ → π − θ. Consequently, we have

• uθ → −uθ,

• ∇θ → −∇θ,

• qθ → π − qθ,

while all other quantities remain unchanged. We will now first focus on the rate of change in Lz,
which is given by aϕ according to Eq. (2.4.4a). Therefore we take α = ϕ in Eq. (D.1.1), and
subsequently perform a reflection in the equatorial plane on each of the three terms individually.
We find:

1. uλuρ∇ρhϕλ: As hµν is diagonal, we must have λ = ϕ for a nonzero metric perturbation. If we

perform a reflection, there only occur changes if ρ = θ: uϕuθ∇θhϕϕ → uϕ(−uθ)(−∇θ)hϕϕ =
uϕuθ∇θhϕϕ. As a result, this term does not change under a reflection in the equatorial plane.

2. uλuρ∇ϕhλρ: We must have λ = ρ, as hµν is diagonal, so this term now looks like uλuλ∇ϕhλλ.

Under a reflection, only changes occur if λ = θ. We find: uθuθ∇ϕhθθ → (−uθ)(−uθ)∇ϕhθθ =
uθuθ∇ϕhθθ. We notice that this term is not altered either.

3. uλuρuϕu
β∇βhλρ: Again, we must have λ = ρ for a nonzero contribution of the metric pertur-

bation. Changes under a reflection then occur if λ = θ or β = θ. If λ/β = θ, then you always
get a double minus sign change under a reflection, irrespective of the index β/λ. Hence, this
third term is also conserved under a reflection in the equatorial plane.
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As a result, we find that the ϕ-component of the induced acceleration does not change under a
reflection in the equatorial plane:

aϕ(t, r, θ, ϕ) = aϕ(t, r, π − θ, ϕ) (D.1.2)

If we now perform a Fourier decomposition of the acceleration for the polar coordinate only, we
can write Eq. (D.1.2) as∑

k

aϕ,k(t, r, ϕ)e
ikqθ =

∑
k

aϕ,k(t, r, ϕ)e
ik(π−qθ)

=
∑
k

(−1)kaϕ,k(t, r, ϕ)e
−ikqθ

=
∑
k

(−1)kaϕ,k(t, r, ϕ)e
ikqθ .

(D.1.3)

In the last step we could omit the minus sign in the exponential, as we sum over all possible k ∈ Z.
This k is the exact same k as used in the Fourier composition of the tidal force in Eq. (2.3.7), as it
corresponds to the angle qθ. Both the left- and right-hand side of Eq. (D.1.3) should be equivalent
according to Eq. (D.1.2). This is only true if the coefficients aϕ,k are nonzero when

k = even. (D.1.4)

This means that only terms with k = even contribute to the induced acceleration in the azimuthal
direction. Since dLz

dτ = aϕ, the same reasoning applies to the rate of change in Lz, meaning that
tidal resonances with k = odd do not contribute to a change in Lz if the perturber is situated on
the equatorial plane. According to the two-for-one deal in Eq. (2.4.20), the rate of change in Q
can be determined from the rate of change in Lz, meaning that we also do not encounter a jump
in Q for resonances with k = odd. We refer to the statement in Eq. (D.1.4) as our first selection
rule. An equivalent selection rule was also found in [45].

D.2 Stationary perturber off the equatorial plane

We will now consider the scenario where the tidal perturber has an arbitrary sky location, as
discussed in section 3.2.4. As we have seen, this allows the manifestation of resonances with
m = ±1, which in turn requests for an update of the first selection rule. To find this new selection
rule, we first study the influence of the m-modes on the tidal potentials under the reflection
θ → π − θ. We find that we can rewrite the stationary electric tidal quadrupole potential as

Eq(0, θ, ϕ) =
∑

−2≤m≤2

Eq
m(0)Y 2m(θ, ϕ)

=
∑

−2≤m≤2

(−1)mEq
m(0)Y 2m(π − θ, ϕ).

(D.2.1)

The stationary metric perturbation is linear in this potential. Consequently, the stationary metric
perturbation can also be written as

hµν(0, r, θ, ϕ) = f el
µν(r)Eq(0, θ, ϕ)

= f el
µν(r)

∑
−2≤m≤2

(−1)mEq
m(0)Y 2m(π − θ, ϕ). (D.2.2)

Here we used Eq. (D.2.1) in the second line, and we denoted the electric radial functions of Tab.
3 by f el

µν(r). We now use this form of the stationary metric perturbation as input for the tidally
induced acceleration as given in Eq. (D.1.1). Under the reflection θ → π − θ, Eq. (D.1.2) still
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holds. This may not seem evident, since this operation corresponds to a reflection in the equatorial
plane, where the perturber is not residing. However, the functional dependence on the perturber’s
inclination angle θy, as given by the function fm(θy) in Tab. 4, is just a multiplicative factor in the
jump’s amplitudes, as can be seen in Eq. (3.2.5). Consequently, the tidal force has to be multiplied
by the functions fm(θy) as well, which means that they can be scaled out of Eq. (D.1.2). We will
now decompose the induced acceleration in its Fourier modes again. Besides the polar mode, we
also decompose in the mode corresponding to the azimuthal motion, because of the oscillating
dependence on m in the tidal potential. Analogous to Eq. (D.1.3) we find∑

k,m

aϕ,km(0, r)eikqθeimqϕ =
∑
k,m

(−1)maϕ,km(0, r)eik(π−qθ)eimqϕ

=
∑
k,m

(−1)k+maϕ,km(0, r)e−ikqθeimqϕ

=
∑
k,m

(−1)k+maϕ,km(0, r)eikqθeimqϕ .

(D.2.3)

Both sides of this equation are only equivalent when

k +m = even. (D.2.4)

We refer to this statement as the second selection rule. From the definition of the rate of change
in Lz in Eq. (2.4.4a), we conclude that there is no jump induced in Lz for tidal resonances with
k + m = odd. This also means that we do not find a jump in Q, based on the two-for-one deal
in Eq. (2.4.20). In principle, the analysis of this subsection is also valid for a perturber on the
equatorial plane, meaning that the second selection rule of Eq. (D.2.4) applies to this case as
well. However, as we only found resonances with m ∈ {−2, 0, 2} in this case, this selection rule is
equivalent to the first selection rule of Eq. (D.1.4).

D.3 Dynamic perturber off the equatorial plane

We need a new selection rule in the case of a dynamic tidal perturber, since the dynamic tidal
resonance condition in Eq. (2.3.15) also contains an s-mode. To find this rule, we will first focus
on the electric quadrupole potential. In the stationary model, the harmonic components Eq

m(0) in
Eq. (D.2.1) are constant. In the dynamic model, on the other hand, the harmonic components
Eq
m(t) determine the perturber’s dynamics. So to derive a dynamic selection rule, we have to study

these components under a reflection in the equatorial plane. Therefore we notice that we can write
the harmonic components as

Eq
m(t) =

∑
−2≤s≤2

Eq
msY

2s(π/4, Qϕ), (D.3.1)

where Eq
ms are constant coefficients. The angle Qϕ determines the motion of the perturber, and is

given by Qϕ = Ωϕt. We chose a value of θ = π
4 in the spherical harmonic functions. In principle,

we could have chosen any value of θ ∈ [0, π], as long as Y 2s(θ,Qϕ) ̸= 0 ∀s ∈ {−2,−1, 0, 1, 2}. This
would only change the values of the coefficients Eq

ms. We notice that Y 20(θ,Qϕ) and Y 2±2(θ,Qϕ)
are symmetric in θ = π

2 , while Y
2±1(θ,Qϕ) = −Y 2±1(π− θ,Qϕ). Hence, we can write the dynamic

harmonic components as

Eq
m(t) =

∑
−2≤s≤2

Eq
msY

2s(π/4, Qϕ)

=
∑

−2≤s≤2

(−1)sEq
msY

2s(3π/4, Qϕ).
(D.3.2)
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Now, similar to the stationary case, we can rewrite the electric tidal quadrupole potential as

Eq(t, θ, ϕ) =
∑

−2≤m≤2

Eq
m(t)Y 2m(θ, ϕ)

=
∑

−2≤m,s≤2

(
Eq
msY

2s(π/4, Qϕ)
)
Y 2m(θ, ϕ)

=
∑

−2≤m,s≤2

(−1)m
(
(−1)sEq

msY
2s(3π/4, Qϕ)

)
Y 2m(π − θ, ϕ).

(D.3.3)

In the dynamic model, we also need the magnetic quadrupole potentials. Using a similar analysis,
we find

Bq
θ (t, θ, ϕ) =

1

2

∑
−2≤m≤2

Bq
m(t)X2m

θ (θ, ϕ)

=
1

2

∑
−2≤m,s≤2

(
Bq
msY

2s(π/4, Qϕ)
)
X2m

θ (θ, ϕ)

=
1

2

∑
−2≤m,s≤2

(−1)m
(
(−1)sBq

msY
2s(3π/4, Qϕ)

)
X2m

θ (π − θ, ϕ),

(D.3.4)

and

Bq
ϕ(t, θ, ϕ) =

1

2

∑
−2≤m≤2

Bq
m(t)X2m

ϕ (θ, ϕ)

=
1

2

∑
−2≤m,s≤2

(
Bq
msX

2s
ϕ (π/6, Qϕ)

)
X2m

ϕ (θ, ϕ)

=
1

2

∑
−2≤m,s≤2

(−1)m
(
(−1)sBq

msX
2s
ϕ (5π/6, Qϕ)

)
X2m

ϕ (π − θ, ϕ).

(D.3.5)

Similar to the stationary case, this behaviour under the reflection θ → π− θ translates directly to
the metric perturbation, since hµν is linear in the potentials. If we then write out the acceleration
on both sides of Eq. (D.1.2) in terms of Fourier components, we find∑

k,m,s

aϕ,kms(r)e
ikqθeimqϕeisQϕ =

∑
k,m,s

(−1)m(−1)saϕ,kms(r)e
ik(π−qθ)eimqϕeisQϕ

=
∑
k,m,s

(−1)k+m+saϕ,kms(r)e
−ikqθeimqϕeisQϕ

=
∑
k,m,s

(−1)k+m+saϕ,kms(r)e
ikqθeimqϕeisQϕ .

(D.3.6)

Both sides of this equation are then only equal when

k +m+ s = even, (D.3.7)

which we refer to as the third selection rule. This rule also agrees with an equivalent rule from
[45]. So, no jumps in Lz and Q are induced for tidal resonances with k+m+s = odd. Eq. (D.3.7)
applies at all times, since it reduces to Eq. (D.2.4) in the case of a stationary perturber, and to
Eq. (D.1.4) for a perturber on the equatorial plane. Therefore, it is the most general selection
rule.
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